]> git.proxmox.com Git - rustc.git/blob - src/llvm/lib/Analysis/DependenceAnalysis.cpp
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / lib / Analysis / DependenceAnalysis.cpp
1 //===-- DependenceAnalysis.cpp - DA Implementation --------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // DependenceAnalysis is an LLVM pass that analyses dependences between memory
11 // accesses. Currently, it is an (incomplete) implementation of the approach
12 // described in
13 //
14 // Practical Dependence Testing
15 // Goff, Kennedy, Tseng
16 // PLDI 1991
17 //
18 // There's a single entry point that analyzes the dependence between a pair
19 // of memory references in a function, returning either NULL, for no dependence,
20 // or a more-or-less detailed description of the dependence between them.
21 //
22 // Currently, the implementation cannot propagate constraints between
23 // coupled RDIV subscripts and lacks a multi-subscript MIV test.
24 // Both of these are conservative weaknesses;
25 // that is, not a source of correctness problems.
26 //
27 // The implementation depends on the GEP instruction to differentiate
28 // subscripts. Since Clang linearizes some array subscripts, the dependence
29 // analysis is using SCEV->delinearize to recover the representation of multiple
30 // subscripts, and thus avoid the more expensive and less precise MIV tests. The
31 // delinearization is controlled by the flag -da-delinearize.
32 //
33 // We should pay some careful attention to the possibility of integer overflow
34 // in the implementation of the various tests. This could happen with Add,
35 // Subtract, or Multiply, with both APInt's and SCEV's.
36 //
37 // Some non-linear subscript pairs can be handled by the GCD test
38 // (and perhaps other tests).
39 // Should explore how often these things occur.
40 //
41 // Finally, it seems like certain test cases expose weaknesses in the SCEV
42 // simplification, especially in the handling of sign and zero extensions.
43 // It could be useful to spend time exploring these.
44 //
45 // Please note that this is work in progress and the interface is subject to
46 // change.
47 //
48 //===----------------------------------------------------------------------===//
49 // //
50 // In memory of Ken Kennedy, 1945 - 2007 //
51 // //
52 //===----------------------------------------------------------------------===//
53
54 #include "llvm/Analysis/DependenceAnalysis.h"
55 #include "llvm/ADT/Statistic.h"
56 #include "llvm/Analysis/AliasAnalysis.h"
57 #include "llvm/Analysis/LoopInfo.h"
58 #include "llvm/Analysis/ScalarEvolution.h"
59 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
60 #include "llvm/Analysis/ValueTracking.h"
61 #include "llvm/IR/InstIterator.h"
62 #include "llvm/IR/Operator.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/raw_ostream.h"
67
68 using namespace llvm;
69
70 #define DEBUG_TYPE "da"
71
72 //===----------------------------------------------------------------------===//
73 // statistics
74
75 STATISTIC(TotalArrayPairs, "Array pairs tested");
76 STATISTIC(SeparableSubscriptPairs, "Separable subscript pairs");
77 STATISTIC(CoupledSubscriptPairs, "Coupled subscript pairs");
78 STATISTIC(NonlinearSubscriptPairs, "Nonlinear subscript pairs");
79 STATISTIC(ZIVapplications, "ZIV applications");
80 STATISTIC(ZIVindependence, "ZIV independence");
81 STATISTIC(StrongSIVapplications, "Strong SIV applications");
82 STATISTIC(StrongSIVsuccesses, "Strong SIV successes");
83 STATISTIC(StrongSIVindependence, "Strong SIV independence");
84 STATISTIC(WeakCrossingSIVapplications, "Weak-Crossing SIV applications");
85 STATISTIC(WeakCrossingSIVsuccesses, "Weak-Crossing SIV successes");
86 STATISTIC(WeakCrossingSIVindependence, "Weak-Crossing SIV independence");
87 STATISTIC(ExactSIVapplications, "Exact SIV applications");
88 STATISTIC(ExactSIVsuccesses, "Exact SIV successes");
89 STATISTIC(ExactSIVindependence, "Exact SIV independence");
90 STATISTIC(WeakZeroSIVapplications, "Weak-Zero SIV applications");
91 STATISTIC(WeakZeroSIVsuccesses, "Weak-Zero SIV successes");
92 STATISTIC(WeakZeroSIVindependence, "Weak-Zero SIV independence");
93 STATISTIC(ExactRDIVapplications, "Exact RDIV applications");
94 STATISTIC(ExactRDIVindependence, "Exact RDIV independence");
95 STATISTIC(SymbolicRDIVapplications, "Symbolic RDIV applications");
96 STATISTIC(SymbolicRDIVindependence, "Symbolic RDIV independence");
97 STATISTIC(DeltaApplications, "Delta applications");
98 STATISTIC(DeltaSuccesses, "Delta successes");
99 STATISTIC(DeltaIndependence, "Delta independence");
100 STATISTIC(DeltaPropagations, "Delta propagations");
101 STATISTIC(GCDapplications, "GCD applications");
102 STATISTIC(GCDsuccesses, "GCD successes");
103 STATISTIC(GCDindependence, "GCD independence");
104 STATISTIC(BanerjeeApplications, "Banerjee applications");
105 STATISTIC(BanerjeeIndependence, "Banerjee independence");
106 STATISTIC(BanerjeeSuccesses, "Banerjee successes");
107
108 static cl::opt<bool>
109 Delinearize("da-delinearize", cl::init(false), cl::Hidden, cl::ZeroOrMore,
110 cl::desc("Try to delinearize array references."));
111
112 //===----------------------------------------------------------------------===//
113 // basics
114
115 INITIALIZE_PASS_BEGIN(DependenceAnalysis, "da",
116 "Dependence Analysis", true, true)
117 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
118 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
119 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
120 INITIALIZE_PASS_END(DependenceAnalysis, "da",
121 "Dependence Analysis", true, true)
122
123 char DependenceAnalysis::ID = 0;
124
125
126 FunctionPass *llvm::createDependenceAnalysisPass() {
127 return new DependenceAnalysis();
128 }
129
130
131 bool DependenceAnalysis::runOnFunction(Function &F) {
132 this->F = &F;
133 AA = &getAnalysis<AliasAnalysis>();
134 SE = &getAnalysis<ScalarEvolution>();
135 LI = &getAnalysis<LoopInfo>();
136 return false;
137 }
138
139
140 void DependenceAnalysis::releaseMemory() {
141 }
142
143
144 void DependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
145 AU.setPreservesAll();
146 AU.addRequiredTransitive<AliasAnalysis>();
147 AU.addRequiredTransitive<ScalarEvolution>();
148 AU.addRequiredTransitive<LoopInfo>();
149 }
150
151
152 // Used to test the dependence analyzer.
153 // Looks through the function, noting loads and stores.
154 // Calls depends() on every possible pair and prints out the result.
155 // Ignores all other instructions.
156 static
157 void dumpExampleDependence(raw_ostream &OS, Function *F,
158 DependenceAnalysis *DA) {
159 for (inst_iterator SrcI = inst_begin(F), SrcE = inst_end(F);
160 SrcI != SrcE; ++SrcI) {
161 if (isa<StoreInst>(*SrcI) || isa<LoadInst>(*SrcI)) {
162 for (inst_iterator DstI = SrcI, DstE = inst_end(F);
163 DstI != DstE; ++DstI) {
164 if (isa<StoreInst>(*DstI) || isa<LoadInst>(*DstI)) {
165 OS << "da analyze - ";
166 if (auto D = DA->depends(&*SrcI, &*DstI, true)) {
167 D->dump(OS);
168 for (unsigned Level = 1; Level <= D->getLevels(); Level++) {
169 if (D->isSplitable(Level)) {
170 OS << "da analyze - split level = " << Level;
171 OS << ", iteration = " << *DA->getSplitIteration(*D, Level);
172 OS << "!\n";
173 }
174 }
175 }
176 else
177 OS << "none!\n";
178 }
179 }
180 }
181 }
182 }
183
184
185 void DependenceAnalysis::print(raw_ostream &OS, const Module*) const {
186 dumpExampleDependence(OS, F, const_cast<DependenceAnalysis *>(this));
187 }
188
189 //===----------------------------------------------------------------------===//
190 // Dependence methods
191
192 // Returns true if this is an input dependence.
193 bool Dependence::isInput() const {
194 return Src->mayReadFromMemory() && Dst->mayReadFromMemory();
195 }
196
197
198 // Returns true if this is an output dependence.
199 bool Dependence::isOutput() const {
200 return Src->mayWriteToMemory() && Dst->mayWriteToMemory();
201 }
202
203
204 // Returns true if this is an flow (aka true) dependence.
205 bool Dependence::isFlow() const {
206 return Src->mayWriteToMemory() && Dst->mayReadFromMemory();
207 }
208
209
210 // Returns true if this is an anti dependence.
211 bool Dependence::isAnti() const {
212 return Src->mayReadFromMemory() && Dst->mayWriteToMemory();
213 }
214
215
216 // Returns true if a particular level is scalar; that is,
217 // if no subscript in the source or destination mention the induction
218 // variable associated with the loop at this level.
219 // Leave this out of line, so it will serve as a virtual method anchor
220 bool Dependence::isScalar(unsigned level) const {
221 return false;
222 }
223
224
225 //===----------------------------------------------------------------------===//
226 // FullDependence methods
227
228 FullDependence::FullDependence(Instruction *Source,
229 Instruction *Destination,
230 bool PossiblyLoopIndependent,
231 unsigned CommonLevels) :
232 Dependence(Source, Destination),
233 Levels(CommonLevels),
234 LoopIndependent(PossiblyLoopIndependent) {
235 Consistent = true;
236 DV = CommonLevels ? new DVEntry[CommonLevels] : nullptr;
237 }
238
239 // The rest are simple getters that hide the implementation.
240
241 // getDirection - Returns the direction associated with a particular level.
242 unsigned FullDependence::getDirection(unsigned Level) const {
243 assert(0 < Level && Level <= Levels && "Level out of range");
244 return DV[Level - 1].Direction;
245 }
246
247
248 // Returns the distance (or NULL) associated with a particular level.
249 const SCEV *FullDependence::getDistance(unsigned Level) const {
250 assert(0 < Level && Level <= Levels && "Level out of range");
251 return DV[Level - 1].Distance;
252 }
253
254
255 // Returns true if a particular level is scalar; that is,
256 // if no subscript in the source or destination mention the induction
257 // variable associated with the loop at this level.
258 bool FullDependence::isScalar(unsigned Level) const {
259 assert(0 < Level && Level <= Levels && "Level out of range");
260 return DV[Level - 1].Scalar;
261 }
262
263
264 // Returns true if peeling the first iteration from this loop
265 // will break this dependence.
266 bool FullDependence::isPeelFirst(unsigned Level) const {
267 assert(0 < Level && Level <= Levels && "Level out of range");
268 return DV[Level - 1].PeelFirst;
269 }
270
271
272 // Returns true if peeling the last iteration from this loop
273 // will break this dependence.
274 bool FullDependence::isPeelLast(unsigned Level) const {
275 assert(0 < Level && Level <= Levels && "Level out of range");
276 return DV[Level - 1].PeelLast;
277 }
278
279
280 // Returns true if splitting this loop will break the dependence.
281 bool FullDependence::isSplitable(unsigned Level) const {
282 assert(0 < Level && Level <= Levels && "Level out of range");
283 return DV[Level - 1].Splitable;
284 }
285
286
287 //===----------------------------------------------------------------------===//
288 // DependenceAnalysis::Constraint methods
289
290 // If constraint is a point <X, Y>, returns X.
291 // Otherwise assert.
292 const SCEV *DependenceAnalysis::Constraint::getX() const {
293 assert(Kind == Point && "Kind should be Point");
294 return A;
295 }
296
297
298 // If constraint is a point <X, Y>, returns Y.
299 // Otherwise assert.
300 const SCEV *DependenceAnalysis::Constraint::getY() const {
301 assert(Kind == Point && "Kind should be Point");
302 return B;
303 }
304
305
306 // If constraint is a line AX + BY = C, returns A.
307 // Otherwise assert.
308 const SCEV *DependenceAnalysis::Constraint::getA() const {
309 assert((Kind == Line || Kind == Distance) &&
310 "Kind should be Line (or Distance)");
311 return A;
312 }
313
314
315 // If constraint is a line AX + BY = C, returns B.
316 // Otherwise assert.
317 const SCEV *DependenceAnalysis::Constraint::getB() const {
318 assert((Kind == Line || Kind == Distance) &&
319 "Kind should be Line (or Distance)");
320 return B;
321 }
322
323
324 // If constraint is a line AX + BY = C, returns C.
325 // Otherwise assert.
326 const SCEV *DependenceAnalysis::Constraint::getC() const {
327 assert((Kind == Line || Kind == Distance) &&
328 "Kind should be Line (or Distance)");
329 return C;
330 }
331
332
333 // If constraint is a distance, returns D.
334 // Otherwise assert.
335 const SCEV *DependenceAnalysis::Constraint::getD() const {
336 assert(Kind == Distance && "Kind should be Distance");
337 return SE->getNegativeSCEV(C);
338 }
339
340
341 // Returns the loop associated with this constraint.
342 const Loop *DependenceAnalysis::Constraint::getAssociatedLoop() const {
343 assert((Kind == Distance || Kind == Line || Kind == Point) &&
344 "Kind should be Distance, Line, or Point");
345 return AssociatedLoop;
346 }
347
348
349 void DependenceAnalysis::Constraint::setPoint(const SCEV *X,
350 const SCEV *Y,
351 const Loop *CurLoop) {
352 Kind = Point;
353 A = X;
354 B = Y;
355 AssociatedLoop = CurLoop;
356 }
357
358
359 void DependenceAnalysis::Constraint::setLine(const SCEV *AA,
360 const SCEV *BB,
361 const SCEV *CC,
362 const Loop *CurLoop) {
363 Kind = Line;
364 A = AA;
365 B = BB;
366 C = CC;
367 AssociatedLoop = CurLoop;
368 }
369
370
371 void DependenceAnalysis::Constraint::setDistance(const SCEV *D,
372 const Loop *CurLoop) {
373 Kind = Distance;
374 A = SE->getConstant(D->getType(), 1);
375 B = SE->getNegativeSCEV(A);
376 C = SE->getNegativeSCEV(D);
377 AssociatedLoop = CurLoop;
378 }
379
380
381 void DependenceAnalysis::Constraint::setEmpty() {
382 Kind = Empty;
383 }
384
385
386 void DependenceAnalysis::Constraint::setAny(ScalarEvolution *NewSE) {
387 SE = NewSE;
388 Kind = Any;
389 }
390
391
392 // For debugging purposes. Dumps the constraint out to OS.
393 void DependenceAnalysis::Constraint::dump(raw_ostream &OS) const {
394 if (isEmpty())
395 OS << " Empty\n";
396 else if (isAny())
397 OS << " Any\n";
398 else if (isPoint())
399 OS << " Point is <" << *getX() << ", " << *getY() << ">\n";
400 else if (isDistance())
401 OS << " Distance is " << *getD() <<
402 " (" << *getA() << "*X + " << *getB() << "*Y = " << *getC() << ")\n";
403 else if (isLine())
404 OS << " Line is " << *getA() << "*X + " <<
405 *getB() << "*Y = " << *getC() << "\n";
406 else
407 llvm_unreachable("unknown constraint type in Constraint::dump");
408 }
409
410
411 // Updates X with the intersection
412 // of the Constraints X and Y. Returns true if X has changed.
413 // Corresponds to Figure 4 from the paper
414 //
415 // Practical Dependence Testing
416 // Goff, Kennedy, Tseng
417 // PLDI 1991
418 bool DependenceAnalysis::intersectConstraints(Constraint *X,
419 const Constraint *Y) {
420 ++DeltaApplications;
421 DEBUG(dbgs() << "\tintersect constraints\n");
422 DEBUG(dbgs() << "\t X ="; X->dump(dbgs()));
423 DEBUG(dbgs() << "\t Y ="; Y->dump(dbgs()));
424 assert(!Y->isPoint() && "Y must not be a Point");
425 if (X->isAny()) {
426 if (Y->isAny())
427 return false;
428 *X = *Y;
429 return true;
430 }
431 if (X->isEmpty())
432 return false;
433 if (Y->isEmpty()) {
434 X->setEmpty();
435 return true;
436 }
437
438 if (X->isDistance() && Y->isDistance()) {
439 DEBUG(dbgs() << "\t intersect 2 distances\n");
440 if (isKnownPredicate(CmpInst::ICMP_EQ, X->getD(), Y->getD()))
441 return false;
442 if (isKnownPredicate(CmpInst::ICMP_NE, X->getD(), Y->getD())) {
443 X->setEmpty();
444 ++DeltaSuccesses;
445 return true;
446 }
447 // Hmmm, interesting situation.
448 // I guess if either is constant, keep it and ignore the other.
449 if (isa<SCEVConstant>(Y->getD())) {
450 *X = *Y;
451 return true;
452 }
453 return false;
454 }
455
456 // At this point, the pseudo-code in Figure 4 of the paper
457 // checks if (X->isPoint() && Y->isPoint()).
458 // This case can't occur in our implementation,
459 // since a Point can only arise as the result of intersecting
460 // two Line constraints, and the right-hand value, Y, is never
461 // the result of an intersection.
