]> git.proxmox.com Git - rustc.git/blob - src/llvm/include/llvm/Target/TargetRegisterInfo.h
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / include / llvm / Target / TargetRegisterInfo.h
1 //=== Target/TargetRegisterInfo.h - Target Register Information -*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file describes an abstract interface used to get information about a
11 // target machines register file. This information is used for a variety of
12 // purposed, especially register allocation.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #ifndef LLVM_TARGET_TARGETREGISTERINFO_H
17 #define LLVM_TARGET_TARGETREGISTERINFO_H
18
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/CodeGen/MachineBasicBlock.h"
21 #include "llvm/CodeGen/MachineValueType.h"
22 #include "llvm/IR/CallingConv.h"
23 #include "llvm/MC/MCRegisterInfo.h"
24 #include <cassert>
25 #include <functional>
26
27 namespace llvm {
28
29 class BitVector;
30 class MachineFunction;
31 class RegScavenger;
32 template<class T> class SmallVectorImpl;
33 class VirtRegMap;
34 class raw_ostream;
35
36 class TargetRegisterClass {
37 public:
38 typedef const MCPhysReg* iterator;
39 typedef const MCPhysReg* const_iterator;
40 typedef const MVT::SimpleValueType* vt_iterator;
41 typedef const TargetRegisterClass* const * sc_iterator;
42
43 // Instance variables filled by tablegen, do not use!
44 const MCRegisterClass *MC;
45 const vt_iterator VTs;
46 const uint32_t *SubClassMask;
47 const uint16_t *SuperRegIndices;
48 const unsigned LaneMask;
49 const sc_iterator SuperClasses;
50 ArrayRef<MCPhysReg> (*OrderFunc)(const MachineFunction&);
51
52 /// getID() - Return the register class ID number.
53 ///
54 unsigned getID() const { return MC->getID(); }
55
56 /// begin/end - Return all of the registers in this class.
57 ///
58 iterator begin() const { return MC->begin(); }
59 iterator end() const { return MC->end(); }
60
61 /// getNumRegs - Return the number of registers in this class.
62 ///
63 unsigned getNumRegs() const { return MC->getNumRegs(); }
64
65 /// getRegister - Return the specified register in the class.
66 ///
67 unsigned getRegister(unsigned i) const {
68 return MC->getRegister(i);
69 }
70
71 /// contains - Return true if the specified register is included in this
72 /// register class. This does not include virtual registers.
73 bool contains(unsigned Reg) const {
74 return MC->contains(Reg);
75 }
76
77 /// contains - Return true if both registers are in this class.
78 bool contains(unsigned Reg1, unsigned Reg2) const {
79 return MC->contains(Reg1, Reg2);
80 }
81
82 /// getSize - Return the size of the register in bytes, which is also the size
83 /// of a stack slot allocated to hold a spilled copy of this register.
84 unsigned getSize() const { return MC->getSize(); }
85
86 /// getAlignment - Return the minimum required alignment for a register of
87 /// this class.
88 unsigned getAlignment() const { return MC->getAlignment(); }
89
90 /// getCopyCost - Return the cost of copying a value between two registers in
91 /// this class. A negative number means the register class is very expensive
92 /// to copy e.g. status flag register classes.
93 int getCopyCost() const { return MC->getCopyCost(); }
94
95 /// isAllocatable - Return true if this register class may be used to create
96 /// virtual registers.
97 bool isAllocatable() const { return MC->isAllocatable(); }
98
99 /// hasType - return true if this TargetRegisterClass has the ValueType vt.
100 ///
101 bool hasType(MVT vt) const {
102 for(int i = 0; VTs[i] != MVT::Other; ++i)
103 if (MVT(VTs[i]) == vt)
104 return true;
105 return false;
106 }
107
108 /// vt_begin / vt_end - Loop over all of the value types that can be
109 /// represented by values in this register class.
110 vt_iterator vt_begin() const {
111 return VTs;
112 }
113
114 vt_iterator vt_end() const {
115 vt_iterator I = VTs;
116 while (*I != MVT::Other) ++I;
117 return I;
118 }
119
120 /// hasSubClass - return true if the specified TargetRegisterClass
121 /// is a proper sub-class of this TargetRegisterClass.
122 bool hasSubClass(const TargetRegisterClass *RC) const {
123 return RC != this && hasSubClassEq(RC);
124 }
125
126 /// hasSubClassEq - Returns true if RC is a sub-class of or equal to this
127 /// class.
128 bool hasSubClassEq(const TargetRegisterClass *RC) const {
129 unsigned ID = RC->getID();
130 return (SubClassMask[ID / 32] >> (ID % 32)) & 1;
131 }
132
133 /// hasSuperClass - return true if the specified TargetRegisterClass is a
134 /// proper super-class of this TargetRegisterClass.
135 bool hasSuperClass(const TargetRegisterClass *RC) const {
136 return RC->hasSubClass(this);
137 }
138
139 /// hasSuperClassEq - Returns true if RC is a super-class of or equal to this
140 /// class.
141 bool hasSuperClassEq(const TargetRegisterClass *RC) const {
142 return RC->hasSubClassEq(this);
143 }
144
145 /// getSubClassMask - Returns a bit vector of subclasses, including this one.
