]> git.proxmox.com Git - rustc.git/blob - src/llvm/include/llvm/CodeGen/MachineInstr.h
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / include / llvm / CodeGen / MachineInstr.h
1 //===-- llvm/CodeGen/MachineInstr.h - MachineInstr class --------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the declaration of the MachineInstr class, which is the
11 // basic representation for all target dependent machine instructions used by
12 // the back end.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #ifndef LLVM_CODEGEN_MACHINEINSTR_H
17 #define LLVM_CODEGEN_MACHINEINSTR_H
18
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/DenseMapInfo.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/ilist.h"
24 #include "llvm/ADT/ilist_node.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/CodeGen/MachineOperand.h"
27 #include "llvm/IR/DebugInfo.h"
28 #include "llvm/IR/DebugLoc.h"
29 #include "llvm/IR/InlineAsm.h"
30 #include "llvm/MC/MCInstrDesc.h"
31 #include "llvm/Support/ArrayRecycler.h"
32 #include "llvm/Target/TargetOpcodes.h"
33
34 namespace llvm {
35
36 template <typename T> class SmallVectorImpl;
37 class AliasAnalysis;
38 class TargetInstrInfo;
39 class TargetRegisterClass;
40 class TargetRegisterInfo;
41 class MachineFunction;
42 class MachineMemOperand;
43
44 //===----------------------------------------------------------------------===//
45 /// MachineInstr - Representation of each machine instruction.
46 ///
47 /// This class isn't a POD type, but it must have a trivial destructor. When a
48 /// MachineFunction is deleted, all the contained MachineInstrs are deallocated
49 /// without having their destructor called.
50 ///
51 class MachineInstr : public ilist_node<MachineInstr> {
52 public:
53 typedef MachineMemOperand **mmo_iterator;
54
55 /// Flags to specify different kinds of comments to output in
56 /// assembly code. These flags carry semantic information not
57 /// otherwise easily derivable from the IR text.
58 ///
59 enum CommentFlag {
60 ReloadReuse = 0x1
61 };
62
63 enum MIFlag {
64 NoFlags = 0,
65 FrameSetup = 1 << 0, // Instruction is used as a part of
66 // function frame setup code.
67 BundledPred = 1 << 1, // Instruction has bundled predecessors.
68 BundledSucc = 1 << 2 // Instruction has bundled successors.
69 };
70 private:
71 const MCInstrDesc *MCID; // Instruction descriptor.
72 MachineBasicBlock *Parent; // Pointer to the owning basic block.
73
74 // Operands are allocated by an ArrayRecycler.
75 MachineOperand *Operands; // Pointer to the first operand.
76 unsigned NumOperands; // Number of operands on instruction.
77 typedef ArrayRecycler<MachineOperand>::Capacity OperandCapacity;
78 OperandCapacity CapOperands; // Capacity of the Operands array.
79
80 uint8_t Flags; // Various bits of additional
81 // information about machine
82 // instruction.
83
84 uint8_t AsmPrinterFlags; // Various bits of information used by
85 // the AsmPrinter to emit helpful
86 // comments. This is *not* semantic
87 // information. Do not use this for
88 // anything other than to convey comment
89 // information to AsmPrinter.
90
91 uint8_t NumMemRefs; // Information on memory references.
92 mmo_iterator MemRefs;
93
94 DebugLoc debugLoc; // Source line information.
95
96 MachineInstr(const MachineInstr&) LLVM_DELETED_FUNCTION;
97 void operator=(const MachineInstr&) LLVM_DELETED_FUNCTION;
98 // Use MachineFunction::DeleteMachineInstr() instead.
99 ~MachineInstr() LLVM_DELETED_FUNCTION;
100
101 // Intrusive list support
102 friend struct ilist_traits<MachineInstr>;
103 friend struct ilist_traits<MachineBasicBlock>;
104 void setParent(MachineBasicBlock *P) { Parent = P; }
105
106 /// MachineInstr ctor - This constructor creates a copy of the given
107 /// MachineInstr in the given MachineFunction.
108 MachineInstr(MachineFunction &, const MachineInstr &);
109
110 /// MachineInstr ctor - This constructor create a MachineInstr and add the
111 /// implicit operands. It reserves space for number of operands specified by
112 /// MCInstrDesc. An explicit DebugLoc is supplied.
113 MachineInstr(MachineFunction&, const MCInstrDesc &MCID,
114 const DebugLoc dl, bool NoImp = false);
115
116 // MachineInstrs are pool-allocated and owned by MachineFunction.
117 friend class MachineFunction;
118
119 public:
120 const MachineBasicBlock* getParent() const { return Parent; }
121 MachineBasicBlock* getParent() { return Parent; }
122
123 /// getAsmPrinterFlags - Return the asm printer flags bitvector.
124 ///
125 uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; }
126
127 /// clearAsmPrinterFlags - clear the AsmPrinter bitvector
128 ///
129 void clearAsmPrinterFlags() { AsmPrinterFlags = 0; }
130
131 /// getAsmPrinterFlag - Return whether an AsmPrinter flag is set.
132 ///
133 bool getAsmPrinterFlag(CommentFlag Flag) const {
134 return AsmPrinterFlags & Flag;
135 }
136
137 /// setAsmPrinterFlag - Set a flag for the AsmPrinter.
138 ///
139 void setAsmPrinterFlag(CommentFlag Flag) {
140 AsmPrinterFlags |= (uint8_t)Flag;
141 }
142
143 /// clearAsmPrinterFlag - clear specific AsmPrinter flags
144 ///
145 void clearAsmPrinterFlag(CommentFlag Flag) {
146 AsmPrinterFlags &= ~Flag;
147 }
148
149 /// getFlags - Return the MI flags bitvector.
150 uint8_t getFlags() const {
151 return Flags;
152 }
153
154 /// getFlag - Return whether an MI flag is set.
155 bool getFlag(MIFlag Flag) const {
156 return Flags & Flag;
157 }
158
159 /// setFlag - Set a MI flag.
160 void setFlag(MIFlag Flag) {
161 Flags |= (uint8_t)Flag;
162 }
163
164 void setFlags(unsigned flags) {
165 // Filter out the automatically maintained flags.
166 unsigned Mask = BundledPred | BundledSucc;
167 Flags = (Flags & Mask) | (flags & ~Mask);
168 }
169
170 /// clearFlag - Clear a MI flag.
171 void clearFlag(MIFlag Flag) {
172 Flags &= ~((uint8_t)Flag);
173 }
174
175 /// isInsideBundle - Return true if MI is in a bundle (but not the first MI
176 /// in a bundle).
