]> git.proxmox.com Git - rustc.git/blob - src/llvm/include/llvm/IR/Value.h
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / include / llvm / IR / Value.h
1 //===-- llvm/Value.h - Definition of the Value class ------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file declares the Value class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_IR_VALUE_H
15 #define LLVM_IR_VALUE_H
16
17 #include "llvm-c/Core.h"
18 #include "llvm/ADT/iterator_range.h"
19 #include "llvm/IR/Use.h"
20 #include "llvm/Support/CBindingWrapping.h"
21 #include "llvm/Support/Casting.h"
22 #include "llvm/Support/Compiler.h"
23
24 namespace llvm {
25
26 class APInt;
27 class Argument;
28 class AssemblyAnnotationWriter;
29 class BasicBlock;
30 class Constant;
31 class DataLayout;
32 class Function;
33 class GlobalAlias;
34 class GlobalObject;
35 class GlobalValue;
36 class GlobalVariable;
37 class InlineAsm;
38 class Instruction;
39 class LLVMContext;
40 class Module;
41 class StringRef;
42 class Twine;
43 class Type;
44 class ValueHandleBase;
45 class ValueSymbolTable;
46 class raw_ostream;
47
48 template<typename ValueTy> class StringMapEntry;
49 typedef StringMapEntry<Value*> ValueName;
50
51 //===----------------------------------------------------------------------===//
52 // Value Class
53 //===----------------------------------------------------------------------===//
54
55 /// \brief LLVM Value Representation
56 ///
57 /// This is a very important LLVM class. It is the base class of all values
58 /// computed by a program that may be used as operands to other values. Value is
59 /// the super class of other important classes such as Instruction and Function.
60 /// All Values have a Type. Type is not a subclass of Value. Some values can
61 /// have a name and they belong to some Module. Setting the name on the Value
62 /// automatically updates the module's symbol table.
63 ///
64 /// Every value has a "use list" that keeps track of which other Values are
65 /// using this Value. A Value can also have an arbitrary number of ValueHandle
66 /// objects that watch it and listen to RAUW and Destroy events. See
67 /// llvm/IR/ValueHandle.h for details.
68 class Value {
69 Type *VTy;
70 Use *UseList;
71
72 friend class ValueAsMetadata; // Allow access to NameAndIsUsedByMD.
73 friend class ValueHandleBase;
74 PointerIntPair<ValueName *, 1> NameAndIsUsedByMD;
75
76 const unsigned char SubclassID; // Subclass identifier (for isa/dyn_cast)
77 unsigned char HasValueHandle : 1; // Has a ValueHandle pointing to this?
78 protected:
79 /// \brief Hold subclass data that can be dropped.
80 ///
81 /// This member is similar to SubclassData, however it is for holding
82 /// information which may be used to aid optimization, but which may be
83 /// cleared to zero without affecting conservative interpretation.
84 unsigned char SubclassOptionalData : 7;
85
86 private:
87 /// \brief Hold arbitrary subclass data.
88 ///
89 /// This member is defined by this class, but is not used for anything.
90 /// Subclasses can use it to hold whatever state they find useful. This
91 /// field is initialized to zero by the ctor.
92 unsigned short SubclassData;
93
94 protected:
95 /// \brief The number of operands in the subclass.
96 ///
97 /// This member is defined by this class, but not used for anything.
98 /// Subclasses can use it to store their number of operands, if they have
99 /// any.
100 ///
101 /// This is stored here to save space in User on 64-bit hosts. Since most
102 /// instances of Value have operands, 32-bit hosts aren't significantly
103 /// affected.
