]> git.proxmox.com Git - rustc.git/blob - src/llvm/include/llvm/Bitcode/BitstreamReader.h
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / include / llvm / Bitcode / BitstreamReader.h
1 //===- BitstreamReader.h - Low-level bitstream reader interface -*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This header defines the BitstreamReader class. This class can be used to
11 // read an arbitrary bitstream, regardless of its contents.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #ifndef LLVM_BITCODE_BITSTREAMREADER_H
16 #define LLVM_BITCODE_BITSTREAMREADER_H
17
18 #include "llvm/Bitcode/BitCodes.h"
19 #include "llvm/Support/Endian.h"
20 #include "llvm/Support/StreamingMemoryObject.h"
21 #include <climits>
22 #include <string>
23 #include <vector>
24
25 namespace llvm {
26
27 class Deserializer;
28
29 /// This class is used to read from an LLVM bitcode stream, maintaining
30 /// information that is global to decoding the entire file. While a file is
31 /// being read, multiple cursors can be independently advanced or skipped around
32 /// within the file. These are represented by the BitstreamCursor class.
33 class BitstreamReader {
34 public:
35 /// This contains information emitted to BLOCKINFO_BLOCK blocks. These
36 /// describe abbreviations that all blocks of the specified ID inherit.
37 struct BlockInfo {
38 unsigned BlockID;
39 std::vector<IntrusiveRefCntPtr<BitCodeAbbrev>> Abbrevs;
40 std::string Name;
41
42 std::vector<std::pair<unsigned, std::string> > RecordNames;
43 };
44 private:
45 std::unique_ptr<MemoryObject> BitcodeBytes;
46
47 std::vector<BlockInfo> BlockInfoRecords;
48
49 /// This is set to true if we don't care about the block/record name
50 /// information in the BlockInfo block. Only llvm-bcanalyzer uses this.
51 bool IgnoreBlockInfoNames;
52
53 BitstreamReader(const BitstreamReader&) LLVM_DELETED_FUNCTION;
54 void operator=(const BitstreamReader&) LLVM_DELETED_FUNCTION;
55 public:
56 BitstreamReader() : IgnoreBlockInfoNames(true) {
57 }
58
59 BitstreamReader(const unsigned char *Start, const unsigned char *End)
60 : IgnoreBlockInfoNames(true) {
61 init(Start, End);
62 }
63
64 BitstreamReader(std::unique_ptr<MemoryObject> BitcodeBytes)
65 : BitcodeBytes(std::move(BitcodeBytes)), IgnoreBlockInfoNames(true) {}
66
67 BitstreamReader(BitstreamReader &&Other) {
68 *this = std::move(Other);
69 }
70
71 BitstreamReader &operator=(BitstreamReader &&Other) {
72 BitcodeBytes = std::move(Other.BitcodeBytes);
73 // Explicitly swap block info, so that nothing gets destroyed twice.
74 std::swap(BlockInfoRecords, Other.BlockInfoRecords);
75 IgnoreBlockInfoNames = Other.IgnoreBlockInfoNames;
76 return *this;
77 }
78
79 void init(const unsigned char *Start, const unsigned char *End) {
80 assert(((End-Start) & 3) == 0 &&"Bitcode stream not a multiple of 4 bytes");
81 BitcodeBytes.reset(getNonStreamedMemoryObject(Start, End));
82 }
83
84 MemoryObject &getBitcodeBytes() { return *BitcodeBytes; }
85
86 /// This is called by clients that want block/record name information.
87 void CollectBlockInfoNames() { IgnoreBlockInfoNames = false; }
88 bool isIgnoringBlockInfoNames() { return IgnoreBlockInfoNames; }
89
90 //===--------------------------------------------------------------------===//
91 // Block Manipulation
92 //===--------------------------------------------------------------------===//
93
94 /// Return true if we've already read and processed the block info block for
95 /// this Bitstream. We only process it for the first cursor that walks over
96 /// it.
97 bool hasBlockInfoRecords() const { return !BlockInfoRecords.empty(); }
98
99 /// If there is block info for the specified ID, return it, otherwise return
100 /// null.
101 const BlockInfo *getBlockInfo(unsigned BlockID) const {
102 // Common case, the most recent entry matches BlockID.
103 if (!BlockInfoRecords.empty() && BlockInfoRecords.back().BlockID == BlockID)
104 return &BlockInfoRecords.back();
105
106 for (unsigned i = 0, e = static_cast<unsigned>(BlockInfoRecords.size());
107 i != e; ++i)
108 if (BlockInfoRecords[i].BlockID == BlockID)
109 return &BlockInfoRecords[i];
110 return nullptr;
111 }
112
113 BlockInfo &getOrCreateBlockInfo(unsigned BlockID) {
114 if (const BlockInfo *BI = getBlockInfo(BlockID))
115 return *const_cast<BlockInfo*>(BI);
116
117 // Otherwise, add a new record.
