]> git.proxmox.com Git - rustc.git/blob - src/llvm/include/llvm/ADT/SmallBitVector.h
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / include / llvm / ADT / SmallBitVector.h
1 //===- llvm/ADT/SmallBitVector.h - 'Normally small' bit vectors -*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SmallBitVector class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_ADT_SMALLBITVECTOR_H
15 #define LLVM_ADT_SMALLBITVECTOR_H
16
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/Support/Compiler.h"
19 #include "llvm/Support/MathExtras.h"
20 #include <cassert>
21
22 namespace llvm {
23
24 /// SmallBitVector - This is a 'bitvector' (really, a variable-sized bit array),
25 /// optimized for the case when the array is small. It contains one
26 /// pointer-sized field, which is directly used as a plain collection of bits
27 /// when possible, or as a pointer to a larger heap-allocated array when
28 /// necessary. This allows normal "small" cases to be fast without losing
29 /// generality for large inputs.
30 ///
31 class SmallBitVector {
32 // TODO: In "large" mode, a pointer to a BitVector is used, leading to an
33 // unnecessary level of indirection. It would be more efficient to use a
34 // pointer to memory containing size, allocation size, and the array of bits.
35 uintptr_t X;
36
37 enum {
38 // The number of bits in this class.
39 NumBaseBits = sizeof(uintptr_t) * CHAR_BIT,
40
41 // One bit is used to discriminate between small and large mode. The
42 // remaining bits are used for the small-mode representation.
43 SmallNumRawBits = NumBaseBits - 1,
44
45 // A few more bits are used to store the size of the bit set in small mode.
46 // Theoretically this is a ceil-log2. These bits are encoded in the most
47 // significant bits of the raw bits.
48 SmallNumSizeBits = (NumBaseBits == 32 ? 5 :
49 NumBaseBits == 64 ? 6 :
50 SmallNumRawBits),
51
52 // The remaining bits are used to store the actual set in small mode.
53 SmallNumDataBits = SmallNumRawBits - SmallNumSizeBits
54 };
55
56 public:
57 typedef unsigned size_type;
58 // Encapsulation of a single bit.
59 class reference {
60 SmallBitVector &TheVector;
61 unsigned BitPos;
62
63 public:
64 reference(SmallBitVector &b, unsigned Idx) : TheVector(b), BitPos(Idx) {}
65
66 reference& operator=(reference t) {
67 *this = bool(t);
68 return *this;
69 }
70
71 reference& operator=(bool t) {
72 if (t)
73 TheVector.set(BitPos);
74 else
75 TheVector.reset(BitPos);
76 return *this;
77 }
78
79 operator bool() const {
80 return const_cast<const SmallBitVector &>(TheVector).operator[](BitPos);
81 }
82 };
83
84 private:
85 bool isSmall() const {
86 return X & uintptr_t(1);
87 }
88
89 BitVector *getPointer() const {
90 assert(!isSmall());
91 return reinterpret_cast<BitVector *>(X);
92 }
93
94 void switchToSmall(uintptr_t NewSmallBits, size_t NewSize) {
95 X = 1;
96 setSmallSize(NewSize);
97 setSmallBits(NewSmallBits);
98 }
99
100 void switchToLarge(BitVector *BV) {
101 X = reinterpret_cast<uintptr_t>(BV);
102 assert(!isSmall() && "Tried to use an unaligned pointer");
103 }
104
105 // Return all the bits used for the "small" representation; this includes
106 // bits for the size as well as the element bits.
107 uintptr_t getSmallRawBits() const {
108 assert(isSmall());
109 return X >> 1;
110 }
111
112 void setSmallRawBits(uintptr_t NewRawBits) {
113 assert(isSmall());
114 X = (NewRawBits << 1) | uintptr_t(1);
115 }
116
117 // Return the size.
118 size_t getSmallSize() const {
119 return getSmallRawBits() >> SmallNumDataBits;
120 }
121
122 void setSmallSize(size_t Size) {
123 setSmallRawBits(getSmallBits() | (Size << SmallNumDataBits));
124 }
125
126 // Return the element bits.