462 assert(!(X->isPoint() && Y->isPoint()) &&
463 "We shouldn't ever see X->isPoint() && Y->isPoint()");
464
465 if (X->isLine() && Y->isLine()) {
466 DEBUG(dbgs() << "\t intersect 2 lines\n");
467 const SCEV *Prod1 = SE->getMulExpr(X->getA(), Y->getB());
468 const SCEV *Prod2 = SE->getMulExpr(X->getB(), Y->getA());
469 if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2)) {
470 // slopes are equal, so lines are parallel
471 DEBUG(dbgs() << "\t\tsame slope\n");
472 Prod1 = SE->getMulExpr(X->getC(), Y->getB());
473 Prod2 = SE->getMulExpr(X->getB(), Y->getC());
474 if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2))
475 return false;
476 if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
477 X->setEmpty();
478 ++DeltaSuccesses;
479 return true;
480 }
481 return false;
482 }
483 if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
484 // slopes differ, so lines intersect
485 DEBUG(dbgs() << "\t\tdifferent slopes\n");
486 const SCEV *C1B2 = SE->getMulExpr(X->getC(), Y->getB());
487 const SCEV *C1A2 = SE->getMulExpr(X->getC(), Y->getA());
488 const SCEV *C2B1 = SE->getMulExpr(Y->getC(), X->getB());
489 const SCEV *C2A1 = SE->getMulExpr(Y->getC(), X->getA());
490 const SCEV *A1B2 = SE->getMulExpr(X->getA(), Y->getB());
491 const SCEV *A2B1 = SE->getMulExpr(Y->getA(), X->getB());
492 const SCEVConstant *C1A2_C2A1 =
493 dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1A2, C2A1));
494 const SCEVConstant *C1B2_C2B1 =
495 dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1B2, C2B1));
496 const SCEVConstant *A1B2_A2B1 =
497 dyn_cast<SCEVConstant>(SE->getMinusSCEV(A1B2, A2B1));
498 const SCEVConstant *A2B1_A1B2 =
499 dyn_cast<SCEVConstant>(SE->getMinusSCEV(A2B1, A1B2));
500 if (!C1B2_C2B1 || !C1A2_C2A1 ||
501 !A1B2_A2B1 || !A2B1_A1B2)
502 return false;
503 APInt Xtop = C1B2_C2B1->getValue()->getValue();
504 APInt Xbot = A1B2_A2B1->getValue()->getValue();
505 APInt Ytop = C1A2_C2A1->getValue()->getValue();
506 APInt Ybot = A2B1_A1B2->getValue()->getValue();
507 DEBUG(dbgs() << "\t\tXtop = " << Xtop << "\n");
508 DEBUG(dbgs() << "\t\tXbot = " << Xbot << "\n");
509 DEBUG(dbgs() << "\t\tYtop = " << Ytop << "\n");
510 DEBUG(dbgs() << "\t\tYbot = " << Ybot << "\n");
511 APInt Xq = Xtop; // these need to be initialized, even
512 APInt Xr = Xtop; // though they're just going to be overwritten
513 APInt::sdivrem(Xtop, Xbot, Xq, Xr);
514 APInt Yq = Ytop;
515 APInt Yr = Ytop;
516 APInt::sdivrem(Ytop, Ybot, Yq, Yr);
517 if (Xr != 0 || Yr != 0) {
518 X->setEmpty();
519 ++DeltaSuccesses;
520 return true;
521 }
522 DEBUG(dbgs() << "\t\tX = " << Xq << ", Y = " << Yq << "\n");
523 if (Xq.slt(0) || Yq.slt(0)) {
524 X->setEmpty();
525 ++DeltaSuccesses;
526 return true;
527 }
528 if (const SCEVConstant *CUB =
529 collectConstantUpperBound(X->getAssociatedLoop(), Prod1->getType())) {
530 APInt UpperBound = CUB->getValue()->getValue();
531 DEBUG(dbgs() << "\t\tupper bound = " << UpperBound << "\n");
532 if (Xq.sgt(UpperBound) || Yq.sgt(UpperBound)) {
533 X->setEmpty();
534 ++DeltaSuccesses;
535 return true;
536 }
537 }
538 X->setPoint(SE->getConstant(Xq),
539 SE->getConstant(Yq),
540 X->getAssociatedLoop());
541 ++DeltaSuccesses;
542 return true;
543 }
544 return false;
545 }
546
547 // if (X->isLine() && Y->isPoint()) This case can't occur.
548 assert(!(X->isLine() && Y->isPoint()) && "This case should never occur");
549
550 if (X->isPoint() && Y->isLine()) {
551 DEBUG(dbgs() << "\t intersect Point and Line\n");
552 const SCEV *A1X1 = SE->getMulExpr(Y->getA(), X->getX());
553 const SCEV *B1Y1 = SE->getMulExpr(Y->getB(), X->getY());
554 const SCEV *Sum = SE->getAddExpr(A1X1, B1Y1);
555 if (isKnownPredicate(CmpInst::ICMP_EQ, Sum, Y->getC()))
556 return false;
557 if (isKnownPredicate(CmpInst::ICMP_NE, Sum, Y->getC())) {
558 X->setEmpty();
559 ++DeltaSuccesses;
560 return true;
561 }
562 return false;
563 }
564
565 llvm_unreachable("shouldn't reach the end of Constraint intersection");
566 return false;
567 }
568
569
570 //===----------------------------------------------------------------------===//
571 // DependenceAnalysis methods
572
573 // For debugging purposes. Dumps a dependence to OS.
574 void Dependence::dump(raw_ostream &OS) const {
575 bool Splitable = false;
576 if (isConfused())
577 OS << "confused";
578 else {
579 if (isConsistent())
580 OS << "consistent ";
581 if (isFlow())
582 OS << "flow";
583 else if (isOutput())
584 OS << "output";
585 else if (isAnti())
586 OS << "anti";
587 else if (isInput())
588 OS << "input";
589 unsigned Levels = getLevels();
590 OS << " [";
591 for (unsigned II = 1; II <= Levels; ++II) {
592 if (isSplitable(II))
593 Splitable = true;
594 if (isPeelFirst(II))
595 OS << 'p';
596 const SCEV *Distance = getDistance(II);
597 if (Distance)
598 OS << *Distance;
599 else if (isScalar(II))
600 OS << "S";
601 else {
602 unsigned Direction = getDirection(II);
603 if (Direction == DVEntry::ALL)
604 OS << "*";
605 else {
606 if (Direction & DVEntry::LT)
607 OS << "<";
608 if (Direction & DVEntry::EQ)
609 OS << "=";
610 if (Direction & DVEntry::GT)
611 OS << ">";
612 }
613 }
614 if (isPeelLast(II))
615 OS << 'p';
616 if (II < Levels)
617 OS << " ";
618 }
619 if (isLoopIndependent())
620 OS << "|<";
621 OS << "]";
622 if (Splitable)
623 OS << " splitable";
624 }
625 OS << "!\n";
626 }
627
628
629
630 static
631 AliasAnalysis::AliasResult underlyingObjectsAlias(AliasAnalysis *AA,
632 const Value *A,
633 const Value *B) {
634 const Value *AObj = GetUnderlyingObject(A);
635 const Value *BObj = GetUnderlyingObject(B);
636 return AA->alias(AObj, AA->getTypeStoreSize(AObj->getType()),
637 BObj, AA->getTypeStoreSize(BObj->getType()));
638 }
639
640
641 // Returns true if the load or store can be analyzed. Atomic and volatile
642 // operations have properties which this analysis does not understand.
643 static
644 bool isLoadOrStore(const Instruction *I) {
645 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
646 return LI->isUnordered();
647 else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
648 return SI->isUnordered();
649 return false;
650 }
651
652
653 static
654 Value *getPointerOperand(Instruction *I) {
655 if (LoadInst *LI = dyn_cast<LoadInst>(I))
656 return LI->getPointerOperand();
657 if (StoreInst *SI = dyn_cast<StoreInst>(I))
658 return SI->getPointerOperand();
659 llvm_unreachable("Value is not load or store instruction");
660 return nullptr;
661 }
662
663
664 // Examines the loop nesting of the Src and Dst
665 // instructions and establishes their shared loops. Sets the variables
666 // CommonLevels, SrcLevels, and MaxLevels.
667 // The source and destination instructions needn't be contained in the same
668 // loop. The routine establishNestingLevels finds the level of most deeply
669 // nested loop that contains them both, CommonLevels. An instruction that's
670 // not contained in a loop is at level = 0. MaxLevels is equal to the level
671 // of the source plus the level of the destination, minus CommonLevels.
672 // This lets us allocate vectors MaxLevels in length, with room for every
673 // distinct loop referenced in both the source and destination subscripts.
674 // The variable SrcLevels is the nesting depth of the source instruction.
675 // It's used to help calculate distinct loops referenced by the destination.
676 // Here's the map from loops to levels:
677 // 0 - unused
678 // 1 - outermost common loop
679 // ... - other common loops
680 // CommonLevels - innermost common loop
681 // ... - loops containing Src but not Dst
682 // SrcLevels - innermost loop containing Src but not Dst
683 // ... - loops containing Dst but not Src
684 // MaxLevels - innermost loops containing Dst but not Src
685 // Consider the follow code fragment:
686 // for (a = ...) {
687 // for (b = ...) {
688 // for (c = ...) {
689 // for (d = ...) {
690 // A[] = ...;
691 // }
692 // }
693 // for (e = ...) {
694 // for (f = ...) {
695 // for (g = ...) {
696 // ... = A[];
697 // }
698 // }
699 // }
700 // }
701 // }
702 // If we're looking at the possibility of a dependence between the store
703 // to A (the Src) and the load from A (the Dst), we'll note that they
704 // have 2 loops in common, so CommonLevels will equal 2 and the direction
705 // vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
706 // A map from loop names to loop numbers would look like
707 // a - 1
708 // b - 2 = CommonLevels
709 // c - 3
710 // d - 4 = SrcLevels
711 // e - 5
712 // f - 6
713 // g - 7 = MaxLevels
714 void DependenceAnalysis::establishNestingLevels(const Instruction *Src,
715 const Instruction *Dst) {
716 const BasicBlock *SrcBlock = Src->getParent();
717 const BasicBlock *DstBlock = Dst->getParent();
718 unsigned SrcLevel = LI->getLoopDepth(SrcBlock);
719 unsigned DstLevel = LI->getLoopDepth(DstBlock);
720 const Loop *SrcLoop = LI->getLoopFor(SrcBlock);
721 const Loop *DstLoop = LI->getLoopFor(DstBlock);
722 SrcLevels = SrcLevel;
723 MaxLevels = SrcLevel + DstLevel;
724 while (SrcLevel > DstLevel) {
725 SrcLoop = SrcLoop->getParentLoop();
726 SrcLevel--;
727 }
728 while (DstLevel > SrcLevel) {
729 DstLoop = DstLoop->getParentLoop();
730 DstLevel--;
731 }
732 while (SrcLoop != DstLoop) {
733 SrcLoop = SrcLoop->getParentLoop();
734 DstLoop = DstLoop->getParentLoop();
735 SrcLevel--;
736 }
737 CommonLevels = SrcLevel;
738 MaxLevels -= CommonLevels;
739 }
740
741
742 // Given one of the loops containing the source, return
743 // its level index in our numbering scheme.
744 unsigned DependenceAnalysis::mapSrcLoop(const Loop *SrcLoop) const {
745 return SrcLoop->getLoopDepth();
746 }
747
748
749 // Given one of the loops containing the destination,
750 // return its level index in our numbering scheme.
751 unsigned DependenceAnalysis::mapDstLoop(const Loop *DstLoop) const {
752 unsigned D = DstLoop->getLoopDepth();
753 if (D > CommonLevels)
754 return D - CommonLevels + SrcLevels;
755 else
756 return D;
757 }
758
759
760 // Returns true if Expression is loop invariant in LoopNest.
761 bool DependenceAnalysis::isLoopInvariant(const SCEV *Expression,
762 const Loop *LoopNest) const {
763 if (!LoopNest)
764 return true;
765 return SE->isLoopInvariant(Expression, LoopNest) &&
766 isLoopInvariant(Expression, LoopNest->getParentLoop());
767 }
768
769
770
771 // Finds the set of loops from the LoopNest that
772 // have a level <= CommonLevels and are referred to by the SCEV Expression.
773 void DependenceAnalysis::collectCommonLoops(const SCEV *Expression,
774 const Loop *LoopNest,
775 SmallBitVector &Loops) const {
776 while (LoopNest) {
777 unsigned Level = LoopNest->getLoopDepth();
778 if (Level <= CommonLevels && !SE->isLoopInvariant(Expression, LoopNest))
779 Loops.set(Level);
780 LoopNest = LoopNest->getParentLoop();
781 }
782 }
783
784 void DependenceAnalysis::unifySubscriptType(Subscript *Pair) {
785 const SCEV *Src = Pair->Src;
786 const SCEV *Dst = Pair->Dst;
787 IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
788 IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
789 if (SrcTy == nullptr || DstTy == nullptr) {
790 assert(SrcTy == DstTy && "This function only unify integer types and "
791 "expect Src and Dst share the same type "
792 "otherwise.");
793 return;
794 }
795 if (SrcTy->getBitWidth() > DstTy->getBitWidth()) {
796 // Sign-extend Dst to typeof(Src) if typeof(Src) is wider than typeof(Dst).
797 Pair->Dst = SE->getSignExtendExpr(Dst, SrcTy);
798 } else if (SrcTy->getBitWidth() < DstTy->getBitWidth()) {
799 // Sign-extend Src to typeof(Dst) if typeof(Dst) is wider than typeof(Src).
800 Pair->Src = SE->getSignExtendExpr(Src, DstTy);
801 }
802 }
803
804 // removeMatchingExtensions - Examines a subscript pair.
805 // If the source and destination are identically sign (or zero)
806 // extended, it strips off the extension in an effect to simplify
807 // the actual analysis.
808 void DependenceAnalysis::removeMatchingExtensions(Subscript *Pair) {
809 const SCEV *Src = Pair->Src;
810 const SCEV *Dst = Pair->Dst;
811 if ((isa<SCEVZeroExtendExpr>(Src) && isa<SCEVZeroExtendExpr>(Dst)) ||
812 (isa<SCEVSignExtendExpr>(Src) && isa<SCEVSignExtendExpr>(Dst))) {
813 const SCEVCastExpr *SrcCast = cast<SCEVCastExpr>(Src);
814 const SCEVCastExpr *DstCast = cast<SCEVCastExpr>(Dst);
815 const SCEV *SrcCastOp = SrcCast->getOperand();
816 const SCEV *DstCastOp = DstCast->getOperand();
817 if (SrcCastOp->getType() == DstCastOp->getType()) {
818 Pair->Src = SrcCastOp;
819 Pair->Dst = DstCastOp;
820 }
821 }
822 }
823
824
825 // Examine the scev and return true iff it's linear.
826 // Collect any loops mentioned in the set of "Loops".
827 bool DependenceAnalysis::checkSrcSubscript(const SCEV *Src,
828 const Loop *LoopNest,
829 SmallBitVector &Loops) {
830 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Src);
831 if (!AddRec)
832 return isLoopInvariant(Src, LoopNest);
833 const SCEV *Start = AddRec->getStart();
834 const SCEV *Step = AddRec->getStepRecurrence(*SE);
835 if (!isLoopInvariant(Step, LoopNest))
836 return false;
837 Loops.set(mapSrcLoop(AddRec->getLoop()));
838 return checkSrcSubscript(Start, LoopNest, Loops);
839 }
840
841
842
843 // Examine the scev and return true iff it's linear.
844 // Collect any loops mentioned in the set of "Loops".
845 bool DependenceAnalysis::checkDstSubscript(const SCEV *Dst,
846 const Loop *LoopNest,
847 SmallBitVector &Loops) {
848 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Dst);
849 if (!AddRec)
850 return isLoopInvariant(Dst, LoopNest);
851 const SCEV *Start = AddRec->getStart();
852 const SCEV *Step = AddRec->getStepRecurrence(*SE);
853 if (!isLoopInvariant(Step, LoopNest))
854 return false;
855 Loops.set(mapDstLoop(AddRec->getLoop()));
856 return checkDstSubscript(Start, LoopNest, Loops);
857 }
858
859
860 // Examines the subscript pair (the Src and Dst SCEVs)
861 // and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
862 // Collects the associated loops in a set.
863 DependenceAnalysis::Subscript::ClassificationKind
864 DependenceAnalysis::classifyPair(const SCEV *Src, const Loop *SrcLoopNest,
865 const SCEV *Dst, const Loop *DstLoopNest,
866 SmallBitVector &Loops) {
867 SmallBitVector SrcLoops(MaxLevels + 1);
868 SmallBitVector DstLoops(MaxLevels + 1);
869 if (!checkSrcSubscript(Src, SrcLoopNest, SrcLoops))
870 return Subscript::NonLinear;
871 if (!checkDstSubscript(Dst, DstLoopNest, DstLoops))
872 return Subscript::NonLinear;
873 Loops = SrcLoops;
874 Loops |= DstLoops;
875 unsigned N = Loops.count();
876 if (N == 0)
877 return Subscript::ZIV;
878 if (N == 1)
879 return Subscript::SIV;
880 if (N == 2 && (SrcLoops.count() == 0 ||
881 DstLoops.count() == 0 ||
882 (SrcLoops.count() == 1 && DstLoops.count() == 1)))
883 return Subscript::RDIV;
884 return Subscript::MIV;
885 }
886
887
888 // A wrapper around SCEV::isKnownPredicate.
889 // Looks for cases where we're interested in comparing for equality.
890 // If both X and Y have been identically sign or zero extended,
891 // it strips off the (confusing) extensions before invoking
892 // SCEV::isKnownPredicate. Perhaps, someday, the ScalarEvolution package
893 // will be similarly updated.
894 //
895 // If SCEV::isKnownPredicate can't prove the predicate,
896 // we try simple subtraction, which seems to help in some cases
897 // involving symbolics.
898 bool DependenceAnalysis::isKnownPredicate(ICmpInst::Predicate Pred,
899 const SCEV *X,
900 const SCEV *Y) const {
901 if (Pred == CmpInst::ICMP_EQ ||
902 Pred == CmpInst::ICMP_NE) {
903 if ((isa<SCEVSignExtendExpr>(X) &&
904 isa<SCEVSignExtendExpr>(Y)) ||
905 (isa<SCEVZeroExtendExpr>(X) &&
906 isa<SCEVZeroExtendExpr>(Y))) {
907 const SCEVCastExpr *CX = cast<SCEVCastExpr>(X);
908 const SCEVCastExpr *CY = cast<SCEVCastExpr>(Y);
909 const SCEV *Xop = CX->getOperand();
910 const SCEV *Yop = CY->getOperand();
911 if (Xop->getType() == Yop->getType()) {
912 X = Xop;
913 Y = Yop;
914 }
915 }
916 }
917 if (SE->isKnownPredicate(Pred, X, Y))
918 return true;
919 // If SE->isKnownPredicate can't prove the condition,
920 // we try the brute-force approach of subtracting
921 // and testing the difference.
922 // By testing with SE->isKnownPredicate first, we avoid
923 // the possibility of overflow when the arguments are constants.
924 const SCEV *Delta = SE->getMinusSCEV(X, Y);
925 switch (Pred) {
926 case CmpInst::ICMP_EQ:
927 return Delta->isZero();
928 case CmpInst::ICMP_NE:
929 return SE->isKnownNonZero(Delta);
930 case CmpInst::ICMP_SGE:
931 return SE->isKnownNonNegative(Delta);
932 case CmpInst::ICMP_SLE:
933 return SE->isKnownNonPositive(Delta);
934 case CmpInst::ICMP_SGT:
935 return SE->isKnownPositive(Delta);
936 case CmpInst::ICMP_SLT:
937 return SE->isKnownNegative(Delta);
938 default:
939 llvm_unreachable("unexpected predicate in isKnownPredicate");
940 }
941 }
942
943
944 // All subscripts are all the same type.
