]> git.proxmox.com Git - rustc.git/blob - src/llvm/include/llvm/ADT/SparseMultiSet.h
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / include / llvm / ADT / SparseMultiSet.h
1 //===--- llvm/ADT/SparseMultiSet.h - Sparse multiset ------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the SparseMultiSet class, which adds multiset behavior to
11 // the SparseSet.
12 //
13 // A sparse multiset holds a small number of objects identified by integer keys
14 // from a moderately sized universe. The sparse multiset uses more memory than
15 // other containers in order to provide faster operations. Any key can map to
16 // multiple values. A SparseMultiSetNode class is provided, which serves as a
17 // convenient base class for the contents of a SparseMultiSet.
18 //
19 //===----------------------------------------------------------------------===//
20
21 #ifndef LLVM_ADT_SPARSEMULTISET_H
22 #define LLVM_ADT_SPARSEMULTISET_H
23
24 #include "llvm/ADT/SparseSet.h"
25
26 namespace llvm {
27
28 /// Fast multiset implementation for objects that can be identified by small
29 /// unsigned keys.
30 ///
31 /// SparseMultiSet allocates memory proportional to the size of the key
32 /// universe, so it is not recommended for building composite data structures.
33 /// It is useful for algorithms that require a single set with fast operations.
34 ///
35 /// Compared to DenseSet and DenseMap, SparseMultiSet provides constant-time
36 /// fast clear() as fast as a vector. The find(), insert(), and erase()
37 /// operations are all constant time, and typically faster than a hash table.
38 /// The iteration order doesn't depend on numerical key values, it only depends
39 /// on the order of insert() and erase() operations. Iteration order is the
40 /// insertion order. Iteration is only provided over elements of equivalent
41 /// keys, but iterators are bidirectional.
42 ///
43 /// Compared to BitVector, SparseMultiSet<unsigned> uses 8x-40x more memory, but
44 /// offers constant-time clear() and size() operations as well as fast iteration
45 /// independent on the size of the universe.
46 ///
47 /// SparseMultiSet contains a dense vector holding all the objects and a sparse
48 /// array holding indexes into the dense vector. Most of the memory is used by
49 /// the sparse array which is the size of the key universe. The SparseT template
50 /// parameter provides a space/speed tradeoff for sets holding many elements.
51 ///
52 /// When SparseT is uint32_t, find() only touches up to 3 cache lines, but the
53 /// sparse array uses 4 x Universe bytes.
54 ///
55 /// When SparseT is uint8_t (the default), find() touches up to 3+[N/256] cache
56 /// lines, but the sparse array is 4x smaller. N is the number of elements in
57 /// the set.
58 ///
59 /// For sets that may grow to thousands of elements, SparseT should be set to
60 /// uint16_t or uint32_t.
61 ///
62 /// Multiset behavior is provided by providing doubly linked lists for values
63 /// that are inlined in the dense vector. SparseMultiSet is a good choice when
64 /// one desires a growable number of entries per key, as it will retain the
65 /// SparseSet algorithmic properties despite being growable. Thus, it is often a
66 /// better choice than a SparseSet of growable containers or a vector of
67 /// vectors. SparseMultiSet also keeps iterators valid after erasure (provided
68 /// the iterators don't point to the element erased), allowing for more
69 /// intuitive and fast removal.
70 ///
71 /// @tparam ValueT The type of objects in the set.
72 /// @tparam KeyFunctorT A functor that computes an unsigned index from KeyT.
73 /// @tparam SparseT An unsigned integer type. See above.
74 ///
75 template<typename ValueT,
76 typename KeyFunctorT = llvm::identity<unsigned>,
77 typename SparseT = uint8_t>
78 class SparseMultiSet {
79 static_assert(std::numeric_limits<SparseT>::is_integer &&
80 !std::numeric_limits<SparseT>::is_signed,
81 "SparseT must be an unsigned integer type");
82
83 /// The actual data that's stored, as a doubly-linked list implemented via
84 /// indices into the DenseVector. The doubly linked list is implemented
85 /// circular in Prev indices, and INVALID-terminated in Next indices. This
86 /// provides efficient access to list tails. These nodes can also be
87 /// tombstones, in which case they are actually nodes in a single-linked
88 /// freelist of recyclable slots.