104 unsigned NumOperands;
105
106 private:
107 template <typename UseT> // UseT == 'Use' or 'const Use'
108 class use_iterator_impl
109 : public std::iterator<std::forward_iterator_tag, UseT *, ptrdiff_t> {
110 typedef std::iterator<std::forward_iterator_tag, UseT *, ptrdiff_t> super;
111
112 UseT *U;
113 explicit use_iterator_impl(UseT *u) : U(u) {}
114 friend class Value;
115
116 public:
117 typedef typename super::reference reference;
118 typedef typename super::pointer pointer;
119
120 use_iterator_impl() : U() {}
121
122 bool operator==(const use_iterator_impl &x) const { return U == x.U; }
123 bool operator!=(const use_iterator_impl &x) const { return !operator==(x); }
124
125 use_iterator_impl &operator++() { // Preincrement
126 assert(U && "Cannot increment end iterator!");
127 U = U->getNext();
128 return *this;
129 }
130 use_iterator_impl operator++(int) { // Postincrement
131 auto tmp = *this;
132 ++*this;
133 return tmp;
134 }
135
136 UseT &operator*() const {
137 assert(U && "Cannot dereference end iterator!");
138 return *U;
139 }
140
141 UseT *operator->() const { return &operator*(); }
142
143 operator use_iterator_impl<const UseT>() const {
144 return use_iterator_impl<const UseT>(U);
145 }
146 };
147
148 template <typename UserTy> // UserTy == 'User' or 'const User'
149 class user_iterator_impl
150 : public std::iterator<std::forward_iterator_tag, UserTy *, ptrdiff_t> {
151 typedef std::iterator<std::forward_iterator_tag, UserTy *, ptrdiff_t> super;
152
153 use_iterator_impl<Use> UI;
154 explicit user_iterator_impl(Use *U) : UI(U) {}
155 friend class Value;
156
157 public:
158 typedef typename super::reference reference;
159 typedef typename super::pointer pointer;
160
161 user_iterator_impl() {}
162
163 bool operator==(const user_iterator_impl &x) const { return UI == x.UI; }
164 bool operator!=(const user_iterator_impl &x) const { return !operator==(x); }
165
166 /// \brief Returns true if this iterator is equal to user_end() on the value.
167 bool atEnd() const { return *this == user_iterator_impl(); }
168
169 user_iterator_impl &operator++() { // Preincrement
170 ++UI;
171 return *this;
172 }
173 user_iterator_impl operator++(int) { // Postincrement
174 auto tmp = *this;
175 ++*this;
176 return tmp;
177 }
178
179 // Retrieve a pointer to the current User.
180 UserTy *operator*() const {
181 return UI->getUser();
182 }
183
184 UserTy *operator->() const { return operator*(); }
185
186 operator user_iterator_impl<const UserTy>() const {
187 return user_iterator_impl<const UserTy>(*UI);
188 }
189
190 Use &getUse() const { return *UI; }
191
192 /// \brief Return the operand # of this use in its User.
193 ///
194 /// FIXME: Replace all callers with a direct call to Use::getOperandNo.
195 unsigned getOperandNo() const { return UI->getOperandNo(); }
196 };
197
198 void operator=(const Value &) LLVM_DELETED_FUNCTION;
199 Value(const Value &) LLVM_DELETED_FUNCTION;
200
201 protected:
202 Value(Type *Ty, unsigned scid);
203 public:
204 virtual ~Value();
205
206 /// \brief Support for debugging, callable in GDB: V->dump()
207 void dump() const;
208
209 /// \brief Implement operator<< on Value.
210 void print(raw_ostream &O) const;
211
212 /// \brief Print the name of this Value out to the specified raw_ostream.
213 ///
214 /// This is useful when you just want to print 'int %reg126', not the
215 /// instruction that generated it. If you specify a Module for context, then
216 /// even constanst get pretty-printed; for example, the type of a null
217 /// pointer is printed symbolically.
218 void printAsOperand(raw_ostream &O, bool PrintType = true,
219 const Module *M = nullptr) const;
220
221 /// \brief All values are typed, get the type of this value.
222 Type *getType() const { return VTy; }
223
224 /// \brief All values hold a context through their type.
225 LLVMContext &getContext() const;
226
227 // \brief All values can potentially be named.