146 /// The vector is indexed by class IDs, see hasSubClassEq() above for how to
147 /// use it.
148 const uint32_t *getSubClassMask() const {
149 return SubClassMask;
150 }
151
152 /// getSuperRegIndices - Returns a 0-terminated list of sub-register indices
153 /// that project some super-register class into this register class. The list
154 /// has an entry for each Idx such that:
155 ///
156 /// There exists SuperRC where:
157 /// For all Reg in SuperRC:
158 /// this->contains(Reg:Idx)
159 ///
160 const uint16_t *getSuperRegIndices() const {
161 return SuperRegIndices;
162 }
163
164 /// getSuperClasses - Returns a NULL terminated list of super-classes. The
165 /// classes are ordered by ID which is also a topological ordering from large
166 /// to small classes. The list does NOT include the current class.
167 sc_iterator getSuperClasses() const {
168 return SuperClasses;
169 }
170
171 /// isASubClass - return true if this TargetRegisterClass is a subset
172 /// class of at least one other TargetRegisterClass.
173 bool isASubClass() const {
174 return SuperClasses[0] != nullptr;
175 }
176
177 /// getRawAllocationOrder - Returns the preferred order for allocating
178 /// registers from this register class in MF. The raw order comes directly
179 /// from the .td file and may include reserved registers that are not
180 /// allocatable. Register allocators should also make sure to allocate
181 /// callee-saved registers only after all the volatiles are used. The
182 /// RegisterClassInfo class provides filtered allocation orders with
183 /// callee-saved registers moved to the end.
184 ///
185 /// The MachineFunction argument can be used to tune the allocatable
186 /// registers based on the characteristics of the function, subtarget, or
187 /// other criteria.
188 ///
189 /// By default, this method returns all registers in the class.
190 ///
191 ArrayRef<MCPhysReg> getRawAllocationOrder(const MachineFunction &MF) const {
192 return OrderFunc ? OrderFunc(MF) : makeArrayRef(begin(), getNumRegs());
193 }
194
195 /// Returns the combination of all lane masks of register in this class.
196 /// The lane masks of the registers are the combination of all lane masks
197 /// of their subregisters.
198 unsigned getLaneMask() const {
199 return LaneMask;
200 }
201 };
202
203 /// TargetRegisterInfoDesc - Extra information, not in MCRegisterDesc, about
204 /// registers. These are used by codegen, not by MC.
205 struct TargetRegisterInfoDesc {
206 unsigned CostPerUse; // Extra cost of instructions using register.
207 bool inAllocatableClass; // Register belongs to an allocatable regclass.
208 };
209
210 /// Each TargetRegisterClass has a per register weight, and weight
211 /// limit which must be less than the limits of its pressure sets.
212 struct RegClassWeight {
213 unsigned RegWeight;
214 unsigned WeightLimit;
215 };
216
217 /// TargetRegisterInfo base class - We assume that the target defines a static
218 /// array of TargetRegisterDesc objects that represent all of the machine
219 /// registers that the target has. As such, we simply have to track a pointer
220 /// to this array so that we can turn register number into a register
221 /// descriptor.
222 ///
223 class TargetRegisterInfo : public MCRegisterInfo {
224 public:
225 typedef const TargetRegisterClass * const * regclass_iterator;
226 private:
227 const TargetRegisterInfoDesc *InfoDesc; // Extra desc array for codegen
228 const char *const *SubRegIndexNames; // Names of subreg indexes.
229 // Pointer to array of lane masks, one per sub-reg index.
230 const unsigned *SubRegIndexLaneMasks;
231
232 regclass_iterator RegClassBegin, RegClassEnd; // List of regclasses
233 unsigned CoveringLanes;
234
235 protected:
236 TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
237 regclass_iterator RegClassBegin,
238 regclass_iterator RegClassEnd,
239 const char *const *SRINames,
240 const unsigned *SRILaneMasks,
241 unsigned CoveringLanes);
242 virtual ~TargetRegisterInfo();
243 public:
244
245 // Register numbers can represent physical registers, virtual registers, and
246 // sometimes stack slots. The unsigned values are divided into these ranges:
247 //
248 // 0 Not a register, can be used as a sentinel.
249 // [1;2^30) Physical registers assigned by TableGen.
250 // [2^30;2^31) Stack slots. (Rarely used.)
251 // [2^31;2^32) Virtual registers assigned by MachineRegisterInfo.
252 //
253 // Further sentinels can be allocated from the small negative integers.
254 // DenseMapInfo<unsigned> uses -1u and -2u.
255
256 /// isStackSlot - Sometimes it is useful the be able to store a non-negative
257 /// frame index in a variable that normally holds a register. isStackSlot()
258 /// returns true if Reg is in the range used for stack slots.
259 ///
260 /// Note that isVirtualRegister() and isPhysicalRegister() cannot handle stack
261 /// slots, so if a variable may contains a stack slot, always check
262 /// isStackSlot() first.
263 ///
264 static bool isStackSlot(unsigned Reg) {
265 return int(Reg) >= (1 << 30);
266 }
267
268 /// stackSlot2Index - Compute the frame index from a register value
269 /// representing a stack slot.