177 ///
178 /// A bundle looks like this before it's finalized:
179 /// ----------------
180 /// | MI |
181 /// ----------------
182 /// |
183 /// ----------------
184 /// | MI * |
185 /// ----------------
186 /// |
187 /// ----------------
188 /// | MI * |
189 /// ----------------
190 /// In this case, the first MI starts a bundle but is not inside a bundle, the
191 /// next 2 MIs are considered "inside" the bundle.
192 ///
193 /// After a bundle is finalized, it looks like this:
194 /// ----------------
195 /// | Bundle |
196 /// ----------------
197 /// |
198 /// ----------------
199 /// | MI * |
200 /// ----------------
201 /// |
202 /// ----------------
203 /// | MI * |
204 /// ----------------
205 /// |
206 /// ----------------
207 /// | MI * |
208 /// ----------------
209 /// The first instruction has the special opcode "BUNDLE". It's not "inside"
210 /// a bundle, but the next three MIs are.
211 bool isInsideBundle() const {
212 return getFlag(BundledPred);
213 }
214
215 /// isBundled - Return true if this instruction part of a bundle. This is true
216 /// if either itself or its following instruction is marked "InsideBundle".
217 bool isBundled() const {
218 return isBundledWithPred() || isBundledWithSucc();
219 }
220
221 /// Return true if this instruction is part of a bundle, and it is not the
222 /// first instruction in the bundle.
223 bool isBundledWithPred() const { return getFlag(BundledPred); }
224
225 /// Return true if this instruction is part of a bundle, and it is not the
226 /// last instruction in the bundle.
227 bool isBundledWithSucc() const { return getFlag(BundledSucc); }
228
229 /// Bundle this instruction with its predecessor. This can be an unbundled
230 /// instruction, or it can be the first instruction in a bundle.
231 void bundleWithPred();
232
233 /// Bundle this instruction with its successor. This can be an unbundled
234 /// instruction, or it can be the last instruction in a bundle.
235 void bundleWithSucc();
236
237 /// Break bundle above this instruction.
238 void unbundleFromPred();
239
240 /// Break bundle below this instruction.
241 void unbundleFromSucc();
242
243 /// getDebugLoc - Returns the debug location id of this MachineInstr.
244 ///
245 DebugLoc getDebugLoc() const { return debugLoc; }
246
247 /// \brief Return the debug variable referenced by
248 /// this DBG_VALUE instruction.
249 DIVariable getDebugVariable() const {
250 assert(isDebugValue() && "not a DBG_VALUE");
251 DIVariable Var(getOperand(2).getMetadata());
252 assert(Var.Verify() && "not a DIVariable");
253 return Var;
254 }
255
256 /// \brief Return the complex address expression referenced by
257 /// this DBG_VALUE instruction.
258 DIExpression getDebugExpression() const {
259 assert(isDebugValue() && "not a DBG_VALUE");
260 DIExpression Expr(getOperand(3).getMetadata());
261 assert(Expr.Verify() && "not a DIExpression");
262 return Expr;
263 }
264
265 /// emitError - Emit an error referring to the source location of this
266 /// instruction. This should only be used for inline assembly that is somehow
267 /// impossible to compile. Other errors should have been handled much
268 /// earlier.
269 ///
270 /// If this method returns, the caller should try to recover from the error.
271 ///
272 void emitError(StringRef Msg) const;
273
274 /// getDesc - Returns the target instruction descriptor of this
275 /// MachineInstr.
276 const MCInstrDesc &getDesc() const { return *MCID; }
277
278 /// getOpcode - Returns the opcode of this MachineInstr.
279 ///
280 int getOpcode() const { return MCID->Opcode; }
281
282 /// Access to explicit operands of the instruction.
283 ///
284 unsigned getNumOperands() const { return NumOperands; }
285
286 const MachineOperand& getOperand(unsigned i) const {
287 assert(i < getNumOperands() && "getOperand() out of range!");
288 return Operands[i];
289 }
290 MachineOperand& getOperand(unsigned i) {
291 assert(i < getNumOperands() && "getOperand() out of range!");
292 return Operands[i];
293 }
294
295 /// getNumExplicitOperands - Returns the number of non-implicit operands.
296 ///
297 unsigned getNumExplicitOperands() const;
298
299 /// iterator/begin/end - Iterate over all operands of a machine instruction.
300 typedef MachineOperand *mop_iterator;
301 typedef const MachineOperand *const_mop_iterator;
302
303 mop_iterator operands_begin() { return Operands; }
304 mop_iterator operands_end() { return Operands + NumOperands; }
305
306 const_mop_iterator operands_begin() const { return Operands; }
307 const_mop_iterator operands_end() const { return Operands + NumOperands; }
308
309 iterator_range<mop_iterator> operands() {
310 return iterator_range<mop_iterator>(operands_begin(), operands_end());
311 }
312 iterator_range<const_mop_iterator> operands() const {
313 return iterator_range<const_mop_iterator>(operands_begin(), operands_end());
314 }
315 iterator_range<mop_iterator> explicit_operands() {
316 return iterator_range<mop_iterator>(
317 operands_begin(), operands_begin() + getNumExplicitOperands());
318 }
319 iterator_range<const_mop_iterator> explicit_operands() const {
320 return iterator_range<const_mop_iterator>(
321 operands_begin(), operands_begin() + getNumExplicitOperands());
322 }
323 iterator_range<mop_iterator> implicit_operands() {
324 return iterator_range<mop_iterator>(explicit_operands().end(),
325 operands_end());
326 }
327 iterator_range<const_mop_iterator> implicit_operands() const {
328 return iterator_range<const_mop_iterator>(explicit_operands().end(),
329 operands_end());
330 }
331 iterator_range<mop_iterator> defs() {
332 return iterator_range<mop_iterator>(
333 operands_begin(), operands_begin() + getDesc().getNumDefs());
334 }
335 iterator_range<const_mop_iterator> defs() const {
336 return iterator_range<const_mop_iterator>(
337 operands_begin(), operands_begin() + getDesc().getNumDefs());
338 }
339 iterator_range<mop_iterator> uses() {
340 return iterator_range<mop_iterator>(
341 operands_begin() + getDesc().getNumDefs(), operands_end());
342 }
343 iterator_range<const_mop_iterator> uses() const {
344 return iterator_range<const_mop_iterator>(
345 operands_begin() + getDesc().getNumDefs(), operands_end());
346 }
347
348 /// Access to memory operands of the instruction
349 mmo_iterator memoperands_begin() const { return MemRefs; }
350 mmo_iterator memoperands_end() const { return MemRefs + NumMemRefs; }
351 bool memoperands_empty() const { return NumMemRefs == 0; }
352
353 iterator_range<mmo_iterator> memoperands() {
354 return iterator_range<mmo_iterator>(memoperands_begin(), memoperands_end());
355 }
356 iterator_range<mmo_iterator> memoperands() const {
357 return iterator_range<mmo_iterator>(memoperands_begin(), memoperands_end());
358 }
359
360 /// hasOneMemOperand - Return true if this instruction has exactly one
361 /// MachineMemOperand.
