]> git.proxmox.com Git - rustc.git/blob - src/llvm/include/llvm/Analysis/LoopInfo.h
Imported Upstream version 0.7
[rustc.git] / src / llvm / include / llvm / Analysis / LoopInfo.h
1 //===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the LoopInfo class that is used to identify natural loops
11 // and determine the loop depth of various nodes of the CFG. A natural loop
12 // has exactly one entry-point, which is called the header. Note that natural
13 // loops may actually be several loops that share the same header node.
14 //
15 // This analysis calculates the nesting structure of loops in a function. For
16 // each natural loop identified, this analysis identifies natural loops
17 // contained entirely within the loop and the basic blocks the make up the loop.
18 //
19 // It can calculate on the fly various bits of information, for example:
20 //
21 // * whether there is a preheader for the loop
22 // * the number of back edges to the header
23 // * whether or not a particular block branches out of the loop
24 // * the successor blocks of the loop
25 // * the loop depth
26 // * etc...
27 //
28 //===----------------------------------------------------------------------===//
29
30 #ifndef LLVM_ANALYSIS_LOOPINFO_H
31 #define LLVM_ANALYSIS_LOOPINFO_H
32
33 #include "llvm/ADT/DenseMap.h"
34 #include "llvm/ADT/DenseSet.h"
35 #include "llvm/ADT/GraphTraits.h"
36 #include "llvm/ADT/SmallVector.h"
37 #include "llvm/Analysis/Dominators.h"
38 #include "llvm/Pass.h"
39 #include <algorithm>
40
41 namespace llvm {
42
43 template<typename T>
44 inline void RemoveFromVector(std::vector<T*> &V, T *N) {
45 typename std::vector<T*>::iterator I = std::find(V.begin(), V.end(), N);
46 assert(I != V.end() && "N is not in this list!");
47 V.erase(I);
48 }
49
50 class DominatorTree;
51 class LoopInfo;
52 class Loop;
53 class PHINode;
54 class raw_ostream;
55 template<class N, class M> class LoopInfoBase;
56 template<class N, class M> class LoopBase;
57
58 //===----------------------------------------------------------------------===//
59 /// LoopBase class - Instances of this class are used to represent loops that
60 /// are detected in the flow graph
61 ///
62 template<class BlockT, class LoopT>
63 class LoopBase {
64 LoopT *ParentLoop;
65 // SubLoops - Loops contained entirely within this one.
66 std::vector<LoopT *> SubLoops;
67
68 // Blocks - The list of blocks in this loop. First entry is the header node.
69 std::vector<BlockT*> Blocks;
70
71 LoopBase(const LoopBase<BlockT, LoopT> &) LLVM_DELETED_FUNCTION;
72 const LoopBase<BlockT, LoopT>&
73 operator=(const LoopBase<BlockT, LoopT> &) LLVM_DELETED_FUNCTION;
74 public:
75 /// Loop ctor - This creates an empty loop.
76 LoopBase() : ParentLoop(0) {}
77 ~LoopBase() {
78 for (size_t i = 0, e = SubLoops.size(); i != e; ++i)
79 delete SubLoops[i];
80 }
81
82 /// getLoopDepth - Return the nesting level of this loop. An outer-most
83 /// loop has depth 1, for consistency with loop depth values used for basic
84 /// blocks, where depth 0 is used for blocks not inside any loops.
85 unsigned getLoopDepth() const {
86 unsigned D = 1;
87 for (const LoopT *CurLoop = ParentLoop; CurLoop;
88 CurLoop = CurLoop->ParentLoop)
89 ++D;
90 return D;
91 }
92 BlockT *getHeader() const { return Blocks.front(); }
93 LoopT *getParentLoop() const { return ParentLoop; }
94
95 /// setParentLoop is a raw interface for bypassing addChildLoop.
96 void setParentLoop(LoopT *L) { ParentLoop = L; }
97
98 /// contains - Return true if the specified loop is contained within in
99 /// this loop.
100 ///
101 bool contains(const LoopT *L) const {
102 if (L == this) return true;
103 if (L == 0) return false;
104 return contains(L->getParentLoop());
105 }
106
107 /// contains - Return true if the specified basic block is in this loop.