127 uintptr_t getSmallBits() const {
128 return getSmallRawBits() & ~(~uintptr_t(0) << getSmallSize());
129 }
130
131 void setSmallBits(uintptr_t NewBits) {
132 setSmallRawBits((NewBits & ~(~uintptr_t(0) << getSmallSize())) |
133 (getSmallSize() << SmallNumDataBits));
134 }
135
136 public:
137 /// SmallBitVector default ctor - Creates an empty bitvector.
138 SmallBitVector() : X(1) {}
139
140 /// SmallBitVector ctor - Creates a bitvector of specified number of bits. All
141 /// bits are initialized to the specified value.
142 explicit SmallBitVector(unsigned s, bool t = false) {
143 if (s <= SmallNumDataBits)
144 switchToSmall(t ? ~uintptr_t(0) : 0, s);
145 else
146 switchToLarge(new BitVector(s, t));
147 }
148
149 /// SmallBitVector copy ctor.
150 SmallBitVector(const SmallBitVector &RHS) {
151 if (RHS.isSmall())
152 X = RHS.X;
153 else
154 switchToLarge(new BitVector(*RHS.getPointer()));
155 }
156
157 SmallBitVector(SmallBitVector &&RHS) : X(RHS.X) {
158 RHS.X = 1;
159 }
160
161 ~SmallBitVector() {
162 if (!isSmall())
163 delete getPointer();
164 }
165
166 /// empty - Tests whether there are no bits in this bitvector.
167 bool empty() const {
168 return isSmall() ? getSmallSize() == 0 : getPointer()->empty();
169 }
170
171 /// size - Returns the number of bits in this bitvector.
172 size_t size() const {
173 return isSmall() ? getSmallSize() : getPointer()->size();
174 }
175
176 /// count - Returns the number of bits which are set.
177 size_type count() const {
178 if (isSmall()) {
179 uintptr_t Bits = getSmallBits();
180 if (NumBaseBits == 32)
181 return CountPopulation_32(Bits);
182 if (NumBaseBits == 64)
183 return CountPopulation_64(Bits);
184 llvm_unreachable("Unsupported!");
185 }
186 return getPointer()->count();
187 }
188
189 /// any - Returns true if any bit is set.
190 bool any() const {
191 if (isSmall())
192 return getSmallBits() != 0;
193 return getPointer()->any();
194 }
195
196 /// all - Returns true if all bits are set.
197 bool all() const {
198 if (isSmall())
199 return getSmallBits() == (uintptr_t(1) << getSmallSize()) - 1;
200 return getPointer()->all();
201 }
202
203 /// none - Returns true if none of the bits are set.
204 bool none() const {
205 if (isSmall())
206 return getSmallBits() == 0;
207 return getPointer()->none();
208 }
209
210 /// find_first - Returns the index of the first set bit, -1 if none
211 /// of the bits are set.
212 int find_first() const {
213 if (isSmall()) {
214 uintptr_t Bits = getSmallBits();
215 if (Bits == 0)
216 return -1;
217 if (NumBaseBits == 32)
218 return countTrailingZeros(Bits);
219 if (NumBaseBits == 64)
220 return countTrailingZeros(Bits);
221 llvm_unreachable("Unsupported!");
222 }
223 return getPointer()->find_first();
224 }
225
226 /// find_next - Returns the index of the next set bit following the
227 /// "Prev" bit. Returns -1 if the next set bit is not found.
228 int find_next(unsigned Prev) const {
229 if (isSmall()) {
230 uintptr_t Bits = getSmallBits();
231 // Mask off previous bits.
232 Bits &= ~uintptr_t(0) << (Prev + 1);
233 if (Bits == 0 || Prev + 1 >= getSmallSize())
234 return -1;
235 if (NumBaseBits == 32)
236 return countTrailingZeros(Bits);
237 if (NumBaseBits == 64)
238 return countTrailingZeros(Bits);
239 llvm_unreachable("Unsupported!");
240 }
241 return getPointer()->find_next(Prev);
242 }
243
244 /// clear - Clear all bits.
245 void clear() {
246 if (!isSmall())
247 delete getPointer();
248 switchToSmall(0, 0);
249 }
250
251 /// resize - Grow or shrink the bitvector.
