]> git.proxmox.com Git - rustc.git/blob - src/llvm/lib/Analysis/AliasAnalysis.cpp
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / lib / Analysis / AliasAnalysis.cpp
1 //===- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation -==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the generic AliasAnalysis interface which is used as the
11 // common interface used by all clients and implementations of alias analysis.
12 //
13 // This file also implements the default version of the AliasAnalysis interface
14 // that is to be used when no other implementation is specified. This does some
15 // simple tests that detect obvious cases: two different global pointers cannot
16 // alias, a global cannot alias a malloc, two different mallocs cannot alias,
17 // etc.
18 //
19 // This alias analysis implementation really isn't very good for anything, but
20 // it is very fast, and makes a nice clean default implementation. Because it
21 // handles lots of little corner cases, other, more complex, alias analysis
22 // implementations may choose to rely on this pass to resolve these simple and
23 // easy cases.
24 //
25 //===----------------------------------------------------------------------===//
26
27 #include "llvm/Analysis/AliasAnalysis.h"
28 #include "llvm/Analysis/CFG.h"
29 #include "llvm/Analysis/CaptureTracking.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/Dominators.h"
34 #include "llvm/IR/Function.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/Pass.h"
40 #include "llvm/Target/TargetLibraryInfo.h"
41 using namespace llvm;
42
43 // Register the AliasAnalysis interface, providing a nice name to refer to.
44 INITIALIZE_ANALYSIS_GROUP(AliasAnalysis, "Alias Analysis", NoAA)
45 char AliasAnalysis::ID = 0;
46
47 //===----------------------------------------------------------------------===//
48 // Default chaining methods
49 //===----------------------------------------------------------------------===//
50
51 AliasAnalysis::AliasResult
52 AliasAnalysis::alias(const Location &LocA, const Location &LocB) {
53 assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
54 return AA->alias(LocA, LocB);
55 }
56
57 bool AliasAnalysis::pointsToConstantMemory(const Location &Loc,
58 bool OrLocal) {
59 assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
60 return AA->pointsToConstantMemory(Loc, OrLocal);
61 }
62
63 AliasAnalysis::Location
64 AliasAnalysis::getArgLocation(ImmutableCallSite CS, unsigned ArgIdx,
65 AliasAnalysis::ModRefResult &Mask) {
66 assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
67 return AA->getArgLocation(CS, ArgIdx, Mask);
68 }
69
70 void AliasAnalysis::deleteValue(Value *V) {
71 assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
72 AA->deleteValue(V);
73 }
74
75 void AliasAnalysis::copyValue(Value *From, Value *To) {
76 assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
77 AA->copyValue(From, To);
78 }
79
80 void AliasAnalysis::addEscapingUse(Use &U) {
81 assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
82 AA->addEscapingUse(U);
83 }
84
85
86 AliasAnalysis::ModRefResult
87 AliasAnalysis::getModRefInfo(ImmutableCallSite CS,
88 const Location &Loc) {
89 assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
90
91 ModRefBehavior MRB = getModRefBehavior(CS);
92 if (MRB == DoesNotAccessMemory)
93 return NoModRef;
94
95 ModRefResult Mask = ModRef;
96 if (onlyReadsMemory(MRB))
97 Mask = Ref;
98
99 if (onlyAccessesArgPointees(MRB)) {
100 bool doesAlias = false;
101 ModRefResult AllArgsMask = NoModRef;
102 if (doesAccessArgPointees(MRB)) {
103 for (ImmutableCallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
104 AI != AE; ++AI) {
105 const Value *Arg = *AI;
106 if (!Arg->getType()->isPointerTy())
107 continue;
108 ModRefResult ArgMask;
109 Location CSLoc =
110 getArgLocation(CS, (unsigned) std::distance(CS.arg_begin(), AI),
111 ArgMask);
112 if (!isNoAlias(CSLoc, Loc)) {
113 doesAlias = true;
114 AllArgsMask = ModRefResult(AllArgsMask | ArgMask);
115 }
116 }
117 }
118 if (!doesAlias)
119 return NoModRef;
120 Mask = ModRefResult(Mask & AllArgsMask);
121 }
122
123 // If Loc is a constant memory location, the call definitely could not
124 // modify the memory location.
125 if ((Mask & Mod) && pointsToConstantMemory(Loc))
126 Mask = ModRefResult(Mask & ~Mod);
127
128 // If this is the end of the chain, don't forward.