945 // Loop bound may be smaller (e.g., a char).
946 // Should zero extend loop bound, since it's always >= 0.
947 // This routine collects upper bound and extends if needed.
948 // Return null if no bound available.
949 const SCEV *DependenceAnalysis::collectUpperBound(const Loop *L,
950 Type *T) const {
951 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
952 const SCEV *UB = SE->getBackedgeTakenCount(L);
953 return SE->getNoopOrZeroExtend(UB, T);
954 }
955 return nullptr;
956 }
957
958
959 // Calls collectUpperBound(), then attempts to cast it to SCEVConstant.
960 // If the cast fails, returns NULL.
961 const SCEVConstant *DependenceAnalysis::collectConstantUpperBound(const Loop *L,
962 Type *T
963 ) const {
964 if (const SCEV *UB = collectUpperBound(L, T))
965 return dyn_cast<SCEVConstant>(UB);
966 return nullptr;
967 }
968
969
970 // testZIV -
971 // When we have a pair of subscripts of the form [c1] and [c2],
972 // where c1 and c2 are both loop invariant, we attack it using
973 // the ZIV test. Basically, we test by comparing the two values,
974 // but there are actually three possible results:
975 // 1) the values are equal, so there's a dependence
976 // 2) the values are different, so there's no dependence
977 // 3) the values might be equal, so we have to assume a dependence.
978 //
979 // Return true if dependence disproved.
980 bool DependenceAnalysis::testZIV(const SCEV *Src,
981 const SCEV *Dst,
982 FullDependence &Result) const {
983 DEBUG(dbgs() << " src = " << *Src << "\n");
984 DEBUG(dbgs() << " dst = " << *Dst << "\n");
985 ++ZIVapplications;
986 if (isKnownPredicate(CmpInst::ICMP_EQ, Src, Dst)) {
987 DEBUG(dbgs() << " provably dependent\n");
988 return false; // provably dependent
989 }
990 if (isKnownPredicate(CmpInst::ICMP_NE, Src, Dst)) {
991 DEBUG(dbgs() << " provably independent\n");
992 ++ZIVindependence;
993 return true; // provably independent
994 }
995 DEBUG(dbgs() << " possibly dependent\n");
996 Result.Consistent = false;
997 return false; // possibly dependent
998 }
999
1000
1001 // strongSIVtest -
1002 // From the paper, Practical Dependence Testing, Section 4.2.1
1003 //
1004 // When we have a pair of subscripts of the form [c1 + a*i] and [c2 + a*i],
1005 // where i is an induction variable, c1 and c2 are loop invariant,
1006 // and a is a constant, we can solve it exactly using the Strong SIV test.
1007 //
1008 // Can prove independence. Failing that, can compute distance (and direction).
1009 // In the presence of symbolic terms, we can sometimes make progress.
1010 //
1011 // If there's a dependence,
1012 //
1013 // c1 + a*i = c2 + a*i'
1014 //
1015 // The dependence distance is
1016 //
1017 // d = i' - i = (c1 - c2)/a
1018 //
1019 // A dependence only exists if d is an integer and abs(d) <= U, where U is the
1020 // loop's upper bound. If a dependence exists, the dependence direction is
1021 // defined as
1022 //
1023 // { < if d > 0
1024 // direction = { = if d = 0
1025 // { > if d < 0
1026 //
1027 // Return true if dependence disproved.
1028 bool DependenceAnalysis::strongSIVtest(const SCEV *Coeff,
1029 const SCEV *SrcConst,
1030 const SCEV *DstConst,
1031 const Loop *CurLoop,
1032 unsigned Level,
1033 FullDependence &Result,
1034 Constraint &NewConstraint) const {
1035 DEBUG(dbgs() << "\tStrong SIV test\n");
1036 DEBUG(dbgs() << "\t Coeff = " << *Coeff);
1037 DEBUG(dbgs() << ", " << *Coeff->getType() << "\n");
1038 DEBUG(dbgs() << "\t SrcConst = " << *SrcConst);
1039 DEBUG(dbgs() << ", " << *SrcConst->getType() << "\n");
1040 DEBUG(dbgs() << "\t DstConst = " << *DstConst);
1041 DEBUG(dbgs() << ", " << *DstConst->getType() << "\n");
1042 ++StrongSIVapplications;
1043 assert(0 < Level && Level <= CommonLevels && "level out of range");
1044 Level--;
1045
1046 const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
1047 DEBUG(dbgs() << "\t Delta = " << *Delta);
1048 DEBUG(dbgs() << ", " << *Delta->getType() << "\n");
1049
1050 // check that |Delta| < iteration count
1051 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1052 DEBUG(dbgs() << "\t UpperBound = " << *UpperBound);
1053 DEBUG(dbgs() << ", " << *UpperBound->getType() << "\n");
1054 const SCEV *AbsDelta =
1055 SE->isKnownNonNegative(Delta) ? Delta : SE->getNegativeSCEV(Delta);
1056 const SCEV *AbsCoeff =
1057 SE->isKnownNonNegative(Coeff) ? Coeff : SE->getNegativeSCEV(Coeff);
1058 const SCEV *Product = SE->getMulExpr(UpperBound, AbsCoeff);
1059 if (isKnownPredicate(CmpInst::ICMP_SGT, AbsDelta, Product)) {
1060 // Distance greater than trip count - no dependence
1061 ++StrongSIVindependence;
1062 ++StrongSIVsuccesses;
1063 return true;
1064 }
1065 }
1066
1067 // Can we compute distance?
1068 if (isa<SCEVConstant>(Delta) && isa<SCEVConstant>(Coeff)) {
1069 APInt ConstDelta = cast<SCEVConstant>(Delta)->getValue()->getValue();
1070 APInt ConstCoeff = cast<SCEVConstant>(Coeff)->getValue()->getValue();
1071 APInt Distance = ConstDelta; // these need to be initialized
1072 APInt Remainder = ConstDelta;
1073 APInt::sdivrem(ConstDelta, ConstCoeff, Distance, Remainder);
1074 DEBUG(dbgs() << "\t Distance = " << Distance << "\n");
1075 DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n");
1076 // Make sure Coeff divides Delta exactly
1077 if (Remainder != 0) {
1078 // Coeff doesn't divide Distance, no dependence
1079 ++StrongSIVindependence;
1080 ++StrongSIVsuccesses;
1081 return true;
1082 }
1083 Result.DV[Level].Distance = SE->getConstant(Distance);
1084 NewConstraint.setDistance(SE->getConstant(Distance), CurLoop);
1085 if (Distance.sgt(0))
1086 Result.DV[Level].Direction &= Dependence::DVEntry::LT;
1087 else if (Distance.slt(0))
1088 Result.DV[Level].Direction &= Dependence::DVEntry::GT;
1089 else
1090 Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
1091 ++StrongSIVsuccesses;
1092 }
1093 else if (Delta->isZero()) {
1094 // since 0/X == 0
1095 Result.DV[Level].Distance = Delta;
1096 NewConstraint.setDistance(Delta, CurLoop);
1097 Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
1098 ++StrongSIVsuccesses;
1099 }
1100 else {
1101 if (Coeff->isOne()) {
1102 DEBUG(dbgs() << "\t Distance = " << *Delta << "\n");
1103 Result.DV[Level].Distance = Delta; // since X/1 == X
1104 NewConstraint.setDistance(Delta, CurLoop);
1105 }
1106 else {
1107 Result.Consistent = false;
1108 NewConstraint.setLine(Coeff,
1109 SE->getNegativeSCEV(Coeff),
1110 SE->getNegativeSCEV(Delta), CurLoop);
1111 }
1112
1113 // maybe we can get a useful direction
1114 bool DeltaMaybeZero = !SE->isKnownNonZero(Delta);
1115 bool DeltaMaybePositive = !SE->isKnownNonPositive(Delta);
1116 bool DeltaMaybeNegative = !SE->isKnownNonNegative(Delta);
1117 bool CoeffMaybePositive = !SE->isKnownNonPositive(Coeff);
1118 bool CoeffMaybeNegative = !SE->isKnownNonNegative(Coeff);
1119 // The double negatives above are confusing.
1120 // It helps to read !SE->isKnownNonZero(Delta)
1121 // as "Delta might be Zero"
1122 unsigned NewDirection = Dependence::DVEntry::NONE;
1123 if ((DeltaMaybePositive && CoeffMaybePositive) ||
1124 (DeltaMaybeNegative && CoeffMaybeNegative))
1125 NewDirection = Dependence::DVEntry::LT;
1126 if (DeltaMaybeZero)
1127 NewDirection |= Dependence::DVEntry::EQ;
1128 if ((DeltaMaybeNegative && CoeffMaybePositive) ||
1129 (DeltaMaybePositive && CoeffMaybeNegative))
1130 NewDirection |= Dependence::DVEntry::GT;
1131 if (NewDirection < Result.DV[Level].Direction)
1132 ++StrongSIVsuccesses;
1133 Result.DV[Level].Direction &= NewDirection;
1134 }
1135 return false;
1136 }
1137
1138
1139 // weakCrossingSIVtest -
1140 // From the paper, Practical Dependence Testing, Section 4.2.2
1141 //
1142 // When we have a pair of subscripts of the form [c1 + a*i] and [c2 - a*i],
1143 // where i is an induction variable, c1 and c2 are loop invariant,
1144 // and a is a constant, we can solve it exactly using the
1145 // Weak-Crossing SIV test.
1146 //
1147 // Given c1 + a*i = c2 - a*i', we can look for the intersection of
1148 // the two lines, where i = i', yielding
1149 //
1150 // c1 + a*i = c2 - a*i
1151 // 2a*i = c2 - c1
1152 // i = (c2 - c1)/2a
1153 //
1154 // If i < 0, there is no dependence.
1155 // If i > upperbound, there is no dependence.
1156 // If i = 0 (i.e., if c1 = c2), there's a dependence with distance = 0.
1157 // If i = upperbound, there's a dependence with distance = 0.
1158 // If i is integral, there's a dependence (all directions).
1159 // If the non-integer part = 1/2, there's a dependence (<> directions).
1160 // Otherwise, there's no dependence.
1161 //
1162 // Can prove independence. Failing that,
1163 // can sometimes refine the directions.
1164 // Can determine iteration for splitting.
1165 //
1166 // Return true if dependence disproved.
1167 bool DependenceAnalysis::weakCrossingSIVtest(const SCEV *Coeff,
1168 const SCEV *SrcConst,
1169 const SCEV *DstConst,
1170 const Loop *CurLoop,
1171 unsigned Level,
1172 FullDependence &Result,
1173 Constraint &NewConstraint,
1174 const SCEV *&SplitIter) const {
1175 DEBUG(dbgs() << "\tWeak-Crossing SIV test\n");
1176 DEBUG(dbgs() << "\t Coeff = " << *Coeff << "\n");
1177 DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1178 DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1179 ++WeakCrossingSIVapplications;
1180 assert(0 < Level && Level <= CommonLevels && "Level out of range");
1181 Level--;
1182 Result.Consistent = false;
1183 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1184 DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1185 NewConstraint.setLine(Coeff, Coeff, Delta, CurLoop);
1186 if (Delta->isZero()) {
1187 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
1188 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
1189 ++WeakCrossingSIVsuccesses;
1190 if (!Result.DV[Level].Direction) {
1191 ++WeakCrossingSIVindependence;
1192 return true;
1193 }
1194 Result.DV[Level].Distance = Delta; // = 0
1195 return false;
1196 }
1197 const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(Coeff);
1198 if (!ConstCoeff)
1199 return false;
1200
1201 Result.DV[Level].Splitable = true;
1202 if (SE->isKnownNegative(ConstCoeff)) {
1203 ConstCoeff = dyn_cast<SCEVConstant>(SE->getNegativeSCEV(ConstCoeff));
1204 assert(ConstCoeff &&
1205 "dynamic cast of negative of ConstCoeff should yield constant");
1206 Delta = SE->getNegativeSCEV(Delta);
1207 }
1208 assert(SE->isKnownPositive(ConstCoeff) && "ConstCoeff should be positive");
1209
1210 // compute SplitIter for use by DependenceAnalysis::getSplitIteration()
1211 SplitIter =
1212 SE->getUDivExpr(SE->getSMaxExpr(SE->getConstant(Delta->getType(), 0),
1213 Delta),
1214 SE->getMulExpr(SE->getConstant(Delta->getType(), 2),
1215 ConstCoeff));
1216 DEBUG(dbgs() << "\t Split iter = " << *SplitIter << "\n");
1217
1218 const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1219 if (!ConstDelta)
1220 return false;
1221
1222 // We're certain that ConstCoeff > 0; therefore,
1223 // if Delta < 0, then no dependence.
1224 DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1225 DEBUG(dbgs() << "\t ConstCoeff = " << *ConstCoeff << "\n");
1226 if (SE->isKnownNegative(Delta)) {
1227 // No dependence, Delta < 0
1228 ++WeakCrossingSIVindependence;
1229 ++WeakCrossingSIVsuccesses;
1230 return true;
1231 }
1232
1233 // We're certain that Delta > 0 and ConstCoeff > 0.
1234 // Check Delta/(2*ConstCoeff) against upper loop bound
1235 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1236 DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n");
1237 const SCEV *ConstantTwo = SE->getConstant(UpperBound->getType(), 2);
1238 const SCEV *ML = SE->getMulExpr(SE->getMulExpr(ConstCoeff, UpperBound),
1239 ConstantTwo);
1240 DEBUG(dbgs() << "\t ML = " << *ML << "\n");
1241 if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, ML)) {
1242 // Delta too big, no dependence
1243 ++WeakCrossingSIVindependence;
1244 ++WeakCrossingSIVsuccesses;
1245 return true;
1246 }
1247 if (isKnownPredicate(CmpInst::ICMP_EQ, Delta, ML)) {
1248 // i = i' = UB
1249 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
1250 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
1251 ++WeakCrossingSIVsuccesses;
1252 if (!Result.DV[Level].Direction) {
1253 ++WeakCrossingSIVindependence;
1254 return true;
1255 }
1256 Result.DV[Level].Splitable = false;
1257 Result.DV[Level].Distance = SE->getConstant(Delta->getType(), 0);
1258 return false;
1259 }
1260 }
1261
1262 // check that Coeff divides Delta
1263 APInt APDelta = ConstDelta->getValue()->getValue();
1264 APInt APCoeff = ConstCoeff->getValue()->getValue();
1265 APInt Distance = APDelta; // these need to be initialzed
1266 APInt Remainder = APDelta;
1267 APInt::sdivrem(APDelta, APCoeff, Distance, Remainder);
1268 DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n");
1269 if (Remainder != 0) {
1270 // Coeff doesn't divide Delta, no dependence
1271 ++WeakCrossingSIVindependence;
1272 ++WeakCrossingSIVsuccesses;
1273 return true;
1274 }
1275 DEBUG(dbgs() << "\t Distance = " << Distance << "\n");
1276
1277 // if 2*Coeff doesn't divide Delta, then the equal direction isn't possible
1278 APInt Two = APInt(Distance.getBitWidth(), 2, true);
1279 Remainder = Distance.srem(Two);
1280 DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n");
1281 if (Remainder != 0) {
1282 // Equal direction isn't possible
1283 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::EQ);
1284 ++WeakCrossingSIVsuccesses;
1285 }
1286 return false;
1287 }
1288
1289
1290 // Kirch's algorithm, from
1291 //
1292 // Optimizing Supercompilers for Supercomputers
1293 // Michael Wolfe
1294 // MIT Press, 1989
1295 //
1296 // Program 2.1, page 29.
1297 // Computes the GCD of AM and BM.
1298 // Also finds a solution to the equation ax - by = gcd(a, b).
1299 // Returns true if dependence disproved; i.e., gcd does not divide Delta.
1300 static
1301 bool findGCD(unsigned Bits, APInt AM, APInt BM, APInt Delta,
1302 APInt &G, APInt &X, APInt &Y) {
1303 APInt A0(Bits, 1, true), A1(Bits, 0, true);
1304 APInt B0(Bits, 0, true), B1(Bits, 1, true);
1305 APInt G0 = AM.abs();
1306 APInt G1 = BM.abs();
1307 APInt Q = G0; // these need to be initialized
1308 APInt R = G0;
1309 APInt::sdivrem(G0, G1, Q, R);
1310 while (R != 0) {
1311 APInt A2 = A0 - Q*A1; A0 = A1; A1 = A2;
1312 APInt B2 = B0 - Q*B1; B0 = B1; B1 = B2;
1313 G0 = G1; G1 = R;
1314 APInt::sdivrem(G0, G1, Q, R);
1315 }
1316 G = G1;
1317 DEBUG(dbgs() << "\t GCD = " << G << "\n");
1318 X = AM.slt(0) ? -A1 : A1;
1319 Y = BM.slt(0) ? B1 : -B1;
1320
1321 // make sure gcd divides Delta
1322 R = Delta.srem(G);
1323 if (R != 0)
1324 return true; // gcd doesn't divide Delta, no dependence
1325 Q = Delta.sdiv(G);
1326 X *= Q;
1327 Y *= Q;
1328 return false;
1329 }
1330
1331
1332 static
1333 APInt floorOfQuotient(APInt A, APInt B) {
1334 APInt Q = A; // these need to be initialized
1335 APInt R = A;
1336 APInt::sdivrem(A, B, Q, R);
1337 if (R == 0)
1338 return Q;
1339 if ((A.sgt(0) && B.sgt(0)) ||
1340 (A.slt(0) && B.slt(0)))
1341 return Q;
1342 else
1343 return Q - 1;
1344 }
1345
1346
1347 static
1348 APInt ceilingOfQuotient(APInt A, APInt B) {
1349 APInt Q = A; // these need to be initialized
1350 APInt R = A;
1351 APInt::sdivrem(A, B, Q, R);
1352 if (R == 0)
1353 return Q;
1354 if ((A.sgt(0) && B.sgt(0)) ||
1355 (A.slt(0) && B.slt(0)))
1356 return Q + 1;
1357 else
1358 return Q;
1359 }
1360
1361
1362 static
1363 APInt maxAPInt(APInt A, APInt B) {
1364 return A.sgt(B) ? A : B;
1365 }
1366
1367
1368 static
1369 APInt minAPInt(APInt A, APInt B) {
1370 return A.slt(B) ? A : B;
1371 }
1372
1373
1374 // exactSIVtest -
1375 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*i],
1376 // where i is an induction variable, c1 and c2 are loop invariant, and a1
1377 // and a2 are constant, we can solve it exactly using an algorithm developed
1378 // by Banerjee and Wolfe. See Section 2.5.3 in
1379 //
1380 // Optimizing Supercompilers for Supercomputers
1381 // Michael Wolfe
1382 // MIT Press, 1989
1383 //
1384 // It's slower than the specialized tests (strong SIV, weak-zero SIV, etc),
1385 // so use them if possible. They're also a bit better with symbolics and,
1386 // in the case of the strong SIV test, can compute Distances.