118 BlockInfoRecords.push_back(BlockInfo());
119 BlockInfoRecords.back().BlockID = BlockID;
120 return BlockInfoRecords.back();
121 }
122
123 /// Takes block info from the other bitstream reader.
124 ///
125 /// This is a "take" operation because BlockInfo records are non-trivial, and
126 /// indeed rather expensive.
127 void takeBlockInfo(BitstreamReader &&Other) {
128 assert(!hasBlockInfoRecords());
129 BlockInfoRecords = std::move(Other.BlockInfoRecords);
130 }
131 };
132
133 /// When advancing through a bitstream cursor, each advance can discover a few
134 /// different kinds of entries:
135 struct BitstreamEntry {
136 enum {
137 Error, // Malformed bitcode was found.
138 EndBlock, // We've reached the end of the current block, (or the end of the
139 // file, which is treated like a series of EndBlock records.
140 SubBlock, // This is the start of a new subblock of a specific ID.
141 Record // This is a record with a specific AbbrevID.
142 } Kind;
143
144 unsigned ID;
145
146 static BitstreamEntry getError() {
147 BitstreamEntry E; E.Kind = Error; return E;
148 }
149 static BitstreamEntry getEndBlock() {
150 BitstreamEntry E; E.Kind = EndBlock; return E;
151 }
152 static BitstreamEntry getSubBlock(unsigned ID) {
153 BitstreamEntry E; E.Kind = SubBlock; E.ID = ID; return E;
154 }
155 static BitstreamEntry getRecord(unsigned AbbrevID) {
156 BitstreamEntry E; E.Kind = Record; E.ID = AbbrevID; return E;
157 }
158 };
159
160 /// This represents a position within a bitcode file. There may be multiple
161 /// independent cursors reading within one bitstream, each maintaining their own
162 /// local state.
163 ///
164 /// Unlike iterators, BitstreamCursors are heavy-weight objects that should not
165 /// be passed by value.
166 class BitstreamCursor {
167 friend class Deserializer;
168 BitstreamReader *BitStream;
169 size_t NextChar;
170
171 // The size of the bicode. 0 if we don't know it yet.
172 size_t Size;
173
174 /// This is the current data we have pulled from the stream but have not
175 /// returned to the client. This is specifically and intentionally defined to
176 /// follow the word size of the host machine for efficiency. We use word_t in
177 /// places that are aware of this to make it perfectly explicit what is going
178 /// on.
179 typedef size_t word_t;
180 word_t CurWord;
181
182 /// This is the number of bits in CurWord that are valid. This is always from
183 /// [0...bits_of(size_t)-1] inclusive.
184 unsigned BitsInCurWord;
185
186 // This is the declared size of code values used for the current block, in
187 // bits.
188 unsigned CurCodeSize;
189
190 /// Abbrevs installed at in this block.
191 std::vector<IntrusiveRefCntPtr<BitCodeAbbrev>> CurAbbrevs;
192
193 struct Block {
194 unsigned PrevCodeSize;
195 std::vector<IntrusiveRefCntPtr<BitCodeAbbrev>> PrevAbbrevs;
196 explicit Block(unsigned PCS) : PrevCodeSize(PCS) {}
197 };
198
199 /// This tracks the codesize of parent blocks.
200 SmallVector<Block, 8> BlockScope;
201
202
203 public:
204 BitstreamCursor() { init(nullptr); }
205
206 explicit BitstreamCursor(BitstreamReader &R) { init(&R); }
207
208 void init(BitstreamReader *R) {
209 freeState();
210
211 BitStream = R;
212 NextChar = 0;
213 Size = 0;
214 BitsInCurWord = 0;
215 CurCodeSize = 2;
216 }
217
218 void freeState();
219
220 bool canSkipToPos(size_t pos) const {
221 // pos can be skipped to if it is a valid address or one byte past the end.
222 return pos == 0 || BitStream->getBitcodeBytes().isValidAddress(
223 static_cast<uint64_t>(pos - 1));
224 }
225
226 bool AtEndOfStream() {
227 if (BitsInCurWord != 0)
228 return false;
229 if (Size != 0)
230 return Size == NextChar;
231 fillCurWord();
232 return BitsInCurWord == 0;
233 }
234
235 /// Return the number of bits used to encode an abbrev #.
236 unsigned getAbbrevIDWidth() const { return CurCodeSize; }
237
238 /// Return the bit # of the bit we are reading.
239 uint64_t GetCurrentBitNo() const {
240 return NextChar*CHAR_BIT - BitsInCurWord;
241 }
242
243 BitstreamReader *getBitStreamReader() {
244 return BitStream;
245 }
246 const BitstreamReader *getBitStreamReader() const {
247 return BitStream;
248 }
249
250 /// Flags that modify the behavior of advance().