270 static int stackSlot2Index(unsigned Reg) {
271 assert(isStackSlot(Reg) && "Not a stack slot");
272 return int(Reg - (1u << 30));
273 }
274
275 /// index2StackSlot - Convert a non-negative frame index to a stack slot
276 /// register value.
277 static unsigned index2StackSlot(int FI) {
278 assert(FI >= 0 && "Cannot hold a negative frame index.");
279 return FI + (1u << 30);
280 }
281
282 /// isPhysicalRegister - Return true if the specified register number is in
283 /// the physical register namespace.
284 static bool isPhysicalRegister(unsigned Reg) {
285 assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
286 return int(Reg) > 0;
287 }
288
289 /// isVirtualRegister - Return true if the specified register number is in
290 /// the virtual register namespace.
291 static bool isVirtualRegister(unsigned Reg) {
292 assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
293 return int(Reg) < 0;
294 }
295
296 /// virtReg2Index - Convert a virtual register number to a 0-based index.
297 /// The first virtual register in a function will get the index 0.
298 static unsigned virtReg2Index(unsigned Reg) {
299 assert(isVirtualRegister(Reg) && "Not a virtual register");
300 return Reg & ~(1u << 31);
301 }
302
303 /// index2VirtReg - Convert a 0-based index to a virtual register number.
304 /// This is the inverse operation of VirtReg2IndexFunctor below.
305 static unsigned index2VirtReg(unsigned Index) {
306 return Index | (1u << 31);
307 }
308
309 /// getMinimalPhysRegClass - Returns the Register Class of a physical
310 /// register of the given type, picking the most sub register class of
311 /// the right type that contains this physreg.
312 const TargetRegisterClass *
313 getMinimalPhysRegClass(unsigned Reg, MVT VT = MVT::Other) const;
314
315 /// getAllocatableClass - Return the maximal subclass of the given register
316 /// class that is alloctable, or NULL.
317 const TargetRegisterClass *
318 getAllocatableClass(const TargetRegisterClass *RC) const;
319
320 /// getAllocatableSet - Returns a bitset indexed by register number
321 /// indicating if a register is allocatable or not. If a register class is
322 /// specified, returns the subset for the class.
323 BitVector getAllocatableSet(const MachineFunction &MF,
324 const TargetRegisterClass *RC = nullptr) const;
325
326 /// getCostPerUse - Return the additional cost of using this register instead
327 /// of other registers in its class.
328 unsigned getCostPerUse(unsigned RegNo) const {
329 return InfoDesc[RegNo].CostPerUse;
330 }
331
332 /// isInAllocatableClass - Return true if the register is in the allocation
333 /// of any register class.
334 bool isInAllocatableClass(unsigned RegNo) const {
335 return InfoDesc[RegNo].inAllocatableClass;
336 }
337
338 /// getSubRegIndexName - Return the human-readable symbolic target-specific
339 /// name for the specified SubRegIndex.
340 const char *getSubRegIndexName(unsigned SubIdx) const {
341 assert(SubIdx && SubIdx < getNumSubRegIndices() &&
342 "This is not a subregister index");
343 return SubRegIndexNames[SubIdx-1];
344 }
345
346 /// getSubRegIndexLaneMask - Return a bitmask representing the parts of a
347 /// register that are covered by SubIdx.
348 ///
349 /// Lane masks for sub-register indices are similar to register units for
350 /// physical registers. The individual bits in a lane mask can't be assigned
351 /// any specific meaning. They can be used to check if two sub-register
352 /// indices overlap.
353 ///
354 /// If the target has a register such that:
355 ///
356 /// getSubReg(Reg, A) overlaps getSubReg(Reg, B)
357 ///
358 /// then:
359 ///
360 /// getSubRegIndexLaneMask(A) & getSubRegIndexLaneMask(B) != 0
361 ///
362 /// The converse is not necessarily true. If two lane masks have a common
363 /// bit, the corresponding sub-registers may not overlap, but it can be
364 /// assumed that they usually will.
365 unsigned getSubRegIndexLaneMask(unsigned SubIdx) const {
366 // SubIdx == 0 is allowed, it has the lane mask ~0u.
367 assert(SubIdx < getNumSubRegIndices() && "This is not a subregister index");
368 return SubRegIndexLaneMasks[SubIdx];
369 }
370
371 /// The lane masks returned by getSubRegIndexLaneMask() above can only be
372 /// used to determine if sub-registers overlap - they can't be used to
373 /// determine if a set of sub-registers completely cover another
374 /// sub-register.
375 ///
376 /// The X86 general purpose registers have two lanes corresponding to the
377 /// sub_8bit and sub_8bit_hi sub-registers. Both sub_32bit and sub_16bit have
378 /// lane masks '3', but the sub_16bit sub-register doesn't fully cover the
379 /// sub_32bit sub-register.
380 ///
381 /// On the other hand, the ARM NEON lanes fully cover their registers: The
382 /// dsub_0 sub-register is completely covered by the ssub_0 and ssub_1 lanes.