89 struct SMSNode {
90 static const unsigned INVALID = ~0U;
91
92 ValueT Data;
93 unsigned Prev;
94 unsigned Next;
95
96 SMSNode(ValueT D, unsigned P, unsigned N) : Data(D), Prev(P), Next(N) { }
97
98 /// List tails have invalid Nexts.
99 bool isTail() const {
100 return Next == INVALID;
101 }
102
103 /// Whether this node is a tombstone node, and thus is in our freelist.
104 bool isTombstone() const {
105 return Prev == INVALID;
106 }
107
108 /// Since the list is circular in Prev, all non-tombstone nodes have a valid
109 /// Prev.
110 bool isValid() const { return Prev != INVALID; }
111 };
112
113 typedef typename KeyFunctorT::argument_type KeyT;
114 typedef SmallVector<SMSNode, 8> DenseT;
115 DenseT Dense;
116 SparseT *Sparse;
117 unsigned Universe;
118 KeyFunctorT KeyIndexOf;
119 SparseSetValFunctor<KeyT, ValueT, KeyFunctorT> ValIndexOf;
120
121 /// We have a built-in recycler for reusing tombstone slots. This recycler
122 /// puts a singly-linked free list into tombstone slots, allowing us quick
123 /// erasure, iterator preservation, and dense size.
124 unsigned FreelistIdx;
125 unsigned NumFree;
126
127 unsigned sparseIndex(const ValueT &Val) const {
128 assert(ValIndexOf(Val) < Universe &&
129 "Invalid key in set. Did object mutate?");
130 return ValIndexOf(Val);
131 }
132 unsigned sparseIndex(const SMSNode &N) const { return sparseIndex(N.Data); }
133
134 // Disable copy construction and assignment.
135 // This data structure is not meant to be used that way.
136 SparseMultiSet(const SparseMultiSet&) LLVM_DELETED_FUNCTION;
137 SparseMultiSet &operator=(const SparseMultiSet&) LLVM_DELETED_FUNCTION;
138
139 /// Whether the given entry is the head of the list. List heads's previous
140 /// pointers are to the tail of the list, allowing for efficient access to the
141 /// list tail. D must be a valid entry node.
142 bool isHead(const SMSNode &D) const {
143 assert(D.isValid() && "Invalid node for head");
144 return Dense[D.Prev].isTail();
145 }
146
147 /// Whether the given entry is a singleton entry, i.e. the only entry with
148 /// that key.
149 bool isSingleton(const SMSNode &N) const {
150 assert(N.isValid() && "Invalid node for singleton");
151 // Is N its own predecessor?
152 return &Dense[N.Prev] == &N;
153 }
154
155 /// Add in the given SMSNode. Uses a free entry in our freelist if
156 /// available. Returns the index of the added node.
157 unsigned addValue(const ValueT& V, unsigned Prev, unsigned Next) {
158 if (NumFree == 0) {
159 Dense.push_back(SMSNode(V, Prev, Next));
160 return Dense.size() - 1;
161 }
162
163 // Peel off a free slot
164 unsigned Idx = FreelistIdx;
165 unsigned NextFree = Dense[Idx].Next;
166 assert(Dense[Idx].isTombstone() && "Non-tombstone free?");
167
168 Dense[Idx] = SMSNode(V, Prev, Next);
169 FreelistIdx = NextFree;
170 --NumFree;
171 return Idx;
172 }
173
174 /// Make the current index a new tombstone. Pushes it onto the freelist.
175 void makeTombstone(unsigned Idx) {
176 Dense[Idx].Prev = SMSNode::INVALID;
177 Dense[Idx].Next = FreelistIdx;
178 FreelistIdx = Idx;
179 ++NumFree;
180 }
181
182 public:
183 typedef ValueT value_type;
184 typedef ValueT &reference;
185 typedef const ValueT &const_reference;
186 typedef ValueT *pointer;
187 typedef const ValueT *const_pointer;
188 typedef unsigned size_type;
189
190 SparseMultiSet()
191 : Sparse(nullptr), Universe(0), FreelistIdx(SMSNode::INVALID), NumFree(0) {}
192
193 ~SparseMultiSet() { free(Sparse); }
194
195 /// Set the universe size which determines the largest key the set can hold.