251 enum {
252 /// If this flag is used, the advance() method does not automatically pop
253 /// the block scope when the end of a block is reached.
254 AF_DontPopBlockAtEnd = 1,
255
256 /// If this flag is used, abbrev entries are returned just like normal
257 /// records.
258 AF_DontAutoprocessAbbrevs = 2
259 };
260
261 /// Advance the current bitstream, returning the next entry in the stream.
262 BitstreamEntry advance(unsigned Flags = 0) {
263 while (1) {
264 unsigned Code = ReadCode();
265 if (Code == bitc::END_BLOCK) {
266 // Pop the end of the block unless Flags tells us not to.
267 if (!(Flags & AF_DontPopBlockAtEnd) && ReadBlockEnd())
268 return BitstreamEntry::getError();
269 return BitstreamEntry::getEndBlock();
270 }
271
272 if (Code == bitc::ENTER_SUBBLOCK)
273 return BitstreamEntry::getSubBlock(ReadSubBlockID());
274
275 if (Code == bitc::DEFINE_ABBREV &&
276 !(Flags & AF_DontAutoprocessAbbrevs)) {
277 // We read and accumulate abbrev's, the client can't do anything with
278 // them anyway.
279 ReadAbbrevRecord();
280 continue;
281 }
282
283 return BitstreamEntry::getRecord(Code);
284 }
285 }
286
287 /// This is a convenience function for clients that don't expect any
288 /// subblocks. This just skips over them automatically.
289 BitstreamEntry advanceSkippingSubblocks(unsigned Flags = 0) {
290 while (1) {
291 // If we found a normal entry, return it.
292 BitstreamEntry Entry = advance(Flags);
293 if (Entry.Kind != BitstreamEntry::SubBlock)
294 return Entry;
295
296 // If we found a sub-block, just skip over it and check the next entry.
297 if (SkipBlock())
298 return BitstreamEntry::getError();
299 }
300 }
301
302 /// Reset the stream to the specified bit number.
303 void JumpToBit(uint64_t BitNo) {
304 uintptr_t ByteNo = uintptr_t(BitNo/8) & ~(sizeof(word_t)-1);
305 unsigned WordBitNo = unsigned(BitNo & (sizeof(word_t)*8-1));
306 assert(canSkipToPos(ByteNo) && "Invalid location");
307
308 // Move the cursor to the right word.
309 NextChar = ByteNo;
310 BitsInCurWord = 0;
311
312 // Skip over any bits that are already consumed.
313 if (WordBitNo)
314 Read(WordBitNo);
315 }
316
317 void fillCurWord() {
318 assert(Size == 0 || NextChar < (unsigned)Size);
319
320 // Read the next word from the stream.
321 uint8_t Array[sizeof(word_t)] = {0};
322
323 uint64_t BytesRead =
324 BitStream->getBitcodeBytes().readBytes(Array, sizeof(Array), NextChar);
325
326 // If we run out of data, stop at the end of the stream.
327 if (BytesRead == 0) {
328 Size = NextChar;
329 return;
330 }
331
332 CurWord =
333 support::endian::read<word_t, support::little, support::unaligned>(
334 Array);
335 NextChar += BytesRead;
336 BitsInCurWord = BytesRead * 8;
337 }
338
339 word_t Read(unsigned NumBits) {
340 static const unsigned BitsInWord = sizeof(word_t) * 8;
341
342 assert(NumBits && NumBits <= BitsInWord &&
343 "Cannot return zero or more than BitsInWord bits!");
344
345 static const unsigned Mask = sizeof(word_t) > 4 ? 0x3f : 0x1f;
346
347 // If the field is fully contained by CurWord, return it quickly.
348 if (BitsInCurWord >= NumBits) {
349 word_t R = CurWord & (~word_t(0) >> (BitsInWord - NumBits));
350
351 // Use a mask to avoid undefined behavior.
352 CurWord >>= (NumBits & Mask);
353
354 BitsInCurWord -= NumBits;
355 return R;
356 }
357
358 word_t R = BitsInCurWord ? CurWord : 0;
359 unsigned BitsLeft = NumBits - BitsInCurWord;
360
361 fillCurWord();
362
363 // If we run out of data, stop at the end of the stream.
364 if (BitsLeft > BitsInCurWord)
365 return 0;
366
367 word_t R2 = CurWord & (~word_t(0) >> (BitsInWord - BitsLeft));
368
369 // Use a mask to avoid undefined behavior.