383 /// This is related to the CoveredBySubRegs property on register definitions.
384 ///
385 /// This function returns a bit mask of lanes that completely cover their
386 /// sub-registers. More precisely, given:
387 ///
388 /// Covering = getCoveringLanes();
389 /// MaskA = getSubRegIndexLaneMask(SubA);
390 /// MaskB = getSubRegIndexLaneMask(SubB);
391 ///
392 /// If (MaskA & ~(MaskB & Covering)) == 0, then SubA is completely covered by
393 /// SubB.
394 unsigned getCoveringLanes() const { return CoveringLanes; }
395
396 /// regsOverlap - Returns true if the two registers are equal or alias each
397 /// other. The registers may be virtual register.
398 bool regsOverlap(unsigned regA, unsigned regB) const {
399 if (regA == regB) return true;
400 if (isVirtualRegister(regA) || isVirtualRegister(regB))
401 return false;
402
403 // Regunits are numerically ordered. Find a common unit.
404 MCRegUnitIterator RUA(regA, this);
405 MCRegUnitIterator RUB(regB, this);
406 do {
407 if (*RUA == *RUB) return true;
408 if (*RUA < *RUB) ++RUA;
409 else ++RUB;
410 } while (RUA.isValid() && RUB.isValid());
411 return false;
412 }
413
414 /// hasRegUnit - Returns true if Reg contains RegUnit.
415 bool hasRegUnit(unsigned Reg, unsigned RegUnit) const {
416 for (MCRegUnitIterator Units(Reg, this); Units.isValid(); ++Units)
417 if (*Units == RegUnit)
418 return true;
419 return false;
420 }
421
422 /// getCalleeSavedRegs - Return a null-terminated list of all of the
423 /// callee saved registers on this target. The register should be in the
424 /// order of desired callee-save stack frame offset. The first register is
425 /// closest to the incoming stack pointer if stack grows down, and vice versa.
426 ///
427 virtual const MCPhysReg*
428 getCalleeSavedRegs(const MachineFunction *MF = nullptr) const = 0;
429
430 /// getCallPreservedMask - Return a mask of call-preserved registers for the
431 /// given calling convention on the current sub-target. The mask should
432 /// include all call-preserved aliases. This is used by the register
433 /// allocator to determine which registers can be live across a call.
434 ///
435 /// The mask is an array containing (TRI::getNumRegs()+31)/32 entries.
436 /// A set bit indicates that all bits of the corresponding register are
437 /// preserved across the function call. The bit mask is expected to be
438 /// sub-register complete, i.e. if A is preserved, so are all its
439 /// sub-registers.
440 ///
441 /// Bits are numbered from the LSB, so the bit for physical register Reg can
442 /// be found as (Mask[Reg / 32] >> Reg % 32) & 1.
443 ///
444 /// A NULL pointer means that no register mask will be used, and call
445 /// instructions should use implicit-def operands to indicate call clobbered
446 /// registers.
447 ///
448 virtual const uint32_t *getCallPreservedMask(CallingConv::ID) const {
449 // The default mask clobbers everything. All targets should override.
450 return nullptr;
451 }
452
453 /// getReservedRegs - Returns a bitset indexed by physical register number
454 /// indicating if a register is a special register that has particular uses
455 /// and should be considered unavailable at all times, e.g. SP, RA. This is
456 /// used by register scavenger to determine what registers are free.
457 virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;
458
459 /// Prior to adding the live-out mask to a stackmap or patchpoint
460 /// instruction, provide the target the opportunity to adjust it (mainly to
461 /// remove pseudo-registers that should be ignored).
462 virtual void adjustStackMapLiveOutMask(uint32_t *Mask) const { }
463
464 /// getMatchingSuperReg - Return a super-register of the specified register
465 /// Reg so its sub-register of index SubIdx is Reg.
466 unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx,
467 const TargetRegisterClass *RC) const {
468 return MCRegisterInfo::getMatchingSuperReg(Reg, SubIdx, RC->MC);
469 }
470
471 /// getMatchingSuperRegClass - Return a subclass of the specified register
472 /// class A so that each register in it has a sub-register of the
473 /// specified sub-register index which is in the specified register class B.
474 ///
475 /// TableGen will synthesize missing A sub-classes.
476 virtual const TargetRegisterClass *
477 getMatchingSuperRegClass(const TargetRegisterClass *A,
478 const TargetRegisterClass *B, unsigned Idx) const;
479
480 /// getSubClassWithSubReg - Returns the largest legal sub-class of RC that
481 /// supports the sub-register index Idx.
482 /// If no such sub-class exists, return NULL.
483 /// If all registers in RC already have an Idx sub-register, return RC.
484 ///
485 /// TableGen generates a version of this function that is good enough in most
486 /// cases. Targets can override if they have constraints that TableGen
487 /// doesn't understand. For example, the x86 sub_8bit sub-register index is
488 /// supported by the full GR32 register class in 64-bit mode, but only by the
489 /// GR32_ABCD regiister class in 32-bit mode.
490 ///
491 /// TableGen will synthesize missing RC sub-classes.