196 /// The universe must be sized before any elements can be added.
197 ///
198 /// @param U Universe size. All object keys must be less than U.
199 ///
200 void setUniverse(unsigned U) {
201 // It's not hard to resize the universe on a non-empty set, but it doesn't
202 // seem like a likely use case, so we can add that code when we need it.
203 assert(empty() && "Can only resize universe on an empty map");
204 // Hysteresis prevents needless reallocations.
205 if (U >= Universe/4 && U <= Universe)
206 return;
207 free(Sparse);
208 // The Sparse array doesn't actually need to be initialized, so malloc
209 // would be enough here, but that will cause tools like valgrind to
210 // complain about branching on uninitialized data.
211 Sparse = reinterpret_cast<SparseT*>(calloc(U, sizeof(SparseT)));
212 Universe = U;
213 }
214
215 /// Our iterators are iterators over the collection of objects that share a
216 /// key.
217 template<typename SMSPtrTy>
218 class iterator_base : public std::iterator<std::bidirectional_iterator_tag,
219 ValueT> {
220 friend class SparseMultiSet;
221 SMSPtrTy SMS;
222 unsigned Idx;
223 unsigned SparseIdx;
224
225 iterator_base(SMSPtrTy P, unsigned I, unsigned SI)
226 : SMS(P), Idx(I), SparseIdx(SI) { }
227
228 /// Whether our iterator has fallen outside our dense vector.
229 bool isEnd() const {
230 if (Idx == SMSNode::INVALID)
231 return true;
232
233 assert(Idx < SMS->Dense.size() && "Out of range, non-INVALID Idx?");
234 return false;
235 }
236
237 /// Whether our iterator is properly keyed, i.e. the SparseIdx is valid
238 bool isKeyed() const { return SparseIdx < SMS->Universe; }
239
240 unsigned Prev() const { return SMS->Dense[Idx].Prev; }
241 unsigned Next() const { return SMS->Dense[Idx].Next; }
242
243 void setPrev(unsigned P) { SMS->Dense[Idx].Prev = P; }
244 void setNext(unsigned N) { SMS->Dense[Idx].Next = N; }
245
246 public:
247 typedef std::iterator<std::bidirectional_iterator_tag, ValueT> super;
248 typedef typename super::value_type value_type;
249 typedef typename super::difference_type difference_type;
250 typedef typename super::pointer pointer;
251 typedef typename super::reference reference;
252
253 reference operator*() const {
254 assert(isKeyed() && SMS->sparseIndex(SMS->Dense[Idx].Data) == SparseIdx &&
255 "Dereferencing iterator of invalid key or index");
256
257 return SMS->Dense[Idx].Data;
258 }
259 pointer operator->() const { return &operator*(); }
260
261 /// Comparison operators
262 bool operator==(const iterator_base &RHS) const {
263 // end compares equal
264 if (SMS == RHS.SMS && Idx == RHS.Idx) {
265 assert((isEnd() || SparseIdx == RHS.SparseIdx) &&
266 "Same dense entry, but different keys?");
267 return true;
268 }
269
270 return false;
271 }
272
273 bool operator!=(const iterator_base &RHS) const {
274 return !operator==(RHS);
275 }
276
277 /// Increment and decrement operators
278 iterator_base &operator--() { // predecrement - Back up
279 assert(isKeyed() && "Decrementing an invalid iterator");
280 assert((isEnd() || !SMS->isHead(SMS->Dense[Idx])) &&
281 "Decrementing head of list");
282
283 // If we're at the end, then issue a new find()
284 if (isEnd())
285 Idx = SMS->findIndex(SparseIdx).Prev();
286 else
287 Idx = Prev();
288
289 return *this;
290 }
291 iterator_base &operator++() { // preincrement - Advance
292 assert(!isEnd() && isKeyed() && "Incrementing an invalid/end iterator");
293 Idx = Next();
294 return *this;
295 }
296 iterator_base operator--(int) { // postdecrement
297 iterator_base I(*this);
298 --*this;
299 return I;
300 }
301 iterator_base operator++(int) { // postincrement
302 iterator_base I(*this);
303 ++*this;
304 return I;
305 }
306 };
307 typedef iterator_base<SparseMultiSet *> iterator;
308 typedef iterator_base<const SparseMultiSet *> const_iterator;
309
310 // Convenience types
311 typedef std::pair<iterator, iterator> RangePair;
312
313 /// Returns an iterator past this container. Note that such an iterator cannot
314 /// be decremented, but will compare equal to other end iterators.