252 void resize(unsigned N, bool t = false) {
253 if (!isSmall()) {
254 getPointer()->resize(N, t);
255 } else if (SmallNumDataBits >= N) {
256 uintptr_t NewBits = t ? ~uintptr_t(0) << getSmallSize() : 0;
257 setSmallSize(N);
258 setSmallBits(NewBits | getSmallBits());
259 } else {
260 BitVector *BV = new BitVector(N, t);
261 uintptr_t OldBits = getSmallBits();
262 for (size_t i = 0, e = getSmallSize(); i != e; ++i)
263 (*BV)[i] = (OldBits >> i) & 1;
264 switchToLarge(BV);
265 }
266 }
267
268 void reserve(unsigned N) {
269 if (isSmall()) {
270 if (N > SmallNumDataBits) {
271 uintptr_t OldBits = getSmallRawBits();
272 size_t SmallSize = getSmallSize();
273 BitVector *BV = new BitVector(SmallSize);
274 for (size_t i = 0; i < SmallSize; ++i)
275 if ((OldBits >> i) & 1)
276 BV->set(i);
277 BV->reserve(N);
278 switchToLarge(BV);
279 }
280 } else {
281 getPointer()->reserve(N);
282 }
283 }
284
285 // Set, reset, flip
286 SmallBitVector &set() {
287 if (isSmall())
288 setSmallBits(~uintptr_t(0));
289 else
290 getPointer()->set();
291 return *this;
292 }
293
294 SmallBitVector &set(unsigned Idx) {
295 if (isSmall()) {
296 assert(Idx <= static_cast<unsigned>(
297 std::numeric_limits<uintptr_t>::digits) &&
298 "undefined behavior");
299 setSmallBits(getSmallBits() | (uintptr_t(1) << Idx));
300 }
301 else
302 getPointer()->set(Idx);
303 return *this;
304 }
305
306 /// set - Efficiently set a range of bits in [I, E)
307 SmallBitVector &set(unsigned I, unsigned E) {
308 assert(I <= E && "Attempted to set backwards range!");
309 assert(E <= size() && "Attempted to set out-of-bounds range!");
310 if (I == E) return *this;
311 if (isSmall()) {
312 uintptr_t EMask = ((uintptr_t)1) << E;
313 uintptr_t IMask = ((uintptr_t)1) << I;
314 uintptr_t Mask = EMask - IMask;
315 setSmallBits(getSmallBits() | Mask);
316 } else
317 getPointer()->set(I, E);
318 return *this;
319 }
320
321 SmallBitVector &reset() {
322 if (isSmall())
323 setSmallBits(0);
324 else
325 getPointer()->reset();
326 return *this;
327 }
328
329 SmallBitVector &reset(unsigned Idx) {
330 if (isSmall())
331 setSmallBits(getSmallBits() & ~(uintptr_t(1) << Idx));
332 else
333 getPointer()->reset(Idx);
334 return *this;
335 }
336
337 /// reset - Efficiently reset a range of bits in [I, E)
338 SmallBitVector &reset(unsigned I, unsigned E) {
339 assert(I <= E && "Attempted to reset backwards range!");
340 assert(E <= size() && "Attempted to reset out-of-bounds range!");
341 if (I == E) return *this;
342 if (isSmall()) {
343 uintptr_t EMask = ((uintptr_t)1) << E;
344 uintptr_t IMask = ((uintptr_t)1) << I;
345 uintptr_t Mask = EMask - IMask;
346 setSmallBits(getSmallBits() & ~Mask);
347 } else
348 getPointer()->reset(I, E);
349 return *this;
350 }
351
352 SmallBitVector &flip() {
353 if (isSmall())
354 setSmallBits(~getSmallBits());
355 else
356 getPointer()->flip();
357 return *this;
358 }
359
360 SmallBitVector &flip(unsigned Idx) {
361 if (isSmall())
362 setSmallBits(getSmallBits() ^ (uintptr_t(1) << Idx));
363 else
364 getPointer()->flip(Idx);
365 return *this;
366 }
367
368 // No argument flip.
369 SmallBitVector operator~() const {
370 return SmallBitVector(*this).flip();
371 }
372
373 // Indexing.