492 virtual const TargetRegisterClass *
493 getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx) const {
494 assert(Idx == 0 && "Target has no sub-registers");
495 return RC;
496 }
497
498 /// composeSubRegIndices - Return the subregister index you get from composing
499 /// two subregister indices.
500 ///
501 /// The special null sub-register index composes as the identity.
502 ///
503 /// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b)
504 /// returns c. Note that composeSubRegIndices does not tell you about illegal
505 /// compositions. If R does not have a subreg a, or R:a does not have a subreg
506 /// b, composeSubRegIndices doesn't tell you.
507 ///
508 /// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has
509 /// ssub_0:S0 - ssub_3:S3 subregs.
510 /// If you compose subreg indices dsub_1, ssub_0 you get ssub_2.
511 ///
512 unsigned composeSubRegIndices(unsigned a, unsigned b) const {
513 if (!a) return b;
514 if (!b) return a;
515 return composeSubRegIndicesImpl(a, b);
516 }
517
518 /// Transforms a LaneMask computed for one subregister to the lanemask that
519 /// would have been computed when composing the subsubregisters with IdxA
520 /// first. @sa composeSubRegIndices()
521 unsigned composeSubRegIndexLaneMask(unsigned IdxA, unsigned LaneMask) const {
522 if (!IdxA)
523 return LaneMask;
524 return composeSubRegIndexLaneMaskImpl(IdxA, LaneMask);
525 }
526
527 /// Debugging helper: dump register in human readable form to dbgs() stream.
528 static void dumpReg(unsigned Reg, unsigned SubRegIndex = 0,
529 const TargetRegisterInfo* TRI = nullptr);
530
531 protected:
532 /// Overridden by TableGen in targets that have sub-registers.
533 virtual unsigned composeSubRegIndicesImpl(unsigned, unsigned) const {
534 llvm_unreachable("Target has no sub-registers");
535 }
536
537 /// Overridden by TableGen in targets that have sub-registers.
538 virtual unsigned
539 composeSubRegIndexLaneMaskImpl(unsigned, unsigned) const {
540 llvm_unreachable("Target has no sub-registers");
541 }
542
543 public:
544 /// getCommonSuperRegClass - Find a common super-register class if it exists.
545 ///
546 /// Find a register class, SuperRC and two sub-register indices, PreA and
547 /// PreB, such that:
548 ///
549 /// 1. PreA + SubA == PreB + SubB (using composeSubRegIndices()), and
550 ///
551 /// 2. For all Reg in SuperRC: Reg:PreA in RCA and Reg:PreB in RCB, and
552 ///
553 /// 3. SuperRC->getSize() >= max(RCA->getSize(), RCB->getSize()).
554 ///
555 /// SuperRC will be chosen such that no super-class of SuperRC satisfies the
556 /// requirements, and there is no register class with a smaller spill size
557 /// that satisfies the requirements.
558 ///
559 /// SubA and SubB must not be 0. Use getMatchingSuperRegClass() instead.
560 ///
561 /// Either of the PreA and PreB sub-register indices may be returned as 0. In
562 /// that case, the returned register class will be a sub-class of the
563 /// corresponding argument register class.
564 ///
565 /// The function returns NULL if no register class can be found.
566 ///
567 const TargetRegisterClass*
568 getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA,
569 const TargetRegisterClass *RCB, unsigned SubB,
570 unsigned &PreA, unsigned &PreB) const;
571
572 //===--------------------------------------------------------------------===//
573 // Register Class Information
574 //
575
576 /// Register class iterators
577 ///
578 regclass_iterator regclass_begin() const { return RegClassBegin; }
579 regclass_iterator regclass_end() const { return RegClassEnd; }
580
581 unsigned getNumRegClasses() const {
582 return (unsigned)(regclass_end()-regclass_begin());
583 }
584
585 /// getRegClass - Returns the register class associated with the enumeration
586 /// value. See class MCOperandInfo.
587 const TargetRegisterClass *getRegClass(unsigned i) const {
588 assert(i < getNumRegClasses() && "Register Class ID out of range");
589 return RegClassBegin[i];
590 }
591
592 /// getRegClassName - Returns the name of the register class.
593 const char *getRegClassName(const TargetRegisterClass *Class) const {
594 return MCRegisterInfo::getRegClassName(Class->MC);
595 }
596
597 /// getCommonSubClass - find the largest common subclass of A and B. Return
598 /// NULL if there is no common subclass.
599 const TargetRegisterClass *
600 getCommonSubClass(const TargetRegisterClass *A,
601 const TargetRegisterClass *B) const;
602
603 /// getPointerRegClass - Returns a TargetRegisterClass used for pointer
604 /// values. If a target supports multiple different pointer register classes,
605 /// kind specifies which one is indicated.
606 virtual const TargetRegisterClass *
607 getPointerRegClass(const MachineFunction &MF, unsigned Kind=0) const {
608 llvm_unreachable("Target didn't implement getPointerRegClass!");
609 }
610
611 /// getCrossCopyRegClass - Returns a legal register class to copy a register
612 /// in the specified class to or from. If it is possible to copy the register
613 /// directly without using a cross register class copy, return the specified
614 /// RC. Returns NULL if it is not possible to copy between a two registers of
615 /// the specified class.