362 bool hasOneMemOperand() const {
363 return NumMemRefs == 1;
364 }
365
366 /// API for querying MachineInstr properties. They are the same as MCInstrDesc
367 /// queries but they are bundle aware.
368
369 enum QueryType {
370 IgnoreBundle, // Ignore bundles
371 AnyInBundle, // Return true if any instruction in bundle has property
372 AllInBundle // Return true if all instructions in bundle have property
373 };
374
375 /// hasProperty - Return true if the instruction (or in the case of a bundle,
376 /// the instructions inside the bundle) has the specified property.
377 /// The first argument is the property being queried.
378 /// The second argument indicates whether the query should look inside
379 /// instruction bundles.
380 bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const {
381 // Inline the fast path for unbundled or bundle-internal instructions.
382 if (Type == IgnoreBundle || !isBundled() || isBundledWithPred())
383 return getDesc().getFlags() & (1 << MCFlag);
384
385 // If this is the first instruction in a bundle, take the slow path.
386 return hasPropertyInBundle(1 << MCFlag, Type);
387 }
388
389 /// isVariadic - Return true if this instruction can have a variable number of
390 /// operands. In this case, the variable operands will be after the normal
391 /// operands but before the implicit definitions and uses (if any are
392 /// present).
393 bool isVariadic(QueryType Type = IgnoreBundle) const {
394 return hasProperty(MCID::Variadic, Type);
395 }
396
397 /// hasOptionalDef - Set if this instruction has an optional definition, e.g.
398 /// ARM instructions which can set condition code if 's' bit is set.
399 bool hasOptionalDef(QueryType Type = IgnoreBundle) const {
400 return hasProperty(MCID::HasOptionalDef, Type);
401 }
402
403 /// isPseudo - Return true if this is a pseudo instruction that doesn't
404 /// correspond to a real machine instruction.
405 ///
406 bool isPseudo(QueryType Type = IgnoreBundle) const {
407 return hasProperty(MCID::Pseudo, Type);
408 }
409
410 bool isReturn(QueryType Type = AnyInBundle) const {
411 return hasProperty(MCID::Return, Type);
412 }
413
414 bool isCall(QueryType Type = AnyInBundle) const {
415 return hasProperty(MCID::Call, Type);
416 }
417
418 /// isBarrier - Returns true if the specified instruction stops control flow
419 /// from executing the instruction immediately following it. Examples include
420 /// unconditional branches and return instructions.
421 bool isBarrier(QueryType Type = AnyInBundle) const {
422 return hasProperty(MCID::Barrier, Type);
423 }
424
425 /// isTerminator - Returns true if this instruction part of the terminator for
426 /// a basic block. Typically this is things like return and branch
427 /// instructions.
428 ///
429 /// Various passes use this to insert code into the bottom of a basic block,
430 /// but before control flow occurs.
431 bool isTerminator(QueryType Type = AnyInBundle) const {
432 return hasProperty(MCID::Terminator, Type);
433 }
434
435 /// isBranch - Returns true if this is a conditional, unconditional, or
436 /// indirect branch. Predicates below can be used to discriminate between
437 /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to
438 /// get more information.
439 bool isBranch(QueryType Type = AnyInBundle) const {
440 return hasProperty(MCID::Branch, Type);
441 }
442
443 /// isIndirectBranch - Return true if this is an indirect branch, such as a
444 /// branch through a register.
445 bool isIndirectBranch(QueryType Type = AnyInBundle) const {
446 return hasProperty(MCID::IndirectBranch, Type);
447 }
448
449 /// isConditionalBranch - Return true if this is a branch which may fall
450 /// through to the next instruction or may transfer control flow to some other
451 /// block. The TargetInstrInfo::AnalyzeBranch method can be used to get more
452 /// information about this branch.
453 bool isConditionalBranch(QueryType Type = AnyInBundle) const {
454 return isBranch(Type) & !isBarrier(Type) & !isIndirectBranch(Type);
455 }
456
457 /// isUnconditionalBranch - Return true if this is a branch which always
458 /// transfers control flow to some other block. The
459 /// TargetInstrInfo::AnalyzeBranch method can be used to get more information
460 /// about this branch.
461 bool isUnconditionalBranch(QueryType Type = AnyInBundle) const {
462 return isBranch(Type) & isBarrier(Type) & !isIndirectBranch(Type);
463 }
464
465 /// Return true if this instruction has a predicate operand that
466 /// controls execution. It may be set to 'always', or may be set to other
467 /// values. There are various methods in TargetInstrInfo that can be used to
468 /// control and modify the predicate in this instruction.
469 bool isPredicable(QueryType Type = AllInBundle) const {
470 // If it's a bundle than all bundled instructions must be predicable for this
471 // to return true.
472 return hasProperty(MCID::Predicable, Type);
473 }
474
475 /// isCompare - Return true if this instruction is a comparison.
476 bool isCompare(QueryType Type = IgnoreBundle) const {
477 return hasProperty(MCID::Compare, Type);
478 }
479
480 /// isMoveImmediate - Return true if this instruction is a move immediate
481 /// (including conditional moves) instruction.
482 bool isMoveImmediate(QueryType Type = IgnoreBundle) const {
483 return hasProperty(MCID::MoveImm, Type);
484 }
485
486 /// isBitcast - Return true if this instruction is a bitcast instruction.
487 ///
488 bool isBitcast(QueryType Type = IgnoreBundle) const {
489 return hasProperty(MCID::Bitcast, Type);
490 }
491
492 /// isSelect - Return true if this instruction is a select instruction.
493 ///
494 bool isSelect(QueryType Type = IgnoreBundle) const {
495 return hasProperty(MCID::Select, Type);
496 }
497
498 /// isNotDuplicable - Return true if this instruction cannot be safely
499 /// duplicated. For example, if the instruction has a unique labels attached
500 /// to it, duplicating it would cause multiple definition errors.