129 if (!AA) return Mask;
130
131 // Otherwise, fall back to the next AA in the chain. But we can merge
132 // in any mask we've managed to compute.
133 return ModRefResult(AA->getModRefInfo(CS, Loc) & Mask);
134 }
135
136 AliasAnalysis::ModRefResult
137 AliasAnalysis::getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2) {
138 assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
139
140 // If CS1 or CS2 are readnone, they don't interact.
141 ModRefBehavior CS1B = getModRefBehavior(CS1);
142 if (CS1B == DoesNotAccessMemory) return NoModRef;
143
144 ModRefBehavior CS2B = getModRefBehavior(CS2);
145 if (CS2B == DoesNotAccessMemory) return NoModRef;
146
147 // If they both only read from memory, there is no dependence.
148 if (onlyReadsMemory(CS1B) && onlyReadsMemory(CS2B))
149 return NoModRef;
150
151 AliasAnalysis::ModRefResult Mask = ModRef;
152
153 // If CS1 only reads memory, the only dependence on CS2 can be
154 // from CS1 reading memory written by CS2.
155 if (onlyReadsMemory(CS1B))
156 Mask = ModRefResult(Mask & Ref);
157
158 // If CS2 only access memory through arguments, accumulate the mod/ref
159 // information from CS1's references to the memory referenced by
160 // CS2's arguments.
161 if (onlyAccessesArgPointees(CS2B)) {
162 AliasAnalysis::ModRefResult R = NoModRef;
163 if (doesAccessArgPointees(CS2B)) {
164 for (ImmutableCallSite::arg_iterator
165 I = CS2.arg_begin(), E = CS2.arg_end(); I != E; ++I) {
166 const Value *Arg = *I;
167 if (!Arg->getType()->isPointerTy())
168 continue;
169 ModRefResult ArgMask;
170 Location CS2Loc =
171 getArgLocation(CS2, (unsigned) std::distance(CS2.arg_begin(), I),
172 ArgMask);
173 // ArgMask indicates what CS2 might do to CS2Loc, and the dependence of
174 // CS1 on that location is the inverse.
175 if (ArgMask == Mod)
176 ArgMask = ModRef;
177 else if (ArgMask == Ref)
178 ArgMask = Mod;
179
180 R = ModRefResult((R | (getModRefInfo(CS1, CS2Loc) & ArgMask)) & Mask);
181 if (R == Mask)
182 break;
183 }
184 }
185 return R;
186 }
187
188 // If CS1 only accesses memory through arguments, check if CS2 references
189 // any of the memory referenced by CS1's arguments. If not, return NoModRef.
190 if (onlyAccessesArgPointees(CS1B)) {
191 AliasAnalysis::ModRefResult R = NoModRef;
192 if (doesAccessArgPointees(CS1B)) {
193 for (ImmutableCallSite::arg_iterator
194 I = CS1.arg_begin(), E = CS1.arg_end(); I != E; ++I) {
195 const Value *Arg = *I;
196 if (!Arg->getType()->isPointerTy())
197 continue;
198 ModRefResult ArgMask;
199 Location CS1Loc = getArgLocation(
200 CS1, (unsigned)std::distance(CS1.arg_begin(), I), ArgMask);
201 // ArgMask indicates what CS1 might do to CS1Loc; if CS1 might Mod
202 // CS1Loc, then we care about either a Mod or a Ref by CS2. If CS1
203 // might Ref, then we care only about a Mod by CS2.
204 ModRefResult ArgR = getModRefInfo(CS2, CS1Loc);
205 if (((ArgMask & Mod) != NoModRef && (ArgR & ModRef) != NoModRef) ||
206 ((ArgMask & Ref) != NoModRef && (ArgR & Mod) != NoModRef))
207 R = ModRefResult((R | ArgMask) & Mask);
208
209 if (R == Mask)
210 break;
211 }
212 }
213 return R;
214 }
215
216 // If this is the end of the chain, don't forward.
217 if (!AA) return Mask;
218
219 // Otherwise, fall back to the next AA in the chain. But we can merge
220 // in any mask we've managed to compute.
221 return ModRefResult(AA->getModRefInfo(CS1, CS2) & Mask);
222 }
223
224 AliasAnalysis::ModRefBehavior
225 AliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
226 assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
227
228 ModRefBehavior Min = UnknownModRefBehavior;
229
230 // Call back into the alias analysis with the other form of getModRefBehavior
231 // to see if it can give a better response.