108 ///
109 bool contains(const BlockT *BB) const {
110 return std::find(block_begin(), block_end(), BB) != block_end();
111 }
112
113 /// contains - Return true if the specified instruction is in this loop.
114 ///
115 template<class InstT>
116 bool contains(const InstT *Inst) const {
117 return contains(Inst->getParent());
118 }
119
120 /// iterator/begin/end - Return the loops contained entirely within this loop.
121 ///
122 const std::vector<LoopT *> &getSubLoops() const { return SubLoops; }
123 std::vector<LoopT *> &getSubLoopsVector() { return SubLoops; }
124 typedef typename std::vector<LoopT *>::const_iterator iterator;
125 typedef typename std::vector<LoopT *>::const_reverse_iterator
126 reverse_iterator;
127 iterator begin() const { return SubLoops.begin(); }
128 iterator end() const { return SubLoops.end(); }
129 reverse_iterator rbegin() const { return SubLoops.rbegin(); }
130 reverse_iterator rend() const { return SubLoops.rend(); }
131 bool empty() const { return SubLoops.empty(); }
132
133 /// getBlocks - Get a list of the basic blocks which make up this loop.
134 ///
135 const std::vector<BlockT*> &getBlocks() const { return Blocks; }
136 std::vector<BlockT*> &getBlocksVector() { return Blocks; }
137 typedef typename std::vector<BlockT*>::const_iterator block_iterator;
138 block_iterator block_begin() const { return Blocks.begin(); }
139 block_iterator block_end() const { return Blocks.end(); }
140
141 /// getNumBlocks - Get the number of blocks in this loop in constant time.
142 unsigned getNumBlocks() const {
143 return Blocks.size();
144 }
145
146 /// isLoopExiting - True if terminator in the block can branch to another
147 /// block that is outside of the current loop.
148 ///
149 bool isLoopExiting(const BlockT *BB) const {
150 typedef GraphTraits<const BlockT*> BlockTraits;
151 for (typename BlockTraits::ChildIteratorType SI =
152 BlockTraits::child_begin(BB),
153 SE = BlockTraits::child_end(BB); SI != SE; ++SI) {
154 if (!contains(*SI))
155 return true;
156 }
157 return false;
158 }
159
160 /// getNumBackEdges - Calculate the number of back edges to the loop header
161 ///
162 unsigned getNumBackEdges() const {
163 unsigned NumBackEdges = 0;
164 BlockT *H = getHeader();
165
166 typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
167 for (typename InvBlockTraits::ChildIteratorType I =
168 InvBlockTraits::child_begin(H),
169 E = InvBlockTraits::child_end(H); I != E; ++I)
170 if (contains(*I))
171 ++NumBackEdges;
172
173 return NumBackEdges;
174 }
175
176 //===--------------------------------------------------------------------===//
177 // APIs for simple analysis of the loop.
178 //
179 // Note that all of these methods can fail on general loops (ie, there may not
180 // be a preheader, etc). For best success, the loop simplification and
181 // induction variable canonicalization pass should be used to normalize loops
182 // for easy analysis. These methods assume canonical loops.
183
184 /// getExitingBlocks - Return all blocks inside the loop that have successors
185 /// outside of the loop. These are the blocks _inside of the current loop_
186 /// which branch out. The returned list is always unique.
187 ///
188 void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const;
189
190 /// getExitingBlock - If getExitingBlocks would return exactly one block,
191 /// return that block. Otherwise return null.
192 BlockT *getExitingBlock() const;
193
194 /// getExitBlocks - Return all of the successor blocks of this loop. These
195 /// are the blocks _outside of the current loop_ which are branched to.
196 ///
197 void getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const;
198
199 /// getExitBlock - If getExitBlocks would return exactly one block,
200 /// return that block. Otherwise return null.
201 BlockT *getExitBlock() const;
202
203 /// Edge type.