616 virtual const TargetRegisterClass *
617 getCrossCopyRegClass(const TargetRegisterClass *RC) const {
618 return RC;
619 }
620
621 /// getLargestLegalSuperClass - Returns the largest super class of RC that is
622 /// legal to use in the current sub-target and has the same spill size.
623 /// The returned register class can be used to create virtual registers which
624 /// means that all its registers can be copied and spilled.
625 virtual const TargetRegisterClass*
626 getLargestLegalSuperClass(const TargetRegisterClass *RC) const {
627 /// The default implementation is very conservative and doesn't allow the
628 /// register allocator to inflate register classes.
629 return RC;
630 }
631
632 /// getRegPressureLimit - Return the register pressure "high water mark" for
633 /// the specific register class. The scheduler is in high register pressure
634 /// mode (for the specific register class) if it goes over the limit.
635 ///
636 /// Note: this is the old register pressure model that relies on a manually
637 /// specified representative register class per value type.
638 virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC,
639 MachineFunction &MF) const {
640 return 0;
641 }
642
643 /// Get the weight in units of pressure for this register class.
644 virtual const RegClassWeight &getRegClassWeight(
645 const TargetRegisterClass *RC) const = 0;
646
647 /// Get the weight in units of pressure for this register unit.
648 virtual unsigned getRegUnitWeight(unsigned RegUnit) const = 0;
649
650 /// Get the number of dimensions of register pressure.
651 virtual unsigned getNumRegPressureSets() const = 0;
652
653 /// Get the name of this register unit pressure set.
654 virtual const char *getRegPressureSetName(unsigned Idx) const = 0;
655
656 /// Get the register unit pressure limit for this dimension.
657 /// This limit must be adjusted dynamically for reserved registers.
658 virtual unsigned getRegPressureSetLimit(unsigned Idx) const = 0;
659
660 /// Get the dimensions of register pressure impacted by this register class.
661 /// Returns a -1 terminated array of pressure set IDs.
662 virtual const int *getRegClassPressureSets(
663 const TargetRegisterClass *RC) const = 0;
664
665 /// Get the dimensions of register pressure impacted by this register unit.
666 /// Returns a -1 terminated array of pressure set IDs.
667 virtual const int *getRegUnitPressureSets(unsigned RegUnit) const = 0;
668
669 /// Get a list of 'hint' registers that the register allocator should try
670 /// first when allocating a physical register for the virtual register
671 /// VirtReg. These registers are effectively moved to the front of the
672 /// allocation order.
673 ///
674 /// The Order argument is the allocation order for VirtReg's register class
675 /// as returned from RegisterClassInfo::getOrder(). The hint registers must
676 /// come from Order, and they must not be reserved.
677 ///
678 /// The default implementation of this function can resolve
679 /// target-independent hints provided to MRI::setRegAllocationHint with
680 /// HintType == 0. Targets that override this function should defer to the
681 /// default implementation if they have no reason to change the allocation
682 /// order for VirtReg. There may be target-independent hints.
683 virtual void getRegAllocationHints(unsigned VirtReg,
684 ArrayRef<MCPhysReg> Order,
685 SmallVectorImpl<MCPhysReg> &Hints,
686 const MachineFunction &MF,
687 const VirtRegMap *VRM = nullptr) const;
688
689 /// avoidWriteAfterWrite - Return true if the register allocator should avoid
690 /// writing a register from RC in two consecutive instructions.
691 /// This can avoid pipeline stalls on certain architectures.
692 /// It does cause increased register pressure, though.
693 virtual bool avoidWriteAfterWrite(const TargetRegisterClass *RC) const {
694 return false;
695 }
696
697 /// UpdateRegAllocHint - A callback to allow target a chance to update
698 /// register allocation hints when a register is "changed" (e.g. coalesced)
699 /// to another register. e.g. On ARM, some virtual registers should target
700 /// register pairs, if one of pair is coalesced to another register, the
701 /// allocation hint of the other half of the pair should be changed to point
702 /// to the new register.
703 virtual void UpdateRegAllocHint(unsigned Reg, unsigned NewReg,
704 MachineFunction &MF) const {
705 // Do nothing.
706 }
707
708 /// Allow the target to reverse allocation order of local live ranges. This
709 /// will generally allocate shorter local live ranges first. For targets with
710 /// many registers, this could reduce regalloc compile time by a large
711 /// factor. It is disabled by default for three reasons:
712 /// (1) Top-down allocation is simpler and easier to debug for targets that
713 /// don't benefit from reversing the order.
714 /// (2) Bottom-up allocation could result in poor evicition decisions on some
715 /// targets affecting the performance of compiled code.
716 /// (3) Bottom-up allocation is no longer guaranteed to optimally color.
717 virtual bool reverseLocalAssignment() const { return false; }
718
719 /// Allow the target to override the cost of using a callee-saved register for
720 /// the first time. Default value of 0 means we will use a callee-saved
721 /// register if it is available.
722 virtual unsigned getCSRFirstUseCost() const { return 0; }
723
724 /// requiresRegisterScavenging - returns true if the target requires (and can
725 /// make use of) the register scavenger.