1387 //
1388 // Return true if dependence disproved.
1389 bool DependenceAnalysis::exactSIVtest(const SCEV *SrcCoeff,
1390 const SCEV *DstCoeff,
1391 const SCEV *SrcConst,
1392 const SCEV *DstConst,
1393 const Loop *CurLoop,
1394 unsigned Level,
1395 FullDependence &Result,
1396 Constraint &NewConstraint) const {
1397 DEBUG(dbgs() << "\tExact SIV test\n");
1398 DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << " = AM\n");
1399 DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << " = BM\n");
1400 DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1401 DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1402 ++ExactSIVapplications;
1403 assert(0 < Level && Level <= CommonLevels && "Level out of range");
1404 Level--;
1405 Result.Consistent = false;
1406 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1407 DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1408 NewConstraint.setLine(SrcCoeff, SE->getNegativeSCEV(DstCoeff),
1409 Delta, CurLoop);
1410 const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1411 const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1412 const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1413 if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
1414 return false;
1415
1416 // find gcd
1417 APInt G, X, Y;
1418 APInt AM = ConstSrcCoeff->getValue()->getValue();
1419 APInt BM = ConstDstCoeff->getValue()->getValue();
1420 unsigned Bits = AM.getBitWidth();
1421 if (findGCD(Bits, AM, BM, ConstDelta->getValue()->getValue(), G, X, Y)) {
1422 // gcd doesn't divide Delta, no dependence
1423 ++ExactSIVindependence;
1424 ++ExactSIVsuccesses;
1425 return true;
1426 }
1427
1428 DEBUG(dbgs() << "\t X = " << X << ", Y = " << Y << "\n");
1429
1430 // since SCEV construction normalizes, LM = 0
1431 APInt UM(Bits, 1, true);
1432 bool UMvalid = false;
1433 // UM is perhaps unavailable, let's check
1434 if (const SCEVConstant *CUB =
1435 collectConstantUpperBound(CurLoop, Delta->getType())) {
1436 UM = CUB->getValue()->getValue();
1437 DEBUG(dbgs() << "\t UM = " << UM << "\n");
1438 UMvalid = true;
1439 }
1440
1441 APInt TU(APInt::getSignedMaxValue(Bits));
1442 APInt TL(APInt::getSignedMinValue(Bits));
1443
1444 // test(BM/G, LM-X) and test(-BM/G, X-UM)
1445 APInt TMUL = BM.sdiv(G);
1446 if (TMUL.sgt(0)) {
1447 TL = maxAPInt(TL, ceilingOfQuotient(-X, TMUL));
1448 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1449 if (UMvalid) {
1450 TU = minAPInt(TU, floorOfQuotient(UM - X, TMUL));
1451 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1452 }
1453 }
1454 else {
1455 TU = minAPInt(TU, floorOfQuotient(-X, TMUL));
1456 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1457 if (UMvalid) {
1458 TL = maxAPInt(TL, ceilingOfQuotient(UM - X, TMUL));
1459 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1460 }
1461 }
1462
1463 // test(AM/G, LM-Y) and test(-AM/G, Y-UM)
1464 TMUL = AM.sdiv(G);
1465 if (TMUL.sgt(0)) {
1466 TL = maxAPInt(TL, ceilingOfQuotient(-Y, TMUL));
1467 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1468 if (UMvalid) {
1469 TU = minAPInt(TU, floorOfQuotient(UM - Y, TMUL));
1470 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1471 }
1472 }
1473 else {
1474 TU = minAPInt(TU, floorOfQuotient(-Y, TMUL));
1475 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1476 if (UMvalid) {
1477 TL = maxAPInt(TL, ceilingOfQuotient(UM - Y, TMUL));
1478 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1479 }
1480 }
1481 if (TL.sgt(TU)) {
1482 ++ExactSIVindependence;
1483 ++ExactSIVsuccesses;
1484 return true;
1485 }
1486
1487 // explore directions
1488 unsigned NewDirection = Dependence::DVEntry::NONE;
1489
1490 // less than
1491 APInt SaveTU(TU); // save these
1492 APInt SaveTL(TL);
1493 DEBUG(dbgs() << "\t exploring LT direction\n");
1494 TMUL = AM - BM;
1495 if (TMUL.sgt(0)) {
1496 TL = maxAPInt(TL, ceilingOfQuotient(X - Y + 1, TMUL));
1497 DEBUG(dbgs() << "\t\t TL = " << TL << "\n");
1498 }
1499 else {
1500 TU = minAPInt(TU, floorOfQuotient(X - Y + 1, TMUL));
1501 DEBUG(dbgs() << "\t\t TU = " << TU << "\n");
1502 }
1503 if (TL.sle(TU)) {
1504 NewDirection |= Dependence::DVEntry::LT;
1505 ++ExactSIVsuccesses;
1506 }
1507
1508 // equal
1509 TU = SaveTU; // restore
1510 TL = SaveTL;
1511 DEBUG(dbgs() << "\t exploring EQ direction\n");
1512 if (TMUL.sgt(0)) {
1513 TL = maxAPInt(TL, ceilingOfQuotient(X - Y, TMUL));
1514 DEBUG(dbgs() << "\t\t TL = " << TL << "\n");
1515 }
1516 else {
1517 TU = minAPInt(TU, floorOfQuotient(X - Y, TMUL));
1518 DEBUG(dbgs() << "\t\t TU = " << TU << "\n");
1519 }
1520 TMUL = BM - AM;
1521 if (TMUL.sgt(0)) {
1522 TL = maxAPInt(TL, ceilingOfQuotient(Y - X, TMUL));
1523 DEBUG(dbgs() << "\t\t TL = " << TL << "\n");
1524 }
1525 else {
1526 TU = minAPInt(TU, floorOfQuotient(Y - X, TMUL));
1527 DEBUG(dbgs() << "\t\t TU = " << TU << "\n");
1528 }
1529 if (TL.sle(TU)) {
1530 NewDirection |= Dependence::DVEntry::EQ;
1531 ++ExactSIVsuccesses;
1532 }
1533
1534 // greater than
1535 TU = SaveTU; // restore
1536 TL = SaveTL;
1537 DEBUG(dbgs() << "\t exploring GT direction\n");
1538 if (TMUL.sgt(0)) {
1539 TL = maxAPInt(TL, ceilingOfQuotient(Y - X + 1, TMUL));
1540 DEBUG(dbgs() << "\t\t TL = " << TL << "\n");
1541 }
1542 else {
1543 TU = minAPInt(TU, floorOfQuotient(Y - X + 1, TMUL));
1544 DEBUG(dbgs() << "\t\t TU = " << TU << "\n");
1545 }
1546 if (TL.sle(TU)) {
1547 NewDirection |= Dependence::DVEntry::GT;
1548 ++ExactSIVsuccesses;
1549 }
1550
1551 // finished
1552 Result.DV[Level].Direction &= NewDirection;
1553 if (Result.DV[Level].Direction == Dependence::DVEntry::NONE)
1554 ++ExactSIVindependence;
1555 return Result.DV[Level].Direction == Dependence::DVEntry::NONE;
1556 }
1557
1558
1559
1560 // Return true if the divisor evenly divides the dividend.
1561 static
1562 bool isRemainderZero(const SCEVConstant *Dividend,
1563 const SCEVConstant *Divisor) {
1564 APInt ConstDividend = Dividend->getValue()->getValue();
1565 APInt ConstDivisor = Divisor->getValue()->getValue();
1566 return ConstDividend.srem(ConstDivisor) == 0;
1567 }
1568
1569
1570 // weakZeroSrcSIVtest -
1571 // From the paper, Practical Dependence Testing, Section 4.2.2
1572 //
1573 // When we have a pair of subscripts of the form [c1] and [c2 + a*i],
1574 // where i is an induction variable, c1 and c2 are loop invariant,
1575 // and a is a constant, we can solve it exactly using the
1576 // Weak-Zero SIV test.
1577 //
1578 // Given
1579 //
1580 // c1 = c2 + a*i
1581 //
1582 // we get
1583 //
1584 // (c1 - c2)/a = i
1585 //
1586 // If i is not an integer, there's no dependence.
1587 // If i < 0 or > UB, there's no dependence.
1588 // If i = 0, the direction is <= and peeling the
1589 // 1st iteration will break the dependence.
1590 // If i = UB, the direction is >= and peeling the
1591 // last iteration will break the dependence.
1592 // Otherwise, the direction is *.
1593 //
1594 // Can prove independence. Failing that, we can sometimes refine
1595 // the directions. Can sometimes show that first or last
1596 // iteration carries all the dependences (so worth peeling).
1597 //
1598 // (see also weakZeroDstSIVtest)
1599 //
1600 // Return true if dependence disproved.
1601 bool DependenceAnalysis::weakZeroSrcSIVtest(const SCEV *DstCoeff,
1602 const SCEV *SrcConst,
1603 const SCEV *DstConst,
1604 const Loop *CurLoop,
1605 unsigned Level,
1606 FullDependence &Result,
1607 Constraint &NewConstraint) const {
1608 // For the WeakSIV test, it's possible the loop isn't common to
1609 // the Src and Dst loops. If it isn't, then there's no need to
1610 // record a direction.
1611 DEBUG(dbgs() << "\tWeak-Zero (src) SIV test\n");
1612 DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << "\n");
1613 DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1614 DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1615 ++WeakZeroSIVapplications;
1616 assert(0 < Level && Level <= MaxLevels && "Level out of range");
1617 Level--;
1618 Result.Consistent = false;
1619 const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
1620 NewConstraint.setLine(SE->getConstant(Delta->getType(), 0),
1621 DstCoeff, Delta, CurLoop);
1622 DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1623 if (isKnownPredicate(CmpInst::ICMP_EQ, SrcConst, DstConst)) {
1624 if (Level < CommonLevels) {
1625 Result.DV[Level].Direction &= Dependence::DVEntry::LE;
1626 Result.DV[Level].PeelFirst = true;
1627 ++WeakZeroSIVsuccesses;
1628 }
1629 return false; // dependences caused by first iteration
1630 }
1631 const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1632 if (!ConstCoeff)
1633 return false;
1634 const SCEV *AbsCoeff =
1635 SE->isKnownNegative(ConstCoeff) ?
1636 SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
1637 const SCEV *NewDelta =
1638 SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
1639
1640 // check that Delta/SrcCoeff < iteration count
1641 // really check NewDelta < count*AbsCoeff
1642 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1643 DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n");
1644 const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
1645 if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
1646 ++WeakZeroSIVindependence;
1647 ++WeakZeroSIVsuccesses;
1648 return true;
1649 }
1650 if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
1651 // dependences caused by last iteration
1652 if (Level < CommonLevels) {
1653 Result.DV[Level].Direction &= Dependence::DVEntry::GE;
1654 Result.DV[Level].PeelLast = true;
1655 ++WeakZeroSIVsuccesses;
1656 }
1657 return false;
1658 }
1659 }
1660
1661 // check that Delta/SrcCoeff >= 0
1662 // really check that NewDelta >= 0
1663 if (SE->isKnownNegative(NewDelta)) {
1664 // No dependence, newDelta < 0
1665 ++WeakZeroSIVindependence;
1666 ++WeakZeroSIVsuccesses;
1667 return true;
1668 }
1669
1670 // if SrcCoeff doesn't divide Delta, then no dependence
1671 if (isa<SCEVConstant>(Delta) &&
1672 !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
1673 ++WeakZeroSIVindependence;
1674 ++WeakZeroSIVsuccesses;
1675 return true;
1676 }
1677 return false;
1678 }
1679
1680
1681 // weakZeroDstSIVtest -
1682 // From the paper, Practical Dependence Testing, Section 4.2.2
1683 //
1684 // When we have a pair of subscripts of the form [c1 + a*i] and [c2],
1685 // where i is an induction variable, c1 and c2 are loop invariant,
1686 // and a is a constant, we can solve it exactly using the
1687 // Weak-Zero SIV test.
1688 //
1689 // Given
1690 //
1691 // c1 + a*i = c2
1692 //
1693 // we get
1694 //
1695 // i = (c2 - c1)/a
1696 //
1697 // If i is not an integer, there's no dependence.
1698 // If i < 0 or > UB, there's no dependence.
1699 // If i = 0, the direction is <= and peeling the
1700 // 1st iteration will break the dependence.
1701 // If i = UB, the direction is >= and peeling the
1702 // last iteration will break the dependence.
1703 // Otherwise, the direction is *.
1704 //
1705 // Can prove independence. Failing that, we can sometimes refine
1706 // the directions. Can sometimes show that first or last
1707 // iteration carries all the dependences (so worth peeling).
1708 //
1709 // (see also weakZeroSrcSIVtest)
1710 //
1711 // Return true if dependence disproved.
1712 bool DependenceAnalysis::weakZeroDstSIVtest(const SCEV *SrcCoeff,
1713 const SCEV *SrcConst,
1714 const SCEV *DstConst,
1715 const Loop *CurLoop,
1716 unsigned Level,
1717 FullDependence &Result,
1718 Constraint &NewConstraint) const {
1719 // For the WeakSIV test, it's possible the loop isn't common to the
1720 // Src and Dst loops. If it isn't, then there's no need to record a direction.
1721 DEBUG(dbgs() << "\tWeak-Zero (dst) SIV test\n");
1722 DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << "\n");
1723 DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1724 DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1725 ++WeakZeroSIVapplications;
1726 assert(0 < Level && Level <= SrcLevels && "Level out of range");
1727 Level--;
1728 Result.Consistent = false;
1729 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1730 NewConstraint.setLine(SrcCoeff, SE->getConstant(Delta->getType(), 0),
1731 Delta, CurLoop);
1732 DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1733 if (isKnownPredicate(CmpInst::ICMP_EQ, DstConst, SrcConst)) {
1734 if (Level < CommonLevels) {
1735 Result.DV[Level].Direction &= Dependence::DVEntry::LE;
1736 Result.DV[Level].PeelFirst = true;
1737 ++WeakZeroSIVsuccesses;
1738 }
1739 return false; // dependences caused by first iteration
1740 }
1741 const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1742 if (!ConstCoeff)
1743 return false;
1744 const SCEV *AbsCoeff =
1745 SE->isKnownNegative(ConstCoeff) ?
1746 SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
1747 const SCEV *NewDelta =
1748 SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
1749
1750 // check that Delta/SrcCoeff < iteration count
1751 // really check NewDelta < count*AbsCoeff
1752 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1753 DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n");
1754 const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
1755 if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
1756 ++WeakZeroSIVindependence;
1757 ++WeakZeroSIVsuccesses;
1758 return true;
1759 }
1760 if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
1761 // dependences caused by last iteration
1762 if (Level < CommonLevels) {
1763 Result.DV[Level].Direction &= Dependence::DVEntry::GE;
1764 Result.DV[Level].PeelLast = true;
1765 ++WeakZeroSIVsuccesses;
1766 }
1767 return false;
1768 }
1769 }
1770
1771 // check that Delta/SrcCoeff >= 0
1772 // really check that NewDelta >= 0
1773 if (SE->isKnownNegative(NewDelta)) {
1774 // No dependence, newDelta < 0
1775 ++WeakZeroSIVindependence;
1776 ++WeakZeroSIVsuccesses;
1777 return true;
1778 }
1779
1780 // if SrcCoeff doesn't divide Delta, then no dependence
1781 if (isa<SCEVConstant>(Delta) &&
1782 !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
1783 ++WeakZeroSIVindependence;
1784 ++WeakZeroSIVsuccesses;
1785 return true;
1786 }
1787 return false;
1788 }
1789
1790
1791 // exactRDIVtest - Tests the RDIV subscript pair for dependence.
1792 // Things of the form [c1 + a*i] and [c2 + b*j],
1793 // where i and j are induction variable, c1 and c2 are loop invariant,
1794 // and a and b are constants.
1795 // Returns true if any possible dependence is disproved.
1796 // Marks the result as inconsistent.
1797 // Works in some cases that symbolicRDIVtest doesn't, and vice versa.
1798 bool DependenceAnalysis::exactRDIVtest(const SCEV *SrcCoeff,
1799 const SCEV *DstCoeff,
1800 const SCEV *SrcConst,
1801 const SCEV *DstConst,
1802 const Loop *SrcLoop,
1803 const Loop *DstLoop,
1804 FullDependence &Result) const {
1805 DEBUG(dbgs() << "\tExact RDIV test\n");
1806 DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << " = AM\n");
1807 DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << " = BM\n");
1808 DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1809 DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1810 ++ExactRDIVapplications;
1811 Result.Consistent = false;
1812 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1813 DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1814 const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1815 const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1816 const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1817 if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
1818 return false;
1819
1820 // find gcd
1821 APInt G, X, Y;
1822 APInt AM = ConstSrcCoeff->getValue()->getValue();
1823 APInt BM = ConstDstCoeff->getValue()->getValue();
1824 unsigned Bits = AM.getBitWidth();
1825 if (findGCD(Bits, AM, BM, ConstDelta->getValue()->getValue(), G, X, Y)) {
1826 // gcd doesn't divide Delta, no dependence
1827 ++ExactRDIVindependence;
1828 return true;
1829 }
1830
1831 DEBUG(dbgs() << "\t X = " << X << ", Y = " << Y << "\n");
1832
1833 // since SCEV construction seems to normalize, LM = 0
1834 APInt SrcUM(Bits, 1, true);
1835 bool SrcUMvalid = false;
1836 // SrcUM is perhaps unavailable, let's check
1837 if (const SCEVConstant *UpperBound =
1838 collectConstantUpperBound(SrcLoop, Delta->getType())) {
1839 SrcUM = UpperBound->getValue()->getValue();
1840 DEBUG(dbgs() << "\t SrcUM = " << SrcUM << "\n");
1841 SrcUMvalid = true;
1842 }
1843
1844 APInt DstUM(Bits, 1, true);
1845 bool DstUMvalid = false;
1846 // UM is perhaps unavailable, let's check
1847 if (const SCEVConstant *UpperBound =
1848 collectConstantUpperBound(DstLoop, Delta->getType())) {
1849 DstUM = UpperBound->getValue()->getValue();
1850 DEBUG(dbgs() << "\t DstUM = " << DstUM << "\n");
1851 DstUMvalid = true;
1852 }
1853
1854 APInt TU(APInt::getSignedMaxValue(Bits));
1855 APInt TL(APInt::getSignedMinValue(Bits));
1856
1857 // test(BM/G, LM-X) and test(-BM/G, X-UM)
1858 APInt TMUL = BM.sdiv(G);
1859 if (TMUL.sgt(0)) {
1860 TL = maxAPInt(TL, ceilingOfQuotient(-X, TMUL));
1861 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1862 if (SrcUMvalid) {
1863 TU = minAPInt(TU, floorOfQuotient(SrcUM - X, TMUL));
1864 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1865 }
1866 }
1867 else {
1868 TU = minAPInt(TU, floorOfQuotient(-X, TMUL));
1869 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1870 if (SrcUMvalid) {
1871 TL = maxAPInt(TL, ceilingOfQuotient(SrcUM - X, TMUL));
1872 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1873 }
1874 }
1875
1876 // test(AM/G, LM-Y) and test(-AM/G, Y-UM)
1877 TMUL = AM.sdiv(G);
1878 if (TMUL.sgt(0)) {
1879 TL = maxAPInt(TL, ceilingOfQuotient(-Y, TMUL));
1880 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1881 if (DstUMvalid) {
1882 TU = minAPInt(TU, floorOfQuotient(DstUM - Y, TMUL));
1883 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1884 }
1885 }
1886 else {
1887 TU = minAPInt(TU, floorOfQuotient(-Y, TMUL));
1888 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1889 if (DstUMvalid) {
1890 TL = maxAPInt(TL, ceilingOfQuotient(DstUM - Y, TMUL));
1891 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1892 }
1893 }
1894 if (TL.sgt(TU))
1895 ++ExactRDIVindependence;
1896 return TL.sgt(TU);
1897 }
1898
1899
1900 // symbolicRDIVtest -
1901 // In Section 4.5 of the Practical Dependence Testing paper,the authors
1902 // introduce a special case of Banerjee's Inequalities (also called the
1903 // Extreme-Value Test) that can handle some of the SIV and RDIV cases,
1904 // particularly cases with symbolics. Since it's only able to disprove
1905 // dependence (not compute distances or directions), we'll use it as a
1906 // fall back for the other tests.