204 typedef std::pair<const BlockT*, const BlockT*> Edge;
205
206 /// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
207 void getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const;
208
209 /// getLoopPreheader - If there is a preheader for this loop, return it. A
210 /// loop has a preheader if there is only one edge to the header of the loop
211 /// from outside of the loop. If this is the case, the block branching to the
212 /// header of the loop is the preheader node.
213 ///
214 /// This method returns null if there is no preheader for the loop.
215 ///
216 BlockT *getLoopPreheader() const;
217
218 /// getLoopPredecessor - If the given loop's header has exactly one unique
219 /// predecessor outside the loop, return it. Otherwise return null.
220 /// This is less strict that the loop "preheader" concept, which requires
221 /// the predecessor to have exactly one successor.
222 ///
223 BlockT *getLoopPredecessor() const;
224
225 /// getLoopLatch - If there is a single latch block for this loop, return it.
226 /// A latch block is a block that contains a branch back to the header.
227 BlockT *getLoopLatch() const;
228
229 //===--------------------------------------------------------------------===//
230 // APIs for updating loop information after changing the CFG
231 //
232
233 /// addBasicBlockToLoop - This method is used by other analyses to update loop
234 /// information. NewBB is set to be a new member of the current loop.
235 /// Because of this, it is added as a member of all parent loops, and is added
236 /// to the specified LoopInfo object as being in the current basic block. It
237 /// is not valid to replace the loop header with this method.
238 ///
239 void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI);
240
241 /// replaceChildLoopWith - This is used when splitting loops up. It replaces
242 /// the OldChild entry in our children list with NewChild, and updates the
243 /// parent pointer of OldChild to be null and the NewChild to be this loop.
244 /// This updates the loop depth of the new child.
245 void replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild);
246
247 /// addChildLoop - Add the specified loop to be a child of this loop. This
248 /// updates the loop depth of the new child.
249 ///
250 void addChildLoop(LoopT *NewChild) {
251 assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
252 NewChild->ParentLoop = static_cast<LoopT *>(this);
253 SubLoops.push_back(NewChild);
254 }
255
256 /// removeChildLoop - This removes the specified child from being a subloop of
257 /// this loop. The loop is not deleted, as it will presumably be inserted
258 /// into another loop.
259 LoopT *removeChildLoop(iterator I) {
260 assert(I != SubLoops.end() && "Cannot remove end iterator!");
261 LoopT *Child = *I;
262 assert(Child->ParentLoop == this && "Child is not a child of this loop!");
263 SubLoops.erase(SubLoops.begin()+(I-begin()));
264 Child->ParentLoop = 0;
265 return Child;
266 }
267
268 /// addBlockEntry - This adds a basic block directly to the basic block list.
269 /// This should only be used by transformations that create new loops. Other
270 /// transformations should use addBasicBlockToLoop.
271 void addBlockEntry(BlockT *BB) {
272 Blocks.push_back(BB);
273 }
274
275 /// moveToHeader - This method is used to move BB (which must be part of this
276 /// loop) to be the loop header of the loop (the block that dominates all
277 /// others).
278 void moveToHeader(BlockT *BB) {
279 if (Blocks[0] == BB) return;
280 for (unsigned i = 0; ; ++i) {
281 assert(i != Blocks.size() && "Loop does not contain BB!");
282 if (Blocks[i] == BB) {
283 Blocks[i] = Blocks[0];
284 Blocks[0] = BB;
285 return;
286 }
287 }
288 }
289
290 /// removeBlockFromLoop - This removes the specified basic block from the
291 /// current loop, updating the Blocks as appropriate. This does not update
292 /// the mapping in the LoopInfo class.
293 void removeBlockFromLoop(BlockT *BB) {
294 RemoveFromVector(Blocks, BB);
295 }
296
297 /// verifyLoop - Verify loop structure
298 void verifyLoop() const;
299
300 /// verifyLoop - Verify loop structure of this loop and all nested loops.