501 bool isNotDuplicable(QueryType Type = AnyInBundle) const {
502 return hasProperty(MCID::NotDuplicable, Type);
503 }
504
505 /// hasDelaySlot - Returns true if the specified instruction has a delay slot
506 /// which must be filled by the code generator.
507 bool hasDelaySlot(QueryType Type = AnyInBundle) const {
508 return hasProperty(MCID::DelaySlot, Type);
509 }
510
511 /// canFoldAsLoad - Return true for instructions that can be folded as
512 /// memory operands in other instructions. The most common use for this
513 /// is instructions that are simple loads from memory that don't modify
514 /// the loaded value in any way, but it can also be used for instructions
515 /// that can be expressed as constant-pool loads, such as V_SETALLONES
516 /// on x86, to allow them to be folded when it is beneficial.
517 /// This should only be set on instructions that return a value in their
518 /// only virtual register definition.
519 bool canFoldAsLoad(QueryType Type = IgnoreBundle) const {
520 return hasProperty(MCID::FoldableAsLoad, Type);
521 }
522
523 /// \brief Return true if this instruction behaves
524 /// the same way as the generic REG_SEQUENCE instructions.
525 /// E.g., on ARM,
526 /// dX VMOVDRR rY, rZ
527 /// is equivalent to
528 /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1.
529 ///
530 /// Note that for the optimizers to be able to take advantage of
531 /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be
532 /// override accordingly.
533 bool isRegSequenceLike(QueryType Type = IgnoreBundle) const {
534 return hasProperty(MCID::RegSequence, Type);
535 }
536
537 /// \brief Return true if this instruction behaves
538 /// the same way as the generic EXTRACT_SUBREG instructions.
539 /// E.g., on ARM,
540 /// rX, rY VMOVRRD dZ
541 /// is equivalent to two EXTRACT_SUBREG:
542 /// rX = EXTRACT_SUBREG dZ, ssub_0
543 /// rY = EXTRACT_SUBREG dZ, ssub_1
544 ///
545 /// Note that for the optimizers to be able to take advantage of
546 /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be
547 /// override accordingly.
548 bool isExtractSubregLike(QueryType Type = IgnoreBundle) const {
549 return hasProperty(MCID::ExtractSubreg, Type);
550 }
551
552 /// \brief Return true if this instruction behaves
553 /// the same way as the generic INSERT_SUBREG instructions.
554 /// E.g., on ARM,
555 /// dX = VSETLNi32 dY, rZ, Imm
556 /// is equivalent to a INSERT_SUBREG:
557 /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm)
558 ///
559 /// Note that for the optimizers to be able to take advantage of
560 /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be
561 /// override accordingly.
562 bool isInsertSubregLike(QueryType Type = IgnoreBundle) const {
563 return hasProperty(MCID::InsertSubreg, Type);
564 }
565
566 //===--------------------------------------------------------------------===//
567 // Side Effect Analysis
568 //===--------------------------------------------------------------------===//
569
570 /// mayLoad - Return true if this instruction could possibly read memory.
571 /// Instructions with this flag set are not necessarily simple load
572 /// instructions, they may load a value and modify it, for example.
573 bool mayLoad(QueryType Type = AnyInBundle) const {
574 if (isInlineAsm()) {
575 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
576 if (ExtraInfo & InlineAsm::Extra_MayLoad)
577 return true;
578 }
579 return hasProperty(MCID::MayLoad, Type);
580 }
581
582
583 /// mayStore - Return true if this instruction could possibly modify memory.
584 /// Instructions with this flag set are not necessarily simple store
585 /// instructions, they may store a modified value based on their operands, or
586 /// may not actually modify anything, for example.
587 bool mayStore(QueryType Type = AnyInBundle) const {
588 if (isInlineAsm()) {
589 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
590 if (ExtraInfo & InlineAsm::Extra_MayStore)
591 return true;
592 }
593 return hasProperty(MCID::MayStore, Type);
594 }
595
596 //===--------------------------------------------------------------------===//
597 // Flags that indicate whether an instruction can be modified by a method.
598 //===--------------------------------------------------------------------===//
599
600 /// isCommutable - Return true if this may be a 2- or 3-address
601 /// instruction (of the form "X = op Y, Z, ..."), which produces the same
602 /// result if Y and Z are exchanged. If this flag is set, then the
603 /// TargetInstrInfo::commuteInstruction method may be used to hack on the
604 /// instruction.
605 ///
606 /// Note that this flag may be set on instructions that are only commutable
607 /// sometimes. In these cases, the call to commuteInstruction will fail.
608 /// Also note that some instructions require non-trivial modification to
609 /// commute them.
610 bool isCommutable(QueryType Type = IgnoreBundle) const {
611 return hasProperty(MCID::Commutable, Type);
612 }
613
614 /// isConvertibleTo3Addr - Return true if this is a 2-address instruction
615 /// which can be changed into a 3-address instruction if needed. Doing this
616 /// transformation can be profitable in the register allocator, because it
617 /// means that the instruction can use a 2-address form if possible, but
618 /// degrade into a less efficient form if the source and dest register cannot
619 /// be assigned to the same register. For example, this allows the x86
620 /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
621 /// is the same speed as the shift but has bigger code size.
622 ///
623 /// If this returns true, then the target must implement the
624 /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
625 /// is allowed to fail if the transformation isn't valid for this specific
626 /// instruction (e.g. shl reg, 4 on x86).
627 ///
628 bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const {
629 return hasProperty(MCID::ConvertibleTo3Addr, Type);
630 }
631
632 /// usesCustomInsertionHook - Return true if this instruction requires
633 /// custom insertion support when the DAG scheduler is inserting it into a
634 /// machine basic block. If this is true for the instruction, it basically
635 /// means that it is a pseudo instruction used at SelectionDAG time that is
636 /// expanded out into magic code by the target when MachineInstrs are formed.
637 ///
638 /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
639 /// is used to insert this into the MachineBasicBlock.
640 bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const {
641 return hasProperty(MCID::UsesCustomInserter, Type);
642 }
643
644 /// hasPostISelHook - Return true if this instruction requires *adjustment*
645 /// after instruction selection by calling a target hook. For example, this
646 /// can be used to fill in ARM 's' optional operand depending on whether
647 /// the conditional flag register is used.
648 bool hasPostISelHook(QueryType Type = IgnoreBundle) const {
649 return hasProperty(MCID::HasPostISelHook, Type);
650 }
651
652 /// isRematerializable - Returns true if this instruction is a candidate for
653 /// remat. This flag is deprecated, please don't use it anymore. If this
654 /// flag is set, the isReallyTriviallyReMaterializable() method is called to
655 /// verify the instruction is really rematable.