315 iterator end() { return iterator(this, SMSNode::INVALID, SMSNode::INVALID); }
316 const_iterator end() const {
317 return const_iterator(this, SMSNode::INVALID, SMSNode::INVALID);
318 }
319
320 /// Returns true if the set is empty.
321 ///
322 /// This is not the same as BitVector::empty().
323 ///
324 bool empty() const { return size() == 0; }
325
326 /// Returns the number of elements in the set.
327 ///
328 /// This is not the same as BitVector::size() which returns the size of the
329 /// universe.
330 ///
331 size_type size() const {
332 assert(NumFree <= Dense.size() && "Out-of-bounds free entries");
333 return Dense.size() - NumFree;
334 }
335
336 /// Clears the set. This is a very fast constant time operation.
337 ///
338 void clear() {
339 // Sparse does not need to be cleared, see find().
340 Dense.clear();
341 NumFree = 0;
342 FreelistIdx = SMSNode::INVALID;
343 }
344
345 /// Find an element by its index.
346 ///
347 /// @param Idx A valid index to find.
348 /// @returns An iterator to the element identified by key, or end().
349 ///
350 iterator findIndex(unsigned Idx) {
351 assert(Idx < Universe && "Key out of range");
352 const unsigned Stride = std::numeric_limits<SparseT>::max() + 1u;
353 for (unsigned i = Sparse[Idx], e = Dense.size(); i < e; i += Stride) {
354 const unsigned FoundIdx = sparseIndex(Dense[i]);
355 // Check that we're pointing at the correct entry and that it is the head
356 // of a valid list.
357 if (Idx == FoundIdx && Dense[i].isValid() && isHead(Dense[i]))
358 return iterator(this, i, Idx);
359 // Stride is 0 when SparseT >= unsigned. We don't need to loop.
360 if (!Stride)
361 break;
362 }
363 return end();
364 }
365
366 /// Find an element by its key.
367 ///
368 /// @param Key A valid key to find.
369 /// @returns An iterator to the element identified by key, or end().
370 ///
371 iterator find(const KeyT &Key) {
372 return findIndex(KeyIndexOf(Key));
373 }
374
375 const_iterator find(const KeyT &Key) const {
376 iterator I = const_cast<SparseMultiSet*>(this)->findIndex(KeyIndexOf(Key));
377 return const_iterator(I.SMS, I.Idx, KeyIndexOf(Key));
378 }
379
380 /// Returns the number of elements identified by Key. This will be linear in
381 /// the number of elements of that key.
382 size_type count(const KeyT &Key) const {
383 unsigned Ret = 0;
384 for (const_iterator It = find(Key); It != end(); ++It)
385 ++Ret;
386
387 return Ret;
388 }
389
390 /// Returns true if this set contains an element identified by Key.
391 bool contains(const KeyT &Key) const {
392 return find(Key) != end();
393 }
394
395 /// Return the head and tail of the subset's list, otherwise returns end().
396 iterator getHead(const KeyT &Key) { return find(Key); }
397 iterator getTail(const KeyT &Key) {
398 iterator I = find(Key);
399 if (I != end())
400 I = iterator(this, I.Prev(), KeyIndexOf(Key));
401 return I;
402 }
403
404 /// The bounds of the range of items sharing Key K. First member is the head
405 /// of the list, and the second member is a decrementable end iterator for
406 /// that key.