726 virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
727 return false;
728 }
729
730 /// useFPForScavengingIndex - returns true if the target wants to use
731 /// frame pointer based accesses to spill to the scavenger emergency spill
732 /// slot.
733 virtual bool useFPForScavengingIndex(const MachineFunction &MF) const {
734 return true;
735 }
736
737 /// requiresFrameIndexScavenging - returns true if the target requires post
738 /// PEI scavenging of registers for materializing frame index constants.
739 virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const {
740 return false;
741 }
742
743 /// requiresVirtualBaseRegisters - Returns true if the target wants the
744 /// LocalStackAllocation pass to be run and virtual base registers
745 /// used for more efficient stack access.
746 virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const {
747 return false;
748 }
749
750 /// hasReservedSpillSlot - Return true if target has reserved a spill slot in
751 /// the stack frame of the given function for the specified register. e.g. On
752 /// x86, if the frame register is required, the first fixed stack object is
753 /// reserved as its spill slot. This tells PEI not to create a new stack frame
754 /// object for the given register. It should be called only after
755 /// processFunctionBeforeCalleeSavedScan().
756 virtual bool hasReservedSpillSlot(const MachineFunction &MF, unsigned Reg,
757 int &FrameIdx) const {
758 return false;
759 }
760
761 /// trackLivenessAfterRegAlloc - returns true if the live-ins should be tracked
762 /// after register allocation.
763 virtual bool trackLivenessAfterRegAlloc(const MachineFunction &MF) const {
764 return false;
765 }
766
767 /// needsStackRealignment - true if storage within the function requires the
768 /// stack pointer to be aligned more than the normal calling convention calls
769 /// for.
770 virtual bool needsStackRealignment(const MachineFunction &MF) const {
771 return false;
772 }
773
774 /// getFrameIndexInstrOffset - Get the offset from the referenced frame
775 /// index in the instruction, if there is one.
776 virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI,
777 int Idx) const {
778 return 0;
779 }
780
781 /// needsFrameBaseReg - Returns true if the instruction's frame index
782 /// reference would be better served by a base register other than FP
783 /// or SP. Used by LocalStackFrameAllocation to determine which frame index
784 /// references it should create new base registers for.
785 virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
786 return false;
787 }
788
789 /// materializeFrameBaseRegister - Insert defining instruction(s) for
790 /// BaseReg to be a pointer to FrameIdx before insertion point I.
791 virtual void materializeFrameBaseRegister(MachineBasicBlock *MBB,
792 unsigned BaseReg, int FrameIdx,
793 int64_t Offset) const {
794 llvm_unreachable("materializeFrameBaseRegister does not exist on this "
795 "target");
796 }
797
798 /// resolveFrameIndex - Resolve a frame index operand of an instruction
799 /// to reference the indicated base register plus offset instead.
800 virtual void resolveFrameIndex(MachineInstr &MI, unsigned BaseReg,
801 int64_t Offset) const {
802 llvm_unreachable("resolveFrameIndex does not exist on this target");
803 }
804
805 /// isFrameOffsetLegal - Determine whether a given offset immediate is
806 /// encodable to resolve a frame index.
807 virtual bool isFrameOffsetLegal(const MachineInstr *MI,
808 int64_t Offset) const {
809 llvm_unreachable("isFrameOffsetLegal does not exist on this target");
810 }
811
812
813 /// saveScavengerRegister - Spill the register so it can be used by the
814 /// register scavenger. Return true if the register was spilled, false
815 /// otherwise. If this function does not spill the register, the scavenger
816 /// will instead spill it to the emergency spill slot.
817 ///
818 virtual bool saveScavengerRegister(MachineBasicBlock &MBB,
819 MachineBasicBlock::iterator I,
820 MachineBasicBlock::iterator &UseMI,
821 const TargetRegisterClass *RC,
822 unsigned Reg) const {
823 return false;
824 }
825
826 /// eliminateFrameIndex - This method must be overriden to eliminate abstract
827 /// frame indices from instructions which may use them. The instruction
828 /// referenced by the iterator contains an MO_FrameIndex operand which must be
829 /// eliminated by this method. This method may modify or replace the
830 /// specified instruction, as long as it keeps the iterator pointing at the
831 /// finished product. SPAdj is the SP adjustment due to call frame setup
832 /// instruction. FIOperandNum is the FI operand number.
833 virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI,
834 int SPAdj, unsigned FIOperandNum,
835 RegScavenger *RS = nullptr) const = 0;
836
837 //===--------------------------------------------------------------------===//
838 /// Subtarget Hooks
839
840 /// \brief SrcRC and DstRC will be morphed into NewRC if this returns true.
841 virtual bool shouldCoalesce(MachineInstr *MI,
842 const TargetRegisterClass *SrcRC,
843 unsigned SubReg,
844 const TargetRegisterClass *DstRC,
845 unsigned DstSubReg,
846 const TargetRegisterClass *NewRC) const
847 { return true; }
848
849 //===--------------------------------------------------------------------===//
850 /// Debug information queries.
851
852 /// getFrameRegister - This method should return the register used as a base
853 /// for values allocated in the current stack frame.