656 bool isRematerializable(QueryType Type = AllInBundle) const {
657 // It's only possible to re-mat a bundle if all bundled instructions are
658 // re-materializable.
659 return hasProperty(MCID::Rematerializable, Type);
660 }
661
662 /// isAsCheapAsAMove - Returns true if this instruction has the same cost (or
663 /// less) than a move instruction. This is useful during certain types of
664 /// optimizations (e.g., remat during two-address conversion or machine licm)
665 /// where we would like to remat or hoist the instruction, but not if it costs
666 /// more than moving the instruction into the appropriate register. Note, we
667 /// are not marking copies from and to the same register class with this flag.
668 bool isAsCheapAsAMove(QueryType Type = AllInBundle) const {
669 // Only returns true for a bundle if all bundled instructions are cheap.
670 return hasProperty(MCID::CheapAsAMove, Type);
671 }
672
673 /// hasExtraSrcRegAllocReq - Returns true if this instruction source operands
674 /// have special register allocation requirements that are not captured by the
675 /// operand register classes. e.g. ARM::STRD's two source registers must be an
676 /// even / odd pair, ARM::STM registers have to be in ascending order.
677 /// Post-register allocation passes should not attempt to change allocations
678 /// for sources of instructions with this flag.
679 bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const {
680 return hasProperty(MCID::ExtraSrcRegAllocReq, Type);
681 }
682
683 /// hasExtraDefRegAllocReq - Returns true if this instruction def operands
684 /// have special register allocation requirements that are not captured by the
685 /// operand register classes. e.g. ARM::LDRD's two def registers must be an
686 /// even / odd pair, ARM::LDM registers have to be in ascending order.
687 /// Post-register allocation passes should not attempt to change allocations
688 /// for definitions of instructions with this flag.
689 bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const {
690 return hasProperty(MCID::ExtraDefRegAllocReq, Type);
691 }
692
693
694 enum MICheckType {
695 CheckDefs, // Check all operands for equality
696 CheckKillDead, // Check all operands including kill / dead markers
697 IgnoreDefs, // Ignore all definitions
698 IgnoreVRegDefs // Ignore virtual register definitions
699 };
700
701 /// isIdenticalTo - Return true if this instruction is identical to (same
702 /// opcode and same operands as) the specified instruction.
703 bool isIdenticalTo(const MachineInstr *Other,
704 MICheckType Check = CheckDefs) const;
705
706 /// Unlink 'this' from the containing basic block, and return it without
707 /// deleting it.
708 ///
709 /// This function can not be used on bundled instructions, use
710 /// removeFromBundle() to remove individual instructions from a bundle.
711 MachineInstr *removeFromParent();
712
713 /// Unlink this instruction from its basic block and return it without
714 /// deleting it.
715 ///
716 /// If the instruction is part of a bundle, the other instructions in the
717 /// bundle remain bundled.
718 MachineInstr *removeFromBundle();
719
720 /// Unlink 'this' from the containing basic block and delete it.
721 ///
722 /// If this instruction is the header of a bundle, the whole bundle is erased.
723 /// This function can not be used for instructions inside a bundle, use
724 /// eraseFromBundle() to erase individual bundled instructions.
725 void eraseFromParent();
726
727 /// Unlink 'this' from the containing basic block and delete it.
728 ///
729 /// For all definitions mark their uses in DBG_VALUE nodes
730 /// as undefined. Otherwise like eraseFromParent().
731 void eraseFromParentAndMarkDBGValuesForRemoval();
732
733 /// Unlink 'this' form its basic block and delete it.
734 ///
735 /// If the instruction is part of a bundle, the other instructions in the
736 /// bundle remain bundled.
737 void eraseFromBundle();
738
739 bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; }
740 bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; }
741
742 /// isLabel - Returns true if the MachineInstr represents a label.
743 ///
744 bool isLabel() const { return isEHLabel() || isGCLabel(); }
745 bool isCFIInstruction() const {
746 return getOpcode() == TargetOpcode::CFI_INSTRUCTION;
747 }
748
749 // True if the instruction represents a position in the function.
750 bool isPosition() const { return isLabel() || isCFIInstruction(); }
751
752 bool isDebugValue() const { return getOpcode() == TargetOpcode::DBG_VALUE; }
753 /// A DBG_VALUE is indirect iff the first operand is a register and
754 /// the second operand is an immediate.
755 bool isIndirectDebugValue() const {
756 return isDebugValue()
757 && getOperand(0).isReg()
758 && getOperand(1).isImm();
759 }
760
761 bool isPHI() const { return getOpcode() == TargetOpcode::PHI; }
762 bool isKill() const { return getOpcode() == TargetOpcode::KILL; }
763 bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; }
764 bool isInlineAsm() const { return getOpcode() == TargetOpcode::INLINEASM; }
765 bool isMSInlineAsm() const {
766 return getOpcode() == TargetOpcode::INLINEASM && getInlineAsmDialect();
767 }
768 bool isStackAligningInlineAsm() const;
769 InlineAsm::AsmDialect getInlineAsmDialect() const;
770 bool isInsertSubreg() const {
771 return getOpcode() == TargetOpcode::INSERT_SUBREG;
772 }
773 bool isSubregToReg() const {
774 return getOpcode() == TargetOpcode::SUBREG_TO_REG;
775 }
776 bool isRegSequence() const {
777 return getOpcode() == TargetOpcode::REG_SEQUENCE;
778 }
779 bool isBundle() const {
780 return getOpcode() == TargetOpcode::BUNDLE;
781 }
782 bool isCopy() const {
783 return getOpcode() == TargetOpcode::COPY;
784 }
785 bool isFullCopy() const {
786 return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg();
787 }
788 bool isExtractSubreg() const {
789 return getOpcode() == TargetOpcode::EXTRACT_SUBREG;
790 }
791
792 /// isCopyLike - Return true if the instruction behaves like a copy.
793 /// This does not include native copy instructions.
794 bool isCopyLike() const {
795 return isCopy() || isSubregToReg();
796 }
797
798 /// isIdentityCopy - Return true is the instruction is an identity copy.
799 bool isIdentityCopy() const {
800 return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() &&
801 getOperand(0).getSubReg() == getOperand(1).getSubReg();
802 }
803
804 /// isTransient - Return true if this is a transient instruction that is
805 /// either very likely to be eliminated during register allocation (such as
806 /// copy-like instructions), or if this instruction doesn't have an
807 /// execution-time cost.