374 reference operator[](unsigned Idx) {
375 assert(Idx < size() && "Out-of-bounds Bit access.");
376 return reference(*this, Idx);
377 }
378
379 bool operator[](unsigned Idx) const {
380 assert(Idx < size() && "Out-of-bounds Bit access.");
381 if (isSmall())
382 return ((getSmallBits() >> Idx) & 1) != 0;
383 return getPointer()->operator[](Idx);
384 }
385
386 bool test(unsigned Idx) const {
387 return (*this)[Idx];
388 }
389
390 /// Test if any common bits are set.
391 bool anyCommon(const SmallBitVector &RHS) const {
392 if (isSmall() && RHS.isSmall())
393 return (getSmallBits() & RHS.getSmallBits()) != 0;
394 if (!isSmall() && !RHS.isSmall())
395 return getPointer()->anyCommon(*RHS.getPointer());
396
397 for (unsigned i = 0, e = std::min(size(), RHS.size()); i != e; ++i)
398 if (test(i) && RHS.test(i))
399 return true;
400 return false;
401 }
402
403 // Comparison operators.
404 bool operator==(const SmallBitVector &RHS) const {
405 if (size() != RHS.size())
406 return false;
407 if (isSmall())
408 return getSmallBits() == RHS.getSmallBits();
409 else
410 return *getPointer() == *RHS.getPointer();
411 }
412
413 bool operator!=(const SmallBitVector &RHS) const {
414 return !(*this == RHS);
415 }
416
417 // Intersection, union, disjoint union.
418 SmallBitVector &operator&=(const SmallBitVector &RHS) {
419 resize(std::max(size(), RHS.size()));
420 if (isSmall())
421 setSmallBits(getSmallBits() & RHS.getSmallBits());
422 else if (!RHS.isSmall())
423 getPointer()->operator&=(*RHS.getPointer());
424 else {
425 SmallBitVector Copy = RHS;
426 Copy.resize(size());
427 getPointer()->operator&=(*Copy.getPointer());
428 }
429 return *this;
430 }
431
432 /// reset - Reset bits that are set in RHS. Same as *this &= ~RHS.
433 SmallBitVector &reset(const SmallBitVector &RHS) {
434 if (isSmall() && RHS.isSmall())
435 setSmallBits(getSmallBits() & ~RHS.getSmallBits());
436 else if (!isSmall() && !RHS.isSmall())
437 getPointer()->reset(*RHS.getPointer());
438 else
439 for (unsigned i = 0, e = std::min(size(), RHS.size()); i != e; ++i)
440 if (RHS.test(i))
441 reset(i);
442
443 return *this;
444 }
445
446 /// test - Check if (This - RHS) is zero.
447 /// This is the same as reset(RHS) and any().
448 bool test(const SmallBitVector &RHS) const {
449 if (isSmall() && RHS.isSmall())
450 return (getSmallBits() & ~RHS.getSmallBits()) != 0;
451 if (!isSmall() && !RHS.isSmall())
452 return getPointer()->test(*RHS.getPointer());
453
454 unsigned i, e;
455 for (i = 0, e = std::min(size(), RHS.size()); i != e; ++i)
456 if (test(i) && !RHS.test(i))
457 return true;
458
459 for (e = size(); i != e; ++i)
460 if (test(i))
461 return true;
462
463 return false;
464 }
465
466 SmallBitVector &operator|=(const SmallBitVector &RHS) {
467 resize(std::max(size(), RHS.size()));
468 if (isSmall())
469 setSmallBits(getSmallBits() | RHS.getSmallBits());
470 else if (!RHS.isSmall())
471 getPointer()->operator|=(*RHS.getPointer());
472 else {
473 SmallBitVector Copy = RHS;
474 Copy.resize(size());
475 getPointer()->operator|=(*Copy.getPointer());
476 }
477 return *this;
478 }
479
480 SmallBitVector &operator^=(const SmallBitVector &RHS) {
481 resize(std::max(size(), RHS.size()));
482 if (isSmall())
483 setSmallBits(getSmallBits() ^ RHS.getSmallBits());
484 else if (!RHS.isSmall())
485 getPointer()->operator^=(*RHS.getPointer());
486 else {
487 SmallBitVector Copy = RHS;
488 Copy.resize(size());
489 getPointer()->operator^=(*Copy.getPointer());
490 }
491 return *this;
492 }
493
494 // Assignment operator.