854 virtual unsigned getFrameRegister(const MachineFunction &MF) const = 0;
855 };
856
857
858 //===----------------------------------------------------------------------===//
859 // SuperRegClassIterator
860 //===----------------------------------------------------------------------===//
861 //
862 // Iterate over the possible super-registers for a given register class. The
863 // iterator will visit a list of pairs (Idx, Mask) corresponding to the
864 // possible classes of super-registers.
865 //
866 // Each bit mask will have at least one set bit, and each set bit in Mask
867 // corresponds to a SuperRC such that:
868 //
869 // For all Reg in SuperRC: Reg:Idx is in RC.
870 //
871 // The iterator can include (O, RC->getSubClassMask()) as the first entry which
872 // also satisfies the above requirement, assuming Reg:0 == Reg.
873 //
874 class SuperRegClassIterator {
875 const unsigned RCMaskWords;
876 unsigned SubReg;
877 const uint16_t *Idx;
878 const uint32_t *Mask;
879
880 public:
881 /// Create a SuperRegClassIterator that visits all the super-register classes
882 /// of RC. When IncludeSelf is set, also include the (0, sub-classes) entry.
883 SuperRegClassIterator(const TargetRegisterClass *RC,
884 const TargetRegisterInfo *TRI,
885 bool IncludeSelf = false)
886 : RCMaskWords((TRI->getNumRegClasses() + 31) / 32),
887 SubReg(0),
888 Idx(RC->getSuperRegIndices()),
889 Mask(RC->getSubClassMask()) {
890 if (!IncludeSelf)
891 ++*this;
892 }
893
894 /// Returns true if this iterator is still pointing at a valid entry.
895 bool isValid() const { return Idx; }
896
897 /// Returns the current sub-register index.
898 unsigned getSubReg() const { return SubReg; }
899
900 /// Returns the bit mask if register classes that getSubReg() projects into
901 /// RC.
902 const uint32_t *getMask() const { return Mask; }
903
904 /// Advance iterator to the next entry.
905 void operator++() {
906 assert(isValid() && "Cannot move iterator past end.");
907 Mask += RCMaskWords;
908 SubReg = *Idx++;
909 if (!SubReg)
910 Idx = nullptr;
911 }
912 };
913
914 // This is useful when building IndexedMaps keyed on virtual registers
915 struct VirtReg2IndexFunctor : public std::unary_function<unsigned, unsigned> {
916 unsigned operator()(unsigned Reg) const {
917 return TargetRegisterInfo::virtReg2Index(Reg);
918 }
919 };
920
921 /// PrintReg - Helper class for printing registers on a raw_ostream.
922 /// Prints virtual and physical registers with or without a TRI instance.
923 ///
924 /// The format is:
925 /// %noreg - NoRegister
926 /// %vreg5 - a virtual register.
927 /// %vreg5:sub_8bit - a virtual register with sub-register index (with TRI).
928 /// %EAX - a physical register
929 /// %physreg17 - a physical register when no TRI instance given.
930 ///
931 /// Usage: OS << PrintReg(Reg, TRI) << '\n';
932 ///
933 class PrintReg {
934 const TargetRegisterInfo *TRI;
935 unsigned Reg;
936 unsigned SubIdx;
937 public:
938 explicit PrintReg(unsigned reg, const TargetRegisterInfo *tri = nullptr,
939 unsigned subidx = 0)
940 : TRI(tri), Reg(reg), SubIdx(subidx) {}
941 void print(raw_ostream&) const;
942 };
943
944 static inline raw_ostream &operator<<(raw_ostream &OS, const PrintReg &PR) {
945 PR.print(OS);
946 return OS;
947 }
948
949 /// PrintRegUnit - Helper class for printing register units on a raw_ostream.
950 ///
951 /// Register units are named after their root registers:
952 ///
953 /// AL - Single root.
954 /// FP0~ST7 - Dual roots.
955 ///
956 /// Usage: OS << PrintRegUnit(Unit, TRI) << '\n';
957 ///
958 class PrintRegUnit {
959 protected:
960 const TargetRegisterInfo *TRI;
961 unsigned Unit;
962 public:
963 PrintRegUnit(unsigned unit, const TargetRegisterInfo *tri)
964 : TRI(tri), Unit(unit) {}
965 void print(raw_ostream&) const;
966 };
967
968 static inline raw_ostream &operator<<(raw_ostream &OS, const PrintRegUnit &PR) {
969 PR.print(OS);
970 return OS;
971 }
972
973 /// PrintVRegOrUnit - It is often convenient to track virtual registers and
974 /// physical register units in the same list.
975 class PrintVRegOrUnit : protected PrintRegUnit {
976 public:
977 PrintVRegOrUnit(unsigned VRegOrUnit, const TargetRegisterInfo *tri)
978 : PrintRegUnit(VRegOrUnit, tri) {}
979 void print(raw_ostream&) const;
980 };
981
982 static inline raw_ostream &operator<<(raw_ostream &OS,
983 const PrintVRegOrUnit &PR) {
984 PR.print(OS);
985 return OS;
986 }
987
988 } // End llvm namespace
989
990 #endif