808 bool isTransient() const {
809 switch(getOpcode()) {
810 default: return false;
811 // Copy-like instructions are usually eliminated during register allocation.
812 case TargetOpcode::PHI:
813 case TargetOpcode::COPY:
814 case TargetOpcode::INSERT_SUBREG:
815 case TargetOpcode::SUBREG_TO_REG:
816 case TargetOpcode::REG_SEQUENCE:
817 // Pseudo-instructions that don't produce any real output.
818 case TargetOpcode::IMPLICIT_DEF:
819 case TargetOpcode::KILL:
820 case TargetOpcode::CFI_INSTRUCTION:
821 case TargetOpcode::EH_LABEL:
822 case TargetOpcode::GC_LABEL:
823 case TargetOpcode::DBG_VALUE:
824 return true;
825 }
826 }
827
828 /// Return the number of instructions inside the MI bundle, excluding the
829 /// bundle header.
830 ///
831 /// This is the number of instructions that MachineBasicBlock::iterator
832 /// skips, 0 for unbundled instructions.
833 unsigned getBundleSize() const;
834
835 /// readsRegister - Return true if the MachineInstr reads the specified
836 /// register. If TargetRegisterInfo is passed, then it also checks if there
837 /// is a read of a super-register.
838 /// This does not count partial redefines of virtual registers as reads:
839 /// %reg1024:6 = OP.
840 bool readsRegister(unsigned Reg,
841 const TargetRegisterInfo *TRI = nullptr) const {
842 return findRegisterUseOperandIdx(Reg, false, TRI) != -1;
843 }
844
845 /// readsVirtualRegister - Return true if the MachineInstr reads the specified
846 /// virtual register. Take into account that a partial define is a
847 /// read-modify-write operation.
848 bool readsVirtualRegister(unsigned Reg) const {
849 return readsWritesVirtualRegister(Reg).first;
850 }
851
852 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
853 /// indicating if this instruction reads or writes Reg. This also considers
854 /// partial defines.
855 /// If Ops is not null, all operand indices for Reg are added.
856 std::pair<bool,bool> readsWritesVirtualRegister(unsigned Reg,
857 SmallVectorImpl<unsigned> *Ops = nullptr) const;
858
859 /// killsRegister - Return true if the MachineInstr kills the specified
860 /// register. If TargetRegisterInfo is passed, then it also checks if there is
861 /// a kill of a super-register.
862 bool killsRegister(unsigned Reg,
863 const TargetRegisterInfo *TRI = nullptr) const {
864 return findRegisterUseOperandIdx(Reg, true, TRI) != -1;
865 }
866
867 /// definesRegister - Return true if the MachineInstr fully defines the
868 /// specified register. If TargetRegisterInfo is passed, then it also checks
869 /// if there is a def of a super-register.
870 /// NOTE: It's ignoring subreg indices on virtual registers.
871 bool definesRegister(unsigned Reg,
872 const TargetRegisterInfo *TRI = nullptr) const {
873 return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1;
874 }
875
876 /// modifiesRegister - Return true if the MachineInstr modifies (fully define
877 /// or partially define) the specified register.
878 /// NOTE: It's ignoring subreg indices on virtual registers.
879 bool modifiesRegister(unsigned Reg, const TargetRegisterInfo *TRI) const {
880 return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1;
881 }
882
883 /// registerDefIsDead - Returns true if the register is dead in this machine
884 /// instruction. If TargetRegisterInfo is passed, then it also checks
885 /// if there is a dead def of a super-register.
886 bool registerDefIsDead(unsigned Reg,
887 const TargetRegisterInfo *TRI = nullptr) const {
888 return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1;
889 }
890
891 /// findRegisterUseOperandIdx() - Returns the operand index that is a use of
892 /// the specific register or -1 if it is not found. It further tightens
893 /// the search criteria to a use that kills the register if isKill is true.
894 int findRegisterUseOperandIdx(unsigned Reg, bool isKill = false,
895 const TargetRegisterInfo *TRI = nullptr) const;
896
897 /// findRegisterUseOperand - Wrapper for findRegisterUseOperandIdx, it returns
898 /// a pointer to the MachineOperand rather than an index.
899 MachineOperand *findRegisterUseOperand(unsigned Reg, bool isKill = false,
900 const TargetRegisterInfo *TRI = nullptr) {
901 int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI);
902 return (Idx == -1) ? nullptr : &getOperand(Idx);
903 }
904
905 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
906 /// the specified register or -1 if it is not found. If isDead is true, defs
907 /// that are not dead are skipped. If Overlap is true, then it also looks for
908 /// defs that merely overlap the specified register. If TargetRegisterInfo is
909 /// non-null, then it also checks if there is a def of a super-register.
910 /// This may also return a register mask operand when Overlap is true.
911 int findRegisterDefOperandIdx(unsigned Reg,
912 bool isDead = false, bool Overlap = false,
913 const TargetRegisterInfo *TRI = nullptr) const;
914
915 /// findRegisterDefOperand - Wrapper for findRegisterDefOperandIdx, it returns
916 /// a pointer to the MachineOperand rather than an index.
917 MachineOperand *findRegisterDefOperand(unsigned Reg, bool isDead = false,
918 const TargetRegisterInfo *TRI = nullptr) {
919 int Idx = findRegisterDefOperandIdx(Reg, isDead, false, TRI);
920 return (Idx == -1) ? nullptr : &getOperand(Idx);
921 }
922
923 /// findFirstPredOperandIdx() - Find the index of the first operand in the
924 /// operand list that is used to represent the predicate. It returns -1 if
925 /// none is found.
926 int findFirstPredOperandIdx() const;
927
928 /// findInlineAsmFlagIdx() - Find the index of the flag word operand that
929 /// corresponds to operand OpIdx on an inline asm instruction. Returns -1 if
930 /// getOperand(OpIdx) does not belong to an inline asm operand group.
931 ///
932 /// If GroupNo is not NULL, it will receive the number of the operand group
933 /// containing OpIdx.
934 ///
935 /// The flag operand is an immediate that can be decoded with methods like
936 /// InlineAsm::hasRegClassConstraint().
937 ///
938 int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = nullptr) const;
939
940 /// getRegClassConstraint - Compute the static register class constraint for
941 /// operand OpIdx. For normal instructions, this is derived from the
942 /// MCInstrDesc. For inline assembly it is derived from the flag words.
943 ///
944 /// Returns NULL if the static register classs constraint cannot be
945 /// determined.