1907 //
1908 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
1909 // where i and j are induction variables and c1 and c2 are loop invariants,
1910 // we can use the symbolic tests to disprove some dependences, serving as a
1911 // backup for the RDIV test. Note that i and j can be the same variable,
1912 // letting this test serve as a backup for the various SIV tests.
1913 //
1914 // For a dependence to exist, c1 + a1*i must equal c2 + a2*j for some
1915 // 0 <= i <= N1 and some 0 <= j <= N2, where N1 and N2 are the (normalized)
1916 // loop bounds for the i and j loops, respectively. So, ...
1917 //
1918 // c1 + a1*i = c2 + a2*j
1919 // a1*i - a2*j = c2 - c1
1920 //
1921 // To test for a dependence, we compute c2 - c1 and make sure it's in the
1922 // range of the maximum and minimum possible values of a1*i - a2*j.
1923 // Considering the signs of a1 and a2, we have 4 possible cases:
1924 //
1925 // 1) If a1 >= 0 and a2 >= 0, then
1926 // a1*0 - a2*N2 <= c2 - c1 <= a1*N1 - a2*0
1927 // -a2*N2 <= c2 - c1 <= a1*N1
1928 //
1929 // 2) If a1 >= 0 and a2 <= 0, then
1930 // a1*0 - a2*0 <= c2 - c1 <= a1*N1 - a2*N2
1931 // 0 <= c2 - c1 <= a1*N1 - a2*N2
1932 //
1933 // 3) If a1 <= 0 and a2 >= 0, then
1934 // a1*N1 - a2*N2 <= c2 - c1 <= a1*0 - a2*0
1935 // a1*N1 - a2*N2 <= c2 - c1 <= 0
1936 //
1937 // 4) If a1 <= 0 and a2 <= 0, then
1938 // a1*N1 - a2*0 <= c2 - c1 <= a1*0 - a2*N2
1939 // a1*N1 <= c2 - c1 <= -a2*N2
1940 //
1941 // return true if dependence disproved
1942 bool DependenceAnalysis::symbolicRDIVtest(const SCEV *A1,
1943 const SCEV *A2,
1944 const SCEV *C1,
1945 const SCEV *C2,
1946 const Loop *Loop1,
1947 const Loop *Loop2) const {
1948 ++SymbolicRDIVapplications;
1949 DEBUG(dbgs() << "\ttry symbolic RDIV test\n");
1950 DEBUG(dbgs() << "\t A1 = " << *A1);
1951 DEBUG(dbgs() << ", type = " << *A1->getType() << "\n");
1952 DEBUG(dbgs() << "\t A2 = " << *A2 << "\n");
1953 DEBUG(dbgs() << "\t C1 = " << *C1 << "\n");
1954 DEBUG(dbgs() << "\t C2 = " << *C2 << "\n");
1955 const SCEV *N1 = collectUpperBound(Loop1, A1->getType());
1956 const SCEV *N2 = collectUpperBound(Loop2, A1->getType());
1957 DEBUG(if (N1) dbgs() << "\t N1 = " << *N1 << "\n");
1958 DEBUG(if (N2) dbgs() << "\t N2 = " << *N2 << "\n");
1959 const SCEV *C2_C1 = SE->getMinusSCEV(C2, C1);
1960 const SCEV *C1_C2 = SE->getMinusSCEV(C1, C2);
1961 DEBUG(dbgs() << "\t C2 - C1 = " << *C2_C1 << "\n");
1962 DEBUG(dbgs() << "\t C1 - C2 = " << *C1_C2 << "\n");
1963 if (SE->isKnownNonNegative(A1)) {
1964 if (SE->isKnownNonNegative(A2)) {
1965 // A1 >= 0 && A2 >= 0
1966 if (N1) {
1967 // make sure that c2 - c1 <= a1*N1
1968 const SCEV *A1N1 = SE->getMulExpr(A1, N1);
1969 DEBUG(dbgs() << "\t A1*N1 = " << *A1N1 << "\n");
1970 if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1)) {
1971 ++SymbolicRDIVindependence;
1972 return true;
1973 }
1974 }
1975 if (N2) {
1976 // make sure that -a2*N2 <= c2 - c1, or a2*N2 >= c1 - c2
1977 const SCEV *A2N2 = SE->getMulExpr(A2, N2);
1978 DEBUG(dbgs() << "\t A2*N2 = " << *A2N2 << "\n");
1979 if (isKnownPredicate(CmpInst::ICMP_SLT, A2N2, C1_C2)) {
1980 ++SymbolicRDIVindependence;
1981 return true;
1982 }
1983 }
1984 }
1985 else if (SE->isKnownNonPositive(A2)) {
1986 // a1 >= 0 && a2 <= 0
1987 if (N1 && N2) {
1988 // make sure that c2 - c1 <= a1*N1 - a2*N2
1989 const SCEV *A1N1 = SE->getMulExpr(A1, N1);
1990 const SCEV *A2N2 = SE->getMulExpr(A2, N2);
1991 const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
1992 DEBUG(dbgs() << "\t A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
1993 if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1_A2N2)) {
1994 ++SymbolicRDIVindependence;
1995 return true;
1996 }
1997 }
1998 // make sure that 0 <= c2 - c1
1999 if (SE->isKnownNegative(C2_C1)) {
2000 ++SymbolicRDIVindependence;
2001 return true;
2002 }
2003 }
2004 }
2005 else if (SE->isKnownNonPositive(A1)) {
2006 if (SE->isKnownNonNegative(A2)) {
2007 // a1 <= 0 && a2 >= 0
2008 if (N1 && N2) {
2009 // make sure that a1*N1 - a2*N2 <= c2 - c1
2010 const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2011 const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2012 const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
2013 DEBUG(dbgs() << "\t A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
2014 if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1_A2N2, C2_C1)) {
2015 ++SymbolicRDIVindependence;
2016 return true;
2017 }
2018 }
2019 // make sure that c2 - c1 <= 0
2020 if (SE->isKnownPositive(C2_C1)) {
2021 ++SymbolicRDIVindependence;
2022 return true;
2023 }
2024 }
2025 else if (SE->isKnownNonPositive(A2)) {
2026 // a1 <= 0 && a2 <= 0
2027 if (N1) {
2028 // make sure that a1*N1 <= c2 - c1
2029 const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2030 DEBUG(dbgs() << "\t A1*N1 = " << *A1N1 << "\n");
2031 if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1, C2_C1)) {
2032 ++SymbolicRDIVindependence;
2033 return true;
2034 }
2035 }
2036 if (N2) {
2037 // make sure that c2 - c1 <= -a2*N2, or c1 - c2 >= a2*N2
2038 const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2039 DEBUG(dbgs() << "\t A2*N2 = " << *A2N2 << "\n");
2040 if (isKnownPredicate(CmpInst::ICMP_SLT, C1_C2, A2N2)) {
2041 ++SymbolicRDIVindependence;
2042 return true;
2043 }
2044 }
2045 }
2046 }
2047 return false;
2048 }
2049
2050
2051 // testSIV -
2052 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 - a2*i]
2053 // where i is an induction variable, c1 and c2 are loop invariant, and a1 and
2054 // a2 are constant, we attack it with an SIV test. While they can all be
2055 // solved with the Exact SIV test, it's worthwhile to use simpler tests when
2056 // they apply; they're cheaper and sometimes more precise.
2057 //
2058 // Return true if dependence disproved.
2059 bool DependenceAnalysis::testSIV(const SCEV *Src,
2060 const SCEV *Dst,
2061 unsigned &Level,
2062 FullDependence &Result,
2063 Constraint &NewConstraint,
2064 const SCEV *&SplitIter) const {
2065 DEBUG(dbgs() << " src = " << *Src << "\n");
2066 DEBUG(dbgs() << " dst = " << *Dst << "\n");
2067 const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
2068 const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
2069 if (SrcAddRec && DstAddRec) {
2070 const SCEV *SrcConst = SrcAddRec->getStart();
2071 const SCEV *DstConst = DstAddRec->getStart();
2072 const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2073 const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
2074 const Loop *CurLoop = SrcAddRec->getLoop();
2075 assert(CurLoop == DstAddRec->getLoop() &&
2076 "both loops in SIV should be same");
2077 Level = mapSrcLoop(CurLoop);
2078 bool disproven;
2079 if (SrcCoeff == DstCoeff)
2080 disproven = strongSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2081 Level, Result, NewConstraint);
2082 else if (SrcCoeff == SE->getNegativeSCEV(DstCoeff))
2083 disproven = weakCrossingSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2084 Level, Result, NewConstraint, SplitIter);
2085 else
2086 disproven = exactSIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop,
2087 Level, Result, NewConstraint);
2088 return disproven ||
2089 gcdMIVtest(Src, Dst, Result) ||
2090 symbolicRDIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop, CurLoop);
2091 }
2092 if (SrcAddRec) {
2093 const SCEV *SrcConst = SrcAddRec->getStart();
2094 const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2095 const SCEV *DstConst = Dst;
2096 const Loop *CurLoop = SrcAddRec->getLoop();
2097 Level = mapSrcLoop(CurLoop);
2098 return weakZeroDstSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2099 Level, Result, NewConstraint) ||
2100 gcdMIVtest(Src, Dst, Result);
2101 }
2102 if (DstAddRec) {
2103 const SCEV *DstConst = DstAddRec->getStart();
2104 const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
2105 const SCEV *SrcConst = Src;
2106 const Loop *CurLoop = DstAddRec->getLoop();
2107 Level = mapDstLoop(CurLoop);
2108 return weakZeroSrcSIVtest(DstCoeff, SrcConst, DstConst,
2109 CurLoop, Level, Result, NewConstraint) ||
2110 gcdMIVtest(Src, Dst, Result);
2111 }
2112 llvm_unreachable("SIV test expected at least one AddRec");
2113 return false;
2114 }
2115
2116
2117 // testRDIV -
2118 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
2119 // where i and j are induction variables, c1 and c2 are loop invariant,
2120 // and a1 and a2 are constant, we can solve it exactly with an easy adaptation
2121 // of the Exact SIV test, the Restricted Double Index Variable (RDIV) test.
2122 // It doesn't make sense to talk about distance or direction in this case,
2123 // so there's no point in making special versions of the Strong SIV test or
2124 // the Weak-crossing SIV test.
2125 //
2126 // With minor algebra, this test can also be used for things like
2127 // [c1 + a1*i + a2*j][c2].
2128 //
2129 // Return true if dependence disproved.
2130 bool DependenceAnalysis::testRDIV(const SCEV *Src,
2131 const SCEV *Dst,
2132 FullDependence &Result) const {
2133 // we have 3 possible situations here:
2134 // 1) [a*i + b] and [c*j + d]
2135 // 2) [a*i + c*j + b] and [d]
2136 // 3) [b] and [a*i + c*j + d]
2137 // We need to find what we've got and get organized
2138
2139 const SCEV *SrcConst, *DstConst;
2140 const SCEV *SrcCoeff, *DstCoeff;
2141 const Loop *SrcLoop, *DstLoop;
2142
2143 DEBUG(dbgs() << " src = " << *Src << "\n");
2144 DEBUG(dbgs() << " dst = " << *Dst << "\n");
2145 const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
2146 const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
2147 if (SrcAddRec && DstAddRec) {
2148 SrcConst = SrcAddRec->getStart();
2149 SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2150 SrcLoop = SrcAddRec->getLoop();
2151 DstConst = DstAddRec->getStart();
2152 DstCoeff = DstAddRec->getStepRecurrence(*SE);
2153 DstLoop = DstAddRec->getLoop();
2154 }
2155 else if (SrcAddRec) {
2156 if (const SCEVAddRecExpr *tmpAddRec =
2157 dyn_cast<SCEVAddRecExpr>(SrcAddRec->getStart())) {
2158 SrcConst = tmpAddRec->getStart();
2159 SrcCoeff = tmpAddRec->getStepRecurrence(*SE);
2160 SrcLoop = tmpAddRec->getLoop();
2161 DstConst = Dst;
2162 DstCoeff = SE->getNegativeSCEV(SrcAddRec->getStepRecurrence(*SE));
2163 DstLoop = SrcAddRec->getLoop();
2164 }
2165 else
2166 llvm_unreachable("RDIV reached by surprising SCEVs");
2167 }
2168 else if (DstAddRec) {
2169 if (const SCEVAddRecExpr *tmpAddRec =
2170 dyn_cast<SCEVAddRecExpr>(DstAddRec->getStart())) {
2171 DstConst = tmpAddRec->getStart();
2172 DstCoeff = tmpAddRec->getStepRecurrence(*SE);
2173 DstLoop = tmpAddRec->getLoop();
2174 SrcConst = Src;
2175 SrcCoeff = SE->getNegativeSCEV(DstAddRec->getStepRecurrence(*SE));
2176 SrcLoop = DstAddRec->getLoop();
2177 }
2178 else
2179 llvm_unreachable("RDIV reached by surprising SCEVs");
2180 }
2181 else
2182 llvm_unreachable("RDIV expected at least one AddRec");
2183 return exactRDIVtest(SrcCoeff, DstCoeff,
2184 SrcConst, DstConst,
2185 SrcLoop, DstLoop,
2186 Result) ||
2187 gcdMIVtest(Src, Dst, Result) ||
2188 symbolicRDIVtest(SrcCoeff, DstCoeff,
2189 SrcConst, DstConst,
2190 SrcLoop, DstLoop);
2191 }
2192
2193
2194 // Tests the single-subscript MIV pair (Src and Dst) for dependence.
2195 // Return true if dependence disproved.
2196 // Can sometimes refine direction vectors.
2197 bool DependenceAnalysis::testMIV(const SCEV *Src,
2198 const SCEV *Dst,
2199 const SmallBitVector &Loops,
2200 FullDependence &Result) const {
2201 DEBUG(dbgs() << " src = " << *Src << "\n");
2202 DEBUG(dbgs() << " dst = " << *Dst << "\n");
2203 Result.Consistent = false;
2204 return gcdMIVtest(Src, Dst, Result) ||
2205 banerjeeMIVtest(Src, Dst, Loops, Result);
2206 }
2207
2208
2209 // Given a product, e.g., 10*X*Y, returns the first constant operand,
2210 // in this case 10. If there is no constant part, returns NULL.
2211 static
2212 const SCEVConstant *getConstantPart(const SCEVMulExpr *Product) {
2213 for (unsigned Op = 0, Ops = Product->getNumOperands(); Op < Ops; Op++) {
2214 if (const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Product->getOperand(Op)))
2215 return Constant;
2216 }
2217 return nullptr;
2218 }
2219
2220
2221 //===----------------------------------------------------------------------===//
2222 // gcdMIVtest -
2223 // Tests an MIV subscript pair for dependence.
2224 // Returns true if any possible dependence is disproved.
2225 // Marks the result as inconsistent.
2226 // Can sometimes disprove the equal direction for 1 or more loops,
2227 // as discussed in Michael Wolfe's book,
2228 // High Performance Compilers for Parallel Computing, page 235.
2229 //
2230 // We spend some effort (code!) to handle cases like
2231 // [10*i + 5*N*j + 15*M + 6], where i and j are induction variables,
2232 // but M and N are just loop-invariant variables.
2233 // This should help us handle linearized subscripts;
2234 // also makes this test a useful backup to the various SIV tests.
2235 //
2236 // It occurs to me that the presence of loop-invariant variables
2237 // changes the nature of the test from "greatest common divisor"
2238 // to "a common divisor".
2239 bool DependenceAnalysis::gcdMIVtest(const SCEV *Src,
2240 const SCEV *Dst,
2241 FullDependence &Result) const {
2242 DEBUG(dbgs() << "starting gcd\n");
2243 ++GCDapplications;
2244 unsigned BitWidth = SE->getTypeSizeInBits(Src->getType());
2245 APInt RunningGCD = APInt::getNullValue(BitWidth);
2246
2247 // Examine Src coefficients.
2248 // Compute running GCD and record source constant.
2249 // Because we're looking for the constant at the end of the chain,
2250 // we can't quit the loop just because the GCD == 1.
2251 const SCEV *Coefficients = Src;
2252 while (const SCEVAddRecExpr *AddRec =
2253 dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2254 const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2255 const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Coeff);
2256 if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Coeff))
2257 // If the coefficient is the product of a constant and other stuff,
2258 // we can use the constant in the GCD computation.
2259 Constant = getConstantPart(Product);
2260 if (!Constant)
2261 return false;
2262 APInt ConstCoeff = Constant->getValue()->getValue();
2263 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2264 Coefficients = AddRec->getStart();
2265 }
2266 const SCEV *SrcConst = Coefficients;
2267
2268 // Examine Dst coefficients.