228 bool hasName() const { return getValueName() != nullptr; }
229 ValueName *getValueName() const { return NameAndIsUsedByMD.getPointer(); }
230 void setValueName(ValueName *VN) { NameAndIsUsedByMD.setPointer(VN); }
231
232 private:
233 void destroyValueName();
234
235 public:
236 /// \brief Return a constant reference to the value's name.
237 ///
238 /// This is cheap and guaranteed to return the same reference as long as the
239 /// value is not modified.
240 StringRef getName() const;
241
242 /// \brief Change the name of the value.
243 ///
244 /// Choose a new unique name if the provided name is taken.
245 ///
246 /// \param Name The new name; or "" if the value's name should be removed.
247 void setName(const Twine &Name);
248
249
250 /// \brief Transfer the name from V to this value.
251 ///
252 /// After taking V's name, sets V's name to empty.
253 ///
254 /// \note It is an error to call V->takeName(V).
255 void takeName(Value *V);
256
257 /// \brief Change all uses of this to point to a new Value.
258 ///
259 /// Go through the uses list for this definition and make each use point to
260 /// "V" instead of "this". After this completes, 'this's use list is
261 /// guaranteed to be empty.
262 void replaceAllUsesWith(Value *V);
263
264 /// replaceUsesOutsideBlock - Go through the uses list for this definition and
265 /// make each use point to "V" instead of "this" when the use is outside the
266 /// block. 'This's use list is expected to have at least one element.
267 /// Unlike replaceAllUsesWith this function does not support basic block
268 /// values or constant users.
269 void replaceUsesOutsideBlock(Value *V, BasicBlock *BB);
270
271 //----------------------------------------------------------------------
272 // Methods for handling the chain of uses of this Value.
273 //
274 bool use_empty() const { return UseList == nullptr; }
275
276 typedef use_iterator_impl<Use> use_iterator;
277 typedef use_iterator_impl<const Use> const_use_iterator;
278 use_iterator use_begin() { return use_iterator(UseList); }
279 const_use_iterator use_begin() const { return const_use_iterator(UseList); }
280 use_iterator use_end() { return use_iterator(); }
281 const_use_iterator use_end() const { return const_use_iterator(); }
282 iterator_range<use_iterator> uses() {
283 return iterator_range<use_iterator>(use_begin(), use_end());
284 }
285 iterator_range<const_use_iterator> uses() const {
286 return iterator_range<const_use_iterator>(use_begin(), use_end());
287 }
288
289 bool user_empty() const { return UseList == nullptr; }
290
291 typedef user_iterator_impl<User> user_iterator;
292 typedef user_iterator_impl<const User> const_user_iterator;
293 user_iterator user_begin() { return user_iterator(UseList); }
294 const_user_iterator user_begin() const { return const_user_iterator(UseList); }
295 user_iterator user_end() { return user_iterator(); }
296 const_user_iterator user_end() const { return const_user_iterator(); }
297 User *user_back() { return *user_begin(); }
298 const User *user_back() const { return *user_begin(); }
299 iterator_range<user_iterator> users() {
300 return iterator_range<user_iterator>(user_begin(), user_end());
301 }
302 iterator_range<const_user_iterator> users() const {
303 return iterator_range<const_user_iterator>(user_begin(), user_end());
304 }
305
306 /// \brief Return true if there is exactly one user of this value.
307 ///
308 /// This is specialized because it is a common request and does not require
309 /// traversing the whole use list.
310 bool hasOneUse() const {
311 const_use_iterator I = use_begin(), E = use_end();
312 if (I == E) return false;
313 return ++I == E;
314 }
315
316 /// \brief Return true if this Value has exactly N users.
317 bool hasNUses(unsigned N) const;
318
319 /// \brief Return true if this value has N users or more.
320 ///
321 /// This is logically equivalent to getNumUses() >= N.
322 bool hasNUsesOrMore(unsigned N) const;
323
324 /// \brief Check if this value is used in the specified basic block.