946 ///
947 const TargetRegisterClass*
948 getRegClassConstraint(unsigned OpIdx,
949 const TargetInstrInfo *TII,
950 const TargetRegisterInfo *TRI) const;
951
952 /// \brief Applies the constraints (def/use) implied by this MI on \p Reg to
953 /// the given \p CurRC.
954 /// If \p ExploreBundle is set and MI is part of a bundle, all the
955 /// instructions inside the bundle will be taken into account. In other words,
956 /// this method accumulates all the constrains of the operand of this MI and
957 /// the related bundle if MI is a bundle or inside a bundle.
958 ///
959 /// Returns the register class that statisfies both \p CurRC and the
960 /// constraints set by MI. Returns NULL if such a register class does not
961 /// exist.
962 ///
963 /// \pre CurRC must not be NULL.
964 const TargetRegisterClass *getRegClassConstraintEffectForVReg(
965 unsigned Reg, const TargetRegisterClass *CurRC,
966 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
967 bool ExploreBundle = false) const;
968
969 /// \brief Applies the constraints (def/use) implied by the \p OpIdx operand
970 /// to the given \p CurRC.
971 ///
972 /// Returns the register class that statisfies both \p CurRC and the
973 /// constraints set by \p OpIdx MI. Returns NULL if such a register class
974 /// does not exist.
975 ///
976 /// \pre CurRC must not be NULL.
977 /// \pre The operand at \p OpIdx must be a register.
978 const TargetRegisterClass *
979 getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC,
980 const TargetInstrInfo *TII,
981 const TargetRegisterInfo *TRI) const;
982
983 /// tieOperands - Add a tie between the register operands at DefIdx and
984 /// UseIdx. The tie will cause the register allocator to ensure that the two
985 /// operands are assigned the same physical register.
986 ///
987 /// Tied operands are managed automatically for explicit operands in the
988 /// MCInstrDesc. This method is for exceptional cases like inline asm.
989 void tieOperands(unsigned DefIdx, unsigned UseIdx);
990
991 /// findTiedOperandIdx - Given the index of a tied register operand, find the
992 /// operand it is tied to. Defs are tied to uses and vice versa. Returns the
993 /// index of the tied operand which must exist.
994 unsigned findTiedOperandIdx(unsigned OpIdx) const;
995
996 /// isRegTiedToUseOperand - Given the index of a register def operand,
997 /// check if the register def is tied to a source operand, due to either
998 /// two-address elimination or inline assembly constraints. Returns the
999 /// first tied use operand index by reference if UseOpIdx is not null.
1000 bool isRegTiedToUseOperand(unsigned DefOpIdx,
1001 unsigned *UseOpIdx = nullptr) const {
1002 const MachineOperand &MO = getOperand(DefOpIdx);
1003 if (!MO.isReg() || !MO.isDef() || !MO.isTied())
1004 return false;
1005 if (UseOpIdx)
1006 *UseOpIdx = findTiedOperandIdx(DefOpIdx);
1007 return true;
1008 }
1009
1010 /// isRegTiedToDefOperand - Return true if the use operand of the specified
1011 /// index is tied to a def operand. It also returns the def operand index by
1012 /// reference if DefOpIdx is not null.
1013 bool isRegTiedToDefOperand(unsigned UseOpIdx,
1014 unsigned *DefOpIdx = nullptr) const {
1015 const MachineOperand &MO = getOperand(UseOpIdx);
1016 if (!MO.isReg() || !MO.isUse() || !MO.isTied())
1017 return false;
1018 if (DefOpIdx)
1019 *DefOpIdx = findTiedOperandIdx(UseOpIdx);
1020 return true;
1021 }
1022
1023 /// clearKillInfo - Clears kill flags on all operands.
1024 ///
1025 void clearKillInfo();
1026
1027 /// substituteRegister - Replace all occurrences of FromReg with ToReg:SubIdx,
1028 /// properly composing subreg indices where necessary.
1029 void substituteRegister(unsigned FromReg, unsigned ToReg, unsigned SubIdx,
1030 const TargetRegisterInfo &RegInfo);
1031
1032 /// addRegisterKilled - We have determined MI kills a register. Look for the
1033 /// operand that uses it and mark it as IsKill. If AddIfNotFound is true,
1034 /// add a implicit operand if it's not found. Returns true if the operand
1035 /// exists / is added.
1036 bool addRegisterKilled(unsigned IncomingReg,
1037 const TargetRegisterInfo *RegInfo,
1038 bool AddIfNotFound = false);
1039
1040 /// clearRegisterKills - Clear all kill flags affecting Reg. If RegInfo is
1041 /// provided, this includes super-register kills.
1042 void clearRegisterKills(unsigned Reg, const TargetRegisterInfo *RegInfo);
1043
1044 /// addRegisterDead - We have determined MI defined a register without a use.
1045 /// Look for the operand that defines it and mark it as IsDead. If
1046 /// AddIfNotFound is true, add a implicit operand if it's not found. Returns
1047 /// true if the operand exists / is added.
1048 bool addRegisterDead(unsigned Reg, const TargetRegisterInfo *RegInfo,
1049 bool AddIfNotFound = false);
1050
1051 /// addRegisterDefined - We have determined MI defines a register. Make sure
1052 /// there is an operand defining Reg.
1053 void addRegisterDefined(unsigned Reg,
1054 const TargetRegisterInfo *RegInfo = nullptr);
1055
1056 /// setPhysRegsDeadExcept - Mark every physreg used by this instruction as
1057 /// dead except those in the UsedRegs list.
1058 ///
1059 /// On instructions with register mask operands, also add implicit-def
1060 /// operands for all registers in UsedRegs.
1061 void setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
1062 const TargetRegisterInfo &TRI);
1063
1064 /// isSafeToMove - Return true if it is safe to move this instruction. If
1065 /// SawStore is set to true, it means that there is a store (or call) between
1066 /// the instruction's location and its intended destination.
1067 bool isSafeToMove(const TargetInstrInfo *TII, AliasAnalysis *AA,
1068 bool &SawStore) const;
1069
1070 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1071 /// or volatile memory reference, or if the information describing the memory
1072 /// reference is not available. Return false if it is known to have no
1073 /// ordered or volatile memory references.
1074 bool hasOrderedMemoryRef() const;
1075
1076 /// isInvariantLoad - Return true if this instruction is loading from a
1077 /// location whose value is invariant across the function. For example,
1078 /// loading a value from the constant pool or from the argument area of
1079 /// a function if it does not change. This should only return true of *all*
1080 /// loads the instruction does are invariant (if it does multiple loads).