370 CurWord >>= (BitsLeft & Mask);
371
372 BitsInCurWord -= BitsLeft;
373
374 R |= R2 << (NumBits - BitsLeft);
375
376 return R;
377 }
378
379 uint32_t ReadVBR(unsigned NumBits) {
380 uint32_t Piece = Read(NumBits);
381 if ((Piece & (1U << (NumBits-1))) == 0)
382 return Piece;
383
384 uint32_t Result = 0;
385 unsigned NextBit = 0;
386 while (1) {
387 Result |= (Piece & ((1U << (NumBits-1))-1)) << NextBit;
388
389 if ((Piece & (1U << (NumBits-1))) == 0)
390 return Result;
391
392 NextBit += NumBits-1;
393 Piece = Read(NumBits);
394 }
395 }
396
397 // Read a VBR that may have a value up to 64-bits in size. The chunk size of
398 // the VBR must still be <= 32 bits though.
399 uint64_t ReadVBR64(unsigned NumBits) {
400 uint32_t Piece = Read(NumBits);
401 if ((Piece & (1U << (NumBits-1))) == 0)
402 return uint64_t(Piece);
403
404 uint64_t Result = 0;
405 unsigned NextBit = 0;
406 while (1) {
407 Result |= uint64_t(Piece & ((1U << (NumBits-1))-1)) << NextBit;
408
409 if ((Piece & (1U << (NumBits-1))) == 0)
410 return Result;
411
412 NextBit += NumBits-1;
413 Piece = Read(NumBits);
414 }
415 }
416
417 private:
418 void SkipToFourByteBoundary() {
419 // If word_t is 64-bits and if we've read less than 32 bits, just dump
420 // the bits we have up to the next 32-bit boundary.
421 if (sizeof(word_t) > 4 &&
422 BitsInCurWord >= 32) {
423 CurWord >>= BitsInCurWord-32;
424 BitsInCurWord = 32;
425 return;
426 }
427
428 BitsInCurWord = 0;
429 }
430 public:
431
432 unsigned ReadCode() {
433 return Read(CurCodeSize);
434 }
435
436
437 // Block header:
438 // [ENTER_SUBBLOCK, blockid, newcodelen, <align4bytes>, blocklen]
439
440 /// Having read the ENTER_SUBBLOCK code, read the BlockID for the block.
441 unsigned ReadSubBlockID() {
442 return ReadVBR(bitc::BlockIDWidth);
443 }
444
445 /// Having read the ENTER_SUBBLOCK abbrevid and a BlockID, skip over the body
446 /// of this block. If the block record is malformed, return true.
447 bool SkipBlock() {
448 // Read and ignore the codelen value. Since we are skipping this block, we
449 // don't care what code widths are used inside of it.
450 ReadVBR(bitc::CodeLenWidth);
451 SkipToFourByteBoundary();
452 unsigned NumFourBytes = Read(bitc::BlockSizeWidth);
453
454 // Check that the block wasn't partially defined, and that the offset isn't
455 // bogus.
456 size_t SkipTo = GetCurrentBitNo() + NumFourBytes*4*8;
457 if (AtEndOfStream() || !canSkipToPos(SkipTo/8))
458 return true;
459
460 JumpToBit(SkipTo);
461 return false;
462 }
463
464 /// Having read the ENTER_SUBBLOCK abbrevid, enter the block, and return true
465 /// if the block has an error.
466 bool EnterSubBlock(unsigned BlockID, unsigned *NumWordsP = nullptr);
467
468 bool ReadBlockEnd() {
469 if (BlockScope.empty()) return true;
470
471 // Block tail:
472 // [END_BLOCK, <align4bytes>]
473 SkipToFourByteBoundary();
474
475 popBlockScope();
476 return false;
477 }
478
479 private:
480
481 void popBlockScope() {
482 CurCodeSize = BlockScope.back().PrevCodeSize;
483
484 CurAbbrevs = std::move(BlockScope.back().PrevAbbrevs);
485 BlockScope.pop_back();
486 }
487
488 //===--------------------------------------------------------------------===//
489 // Record Processing
490 //===--------------------------------------------------------------------===//
491
492 public:
493
494 /// Return the abbreviation for the specified AbbrevId.
495 const BitCodeAbbrev *getAbbrev(unsigned AbbrevID) {
496 unsigned AbbrevNo = AbbrevID-bitc::FIRST_APPLICATION_ABBREV;
497 assert(AbbrevNo < CurAbbrevs.size() && "Invalid abbrev #!");
498 return CurAbbrevs[AbbrevNo].get();
499 }
500
501 /// Read the current record and discard it.
502 void skipRecord(unsigned AbbrevID);
503
504 unsigned readRecord(unsigned AbbrevID, SmallVectorImpl<uint64_t> &Vals,
505 StringRef *Blob = nullptr);
506
507 //===--------------------------------------------------------------------===//
508 // Abbrev Processing
509 //===--------------------------------------------------------------------===//
510 void ReadAbbrevRecord();
511
512 bool ReadBlockInfoBlock();
513 };
514
515 } // End llvm namespace
516
517 #endif