325 bool isUsedInBasicBlock(const BasicBlock *BB) const;
326
327 /// \brief This method computes the number of uses of this Value.
328 ///
329 /// This is a linear time operation. Use hasOneUse, hasNUses, or
330 /// hasNUsesOrMore to check for specific values.
331 unsigned getNumUses() const;
332
333 /// \brief This method should only be used by the Use class.
334 void addUse(Use &U) { U.addToList(&UseList); }
335
336 /// \brief Concrete subclass of this.
337 ///
338 /// An enumeration for keeping track of the concrete subclass of Value that
339 /// is actually instantiated. Values of this enumeration are kept in the
340 /// Value classes SubclassID field. They are used for concrete type
341 /// identification.
342 enum ValueTy {
343 ArgumentVal, // This is an instance of Argument
344 BasicBlockVal, // This is an instance of BasicBlock
345 FunctionVal, // This is an instance of Function
346 GlobalAliasVal, // This is an instance of GlobalAlias
347 GlobalVariableVal, // This is an instance of GlobalVariable
348 UndefValueVal, // This is an instance of UndefValue
349 BlockAddressVal, // This is an instance of BlockAddress
350 ConstantExprVal, // This is an instance of ConstantExpr
351 ConstantAggregateZeroVal, // This is an instance of ConstantAggregateZero
352 ConstantDataArrayVal, // This is an instance of ConstantDataArray
353 ConstantDataVectorVal, // This is an instance of ConstantDataVector
354 ConstantIntVal, // This is an instance of ConstantInt
355 ConstantFPVal, // This is an instance of ConstantFP
356 ConstantArrayVal, // This is an instance of ConstantArray
357 ConstantStructVal, // This is an instance of ConstantStruct
358 ConstantVectorVal, // This is an instance of ConstantVector
359 ConstantPointerNullVal, // This is an instance of ConstantPointerNull
360 MetadataAsValueVal, // This is an instance of MetadataAsValue
361 InlineAsmVal, // This is an instance of InlineAsm
362 InstructionVal, // This is an instance of Instruction
363 // Enum values starting at InstructionVal are used for Instructions;
364 // don't add new values here!
365
366 // Markers:
367 ConstantFirstVal = FunctionVal,
368 ConstantLastVal = ConstantPointerNullVal
369 };
370
371 /// \brief Return an ID for the concrete type of this object.
372 ///
373 /// This is used to implement the classof checks. This should not be used
374 /// for any other purpose, as the values may change as LLVM evolves. Also,
375 /// note that for instructions, the Instruction's opcode is added to
376 /// InstructionVal. So this means three things:
377 /// # there is no value with code InstructionVal (no opcode==0).
378 /// # there are more possible values for the value type than in ValueTy enum.
379 /// # the InstructionVal enumerator must be the highest valued enumerator in
380 /// the ValueTy enum.
381 unsigned getValueID() const {
382 return SubclassID;
383 }
384
385 /// \brief Return the raw optional flags value contained in this value.
386 ///
387 /// This should only be used when testing two Values for equivalence.
388 unsigned getRawSubclassOptionalData() const {
389 return SubclassOptionalData;
390 }
391
392 /// \brief Clear the optional flags contained in this value.
393 void clearSubclassOptionalData() {
394 SubclassOptionalData = 0;
395 }
396
397 /// \brief Check the optional flags for equality.
398 bool hasSameSubclassOptionalData(const Value *V) const {
399 return SubclassOptionalData == V->SubclassOptionalData;
400 }
401
402 /// \brief Clear any optional flags not set in the given Value.
403 void intersectOptionalDataWith(const Value *V) {
404 SubclassOptionalData &= V->SubclassOptionalData;
405 }
406
407 /// \brief Return true if there is a value handle associated with this value.
408 bool hasValueHandle() const { return HasValueHandle; }
409
410 /// \brief Return true if there is metadata referencing this value.