301 void verifyLoopNest(DenseSet<const LoopT*> *Loops) const;
302
303 void print(raw_ostream &OS, unsigned Depth = 0) const;
304
305 protected:
306 friend class LoopInfoBase<BlockT, LoopT>;
307 explicit LoopBase(BlockT *BB) : ParentLoop(0) {
308 Blocks.push_back(BB);
309 }
310 };
311
312 template<class BlockT, class LoopT>
313 raw_ostream& operator<<(raw_ostream &OS, const LoopBase<BlockT, LoopT> &Loop) {
314 Loop.print(OS);
315 return OS;
316 }
317
318 // Implementation in LoopInfoImpl.h
319 #ifdef __GNUC__
320 __extension__ extern template class LoopBase<BasicBlock, Loop>;
321 #endif
322
323 class Loop : public LoopBase<BasicBlock, Loop> {
324 public:
325 Loop() {}
326
327 /// isLoopInvariant - Return true if the specified value is loop invariant
328 ///
329 bool isLoopInvariant(Value *V) const;
330
331 /// hasLoopInvariantOperands - Return true if all the operands of the
332 /// specified instruction are loop invariant.
333 bool hasLoopInvariantOperands(Instruction *I) const;
334
335 /// makeLoopInvariant - If the given value is an instruction inside of the
336 /// loop and it can be hoisted, do so to make it trivially loop-invariant.
337 /// Return true if the value after any hoisting is loop invariant. This
338 /// function can be used as a slightly more aggressive replacement for
339 /// isLoopInvariant.
340 ///
341 /// If InsertPt is specified, it is the point to hoist instructions to.
342 /// If null, the terminator of the loop preheader is used.
343 ///
344 bool makeLoopInvariant(Value *V, bool &Changed,
345 Instruction *InsertPt = 0) const;
346
347 /// makeLoopInvariant - If the given instruction is inside of the
348 /// loop and it can be hoisted, do so to make it trivially loop-invariant.
349 /// Return true if the instruction after any hoisting is loop invariant. This
350 /// function can be used as a slightly more aggressive replacement for
351 /// isLoopInvariant.
352 ///
353 /// If InsertPt is specified, it is the point to hoist instructions to.
354 /// If null, the terminator of the loop preheader is used.
355 ///
356 bool makeLoopInvariant(Instruction *I, bool &Changed,
357 Instruction *InsertPt = 0) const;
358
359 /// getCanonicalInductionVariable - Check to see if the loop has a canonical
360 /// induction variable: an integer recurrence that starts at 0 and increments
361 /// by one each time through the loop. If so, return the phi node that
362 /// corresponds to it.
363 ///
364 /// The IndVarSimplify pass transforms loops to have a canonical induction
365 /// variable.
366 ///
367 PHINode *getCanonicalInductionVariable() const;
368
369 /// isLCSSAForm - Return true if the Loop is in LCSSA form
370 bool isLCSSAForm(DominatorTree &DT) const;
371
372 /// isLoopSimplifyForm - Return true if the Loop is in the form that
373 /// the LoopSimplify form transforms loops to, which is sometimes called
374 /// normal form.
375 bool isLoopSimplifyForm() const;
376
377 /// isSafeToClone - Return true if the loop body is safe to clone in practice.
378 bool isSafeToClone() const;
379
380 /// Returns true if the loop is annotated parallel.
381 ///
382 /// A parallel loop can be assumed to not contain any dependencies between
383 /// iterations by the compiler. That is, any loop-carried dependency checking
384 /// can be skipped completely when parallelizing the loop on the target
385 /// machine. Thus, if the parallel loop information originates from the
386 /// programmer, e.g. via the OpenMP parallel for pragma, it is the
387 /// programmer's responsibility to ensure there are no loop-carried
388 /// dependencies. The final execution order of the instructions across
389 /// iterations is not guaranteed, thus, the end result might or might not
390 /// implement actual concurrent execution of instructions across multiple
391 /// iterations.
392 bool isAnnotatedParallel() const;
393
394 /// hasDedicatedExits - Return true if no exit block for the loop
395 /// has a predecessor that is outside the loop.
396 bool hasDedicatedExits() const;
397
398 /// getUniqueExitBlocks - Return all unique successor blocks of this loop.
399 /// These are the blocks _outside of the current loop_ which are branched to.
400 /// This assumes that loop exits are in canonical form.
401 ///
402 void getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const;
403
404 /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
405 /// block, return that block. Otherwise return null.