2269 // Compute running GCD and record destination constant.
2270 // Because we're looking for the constant at the end of the chain,
2271 // we can't quit the loop just because the GCD == 1.
2272 Coefficients = Dst;
2273 while (const SCEVAddRecExpr *AddRec =
2274 dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2275 const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2276 const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Coeff);
2277 if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Coeff))
2278 // If the coefficient is the product of a constant and other stuff,
2279 // we can use the constant in the GCD computation.
2280 Constant = getConstantPart(Product);
2281 if (!Constant)
2282 return false;
2283 APInt ConstCoeff = Constant->getValue()->getValue();
2284 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2285 Coefficients = AddRec->getStart();
2286 }
2287 const SCEV *DstConst = Coefficients;
2288
2289 APInt ExtraGCD = APInt::getNullValue(BitWidth);
2290 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
2291 DEBUG(dbgs() << " Delta = " << *Delta << "\n");
2292 const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Delta);
2293 if (const SCEVAddExpr *Sum = dyn_cast<SCEVAddExpr>(Delta)) {
2294 // If Delta is a sum of products, we may be able to make further progress.
2295 for (unsigned Op = 0, Ops = Sum->getNumOperands(); Op < Ops; Op++) {
2296 const SCEV *Operand = Sum->getOperand(Op);
2297 if (isa<SCEVConstant>(Operand)) {
2298 assert(!Constant && "Surprised to find multiple constants");
2299 Constant = cast<SCEVConstant>(Operand);
2300 }
2301 else if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Operand)) {
2302 // Search for constant operand to participate in GCD;
2303 // If none found; return false.
2304 const SCEVConstant *ConstOp = getConstantPart(Product);
2305 if (!ConstOp)
2306 return false;
2307 APInt ConstOpValue = ConstOp->getValue()->getValue();
2308 ExtraGCD = APIntOps::GreatestCommonDivisor(ExtraGCD,
2309 ConstOpValue.abs());
2310 }
2311 else
2312 return false;
2313 }
2314 }
2315 if (!Constant)
2316 return false;
2317 APInt ConstDelta = cast<SCEVConstant>(Constant)->getValue()->getValue();
2318 DEBUG(dbgs() << " ConstDelta = " << ConstDelta << "\n");
2319 if (ConstDelta == 0)
2320 return false;
2321 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ExtraGCD);
2322 DEBUG(dbgs() << " RunningGCD = " << RunningGCD << "\n");
2323 APInt Remainder = ConstDelta.srem(RunningGCD);
2324 if (Remainder != 0) {
2325 ++GCDindependence;
2326 return true;
2327 }
2328
2329 // Try to disprove equal directions.
2330 // For example, given a subscript pair [3*i + 2*j] and [i' + 2*j' - 1],
2331 // the code above can't disprove the dependence because the GCD = 1.
2332 // So we consider what happen if i = i' and what happens if j = j'.
2333 // If i = i', we can simplify the subscript to [2*i + 2*j] and [2*j' - 1],
2334 // which is infeasible, so we can disallow the = direction for the i level.
2335 // Setting j = j' doesn't help matters, so we end up with a direction vector
2336 // of [<>, *]
2337 //
2338 // Given A[5*i + 10*j*M + 9*M*N] and A[15*i + 20*j*M - 21*N*M + 5],
2339 // we need to remember that the constant part is 5 and the RunningGCD should
2340 // be initialized to ExtraGCD = 30.
2341 DEBUG(dbgs() << " ExtraGCD = " << ExtraGCD << '\n');
2342
2343 bool Improved = false;
2344 Coefficients = Src;
2345 while (const SCEVAddRecExpr *AddRec =
2346 dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2347 Coefficients = AddRec->getStart();
2348 const Loop *CurLoop = AddRec->getLoop();
2349 RunningGCD = ExtraGCD;
2350 const SCEV *SrcCoeff = AddRec->getStepRecurrence(*SE);
2351 const SCEV *DstCoeff = SE->getMinusSCEV(SrcCoeff, SrcCoeff);
2352 const SCEV *Inner = Src;
2353 while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
2354 AddRec = cast<SCEVAddRecExpr>(Inner);
2355 const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2356 if (CurLoop == AddRec->getLoop())
2357 ; // SrcCoeff == Coeff
2358 else {
2359 if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Coeff))
2360 // If the coefficient is the product of a constant and other stuff,
2361 // we can use the constant in the GCD computation.
2362 Constant = getConstantPart(Product);
2363 else
2364 Constant = cast<SCEVConstant>(Coeff);
2365 APInt ConstCoeff = Constant->getValue()->getValue();
2366 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2367 }
2368 Inner = AddRec->getStart();
2369 }
2370 Inner = Dst;
2371 while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
2372 AddRec = cast<SCEVAddRecExpr>(Inner);
2373 const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2374 if (CurLoop == AddRec->getLoop())
2375 DstCoeff = Coeff;
2376 else {
2377 if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Coeff))
2378 // If the coefficient is the product of a constant and other stuff,
2379 // we can use the constant in the GCD computation.
2380 Constant = getConstantPart(Product);
2381 else
2382 Constant = cast<SCEVConstant>(Coeff);
2383 APInt ConstCoeff = Constant->getValue()->getValue();
2384 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2385 }
2386 Inner = AddRec->getStart();
2387 }
2388 Delta = SE->getMinusSCEV(SrcCoeff, DstCoeff);
2389 if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Delta))
2390 // If the coefficient is the product of a constant and other stuff,
2391 // we can use the constant in the GCD computation.
2392 Constant = getConstantPart(Product);
2393 else if (isa<SCEVConstant>(Delta))
2394 Constant = cast<SCEVConstant>(Delta);
2395 else {
2396 // The difference of the two coefficients might not be a product
2397 // or constant, in which case we give up on this direction.
2398 continue;
2399 }
2400 APInt ConstCoeff = Constant->getValue()->getValue();
2401 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2402 DEBUG(dbgs() << "\tRunningGCD = " << RunningGCD << "\n");
2403 if (RunningGCD != 0) {
2404 Remainder = ConstDelta.srem(RunningGCD);
2405 DEBUG(dbgs() << "\tRemainder = " << Remainder << "\n");
2406 if (Remainder != 0) {
2407 unsigned Level = mapSrcLoop(CurLoop);
2408 Result.DV[Level - 1].Direction &= unsigned(~Dependence::DVEntry::EQ);
2409 Improved = true;
2410 }
2411 }
2412 }
2413 if (Improved)
2414 ++GCDsuccesses;
2415 DEBUG(dbgs() << "all done\n");
2416 return false;
2417 }
2418
2419
2420 //===----------------------------------------------------------------------===//
2421 // banerjeeMIVtest -
2422 // Use Banerjee's Inequalities to test an MIV subscript pair.
2423 // (Wolfe, in the race-car book, calls this the Extreme Value Test.)
2424 // Generally follows the discussion in Section 2.5.2 of
2425 //
2426 // Optimizing Supercompilers for Supercomputers
2427 // Michael Wolfe
2428 //
2429 // The inequalities given on page 25 are simplified in that loops are
2430 // normalized so that the lower bound is always 0 and the stride is always 1.
2431 // For example, Wolfe gives
2432 //
2433 // LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2434 //
2435 // where A_k is the coefficient of the kth index in the source subscript,
2436 // B_k is the coefficient of the kth index in the destination subscript,
2437 // U_k is the upper bound of the kth index, L_k is the lower bound of the Kth
2438 // index, and N_k is the stride of the kth index. Since all loops are normalized
2439 // by the SCEV package, N_k = 1 and L_k = 0, allowing us to simplify the
2440 // equation to
2441 //
2442 // LB^<_k = (A^-_k - B_k)^- (U_k - 0 - 1) + (A_k - B_k)0 - B_k 1
2443 // = (A^-_k - B_k)^- (U_k - 1) - B_k
2444 //
2445 // Similar simplifications are possible for the other equations.
2446 //
2447 // When we can't determine the number of iterations for a loop,
2448 // we use NULL as an indicator for the worst case, infinity.
2449 // When computing the upper bound, NULL denotes +inf;
2450 // for the lower bound, NULL denotes -inf.
2451 //
2452 // Return true if dependence disproved.
2453 bool DependenceAnalysis::banerjeeMIVtest(const SCEV *Src,
2454 const SCEV *Dst,
2455 const SmallBitVector &Loops,
2456 FullDependence &Result) const {
2457 DEBUG(dbgs() << "starting Banerjee\n");
2458 ++BanerjeeApplications;
2459 DEBUG(dbgs() << " Src = " << *Src << '\n');
2460 const SCEV *A0;
2461 CoefficientInfo *A = collectCoeffInfo(Src, true, A0);
2462 DEBUG(dbgs() << " Dst = " << *Dst << '\n');
2463 const SCEV *B0;
2464 CoefficientInfo *B = collectCoeffInfo(Dst, false, B0);
2465 BoundInfo *Bound = new BoundInfo[MaxLevels + 1];
2466 const SCEV *Delta = SE->getMinusSCEV(B0, A0);
2467 DEBUG(dbgs() << "\tDelta = " << *Delta << '\n');
2468
2469 // Compute bounds for all the * directions.
2470 DEBUG(dbgs() << "\tBounds[*]\n");
2471 for (unsigned K = 1; K <= MaxLevels; ++K) {
2472 Bound[K].Iterations = A[K].Iterations ? A[K].Iterations : B[K].Iterations;
2473 Bound[K].Direction = Dependence::DVEntry::ALL;
2474 Bound[K].DirSet = Dependence::DVEntry::NONE;
2475 findBoundsALL(A, B, Bound, K);
2476 #ifndef NDEBUG
2477 DEBUG(dbgs() << "\t " << K << '\t');
2478 if (Bound[K].Lower[Dependence::DVEntry::ALL])
2479 DEBUG(dbgs() << *Bound[K].Lower[Dependence::DVEntry::ALL] << '\t');
2480 else
2481 DEBUG(dbgs() << "-inf\t");
2482 if (Bound[K].Upper[Dependence::DVEntry::ALL])
2483 DEBUG(dbgs() << *Bound[K].Upper[Dependence::DVEntry::ALL] << '\n');
2484 else
2485 DEBUG(dbgs() << "+inf\n");
2486 #endif
2487 }
2488
2489 // Test the *, *, *, ... case.
2490 bool Disproved = false;
2491 if (testBounds(Dependence::DVEntry::ALL, 0, Bound, Delta)) {
2492 // Explore the direction vector hierarchy.
2493 unsigned DepthExpanded = 0;
2494 unsigned NewDeps = exploreDirections(1, A, B, Bound,
2495 Loops, DepthExpanded, Delta);
2496 if (NewDeps > 0) {
2497 bool Improved = false;
2498 for (unsigned K = 1; K <= CommonLevels; ++K) {
2499 if (Loops[K]) {
2500 unsigned Old = Result.DV[K - 1].Direction;
2501 Result.DV[K - 1].Direction = Old & Bound[K].DirSet;
2502 Improved |= Old != Result.DV[K - 1].Direction;
2503 if (!Result.DV[K - 1].Direction) {
2504 Improved = false;
2505 Disproved = true;
2506 break;
2507 }
2508 }
2509 }
2510 if (Improved)
2511 ++BanerjeeSuccesses;
2512 }
2513 else {
2514 ++BanerjeeIndependence;
2515 Disproved = true;
2516 }
2517 }
2518 else {
2519 ++BanerjeeIndependence;
2520 Disproved = true;
2521 }
2522 delete [] Bound;
2523 delete [] A;
2524 delete [] B;
2525 return Disproved;
2526 }
2527
2528
2529 // Hierarchically expands the direction vector
2530 // search space, combining the directions of discovered dependences
2531 // in the DirSet field of Bound. Returns the number of distinct
2532 // dependences discovered. If the dependence is disproved,
2533 // it will return 0.
2534 unsigned DependenceAnalysis::exploreDirections(unsigned Level,
2535 CoefficientInfo *A,
2536 CoefficientInfo *B,
2537 BoundInfo *Bound,
2538 const SmallBitVector &Loops,
2539 unsigned &DepthExpanded,
2540 const SCEV *Delta) const {
2541 if (Level > CommonLevels) {
2542 // record result
2543 DEBUG(dbgs() << "\t[");
2544 for (unsigned K = 1; K <= CommonLevels; ++K) {
2545 if (Loops[K]) {
2546 Bound[K].DirSet |= Bound[K].Direction;
2547 #ifndef NDEBUG
2548 switch (Bound[K].Direction) {
2549 case Dependence::DVEntry::LT:
2550 DEBUG(dbgs() << " <");
2551 break;
2552 case Dependence::DVEntry::EQ:
2553 DEBUG(dbgs() << " =");
2554 break;
2555 case Dependence::DVEntry::GT:
2556 DEBUG(dbgs() << " >");
2557 break;
2558 case Dependence::DVEntry::ALL:
2559 DEBUG(dbgs() << " *");
2560 break;
2561 default:
2562 llvm_unreachable("unexpected Bound[K].Direction");
2563 }
2564 #endif
2565 }
2566 }
2567 DEBUG(dbgs() << " ]\n");
2568 return 1;
2569 }
2570 if (Loops[Level]) {
2571 if (Level > DepthExpanded) {
2572 DepthExpanded = Level;
2573 // compute bounds for <, =, > at current level
2574 findBoundsLT(A, B, Bound, Level);
2575 findBoundsGT(A, B, Bound, Level);
2576 findBoundsEQ(A, B, Bound, Level);
2577 #ifndef NDEBUG
2578 DEBUG(dbgs() << "\tBound for level = " << Level << '\n');
2579 DEBUG(dbgs() << "\t <\t");
2580 if (Bound[Level].Lower[Dependence::DVEntry::LT])
2581 DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::LT] << '\t');
2582 else
2583 DEBUG(dbgs() << "-inf\t");
2584 if (Bound[Level].Upper[Dependence::DVEntry::LT])
2585 DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::LT] << '\n');
2586 else
2587 DEBUG(dbgs() << "+inf\n");
2588 DEBUG(dbgs() << "\t =\t");
2589 if (Bound[Level].Lower[Dependence::DVEntry::EQ])
2590 DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::EQ] << '\t');
2591 else
2592 DEBUG(dbgs() << "-inf\t");
2593 if (Bound[Level].Upper[Dependence::DVEntry::EQ])
2594 DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::EQ] << '\n');
2595 else
2596 DEBUG(dbgs() << "+inf\n");
2597 DEBUG(dbgs() << "\t >\t");
2598 if (Bound[Level].Lower[Dependence::DVEntry::GT])
2599 DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::GT] << '\t');
2600 else
2601 DEBUG(dbgs() << "-inf\t");
2602 if (Bound[Level].Upper[Dependence::DVEntry::GT])
2603 DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::GT] << '\n');
2604 else
2605 DEBUG(dbgs() << "+inf\n");
2606 #endif
2607 }
2608
2609 unsigned NewDeps = 0;
2610
2611 // test bounds for <, *, *, ...
2612 if (testBounds(Dependence::DVEntry::LT, Level, Bound, Delta))
2613 NewDeps += exploreDirections(Level + 1, A, B, Bound,
2614 Loops, DepthExpanded, Delta);
2615
2616 // Test bounds for =, *, *, ...
2617 if (testBounds(Dependence::DVEntry::EQ, Level, Bound, Delta))
2618 NewDeps += exploreDirections(Level + 1, A, B, Bound,
2619 Loops, DepthExpanded, Delta);
2620
2621 // test bounds for >, *, *, ...
2622 if (testBounds(Dependence::DVEntry::GT, Level, Bound, Delta))
2623 NewDeps += exploreDirections(Level + 1, A, B, Bound,
2624 Loops, DepthExpanded, Delta);
2625
2626 Bound[Level].Direction = Dependence::DVEntry::ALL;
2627 return NewDeps;
2628 }
2629 else
2630 return exploreDirections(Level + 1, A, B, Bound, Loops, DepthExpanded, Delta);
2631 }
2632
2633
2634 // Returns true iff the current bounds are plausible.
2635 bool DependenceAnalysis::testBounds(unsigned char DirKind,
2636 unsigned Level,
2637 BoundInfo *Bound,
2638 const SCEV *Delta) const {
2639 Bound[Level].Direction = DirKind;
2640 if (const SCEV *LowerBound = getLowerBound(Bound))
2641 if (isKnownPredicate(CmpInst::ICMP_SGT, LowerBound, Delta))
2642 return false;
2643 if (const SCEV *UpperBound = getUpperBound(Bound))
2644 if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, UpperBound))
2645 return false;
2646 return true;
2647 }
2648
2649
2650 // Computes the upper and lower bounds for level K
2651 // using the * direction. Records them in Bound.
2652 // Wolfe gives the equations
2653 //
2654 // LB^*_k = (A^-_k - B^+_k)(U_k - L_k) + (A_k - B_k)L_k
2655 // UB^*_k = (A^+_k - B^-_k)(U_k - L_k) + (A_k - B_k)L_k
2656 //
2657 // Since we normalize loops, we can simplify these equations to
2658 //
2659 // LB^*_k = (A^-_k - B^+_k)U_k
2660 // UB^*_k = (A^+_k - B^-_k)U_k
2661 //
2662 // We must be careful to handle the case where the upper bound is unknown.
2663 // Note that the lower bound is always <= 0
2664 // and the upper bound is always >= 0.
2665 void DependenceAnalysis::findBoundsALL(CoefficientInfo *A,
2666 CoefficientInfo *B,
2667 BoundInfo *Bound,
2668 unsigned K) const {
2669 Bound[K].Lower[Dependence::DVEntry::ALL] = nullptr; // Default value = -infinity.
2670 Bound[K].Upper[Dependence::DVEntry::ALL] = nullptr; // Default value = +infinity.
2671 if (Bound[K].Iterations) {
2672 Bound[K].Lower[Dependence::DVEntry::ALL] =
2673 SE->getMulExpr(SE->getMinusSCEV(A[K].NegPart, B[K].PosPart),
2674 Bound[K].Iterations);
2675 Bound[K].Upper[Dependence::DVEntry::ALL] =
2676 SE->getMulExpr(SE->getMinusSCEV(A[K].PosPart, B[K].NegPart),
2677 Bound[K].Iterations);
2678 }
2679 else {
2680 // If the difference is 0, we won't need to know the number of iterations.