232 if (const Function *F = CS.getCalledFunction())
233 Min = getModRefBehavior(F);
234
235 // If this is the end of the chain, don't forward.
236 if (!AA) return Min;
237
238 // Otherwise, fall back to the next AA in the chain. But we can merge
239 // in any result we've managed to compute.
240 return ModRefBehavior(AA->getModRefBehavior(CS) & Min);
241 }
242
243 AliasAnalysis::ModRefBehavior
244 AliasAnalysis::getModRefBehavior(const Function *F) {
245 assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
246 return AA->getModRefBehavior(F);
247 }
248
249 //===----------------------------------------------------------------------===//
250 // AliasAnalysis non-virtual helper method implementation
251 //===----------------------------------------------------------------------===//
252
253 AliasAnalysis::Location AliasAnalysis::getLocation(const LoadInst *LI) {
254 AAMDNodes AATags;
255 LI->getAAMetadata(AATags);
256
257 return Location(LI->getPointerOperand(),
258 getTypeStoreSize(LI->getType()), AATags);
259 }
260
261 AliasAnalysis::Location AliasAnalysis::getLocation(const StoreInst *SI) {
262 AAMDNodes AATags;
263 SI->getAAMetadata(AATags);
264
265 return Location(SI->getPointerOperand(),
266 getTypeStoreSize(SI->getValueOperand()->getType()), AATags);
267 }
268
269 AliasAnalysis::Location AliasAnalysis::getLocation(const VAArgInst *VI) {
270 AAMDNodes AATags;
271 VI->getAAMetadata(AATags);
272
273 return Location(VI->getPointerOperand(), UnknownSize, AATags);
274 }
275
276 AliasAnalysis::Location
277 AliasAnalysis::getLocation(const AtomicCmpXchgInst *CXI) {
278 AAMDNodes AATags;
279 CXI->getAAMetadata(AATags);
280
281 return Location(CXI->getPointerOperand(),
282 getTypeStoreSize(CXI->getCompareOperand()->getType()),
283 AATags);
284 }
285
286 AliasAnalysis::Location
287 AliasAnalysis::getLocation(const AtomicRMWInst *RMWI) {
288 AAMDNodes AATags;
289 RMWI->getAAMetadata(AATags);
290
291 return Location(RMWI->getPointerOperand(),
292 getTypeStoreSize(RMWI->getValOperand()->getType()), AATags);
293 }
294
295 AliasAnalysis::Location
296 AliasAnalysis::getLocationForSource(const MemTransferInst *MTI) {
297 uint64_t Size = UnknownSize;
298 if (ConstantInt *C = dyn_cast<ConstantInt>(MTI->getLength()))
299 Size = C->getValue().getZExtValue();
300
301 // memcpy/memmove can have AA tags. For memcpy, they apply
302 // to both the source and the destination.
303 AAMDNodes AATags;
304 MTI->getAAMetadata(AATags);
305
306 return Location(MTI->getRawSource(), Size, AATags);
307 }
308
309 AliasAnalysis::Location
310 AliasAnalysis::getLocationForDest(const MemIntrinsic *MTI) {
311 uint64_t Size = UnknownSize;
312 if (ConstantInt *C = dyn_cast<ConstantInt>(MTI->getLength()))
313 Size = C->getValue().getZExtValue();
314
315 // memcpy/memmove can have AA tags. For memcpy, they apply
316 // to both the source and the destination.
317 AAMDNodes AATags;
318 MTI->getAAMetadata(AATags);
319
320 return Location(MTI->getRawDest(), Size, AATags);
321 }
322
323
324
325 AliasAnalysis::ModRefResult
326 AliasAnalysis::getModRefInfo(const LoadInst *L, const Location &Loc) {
327 // Be conservative in the face of volatile/atomic.
328 if (!L->isUnordered())
329 return ModRef;
330
331 // If the load address doesn't alias the given address, it doesn't read
332 // or write the specified memory.
333 if (!alias(getLocation(L), Loc))
334 return NoModRef;
335
336 // Otherwise, a load just reads.
337 return Ref;
338 }
339
340 AliasAnalysis::ModRefResult
341 AliasAnalysis::getModRefInfo(const StoreInst *S, const Location &Loc) {
342 // Be conservative in the face of volatile/atomic.