411 bool isUsedByMetadata() const { return NameAndIsUsedByMD.getInt(); }
412
413 /// \brief Strip off pointer casts, all-zero GEPs, and aliases.
414 ///
415 /// Returns the original uncasted value. If this is called on a non-pointer
416 /// value, it returns 'this'.
417 Value *stripPointerCasts();
418 const Value *stripPointerCasts() const {
419 return const_cast<Value*>(this)->stripPointerCasts();
420 }
421
422 /// \brief Strip off pointer casts and all-zero GEPs.
423 ///
424 /// Returns the original uncasted value. If this is called on a non-pointer
425 /// value, it returns 'this'.
426 Value *stripPointerCastsNoFollowAliases();
427 const Value *stripPointerCastsNoFollowAliases() const {
428 return const_cast<Value*>(this)->stripPointerCastsNoFollowAliases();
429 }
430
431 /// \brief Strip off pointer casts and all-constant inbounds GEPs.
432 ///
433 /// Returns the original pointer value. If this is called on a non-pointer
434 /// value, it returns 'this'.
435 Value *stripInBoundsConstantOffsets();
436 const Value *stripInBoundsConstantOffsets() const {
437 return const_cast<Value*>(this)->stripInBoundsConstantOffsets();
438 }
439
440 /// \brief Accumulate offsets from \a stripInBoundsConstantOffsets().
441 ///
442 /// Stores the resulting constant offset stripped into the APInt provided.
443 /// The provided APInt will be extended or truncated as needed to be the
444 /// correct bitwidth for an offset of this pointer type.
445 ///
446 /// If this is called on a non-pointer value, it returns 'this'.
447 Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
448 APInt &Offset);
449 const Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
450 APInt &Offset) const {
451 return const_cast<Value *>(this)
452 ->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
453 }
454
455 /// \brief Strip off pointer casts and inbounds GEPs.
456 ///
457 /// Returns the original pointer value. If this is called on a non-pointer
458 /// value, it returns 'this'.
459 Value *stripInBoundsOffsets();
460 const Value *stripInBoundsOffsets() const {
461 return const_cast<Value*>(this)->stripInBoundsOffsets();
462 }
463
464 /// \brief Check if this is always a dereferenceable pointer.
465 ///
466 /// Test if this value is always a pointer to allocated and suitably aligned
467 /// memory for a simple load or store.
468 bool isDereferenceablePointer(const DataLayout *DL = nullptr) const;
469
470 /// \brief Translate PHI node to its predecessor from the given basic block.
471 ///
472 /// If this value is a PHI node with CurBB as its parent, return the value in
473 /// the PHI node corresponding to PredBB. If not, return ourself. This is
474 /// useful if you want to know the value something has in a predecessor
475 /// block.
476 Value *DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB);
477
478 const Value *DoPHITranslation(const BasicBlock *CurBB,
479 const BasicBlock *PredBB) const{
480 return const_cast<Value*>(this)->DoPHITranslation(CurBB, PredBB);
481 }
482
483 /// \brief The maximum alignment for instructions.
484 ///
485 /// This is the greatest alignment value supported by load, store, and alloca
486 /// instructions, and global values.
487 static const unsigned MaximumAlignment = 1u << 29;
488
489 /// \brief Mutate the type of this Value to be of the specified type.
490 ///
491 /// Note that this is an extremely dangerous operation which can create
492 /// completely invalid IR very easily. It is strongly recommended that you
493 /// recreate IR objects with the right types instead of mutating them in
494 /// place.
495 void mutateType(Type *Ty) {
496 VTy = Ty;
497 }
498
499 /// \brief Sort the use-list.
500 ///
501 /// Sorts the Value's use-list by Cmp using a stable mergesort. Cmp is
502 /// expected to compare two \a Use references.
503 template <class Compare> void sortUseList(Compare Cmp);
504
505 /// \brief Reverse the use-list.