2681 if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].NegPart, B[K].PosPart))
2682 Bound[K].Lower[Dependence::DVEntry::ALL] =
2683 SE->getConstant(A[K].Coeff->getType(), 0);
2684 if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].PosPart, B[K].NegPart))
2685 Bound[K].Upper[Dependence::DVEntry::ALL] =
2686 SE->getConstant(A[K].Coeff->getType(), 0);
2687 }
2688 }
2689
2690
2691 // Computes the upper and lower bounds for level K
2692 // using the = direction. Records them in Bound.
2693 // Wolfe gives the equations
2694 //
2695 // LB^=_k = (A_k - B_k)^- (U_k - L_k) + (A_k - B_k)L_k
2696 // UB^=_k = (A_k - B_k)^+ (U_k - L_k) + (A_k - B_k)L_k
2697 //
2698 // Since we normalize loops, we can simplify these equations to
2699 //
2700 // LB^=_k = (A_k - B_k)^- U_k
2701 // UB^=_k = (A_k - B_k)^+ U_k
2702 //
2703 // We must be careful to handle the case where the upper bound is unknown.
2704 // Note that the lower bound is always <= 0
2705 // and the upper bound is always >= 0.
2706 void DependenceAnalysis::findBoundsEQ(CoefficientInfo *A,
2707 CoefficientInfo *B,
2708 BoundInfo *Bound,
2709 unsigned K) const {
2710 Bound[K].Lower[Dependence::DVEntry::EQ] = nullptr; // Default value = -infinity.
2711 Bound[K].Upper[Dependence::DVEntry::EQ] = nullptr; // Default value = +infinity.
2712 if (Bound[K].Iterations) {
2713 const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
2714 const SCEV *NegativePart = getNegativePart(Delta);
2715 Bound[K].Lower[Dependence::DVEntry::EQ] =
2716 SE->getMulExpr(NegativePart, Bound[K].Iterations);
2717 const SCEV *PositivePart = getPositivePart(Delta);
2718 Bound[K].Upper[Dependence::DVEntry::EQ] =
2719 SE->getMulExpr(PositivePart, Bound[K].Iterations);
2720 }
2721 else {
2722 // If the positive/negative part of the difference is 0,
2723 // we won't need to know the number of iterations.
2724 const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
2725 const SCEV *NegativePart = getNegativePart(Delta);
2726 if (NegativePart->isZero())
2727 Bound[K].Lower[Dependence::DVEntry::EQ] = NegativePart; // Zero
2728 const SCEV *PositivePart = getPositivePart(Delta);
2729 if (PositivePart->isZero())
2730 Bound[K].Upper[Dependence::DVEntry::EQ] = PositivePart; // Zero
2731 }
2732 }
2733
2734
2735 // Computes the upper and lower bounds for level K
2736 // using the < direction. Records them in Bound.
2737 // Wolfe gives the equations
2738 //
2739 // LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2740 // UB^<_k = (A^+_k - B_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2741 //
2742 // Since we normalize loops, we can simplify these equations to
2743 //
2744 // LB^<_k = (A^-_k - B_k)^- (U_k - 1) - B_k
2745 // UB^<_k = (A^+_k - B_k)^+ (U_k - 1) - B_k
2746 //
2747 // We must be careful to handle the case where the upper bound is unknown.
2748 void DependenceAnalysis::findBoundsLT(CoefficientInfo *A,
2749 CoefficientInfo *B,
2750 BoundInfo *Bound,
2751 unsigned K) const {
2752 Bound[K].Lower[Dependence::DVEntry::LT] = nullptr; // Default value = -infinity.
2753 Bound[K].Upper[Dependence::DVEntry::LT] = nullptr; // Default value = +infinity.
2754 if (Bound[K].Iterations) {
2755 const SCEV *Iter_1 =
2756 SE->getMinusSCEV(Bound[K].Iterations,
2757 SE->getConstant(Bound[K].Iterations->getType(), 1));
2758 const SCEV *NegPart =
2759 getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
2760 Bound[K].Lower[Dependence::DVEntry::LT] =
2761 SE->getMinusSCEV(SE->getMulExpr(NegPart, Iter_1), B[K].Coeff);
2762 const SCEV *PosPart =
2763 getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
2764 Bound[K].Upper[Dependence::DVEntry::LT] =
2765 SE->getMinusSCEV(SE->getMulExpr(PosPart, Iter_1), B[K].Coeff);
2766 }
2767 else {
2768 // If the positive/negative part of the difference is 0,
2769 // we won't need to know the number of iterations.
2770 const SCEV *NegPart =
2771 getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
2772 if (NegPart->isZero())
2773 Bound[K].Lower[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
2774 const SCEV *PosPart =
2775 getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
2776 if (PosPart->isZero())
2777 Bound[K].Upper[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
2778 }
2779 }
2780
2781
2782 // Computes the upper and lower bounds for level K
2783 // using the > direction. Records them in Bound.
2784 // Wolfe gives the equations
2785 //
2786 // LB^>_k = (A_k - B^+_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
2787 // UB^>_k = (A_k - B^-_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
2788 //
2789 // Since we normalize loops, we can simplify these equations to
2790 //
2791 // LB^>_k = (A_k - B^+_k)^- (U_k - 1) + A_k
2792 // UB^>_k = (A_k - B^-_k)^+ (U_k - 1) + A_k
2793 //
2794 // We must be careful to handle the case where the upper bound is unknown.
2795 void DependenceAnalysis::findBoundsGT(CoefficientInfo *A,
2796 CoefficientInfo *B,
2797 BoundInfo *Bound,
2798 unsigned K) const {
2799 Bound[K].Lower[Dependence::DVEntry::GT] = nullptr; // Default value = -infinity.
2800 Bound[K].Upper[Dependence::DVEntry::GT] = nullptr; // Default value = +infinity.
2801 if (Bound[K].Iterations) {
2802 const SCEV *Iter_1 =
2803 SE->getMinusSCEV(Bound[K].Iterations,
2804 SE->getConstant(Bound[K].Iterations->getType(), 1));
2805 const SCEV *NegPart =
2806 getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
2807 Bound[K].Lower[Dependence::DVEntry::GT] =
2808 SE->getAddExpr(SE->getMulExpr(NegPart, Iter_1), A[K].Coeff);
2809 const SCEV *PosPart =
2810 getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
2811 Bound[K].Upper[Dependence::DVEntry::GT] =
2812 SE->getAddExpr(SE->getMulExpr(PosPart, Iter_1), A[K].Coeff);
2813 }
2814 else {
2815 // If the positive/negative part of the difference is 0,
2816 // we won't need to know the number of iterations.
2817 const SCEV *NegPart = getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
2818 if (NegPart->isZero())
2819 Bound[K].Lower[Dependence::DVEntry::GT] = A[K].Coeff;
2820 const SCEV *PosPart = getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
2821 if (PosPart->isZero())
2822 Bound[K].Upper[Dependence::DVEntry::GT] = A[K].Coeff;
2823 }
2824 }
2825
2826
2827 // X^+ = max(X, 0)
2828 const SCEV *DependenceAnalysis::getPositivePart(const SCEV *X) const {
2829 return SE->getSMaxExpr(X, SE->getConstant(X->getType(), 0));
2830 }
2831
2832
2833 // X^- = min(X, 0)
2834 const SCEV *DependenceAnalysis::getNegativePart(const SCEV *X) const {
2835 return SE->getSMinExpr(X, SE->getConstant(X->getType(), 0));
2836 }
2837
2838
2839 // Walks through the subscript,
2840 // collecting each coefficient, the associated loop bounds,
2841 // and recording its positive and negative parts for later use.
2842 DependenceAnalysis::CoefficientInfo *
2843 DependenceAnalysis::collectCoeffInfo(const SCEV *Subscript,
2844 bool SrcFlag,
2845 const SCEV *&Constant) const {
2846 const SCEV *Zero = SE->getConstant(Subscript->getType(), 0);
2847 CoefficientInfo *CI = new CoefficientInfo[MaxLevels + 1];
2848 for (unsigned K = 1; K <= MaxLevels; ++K) {
2849 CI[K].Coeff = Zero;
2850 CI[K].PosPart = Zero;
2851 CI[K].NegPart = Zero;
2852 CI[K].Iterations = nullptr;
2853 }
2854 while (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Subscript)) {
2855 const Loop *L = AddRec->getLoop();
2856 unsigned K = SrcFlag ? mapSrcLoop(L) : mapDstLoop(L);
2857 CI[K].Coeff = AddRec->getStepRecurrence(*SE);
2858 CI[K].PosPart = getPositivePart(CI[K].Coeff);
2859 CI[K].NegPart = getNegativePart(CI[K].Coeff);
2860 CI[K].Iterations = collectUpperBound(L, Subscript->getType());
2861 Subscript = AddRec->getStart();
2862 }
2863 Constant = Subscript;
2864 #ifndef NDEBUG
2865 DEBUG(dbgs() << "\tCoefficient Info\n");
2866 for (unsigned K = 1; K <= MaxLevels; ++K) {
2867 DEBUG(dbgs() << "\t " << K << "\t" << *CI[K].Coeff);
2868 DEBUG(dbgs() << "\tPos Part = ");
2869 DEBUG(dbgs() << *CI[K].PosPart);
2870 DEBUG(dbgs() << "\tNeg Part = ");
2871 DEBUG(dbgs() << *CI[K].NegPart);
2872 DEBUG(dbgs() << "\tUpper Bound = ");
2873 if (CI[K].Iterations)
2874 DEBUG(dbgs() << *CI[K].Iterations);
2875 else
2876 DEBUG(dbgs() << "+inf");
2877 DEBUG(dbgs() << '\n');
2878 }
2879 DEBUG(dbgs() << "\t Constant = " << *Subscript << '\n');
2880 #endif
2881 return CI;
2882 }
2883
2884
2885 // Looks through all the bounds info and
2886 // computes the lower bound given the current direction settings
2887 // at each level. If the lower bound for any level is -inf,
2888 // the result is -inf.
2889 const SCEV *DependenceAnalysis::getLowerBound(BoundInfo *Bound) const {
2890 const SCEV *Sum = Bound[1].Lower[Bound[1].Direction];
2891 for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
2892 if (Bound[K].Lower[Bound[K].Direction])
2893 Sum = SE->getAddExpr(Sum, Bound[K].Lower[Bound[K].Direction]);
2894 else
2895 Sum = nullptr;
2896 }
2897 return Sum;
2898 }
2899
2900
2901 // Looks through all the bounds info and
2902 // computes the upper bound given the current direction settings
2903 // at each level. If the upper bound at any level is +inf,
2904 // the result is +inf.
2905 const SCEV *DependenceAnalysis::getUpperBound(BoundInfo *Bound) const {
2906 const SCEV *Sum = Bound[1].Upper[Bound[1].Direction];
2907 for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
2908 if (Bound[K].Upper[Bound[K].Direction])
2909 Sum = SE->getAddExpr(Sum, Bound[K].Upper[Bound[K].Direction]);
2910 else
2911 Sum = nullptr;
2912 }
2913 return Sum;
2914 }
2915
2916
2917 //===----------------------------------------------------------------------===//
2918 // Constraint manipulation for Delta test.
2919
2920 // Given a linear SCEV,
2921 // return the coefficient (the step)
2922 // corresponding to the specified loop.
2923 // If there isn't one, return 0.
2924 // For example, given a*i + b*j + c*k, zeroing the coefficient
2925 // corresponding to the j loop would yield b.
2926 const SCEV *DependenceAnalysis::findCoefficient(const SCEV *Expr,
2927 const Loop *TargetLoop) const {
2928 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
2929 if (!AddRec)
2930 return SE->getConstant(Expr->getType(), 0);
2931 if (AddRec->getLoop() == TargetLoop)
2932 return AddRec->getStepRecurrence(*SE);
2933 return findCoefficient(AddRec->getStart(), TargetLoop);
2934 }
2935
2936
2937 // Given a linear SCEV,
2938 // return the SCEV given by zeroing out the coefficient
2939 // corresponding to the specified loop.
2940 // For example, given a*i + b*j + c*k, zeroing the coefficient
2941 // corresponding to the j loop would yield a*i + c*k.
2942 const SCEV *DependenceAnalysis::zeroCoefficient(const SCEV *Expr,
2943 const Loop *TargetLoop) const {
2944 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
2945 if (!AddRec)
2946 return Expr; // ignore
2947 if (AddRec->getLoop() == TargetLoop)
2948 return AddRec->getStart();
2949 return SE->getAddRecExpr(zeroCoefficient(AddRec->getStart(), TargetLoop),
2950 AddRec->getStepRecurrence(*SE),
2951 AddRec->getLoop(),
2952 AddRec->getNoWrapFlags());
2953 }
2954
2955
2956 // Given a linear SCEV Expr,
2957 // return the SCEV given by adding some Value to the
2958 // coefficient corresponding to the specified TargetLoop.
2959 // For example, given a*i + b*j + c*k, adding 1 to the coefficient
2960 // corresponding to the j loop would yield a*i + (b+1)*j + c*k.
2961 const SCEV *DependenceAnalysis::addToCoefficient(const SCEV *Expr,
2962 const Loop *TargetLoop,
2963 const SCEV *Value) const {
2964 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
2965 if (!AddRec) // create a new addRec
2966 return SE->getAddRecExpr(Expr,
2967 Value,
2968 TargetLoop,
2969 SCEV::FlagAnyWrap); // Worst case, with no info.
2970 if (AddRec->getLoop() == TargetLoop) {
2971 const SCEV *Sum = SE->getAddExpr(AddRec->getStepRecurrence(*SE), Value);
2972 if (Sum->isZero())
2973 return AddRec->getStart();
2974 return SE->getAddRecExpr(AddRec->getStart(),
2975 Sum,
2976 AddRec->getLoop(),
2977 AddRec->getNoWrapFlags());
2978 }
2979 if (SE->isLoopInvariant(AddRec, TargetLoop))
2980 return SE->getAddRecExpr(AddRec, Value, TargetLoop, SCEV::FlagAnyWrap);
2981 return SE->getAddRecExpr(
2982 addToCoefficient(AddRec->getStart(), TargetLoop, Value),
2983 AddRec->getStepRecurrence(*SE), AddRec->getLoop(),
2984 AddRec->getNoWrapFlags());
2985 }
2986
2987
2988 // Review the constraints, looking for opportunities
2989 // to simplify a subscript pair (Src and Dst).
2990 // Return true if some simplification occurs.
2991 // If the simplification isn't exact (that is, if it is conservative
2992 // in terms of dependence), set consistent to false.
2993 // Corresponds to Figure 5 from the paper
2994 //
2995 // Practical Dependence Testing
2996 // Goff, Kennedy, Tseng
2997 // PLDI 1991
2998 bool DependenceAnalysis::propagate(const SCEV *&Src,
2999 const SCEV *&Dst,
3000 SmallBitVector &Loops,
3001 SmallVectorImpl<Constraint> &Constraints,
3002 bool &Consistent) {
3003 bool Result = false;
3004 for (int LI = Loops.find_first(); LI >= 0; LI = Loops.find_next(LI)) {
3005 DEBUG(dbgs() << "\t Constraint[" << LI << "] is");
3006 DEBUG(Constraints[LI].dump(dbgs()));
3007 if (Constraints[LI].isDistance())
3008 Result |= propagateDistance(Src, Dst, Constraints[LI], Consistent);
3009 else if (Constraints[LI].isLine())
3010 Result |= propagateLine(Src, Dst, Constraints[LI], Consistent);
3011 else if (Constraints[LI].isPoint())
3012 Result |= propagatePoint(Src, Dst, Constraints[LI]);
3013 }
3014 return Result;
3015 }
3016
3017
3018 // Attempt to propagate a distance
3019 // constraint into a subscript pair (Src and Dst).
3020 // Return true if some simplification occurs.
3021 // If the simplification isn't exact (that is, if it is conservative
3022 // in terms of dependence), set consistent to false.
3023 bool DependenceAnalysis::propagateDistance(const SCEV *&Src,
3024 const SCEV *&Dst,
3025 Constraint &CurConstraint,
3026 bool &Consistent) {
3027 const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3028 DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
3029 const SCEV *A_K = findCoefficient(Src, CurLoop);
3030 if (A_K->isZero())
3031 return false;
3032 const SCEV *DA_K = SE->getMulExpr(A_K, CurConstraint.getD());
3033 Src = SE->getMinusSCEV(Src, DA_K);
3034 Src = zeroCoefficient(Src, CurLoop);
3035 DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
3036 DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
3037 Dst = addToCoefficient(Dst, CurLoop, SE->getNegativeSCEV(A_K));
3038 DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
3039 if (!findCoefficient(Dst, CurLoop)->isZero())
3040 Consistent = false;
3041 return true;
3042 }
3043
3044
3045 // Attempt to propagate a line
3046 // constraint into a subscript pair (Src and Dst).
3047 // Return true if some simplification occurs.
3048 // If the simplification isn't exact (that is, if it is conservative
3049 // in terms of dependence), set consistent to false.
3050 bool DependenceAnalysis::propagateLine(const SCEV *&Src,
3051 const SCEV *&Dst,
3052 Constraint &CurConstraint,
3053 bool &Consistent) {
3054 const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3055 const SCEV *A = CurConstraint.getA();
3056 const SCEV *B = CurConstraint.getB();
3057 const SCEV *C = CurConstraint.getC();
3058 DEBUG(dbgs() << "\t\tA = " << *A << ", B = " << *B << ", C = " << *C << "\n");
3059 DEBUG(dbgs() << "\t\tSrc = " << *Src << "\n");
3060 DEBUG(dbgs() << "\t\tDst = " << *Dst << "\n");
3061 if (A->isZero()) {
3062 const SCEVConstant *Bconst = dyn_cast<SCEVConstant>(B);
3063 const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3064 if (!Bconst || !Cconst) return false;
3065 APInt Beta = Bconst->getValue()->getValue();
3066 APInt Charlie = Cconst->getValue()->getValue();
3067 APInt CdivB = Charlie.sdiv(Beta);
3068 assert(Charlie.srem(Beta) == 0 && "C should be evenly divisible by B");
3069 const SCEV *AP_K = findCoefficient(Dst, CurLoop);
3070 // Src = SE->getAddExpr(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
3071 Src = SE->getMinusSCEV(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
3072 Dst = zeroCoefficient(Dst, CurLoop);
3073 if (!findCoefficient(Src, CurLoop)->isZero())
3074 Consistent = false;
3075 }
3076 else if (B->isZero()) {
3077 const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
3078 const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3079 if (!Aconst || !Cconst) return false;
3080 APInt Alpha = Aconst->getValue()->getValue();
3081 APInt Charlie = Cconst->getValue()->getValue();
3082 APInt CdivA = Charlie.sdiv(Alpha);
3083 assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
3084 const SCEV *A_K = findCoefficient(Src, CurLoop);
3085 Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
3086 Src = zeroCoefficient(Src, CurLoop);
3087 if (!findCoefficient(Dst, CurLoop)->isZero())
3088 Consistent = false;
3089 }
3090 else if (isKnownPredicate(CmpInst::ICMP_EQ, A, B)) {
3091 const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
3092 const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3093 if (!Aconst || !Cconst) return false;
3094 APInt Alpha = Aconst->getValue()->getValue();
3095 APInt Charlie = Cconst->getValue()->getValue();
3096 APInt CdivA = Charlie.sdiv(Alpha);
3097 assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
3098 const SCEV *A_K = findCoefficient(Src, CurLoop);
3099 Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
3100 Src = zeroCoefficient(Src, CurLoop);
3101 Dst = addToCoefficient(Dst, CurLoop, A_K);
3102 if (!findCoefficient(Dst, CurLoop)->isZero())
3103 Consistent = false;
3104 }
3105 else {
3106 // paper is incorrect here, or perhaps just misleading
3107 const SCEV *A_K = findCoefficient(Src, CurLoop);
3108 Src = SE->getMulExpr(Src, A);
3109 Dst = SE->getMulExpr(Dst, A);
3110 Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, C));
3111 Src = zeroCoefficient(Src, CurLoop);
3112 Dst = addToCoefficient(Dst, CurLoop, SE->getMulExpr(A_K, B));
3113 if (!findCoefficient(Dst, CurLoop)->isZero())
3114 Consistent = false;
3115 }
3116 DEBUG(dbgs() << "\t\tnew Src = " << *Src << "\n");
3117 DEBUG(dbgs() << "\t\tnew Dst = " << *Dst << "\n");
3118 return true;
3119 }
3120
3121
3122 // Attempt to propagate a point
3123 // constraint into a subscript pair (Src and Dst).