406 BasicBlock *getUniqueExitBlock() const;
407
408 void dump() const;
409
410 private:
411 friend class LoopInfoBase<BasicBlock, Loop>;
412 explicit Loop(BasicBlock *BB) : LoopBase<BasicBlock, Loop>(BB) {}
413 };
414
415 //===----------------------------------------------------------------------===//
416 /// LoopInfo - This class builds and contains all of the top level loop
417 /// structures in the specified function.
418 ///
419
420 template<class BlockT, class LoopT>
421 class LoopInfoBase {
422 // BBMap - Mapping of basic blocks to the inner most loop they occur in
423 DenseMap<BlockT *, LoopT *> BBMap;
424 std::vector<LoopT *> TopLevelLoops;
425 friend class LoopBase<BlockT, LoopT>;
426 friend class LoopInfo;
427
428 void operator=(const LoopInfoBase &) LLVM_DELETED_FUNCTION;
429 LoopInfoBase(const LoopInfo &) LLVM_DELETED_FUNCTION;
430 public:
431 LoopInfoBase() { }
432 ~LoopInfoBase() { releaseMemory(); }
433
434 void releaseMemory() {
435 for (typename std::vector<LoopT *>::iterator I =
436 TopLevelLoops.begin(), E = TopLevelLoops.end(); I != E; ++I)
437 delete *I; // Delete all of the loops...
438
439 BBMap.clear(); // Reset internal state of analysis
440 TopLevelLoops.clear();
441 }
442
443 /// iterator/begin/end - The interface to the top-level loops in the current
444 /// function.
445 ///
446 typedef typename std::vector<LoopT *>::const_iterator iterator;
447 typedef typename std::vector<LoopT *>::const_reverse_iterator
448 reverse_iterator;
449 iterator begin() const { return TopLevelLoops.begin(); }
450 iterator end() const { return TopLevelLoops.end(); }
451 reverse_iterator rbegin() const { return TopLevelLoops.rbegin(); }
452 reverse_iterator rend() const { return TopLevelLoops.rend(); }
453 bool empty() const { return TopLevelLoops.empty(); }
454
455 /// getLoopFor - Return the inner most loop that BB lives in. If a basic
456 /// block is in no loop (for example the entry node), null is returned.
457 ///
458 LoopT *getLoopFor(const BlockT *BB) const {
459 return BBMap.lookup(const_cast<BlockT*>(BB));
460 }
461
462 /// operator[] - same as getLoopFor...
463 ///
464 const LoopT *operator[](const BlockT *BB) const {
465 return getLoopFor(BB);
466 }
467
468 /// getLoopDepth - Return the loop nesting level of the specified block. A
469 /// depth of 0 means the block is not inside any loop.
470 ///
471 unsigned getLoopDepth(const BlockT *BB) const {
472 const LoopT *L = getLoopFor(BB);
473 return L ? L->getLoopDepth() : 0;
474 }
475
476 // isLoopHeader - True if the block is a loop header node
477 bool isLoopHeader(BlockT *BB) const {
478 const LoopT *L = getLoopFor(BB);
479 return L && L->getHeader() == BB;
480 }
481
482 /// removeLoop - This removes the specified top-level loop from this loop info
483 /// object. The loop is not deleted, as it will presumably be inserted into
484 /// another loop.
485 LoopT *removeLoop(iterator I) {
486 assert(I != end() && "Cannot remove end iterator!");
487 LoopT *L = *I;
488 assert(L->getParentLoop() == 0 && "Not a top-level loop!");
489 TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin()));
490 return L;
491 }
492
493 /// changeLoopFor - Change the top-level loop that contains BB to the
494 /// specified loop. This should be used by transformations that restructure
495 /// the loop hierarchy tree.
496 void changeLoopFor(BlockT *BB, LoopT *L) {
497 if (!L) {
498 BBMap.erase(BB);
499 return;
500 }
501 BBMap[BB] = L;
502 }
503
504 /// changeTopLevelLoop - Replace the specified loop in the top-level loops
505 /// list with the indicated loop.