1081 bool isInvariantLoad(AliasAnalysis *AA) const;
1082
1083 /// isConstantValuePHI - If the specified instruction is a PHI that always
1084 /// merges together the same virtual register, return the register, otherwise
1085 /// return 0.
1086 unsigned isConstantValuePHI() const;
1087
1088 /// hasUnmodeledSideEffects - Return true if this instruction has side
1089 /// effects that are not modeled by mayLoad / mayStore, etc.
1090 /// For all instructions, the property is encoded in MCInstrDesc::Flags
1091 /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is
1092 /// INLINEASM instruction, in which case the side effect property is encoded
1093 /// in one of its operands (see InlineAsm::Extra_HasSideEffect).
1094 ///
1095 bool hasUnmodeledSideEffects() const;
1096
1097 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1098 ///
1099 bool allDefsAreDead() const;
1100
1101 /// copyImplicitOps - Copy implicit register operands from specified
1102 /// instruction to this instruction.
1103 void copyImplicitOps(MachineFunction &MF, const MachineInstr *MI);
1104
1105 //
1106 // Debugging support
1107 //
1108 void print(raw_ostream &OS, const TargetMachine *TM = nullptr,
1109 bool SkipOpers = false) const;
1110 void dump() const;
1111
1112 //===--------------------------------------------------------------------===//
1113 // Accessors used to build up machine instructions.
1114
1115 /// Add the specified operand to the instruction. If it is an implicit
1116 /// operand, it is added to the end of the operand list. If it is an
1117 /// explicit operand it is added at the end of the explicit operand list
1118 /// (before the first implicit operand).
1119 ///
1120 /// MF must be the machine function that was used to allocate this
1121 /// instruction.
1122 ///
1123 /// MachineInstrBuilder provides a more convenient interface for creating
1124 /// instructions and adding operands.
1125 void addOperand(MachineFunction &MF, const MachineOperand &Op);
1126
1127 /// Add an operand without providing an MF reference. This only works for
1128 /// instructions that are inserted in a basic block.
1129 ///
1130 /// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be
1131 /// preferred.
1132 void addOperand(const MachineOperand &Op);
1133
1134 /// setDesc - Replace the instruction descriptor (thus opcode) of
1135 /// the current instruction with a new one.
1136 ///
1137 void setDesc(const MCInstrDesc &tid) { MCID = &tid; }
1138
1139 /// setDebugLoc - Replace current source information with new such.
1140 /// Avoid using this, the constructor argument is preferable.
1141 ///
1142 void setDebugLoc(const DebugLoc dl) {
1143 debugLoc = dl;
1144 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
1145 }
1146
1147 /// RemoveOperand - Erase an operand from an instruction, leaving it with one
1148 /// fewer operand than it started with.
1149 ///
1150 void RemoveOperand(unsigned i);
1151
1152 /// addMemOperand - Add a MachineMemOperand to the machine instruction.
1153 /// This function should be used only occasionally. The setMemRefs function
1154 /// is the primary method for setting up a MachineInstr's MemRefs list.
1155 void addMemOperand(MachineFunction &MF, MachineMemOperand *MO);
1156
1157 /// setMemRefs - Assign this MachineInstr's memory reference descriptor
1158 /// list. This does not transfer ownership.
1159 void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd) {
1160 MemRefs = NewMemRefs;
1161 NumMemRefs = uint8_t(NewMemRefsEnd - NewMemRefs);
1162 assert(NumMemRefs == NewMemRefsEnd - NewMemRefs && "Too many memrefs");
1163 }
1164
1165 private:
1166 /// getRegInfo - If this instruction is embedded into a MachineFunction,
1167 /// return the MachineRegisterInfo object for the current function, otherwise
1168 /// return null.
1169 MachineRegisterInfo *getRegInfo();
1170
1171 /// untieRegOperand - Break any tie involving OpIdx.
1172 void untieRegOperand(unsigned OpIdx) {
1173 MachineOperand &MO = getOperand(OpIdx);
1174 if (MO.isReg() && MO.isTied()) {
1175 getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0;
1176 MO.TiedTo = 0;
1177 }
1178 }
1179
1180 /// addImplicitDefUseOperands - Add all implicit def and use operands to
1181 /// this instruction.
1182 void addImplicitDefUseOperands(MachineFunction &MF);
1183
1184 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
1185 /// this instruction from their respective use lists. This requires that the
1186 /// operands already be on their use lists.
1187 void RemoveRegOperandsFromUseLists(MachineRegisterInfo&);
1188
1189 /// AddRegOperandsToUseLists - Add all of the register operands in
1190 /// this instruction from their respective use lists. This requires that the
1191 /// operands not be on their use lists yet.
1192 void AddRegOperandsToUseLists(MachineRegisterInfo&);
1193
1194 /// hasPropertyInBundle - Slow path for hasProperty when we're dealing with a
1195 /// bundle.
1196 bool hasPropertyInBundle(unsigned Mask, QueryType Type) const;
1197
1198 /// \brief Implements the logic of getRegClassConstraintEffectForVReg for the
1199 /// this MI and the given operand index \p OpIdx.
1200 /// If the related operand does not constrained Reg, this returns CurRC.
1201 const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl(
1202 unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC,
1203 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const;
1204 };
1205
1206 /// MachineInstrExpressionTrait - Special DenseMapInfo traits to compare
1207 /// MachineInstr* by *value* of the instruction rather than by pointer value.
1208 /// The hashing and equality testing functions ignore definitions so this is
1209 /// useful for CSE, etc.
1210 struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> {
1211 static inline MachineInstr *getEmptyKey() {
1212 return nullptr;
1213 }
1214
1215 static inline MachineInstr *getTombstoneKey() {
1216 return reinterpret_cast<MachineInstr*>(-1);
1217 }
1218
1219 static unsigned getHashValue(const MachineInstr* const &MI);
1220
1221 static bool isEqual(const MachineInstr* const &LHS,
1222 const MachineInstr* const &RHS) {
1223 if (RHS == getEmptyKey() || RHS == getTombstoneKey() ||
1224 LHS == getEmptyKey() || LHS == getTombstoneKey())
1225 return LHS == RHS;
1226 return LHS->isIdenticalTo(RHS, MachineInstr::IgnoreVRegDefs);
1227 }
1228 };
1229
1230 //===----------------------------------------------------------------------===//
1231 // Debugging Support
1232
1233 inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) {
1234 MI.print(OS);
1235 return OS;
1236 }
1237
1238 } // End llvm namespace
1239
1240 #endif