343 if (!S->isUnordered())
344 return ModRef;
345
346 // If the store address cannot alias the pointer in question, then the
347 // specified memory cannot be modified by the store.
348 if (!alias(getLocation(S), Loc))
349 return NoModRef;
350
351 // If the pointer is a pointer to constant memory, then it could not have been
352 // modified by this store.
353 if (pointsToConstantMemory(Loc))
354 return NoModRef;
355
356 // Otherwise, a store just writes.
357 return Mod;
358 }
359
360 AliasAnalysis::ModRefResult
361 AliasAnalysis::getModRefInfo(const VAArgInst *V, const Location &Loc) {
362 // If the va_arg address cannot alias the pointer in question, then the
363 // specified memory cannot be accessed by the va_arg.
364 if (!alias(getLocation(V), Loc))
365 return NoModRef;
366
367 // If the pointer is a pointer to constant memory, then it could not have been
368 // modified by this va_arg.
369 if (pointsToConstantMemory(Loc))
370 return NoModRef;
371
372 // Otherwise, a va_arg reads and writes.
373 return ModRef;
374 }
375
376 AliasAnalysis::ModRefResult
377 AliasAnalysis::getModRefInfo(const AtomicCmpXchgInst *CX, const Location &Loc) {
378 // Acquire/Release cmpxchg has properties that matter for arbitrary addresses.
379 if (CX->getSuccessOrdering() > Monotonic)
380 return ModRef;
381
382 // If the cmpxchg address does not alias the location, it does not access it.
383 if (!alias(getLocation(CX), Loc))
384 return NoModRef;
385
386 return ModRef;
387 }
388
389 AliasAnalysis::ModRefResult
390 AliasAnalysis::getModRefInfo(const AtomicRMWInst *RMW, const Location &Loc) {
391 // Acquire/Release atomicrmw has properties that matter for arbitrary addresses.
392 if (RMW->getOrdering() > Monotonic)
393 return ModRef;
394
395 // If the atomicrmw address does not alias the location, it does not access it.
396 if (!alias(getLocation(RMW), Loc))
397 return NoModRef;
398
399 return ModRef;
400 }
401
402 // FIXME: this is really just shoring-up a deficiency in alias analysis.
403 // BasicAA isn't willing to spend linear time determining whether an alloca
404 // was captured before or after this particular call, while we are. However,
405 // with a smarter AA in place, this test is just wasting compile time.
406 AliasAnalysis::ModRefResult
407 AliasAnalysis::callCapturesBefore(const Instruction *I,
408 const AliasAnalysis::Location &MemLoc,
409 DominatorTree *DT) {
410 if (!DT || !DL) return AliasAnalysis::ModRef;
411
412 const Value *Object = GetUnderlyingObject(MemLoc.Ptr, DL);
413 if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object) ||
414 isa<Constant>(Object))
415 return AliasAnalysis::ModRef;
416
417 ImmutableCallSite CS(I);
418 if (!CS.getInstruction() || CS.getInstruction() == Object)
419 return AliasAnalysis::ModRef;
420
421 if (llvm::PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true,
422 /* StoreCaptures */ true, I, DT,
423 /* include Object */ true))
424 return AliasAnalysis::ModRef;
425
426 unsigned ArgNo = 0;
427 AliasAnalysis::ModRefResult R = AliasAnalysis::NoModRef;
428 for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
429 CI != CE; ++CI, ++ArgNo) {
430 // Only look at the no-capture or byval pointer arguments. If this
431 // pointer were passed to arguments that were neither of these, then it
432 // couldn't be no-capture.
433 if (!(*CI)->getType()->isPointerTy() ||
434 (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo)))
435 continue;
436
437 // If this is a no-capture pointer argument, see if we can tell that it
438 // is impossible to alias the pointer we're checking. If not, we have to
439 // assume that the call could touch the pointer, even though it doesn't
440 // escape.
441 if (isNoAlias(AliasAnalysis::Location(*CI),
442 AliasAnalysis::Location(Object)))
443 continue;
444 if (CS.doesNotAccessMemory(ArgNo))
445 continue;
446 if (CS.onlyReadsMemory(ArgNo)) {
447 R = AliasAnalysis::Ref;
448 continue;
449 }
450 return AliasAnalysis::ModRef;
451 }
452 return R;
453 }
454
455 // AliasAnalysis destructor: DO NOT move this to the header file for
456 // AliasAnalysis or else clients of the AliasAnalysis class may not depend on
457 // the AliasAnalysis.o file in the current .a file, causing alias analysis
458 // support to not be included in the tool correctly!