506 void reverseUseList();
507
508 private:
509 /// \brief Merge two lists together.
510 ///
511 /// Merges \c L and \c R using \c Cmp. To enable stable sorts, always pushes
512 /// "equal" items from L before items from R.
513 ///
514 /// \return the first element in the list.
515 ///
516 /// \note Completely ignores \a Use::Prev (doesn't read, doesn't update).
517 template <class Compare>
518 static Use *mergeUseLists(Use *L, Use *R, Compare Cmp) {
519 Use *Merged;
520 mergeUseListsImpl(L, R, &Merged, Cmp);
521 return Merged;
522 }
523
524 /// \brief Tail-recursive helper for \a mergeUseLists().
525 ///
526 /// \param[out] Next the first element in the list.
527 template <class Compare>
528 static void mergeUseListsImpl(Use *L, Use *R, Use **Next, Compare Cmp);
529
530 protected:
531 unsigned short getSubclassDataFromValue() const { return SubclassData; }
532 void setValueSubclassData(unsigned short D) { SubclassData = D; }
533 };
534
535 inline raw_ostream &operator<<(raw_ostream &OS, const Value &V) {
536 V.print(OS);
537 return OS;
538 }
539
540 void Use::set(Value *V) {
541 if (Val) removeFromList();
542 Val = V;
543 if (V) V->addUse(*this);
544 }
545
546 template <class Compare> void Value::sortUseList(Compare Cmp) {
547 if (!UseList || !UseList->Next)
548 // No need to sort 0 or 1 uses.
549 return;
550
551 // Note: this function completely ignores Prev pointers until the end when
552 // they're fixed en masse.
553
554 // Create a binomial vector of sorted lists, visiting uses one at a time and
555 // merging lists as necessary.
556 const unsigned MaxSlots = 32;
557 Use *Slots[MaxSlots];
558
559 // Collect the first use, turning it into a single-item list.
560 Use *Next = UseList->Next;
561 UseList->Next = nullptr;
562 unsigned NumSlots = 1;
563 Slots[0] = UseList;
564
565 // Collect all but the last use.
566 while (Next->Next) {
567 Use *Current = Next;
568 Next = Current->Next;
569
570 // Turn Current into a single-item list.
571 Current->Next = nullptr;
572
573 // Save Current in the first available slot, merging on collisions.
574 unsigned I;
575 for (I = 0; I < NumSlots; ++I) {
576 if (!Slots[I])
577 break;
578
579 // Merge two lists, doubling the size of Current and emptying slot I.
580 //
581 // Since the uses in Slots[I] originally preceded those in Current, send
582 // Slots[I] in as the left parameter to maintain a stable sort.
583 Current = mergeUseLists(Slots[I], Current, Cmp);
584 Slots[I] = nullptr;
585 }
586 // Check if this is a new slot.
587 if (I == NumSlots) {
588 ++NumSlots;
589 assert(NumSlots <= MaxSlots && "Use list bigger than 2^32");
590 }
591
592 // Found an open slot.
593 Slots[I] = Current;
594 }
595
596 // Merge all the lists together.
597 assert(Next && "Expected one more Use");
598 assert(!Next->Next && "Expected only one Use");
599 UseList = Next;
600 for (unsigned I = 0; I < NumSlots; ++I)
601 if (Slots[I])
602 // Since the uses in Slots[I] originally preceded those in UseList, send
603 // Slots[I] in as the left parameter to maintain a stable sort.
604 UseList = mergeUseLists(Slots[I], UseList, Cmp);
605
606 // Fix the Prev pointers.