506 void changeTopLevelLoop(LoopT *OldLoop,
507 LoopT *NewLoop) {
508 typename std::vector<LoopT *>::iterator I =
509 std::find(TopLevelLoops.begin(), TopLevelLoops.end(), OldLoop);
510 assert(I != TopLevelLoops.end() && "Old loop not at top level!");
511 *I = NewLoop;
512 assert(NewLoop->ParentLoop == 0 && OldLoop->ParentLoop == 0 &&
513 "Loops already embedded into a subloop!");
514 }
515
516 /// addTopLevelLoop - This adds the specified loop to the collection of
517 /// top-level loops.
518 void addTopLevelLoop(LoopT *New) {
519 assert(New->getParentLoop() == 0 && "Loop already in subloop!");
520 TopLevelLoops.push_back(New);
521 }
522
523 /// removeBlock - This method completely removes BB from all data structures,
524 /// including all of the Loop objects it is nested in and our mapping from
525 /// BasicBlocks to loops.
526 void removeBlock(BlockT *BB) {
527 typename DenseMap<BlockT *, LoopT *>::iterator I = BBMap.find(BB);
528 if (I != BBMap.end()) {
529 for (LoopT *L = I->second; L; L = L->getParentLoop())
530 L->removeBlockFromLoop(BB);
531
532 BBMap.erase(I);
533 }
534 }
535
536 // Internals
537
538 static bool isNotAlreadyContainedIn(const LoopT *SubLoop,
539 const LoopT *ParentLoop) {
540 if (SubLoop == 0) return true;
541 if (SubLoop == ParentLoop) return false;
542 return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
543 }
544
545 /// Create the loop forest using a stable algorithm.
546 void Analyze(DominatorTreeBase<BlockT> &DomTree);
547
548 // Debugging
549
550 void print(raw_ostream &OS) const;
551 };
552
553 // Implementation in LoopInfoImpl.h
554 #ifdef __GNUC__
555 __extension__ extern template class LoopInfoBase<BasicBlock, Loop>;
556 #endif
557
558 class LoopInfo : public FunctionPass {
559 LoopInfoBase<BasicBlock, Loop> LI;
560 friend class LoopBase<BasicBlock, Loop>;
561
562 void operator=(const LoopInfo &) LLVM_DELETED_FUNCTION;
563 LoopInfo(const LoopInfo &) LLVM_DELETED_FUNCTION;
564 public:
565 static char ID; // Pass identification, replacement for typeid
566
567 LoopInfo() : FunctionPass(ID) {
568 initializeLoopInfoPass(*PassRegistry::getPassRegistry());
569 }
570
571 LoopInfoBase<BasicBlock, Loop>& getBase() { return LI; }
572
573 /// iterator/begin/end - The interface to the top-level loops in the current
574 /// function.
575 ///
576 typedef LoopInfoBase<BasicBlock, Loop>::iterator iterator;
577 typedef LoopInfoBase<BasicBlock, Loop>::reverse_iterator reverse_iterator;
578 inline iterator begin() const { return LI.begin(); }
579 inline iterator end() const { return LI.end(); }
580 inline reverse_iterator rbegin() const { return LI.rbegin(); }
581 inline reverse_iterator rend() const { return LI.rend(); }
582 bool empty() const { return LI.empty(); }
583
584 /// getLoopFor - Return the inner most loop that BB lives in. If a basic
585 /// block is in no loop (for example the entry node), null is returned.
586 ///
587 inline Loop *getLoopFor(const BasicBlock *BB) const {
588 return LI.getLoopFor(BB);
589 }
590
591 /// operator[] - same as getLoopFor...
592 ///
593 inline const Loop *operator[](const BasicBlock *BB) const {
594 return LI.getLoopFor(BB);
595 }
596
597 /// getLoopDepth - Return the loop nesting level of the specified block. A
598 /// depth of 0 means the block is not inside any loop.
599 ///
600 inline unsigned getLoopDepth(const BasicBlock *BB) const {
601 return LI.getLoopDepth(BB);
602 }
603
604 // isLoopHeader - True if the block is a loop header node
605 inline bool isLoopHeader(BasicBlock *BB) const {
606 return LI.isLoopHeader(BB);
607 }
608
609 /// runOnFunction - Calculate the natural loop information.