459 //
460 AliasAnalysis::~AliasAnalysis() {}
461
462 /// InitializeAliasAnalysis - Subclasses must call this method to initialize the
463 /// AliasAnalysis interface before any other methods are called.
464 ///
465 void AliasAnalysis::InitializeAliasAnalysis(Pass *P) {
466 DataLayoutPass *DLP = P->getAnalysisIfAvailable<DataLayoutPass>();
467 DL = DLP ? &DLP->getDataLayout() : nullptr;
468 TLI = P->getAnalysisIfAvailable<TargetLibraryInfo>();
469 AA = &P->getAnalysis<AliasAnalysis>();
470 }
471
472 // getAnalysisUsage - All alias analysis implementations should invoke this
473 // directly (using AliasAnalysis::getAnalysisUsage(AU)).
474 void AliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
475 AU.addRequired<AliasAnalysis>(); // All AA's chain
476 }
477
478 /// getTypeStoreSize - Return the DataLayout store size for the given type,
479 /// if known, or a conservative value otherwise.
480 ///
481 uint64_t AliasAnalysis::getTypeStoreSize(Type *Ty) {
482 return DL ? DL->getTypeStoreSize(Ty) : UnknownSize;
483 }
484
485 /// canBasicBlockModify - Return true if it is possible for execution of the
486 /// specified basic block to modify the location Loc.
487 ///
488 bool AliasAnalysis::canBasicBlockModify(const BasicBlock &BB,
489 const Location &Loc) {
490 return canInstructionRangeModRef(BB.front(), BB.back(), Loc, Mod);
491 }
492
493 /// canInstructionRangeModRef - Return true if it is possible for the
494 /// execution of the specified instructions to mod\ref (according to the
495 /// mode) the location Loc. The instructions to consider are all
496 /// of the instructions in the range of [I1,I2] INCLUSIVE.
497 /// I1 and I2 must be in the same basic block.
498 bool AliasAnalysis::canInstructionRangeModRef(const Instruction &I1,
499 const Instruction &I2,
500 const Location &Loc,
501 const ModRefResult Mode) {
502 assert(I1.getParent() == I2.getParent() &&
503 "Instructions not in same basic block!");
504 BasicBlock::const_iterator I = &I1;
505 BasicBlock::const_iterator E = &I2;
506 ++E; // Convert from inclusive to exclusive range.
507
508 for (; I != E; ++I) // Check every instruction in range
509 if (getModRefInfo(I, Loc) & Mode)
510 return true;
511 return false;
512 }
513
514 /// isNoAliasCall - Return true if this pointer is returned by a noalias
515 /// function.
516 bool llvm::isNoAliasCall(const Value *V) {
517 if (isa<CallInst>(V) || isa<InvokeInst>(V))
518 return ImmutableCallSite(cast<Instruction>(V))
519 .paramHasAttr(0, Attribute::NoAlias);
520 return false;
521 }
522
523 /// isNoAliasArgument - Return true if this is an argument with the noalias
524 /// attribute.
525 bool llvm::isNoAliasArgument(const Value *V)
526 {
527 if (const Argument *A = dyn_cast<Argument>(V))
528 return A->hasNoAliasAttr();
529 return false;
530 }
531
532 /// isIdentifiedObject - Return true if this pointer refers to a distinct and
533 /// identifiable object. This returns true for:
534 /// Global Variables and Functions (but not Global Aliases)
535 /// Allocas and Mallocs
536 /// ByVal and NoAlias Arguments
537 /// NoAlias returns
538 ///
539 bool llvm::isIdentifiedObject(const Value *V) {
540 if (isa<AllocaInst>(V))
541 return true;
542 if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V))
543 return true;
544 if (isNoAliasCall(V))
545 return true;
546 if (const Argument *A = dyn_cast<Argument>(V))
547 return A->hasNoAliasAttr() || A->hasByValAttr();
548 return false;
549 }
550
551 /// isIdentifiedFunctionLocal - Return true if V is umabigously identified
552 /// at the function-level. Different IdentifiedFunctionLocals can't alias.
553 /// Further, an IdentifiedFunctionLocal can not alias with any function
554 /// arguments other than itself, which is not necessarily true for
555 /// IdentifiedObjects.
556 bool llvm::isIdentifiedFunctionLocal(const Value *V)
557 {
558 return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V);
559 }