607 for (Use *I = UseList, **Prev = &UseList; I; I = I->Next) {
608 I->setPrev(Prev);
609 Prev = &I->Next;
610 }
611 }
612
613 template <class Compare>
614 void Value::mergeUseListsImpl(Use *L, Use *R, Use **Next, Compare Cmp) {
615 if (!L) {
616 *Next = R;
617 return;
618 }
619 if (!R) {
620 *Next = L;
621 return;
622 }
623 if (Cmp(*R, *L)) {
624 *Next = R;
625 mergeUseListsImpl(L, R->Next, &R->Next, Cmp);
626 return;
627 }
628 *Next = L;
629 mergeUseListsImpl(L->Next, R, &L->Next, Cmp);
630 }
631
632 // isa - Provide some specializations of isa so that we don't have to include
633 // the subtype header files to test to see if the value is a subclass...
634 //
635 template <> struct isa_impl<Constant, Value> {
636 static inline bool doit(const Value &Val) {
637 return Val.getValueID() >= Value::ConstantFirstVal &&
638 Val.getValueID() <= Value::ConstantLastVal;
639 }
640 };
641
642 template <> struct isa_impl<Argument, Value> {
643 static inline bool doit (const Value &Val) {
644 return Val.getValueID() == Value::ArgumentVal;
645 }
646 };
647
648 template <> struct isa_impl<InlineAsm, Value> {
649 static inline bool doit(const Value &Val) {
650 return Val.getValueID() == Value::InlineAsmVal;
651 }
652 };
653
654 template <> struct isa_impl<Instruction, Value> {
655 static inline bool doit(const Value &Val) {
656 return Val.getValueID() >= Value::InstructionVal;
657 }
658 };
659
660 template <> struct isa_impl<BasicBlock, Value> {
661 static inline bool doit(const Value &Val) {
662 return Val.getValueID() == Value::BasicBlockVal;
663 }
664 };
665
666 template <> struct isa_impl<Function, Value> {
667 static inline bool doit(const Value &Val) {
668 return Val.getValueID() == Value::FunctionVal;
669 }
670 };
671
672 template <> struct isa_impl<GlobalVariable, Value> {
673 static inline bool doit(const Value &Val) {
674 return Val.getValueID() == Value::GlobalVariableVal;
675 }
676 };
677
678 template <> struct isa_impl<GlobalAlias, Value> {
679 static inline bool doit(const Value &Val) {
680 return Val.getValueID() == Value::GlobalAliasVal;
681 }
682 };
683
684 template <> struct isa_impl<GlobalValue, Value> {
685 static inline bool doit(const Value &Val) {
686 return isa<GlobalObject>(Val) || isa<GlobalAlias>(Val);
687 }
688 };
689
690 template <> struct isa_impl<GlobalObject, Value> {
691 static inline bool doit(const Value &Val) {
692 return isa<GlobalVariable>(Val) || isa<Function>(Val);
693 }
694 };
695
696 // Value* is only 4-byte aligned.
697 template<>
698 class PointerLikeTypeTraits<Value*> {
699 typedef Value* PT;
700 public:
701 static inline void *getAsVoidPointer(PT P) { return P; }
702 static inline PT getFromVoidPointer(void *P) {
703 return static_cast<PT>(P);
704 }
705 enum { NumLowBitsAvailable = 2 };
706 };
707
708 // Create wrappers for C Binding types (see CBindingWrapping.h).
709 DEFINE_ISA_CONVERSION_FUNCTIONS(Value, LLVMValueRef)
710
711 /* Specialized opaque value conversions.
712 */
713 inline Value **unwrap(LLVMValueRef *Vals) {
714 return reinterpret_cast<Value**>(Vals);
715 }
716
717 template<typename T>
718 inline T **unwrap(LLVMValueRef *Vals, unsigned Length) {
719 #ifdef DEBUG
720 for (LLVMValueRef *I = Vals, *E = Vals + Length; I != E; ++I)
721 cast<T>(*I);
722 #endif
723 (void)Length;
724 return reinterpret_cast<T**>(Vals);
725 }
726
727 inline LLVMValueRef *wrap(const Value **Vals) {
728 return reinterpret_cast<LLVMValueRef*>(const_cast<Value**>(Vals));
729 }
730
731 } // End llvm namespace
732
733 #endif