407 RangePair equal_range(const KeyT &K) {
408 iterator B = find(K);
409 iterator E = iterator(this, SMSNode::INVALID, B.SparseIdx);
410 return make_pair(B, E);
411 }
412
413 /// Insert a new element at the tail of the subset list. Returns an iterator
414 /// to the newly added entry.
415 iterator insert(const ValueT &Val) {
416 unsigned Idx = sparseIndex(Val);
417 iterator I = findIndex(Idx);
418
419 unsigned NodeIdx = addValue(Val, SMSNode::INVALID, SMSNode::INVALID);
420
421 if (I == end()) {
422 // Make a singleton list
423 Sparse[Idx] = NodeIdx;
424 Dense[NodeIdx].Prev = NodeIdx;
425 return iterator(this, NodeIdx, Idx);
426 }
427
428 // Stick it at the end.
429 unsigned HeadIdx = I.Idx;
430 unsigned TailIdx = I.Prev();
431 Dense[TailIdx].Next = NodeIdx;
432 Dense[HeadIdx].Prev = NodeIdx;
433 Dense[NodeIdx].Prev = TailIdx;
434
435 return iterator(this, NodeIdx, Idx);
436 }
437
438 /// Erases an existing element identified by a valid iterator.
439 ///
440 /// This invalidates iterators pointing at the same entry, but erase() returns
441 /// an iterator pointing to the next element in the subset's list. This makes
442 /// it possible to erase selected elements while iterating over the subset:
443 ///
444 /// tie(I, E) = Set.equal_range(Key);
445 /// while (I != E)
446 /// if (test(*I))
447 /// I = Set.erase(I);
448 /// else
449 /// ++I;
450 ///
451 /// Note that if the last element in the subset list is erased, this will
452 /// return an end iterator which can be decremented to get the new tail (if it
453 /// exists):
454 ///
455 /// tie(B, I) = Set.equal_range(Key);
456 /// for (bool isBegin = B == I; !isBegin; /* empty */) {
457 /// isBegin = (--I) == B;
458 /// if (test(I))
459 /// break;
460 /// I = erase(I);
461 /// }
462 iterator erase(iterator I) {
463 assert(I.isKeyed() && !I.isEnd() && !Dense[I.Idx].isTombstone() &&
464 "erasing invalid/end/tombstone iterator");
465
466 // First, unlink the node from its list. Then swap the node out with the
467 // dense vector's last entry
468 iterator NextI = unlink(Dense[I.Idx]);
469
470 // Put in a tombstone.
471 makeTombstone(I.Idx);
472
473 return NextI;
474 }
475
476 /// Erase all elements with the given key. This invalidates all
477 /// iterators of that key.
478 void eraseAll(const KeyT &K) {
479 for (iterator I = find(K); I != end(); /* empty */)
480 I = erase(I);
481 }
482
483 private:
484 /// Unlink the node from its list. Returns the next node in the list.
485 iterator unlink(const SMSNode &N) {
486 if (isSingleton(N)) {
487 // Singleton is already unlinked
488 assert(N.Next == SMSNode::INVALID && "Singleton has next?");
489 return iterator(this, SMSNode::INVALID, ValIndexOf(N.Data));
490 }
491
492 if (isHead(N)) {
493 // If we're the head, then update the sparse array and our next.
494 Sparse[sparseIndex(N)] = N.Next;
495 Dense[N.Next].Prev = N.Prev;
496 return iterator(this, N.Next, ValIndexOf(N.Data));
497 }
498
499 if (N.isTail()) {
500 // If we're the tail, then update our head and our previous.
501 findIndex(sparseIndex(N)).setPrev(N.Prev);
502 Dense[N.Prev].Next = N.Next;
503
504 // Give back an end iterator that can be decremented
505 iterator I(this, N.Prev, ValIndexOf(N.Data));
506 return ++I;
507 }
508
509 // Otherwise, just drop us
510 Dense[N.Next].Prev = N.Prev;
511 Dense[N.Prev].Next = N.Next;
512 return iterator(this, N.Next, ValIndexOf(N.Data));
513 }
514 };
515
516 } // end namespace llvm
517
518 #endif