610 ///
611 virtual bool runOnFunction(Function &F);
612
613 virtual void verifyAnalysis() const;
614
615 virtual void releaseMemory() { LI.releaseMemory(); }
616
617 virtual void print(raw_ostream &O, const Module* M = 0) const;
618
619 virtual void getAnalysisUsage(AnalysisUsage &AU) const;
620
621 /// removeLoop - This removes the specified top-level loop from this loop info
622 /// object. The loop is not deleted, as it will presumably be inserted into
623 /// another loop.
624 inline Loop *removeLoop(iterator I) { return LI.removeLoop(I); }
625
626 /// changeLoopFor - Change the top-level loop that contains BB to the
627 /// specified loop. This should be used by transformations that restructure
628 /// the loop hierarchy tree.
629 inline void changeLoopFor(BasicBlock *BB, Loop *L) {
630 LI.changeLoopFor(BB, L);
631 }
632
633 /// changeTopLevelLoop - Replace the specified loop in the top-level loops
634 /// list with the indicated loop.
635 inline void changeTopLevelLoop(Loop *OldLoop, Loop *NewLoop) {
636 LI.changeTopLevelLoop(OldLoop, NewLoop);
637 }
638
639 /// addTopLevelLoop - This adds the specified loop to the collection of
640 /// top-level loops.
641 inline void addTopLevelLoop(Loop *New) {
642 LI.addTopLevelLoop(New);
643 }
644
645 /// removeBlock - This method completely removes BB from all data structures,
646 /// including all of the Loop objects it is nested in and our mapping from
647 /// BasicBlocks to loops.
648 void removeBlock(BasicBlock *BB) {
649 LI.removeBlock(BB);
650 }
651
652 /// updateUnloop - Update LoopInfo after removing the last backedge from a
653 /// loop--now the "unloop". This updates the loop forest and parent loops for
654 /// each block so that Unloop is no longer referenced, but the caller must
655 /// actually delete the Unloop object.
656 void updateUnloop(Loop *Unloop);
657
658 /// replacementPreservesLCSSAForm - Returns true if replacing From with To
659 /// everywhere is guaranteed to preserve LCSSA form.
660 bool replacementPreservesLCSSAForm(Instruction *From, Value *To) {
661 // Preserving LCSSA form is only problematic if the replacing value is an
662 // instruction.
663 Instruction *I = dyn_cast<Instruction>(To);
664 if (!I) return true;
665 // If both instructions are defined in the same basic block then replacement
666 // cannot break LCSSA form.
667 if (I->getParent() == From->getParent())
668 return true;
669 // If the instruction is not defined in a loop then it can safely replace
670 // anything.
671 Loop *ToLoop = getLoopFor(I->getParent());
672 if (!ToLoop) return true;
673 // If the replacing instruction is defined in the same loop as the original
674 // instruction, or in a loop that contains it as an inner loop, then using
675 // it as a replacement will not break LCSSA form.
676 return ToLoop->contains(getLoopFor(From->getParent()));
677 }
678 };
679
680
681 // Allow clients to walk the list of nested loops...
682 template <> struct GraphTraits<const Loop*> {
683 typedef const Loop NodeType;
684 typedef LoopInfo::iterator ChildIteratorType;
685
686 static NodeType *getEntryNode(const Loop *L) { return L; }
687 static inline ChildIteratorType child_begin(NodeType *N) {
688 return N->begin();
689 }
690 static inline ChildIteratorType child_end(NodeType *N) {
691 return N->end();
692 }
693 };
694
695 template <> struct GraphTraits<Loop*> {
696 typedef Loop NodeType;
697 typedef LoopInfo::iterator ChildIteratorType;
698
699 static NodeType *getEntryNode(Loop *L) { return L; }
700 static inline ChildIteratorType child_begin(NodeType *N) {
701 return N->begin();
702 }
703 static inline ChildIteratorType child_end(NodeType *N) {
704 return N->end();
705 }
706 };
707
708 } // End llvm namespace
709
710 #endif