495 const SmallBitVector &operator=(const SmallBitVector &RHS) {
496 if (isSmall()) {
497 if (RHS.isSmall())
498 X = RHS.X;
499 else
500 switchToLarge(new BitVector(*RHS.getPointer()));
501 } else {
502 if (!RHS.isSmall())
503 *getPointer() = *RHS.getPointer();
504 else {
505 delete getPointer();
506 X = RHS.X;
507 }
508 }
509 return *this;
510 }
511
512 const SmallBitVector &operator=(SmallBitVector &&RHS) {
513 if (this != &RHS) {
514 clear();
515 swap(RHS);
516 }
517 return *this;
518 }
519
520 void swap(SmallBitVector &RHS) {
521 std::swap(X, RHS.X);
522 }
523
524 /// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize.
525 /// This computes "*this |= Mask".
526 void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
527 if (isSmall())
528 applyMask<true, false>(Mask, MaskWords);
529 else
530 getPointer()->setBitsInMask(Mask, MaskWords);
531 }
532
533 /// clearBitsInMask - Clear any bits in this vector that are set in Mask.
534 /// Don't resize. This computes "*this &= ~Mask".
535 void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
536 if (isSmall())
537 applyMask<false, false>(Mask, MaskWords);
538 else
539 getPointer()->clearBitsInMask(Mask, MaskWords);
540 }
541
542 /// setBitsNotInMask - Add a bit to this vector for every '0' bit in Mask.
543 /// Don't resize. This computes "*this |= ~Mask".
544 void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
545 if (isSmall())
546 applyMask<true, true>(Mask, MaskWords);
547 else
548 getPointer()->setBitsNotInMask(Mask, MaskWords);
549 }
550
551 /// clearBitsNotInMask - Clear a bit in this vector for every '0' bit in Mask.
552 /// Don't resize. This computes "*this &= Mask".
553 void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
554 if (isSmall())
555 applyMask<false, true>(Mask, MaskWords);
556 else
557 getPointer()->clearBitsNotInMask(Mask, MaskWords);
558 }
559
560 private:
561 template<bool AddBits, bool InvertMask>
562 void applyMask(const uint32_t *Mask, unsigned MaskWords) {
563 assert((NumBaseBits == 64 || NumBaseBits == 32) && "Unsupported word size");
564 if (NumBaseBits == 64 && MaskWords >= 2) {
565 uint64_t M = Mask[0] | (uint64_t(Mask[1]) << 32);
566 if (InvertMask) M = ~M;
567 if (AddBits) setSmallBits(getSmallBits() | M);
568 else setSmallBits(getSmallBits() & ~M);
569 } else {
570 uint32_t M = Mask[0];
571 if (InvertMask) M = ~M;
572 if (AddBits) setSmallBits(getSmallBits() | M);
573 else setSmallBits(getSmallBits() & ~M);
574 }
575 }
576 };
577
578 inline SmallBitVector
579 operator&(const SmallBitVector &LHS, const SmallBitVector &RHS) {
580 SmallBitVector Result(LHS);
581 Result &= RHS;
582 return Result;
583 }
584
585 inline SmallBitVector
586 operator|(const SmallBitVector &LHS, const SmallBitVector &RHS) {
587 SmallBitVector Result(LHS);
588 Result |= RHS;
589 return Result;
590 }
591
592 inline SmallBitVector
593 operator^(const SmallBitVector &LHS, const SmallBitVector &RHS) {
594 SmallBitVector Result(LHS);
595 Result ^= RHS;
596 return Result;
597 }
598
599 } // End llvm namespace
600
601 namespace std {
602 /// Implement std::swap in terms of BitVector swap.
603 inline void
604 swap(llvm::SmallBitVector &LHS, llvm::SmallBitVector &RHS) {
605 LHS.swap(RHS);
606 }
607 }
608
609 #endif