3124 // Return true if some simplification occurs.
3125 bool DependenceAnalysis::propagatePoint(const SCEV *&Src,
3126 const SCEV *&Dst,
3127 Constraint &CurConstraint) {
3128 const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3129 const SCEV *A_K = findCoefficient(Src, CurLoop);
3130 const SCEV *AP_K = findCoefficient(Dst, CurLoop);
3131 const SCEV *XA_K = SE->getMulExpr(A_K, CurConstraint.getX());
3132 const SCEV *YAP_K = SE->getMulExpr(AP_K, CurConstraint.getY());
3133 DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
3134 Src = SE->getAddExpr(Src, SE->getMinusSCEV(XA_K, YAP_K));
3135 Src = zeroCoefficient(Src, CurLoop);
3136 DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
3137 DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
3138 Dst = zeroCoefficient(Dst, CurLoop);
3139 DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
3140 return true;
3141 }
3142
3143
3144 // Update direction vector entry based on the current constraint.
3145 void DependenceAnalysis::updateDirection(Dependence::DVEntry &Level,
3146 const Constraint &CurConstraint
3147 ) const {
3148 DEBUG(dbgs() << "\tUpdate direction, constraint =");
3149 DEBUG(CurConstraint.dump(dbgs()));
3150 if (CurConstraint.isAny())
3151 ; // use defaults
3152 else if (CurConstraint.isDistance()) {
3153 // this one is consistent, the others aren't
3154 Level.Scalar = false;
3155 Level.Distance = CurConstraint.getD();
3156 unsigned NewDirection = Dependence::DVEntry::NONE;
3157 if (!SE->isKnownNonZero(Level.Distance)) // if may be zero
3158 NewDirection = Dependence::DVEntry::EQ;
3159 if (!SE->isKnownNonPositive(Level.Distance)) // if may be positive
3160 NewDirection |= Dependence::DVEntry::LT;
3161 if (!SE->isKnownNonNegative(Level.Distance)) // if may be negative
3162 NewDirection |= Dependence::DVEntry::GT;
3163 Level.Direction &= NewDirection;
3164 }
3165 else if (CurConstraint.isLine()) {
3166 Level.Scalar = false;
3167 Level.Distance = nullptr;
3168 // direction should be accurate
3169 }
3170 else if (CurConstraint.isPoint()) {
3171 Level.Scalar = false;
3172 Level.Distance = nullptr;
3173 unsigned NewDirection = Dependence::DVEntry::NONE;
3174 if (!isKnownPredicate(CmpInst::ICMP_NE,
3175 CurConstraint.getY(),
3176 CurConstraint.getX()))
3177 // if X may be = Y
3178 NewDirection |= Dependence::DVEntry::EQ;
3179 if (!isKnownPredicate(CmpInst::ICMP_SLE,
3180 CurConstraint.getY(),
3181 CurConstraint.getX()))
3182 // if Y may be > X
3183 NewDirection |= Dependence::DVEntry::LT;
3184 if (!isKnownPredicate(CmpInst::ICMP_SGE,
3185 CurConstraint.getY(),
3186 CurConstraint.getX()))
3187 // if Y may be < X
3188 NewDirection |= Dependence::DVEntry::GT;
3189 Level.Direction &= NewDirection;
3190 }
3191 else
3192 llvm_unreachable("constraint has unexpected kind");
3193 }
3194
3195 /// Check if we can delinearize the subscripts. If the SCEVs representing the
3196 /// source and destination array references are recurrences on a nested loop,
3197 /// this function flattens the nested recurrences into separate recurrences
3198 /// for each loop level.
3199 bool DependenceAnalysis::tryDelinearize(const SCEV *SrcSCEV,
3200 const SCEV *DstSCEV,
3201 SmallVectorImpl<Subscript> &Pair,
3202 const SCEV *ElementSize) {
3203 const SCEVUnknown *SrcBase =
3204 dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcSCEV));
3205 const SCEVUnknown *DstBase =
3206 dyn_cast<SCEVUnknown>(SE->getPointerBase(DstSCEV));
3207
3208 if (!SrcBase || !DstBase || SrcBase != DstBase)
3209 return false;
3210
3211 SrcSCEV = SE->getMinusSCEV(SrcSCEV, SrcBase);
3212 DstSCEV = SE->getMinusSCEV(DstSCEV, DstBase);
3213
3214 const SCEVAddRecExpr *SrcAR = dyn_cast<SCEVAddRecExpr>(SrcSCEV);
3215 const SCEVAddRecExpr *DstAR = dyn_cast<SCEVAddRecExpr>(DstSCEV);
3216 if (!SrcAR || !DstAR || !SrcAR->isAffine() || !DstAR->isAffine())
3217 return false;
3218
3219 // First step: collect parametric terms in both array references.
3220 SmallVector<const SCEV *, 4> Terms;
3221 SrcAR->collectParametricTerms(*SE, Terms);
3222 DstAR->collectParametricTerms(*SE, Terms);
3223
3224 // Second step: find subscript sizes.
3225 SmallVector<const SCEV *, 4> Sizes;
3226 SE->findArrayDimensions(Terms, Sizes, ElementSize);
3227
3228 // Third step: compute the access functions for each subscript.
3229 SmallVector<const SCEV *, 4> SrcSubscripts, DstSubscripts;
3230 SrcAR->computeAccessFunctions(*SE, SrcSubscripts, Sizes);
3231 DstAR->computeAccessFunctions(*SE, DstSubscripts, Sizes);
3232
3233 // Fail when there is only a subscript: that's a linearized access function.
3234 if (SrcSubscripts.size() < 2 || DstSubscripts.size() < 2 ||
3235 SrcSubscripts.size() != DstSubscripts.size())
3236 return false;
3237
3238 int size = SrcSubscripts.size();
3239
3240 DEBUG({
3241 dbgs() << "\nSrcSubscripts: ";
3242 for (int i = 0; i < size; i++)
3243 dbgs() << *SrcSubscripts[i];
3244 dbgs() << "\nDstSubscripts: ";
3245 for (int i = 0; i < size; i++)
3246 dbgs() << *DstSubscripts[i];
3247 });
3248
3249 // The delinearization transforms a single-subscript MIV dependence test into
3250 // a multi-subscript SIV dependence test that is easier to compute. So we
3251 // resize Pair to contain as many pairs of subscripts as the delinearization
3252 // has found, and then initialize the pairs following the delinearization.
3253 Pair.resize(size);
3254 for (int i = 0; i < size; ++i) {
3255 Pair[i].Src = SrcSubscripts[i];
3256 Pair[i].Dst = DstSubscripts[i];
3257 unifySubscriptType(&Pair[i]);
3258
3259 // FIXME: we should record the bounds SrcSizes[i] and DstSizes[i] that the
3260 // delinearization has found, and add these constraints to the dependence
3261 // check to avoid memory accesses overflow from one dimension into another.
3262 // This is related to the problem of determining the existence of data
3263 // dependences in array accesses using a different number of subscripts: in
3264 // C one can access an array A[100][100]; as A[0][9999], *A[9999], etc.
3265 }
3266
3267 return true;
3268 }
3269
3270 //===----------------------------------------------------------------------===//
3271
3272 #ifndef NDEBUG
3273 // For debugging purposes, dump a small bit vector to dbgs().
3274 static void dumpSmallBitVector(SmallBitVector &BV) {
3275 dbgs() << "{";
3276 for (int VI = BV.find_first(); VI >= 0; VI = BV.find_next(VI)) {
3277 dbgs() << VI;
3278 if (BV.find_next(VI) >= 0)
3279 dbgs() << ' ';
3280 }
3281 dbgs() << "}\n";
3282 }
3283 #endif
3284
3285
3286 // depends -
3287 // Returns NULL if there is no dependence.
3288 // Otherwise, return a Dependence with as many details as possible.
3289 // Corresponds to Section 3.1 in the paper
3290 //
3291 // Practical Dependence Testing
3292 // Goff, Kennedy, Tseng
3293 // PLDI 1991
3294 //
3295 // Care is required to keep the routine below, getSplitIteration(),
3296 // up to date with respect to this routine.
3297 std::unique_ptr<Dependence>
3298 DependenceAnalysis::depends(Instruction *Src, Instruction *Dst,
3299 bool PossiblyLoopIndependent) {
3300 if (Src == Dst)
3301 PossiblyLoopIndependent = false;
3302
3303 if ((!Src->mayReadFromMemory() && !Src->mayWriteToMemory()) ||
3304 (!Dst->mayReadFromMemory() && !Dst->mayWriteToMemory()))
3305 // if both instructions don't reference memory, there's no dependence
3306 return nullptr;
3307
3308 if (!isLoadOrStore(Src) || !isLoadOrStore(Dst)) {
3309 // can only analyze simple loads and stores, i.e., no calls, invokes, etc.
3310 DEBUG(dbgs() << "can only handle simple loads and stores\n");
3311 return make_unique<Dependence>(Src, Dst);
3312 }
3313
3314 Value *SrcPtr = getPointerOperand(Src);
3315 Value *DstPtr = getPointerOperand(Dst);
3316
3317 switch (underlyingObjectsAlias(AA, DstPtr, SrcPtr)) {
3318 case AliasAnalysis::MayAlias:
3319 case AliasAnalysis::PartialAlias:
3320 // cannot analyse objects if we don't understand their aliasing.
3321 DEBUG(dbgs() << "can't analyze may or partial alias\n");
3322 return make_unique<Dependence>(Src, Dst);
3323 case AliasAnalysis::NoAlias:
3324 // If the objects noalias, they are distinct, accesses are independent.
3325 DEBUG(dbgs() << "no alias\n");
3326 return nullptr;
3327 case AliasAnalysis::MustAlias:
3328 break; // The underlying objects alias; test accesses for dependence.
3329 }
3330
3331 // establish loop nesting levels
3332 establishNestingLevels(Src, Dst);
3333 DEBUG(dbgs() << " common nesting levels = " << CommonLevels << "\n");
3334 DEBUG(dbgs() << " maximum nesting levels = " << MaxLevels << "\n");
3335
3336 FullDependence Result(Src, Dst, PossiblyLoopIndependent, CommonLevels);
3337 ++TotalArrayPairs;
3338
3339 // See if there are GEPs we can use.
3340 bool UsefulGEP = false;
3341 GEPOperator *SrcGEP = dyn_cast<GEPOperator>(SrcPtr);
3342 GEPOperator *DstGEP = dyn_cast<GEPOperator>(DstPtr);
3343 if (SrcGEP && DstGEP &&
3344 SrcGEP->getPointerOperandType() == DstGEP->getPointerOperandType()) {
3345 const SCEV *SrcPtrSCEV = SE->getSCEV(SrcGEP->getPointerOperand());
3346 const SCEV *DstPtrSCEV = SE->getSCEV(DstGEP->getPointerOperand());
3347 DEBUG(dbgs() << " SrcPtrSCEV = " << *SrcPtrSCEV << "\n");
3348 DEBUG(dbgs() << " DstPtrSCEV = " << *DstPtrSCEV << "\n");
3349
3350 UsefulGEP =
3351 isLoopInvariant(SrcPtrSCEV, LI->getLoopFor(Src->getParent())) &&
3352 isLoopInvariant(DstPtrSCEV, LI->getLoopFor(Dst->getParent()));
3353 }
3354 unsigned Pairs = UsefulGEP ? SrcGEP->idx_end() - SrcGEP->idx_begin() : 1;
3355 SmallVector<Subscript, 4> Pair(Pairs);
3356 if (UsefulGEP) {
3357 DEBUG(dbgs() << " using GEPs\n");
3358 unsigned P = 0;
3359 for (GEPOperator::const_op_iterator SrcIdx = SrcGEP->idx_begin(),
3360 SrcEnd = SrcGEP->idx_end(),
3361 DstIdx = DstGEP->idx_begin();
3362 SrcIdx != SrcEnd;
3363 ++SrcIdx, ++DstIdx, ++P) {
3364 Pair[P].Src = SE->getSCEV(*SrcIdx);
3365 Pair[P].Dst = SE->getSCEV(*DstIdx);
3366 unifySubscriptType(&Pair[P]);
3367 }
3368 }
3369 else {
3370 DEBUG(dbgs() << " ignoring GEPs\n");
3371 const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
3372 const SCEV *DstSCEV = SE->getSCEV(DstPtr);
3373 DEBUG(dbgs() << " SrcSCEV = " << *SrcSCEV << "\n");
3374 DEBUG(dbgs() << " DstSCEV = " << *DstSCEV << "\n");
3375 Pair[0].Src = SrcSCEV;
3376 Pair[0].Dst = DstSCEV;
3377 }
3378
3379 if (Delinearize && Pairs == 1 && CommonLevels > 1 &&
3380 tryDelinearize(Pair[0].Src, Pair[0].Dst, Pair, SE->getElementSize(Src))) {
3381 DEBUG(dbgs() << " delinerized GEP\n");
3382 Pairs = Pair.size();
3383 }
3384
3385 for (unsigned P = 0; P < Pairs; ++P) {
3386 Pair[P].Loops.resize(MaxLevels + 1);
3387 Pair[P].GroupLoops.resize(MaxLevels + 1);
3388 Pair[P].Group.resize(Pairs);
3389 removeMatchingExtensions(&Pair[P]);
3390 Pair[P].Classification =
3391 classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
3392 Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
3393 Pair[P].Loops);
3394 Pair[P].GroupLoops = Pair[P].Loops;
3395 Pair[P].Group.set(P);
3396 DEBUG(dbgs() << " subscript " << P << "\n");
3397 DEBUG(dbgs() << "\tsrc = " << *Pair[P].Src << "\n");
3398 DEBUG(dbgs() << "\tdst = " << *Pair[P].Dst << "\n");
3399 DEBUG(dbgs() << "\tclass = " << Pair[P].Classification << "\n");
3400 DEBUG(dbgs() << "\tloops = ");
3401 DEBUG(dumpSmallBitVector(Pair[P].Loops));
3402 }
3403
3404 SmallBitVector Separable(Pairs);
3405 SmallBitVector Coupled(Pairs);
3406
3407 // Partition subscripts into separable and minimally-coupled groups
3408 // Algorithm in paper is algorithmically better;
3409 // this may be faster in practice. Check someday.
3410 //
3411 // Here's an example of how it works. Consider this code:
3412 //
3413 // for (i = ...) {
3414 // for (j = ...) {
3415 // for (k = ...) {
3416 // for (l = ...) {
3417 // for (m = ...) {
3418 // A[i][j][k][m] = ...;
3419 // ... = A[0][j][l][i + j];
3420 // }
3421 // }
3422 // }
3423 // }
3424 // }
3425 //
3426 // There are 4 subscripts here:
3427 // 0 [i] and [0]
3428 // 1 [j] and [j]
3429 // 2 [k] and [l]
3430 // 3 [m] and [i + j]
3431 //
3432 // We've already classified each subscript pair as ZIV, SIV, etc.,
3433 // and collected all the loops mentioned by pair P in Pair[P].Loops.
3434 // In addition, we've initialized Pair[P].GroupLoops to Pair[P].Loops
3435 // and set Pair[P].Group = {P}.
3436 //
3437 // Src Dst Classification Loops GroupLoops Group
3438 // 0 [i] [0] SIV {1} {1} {0}
3439 // 1 [j] [j] SIV {2} {2} {1}
3440 // 2 [k] [l] RDIV {3,4} {3,4} {2}
3441 // 3 [m] [i + j] MIV {1,2,5} {1,2,5} {3}
3442 //
3443 // For each subscript SI 0 .. 3, we consider each remaining subscript, SJ.
3444 // So, 0 is compared against 1, 2, and 3; 1 is compared against 2 and 3, etc.
3445 //
3446 // We begin by comparing 0 and 1. The intersection of the GroupLoops is empty.
3447 // Next, 0 and 2. Again, the intersection of their GroupLoops is empty.
3448 // Next 0 and 3. The intersection of their GroupLoop = {1}, not empty,
3449 // so Pair[3].Group = {0,3} and Done = false (that is, 0 will not be added
3450 // to either Separable or Coupled).
3451 //
3452 // Next, we consider 1 and 2. The intersection of the GroupLoops is empty.
3453 // Next, 1 and 3. The intersectionof their GroupLoops = {2}, not empty,
3454 // so Pair[3].Group = {0, 1, 3} and Done = false.
3455 //
3456 // Next, we compare 2 against 3. The intersection of the GroupLoops is empty.
3457 // Since Done remains true, we add 2 to the set of Separable pairs.
3458 //
3459 // Finally, we consider 3. There's nothing to compare it with,
3460 // so Done remains true and we add it to the Coupled set.
3461 // Pair[3].Group = {0, 1, 3} and GroupLoops = {1, 2, 5}.
3462 //
3463 // In the end, we've got 1 separable subscript and 1 coupled group.
3464 for (unsigned SI = 0; SI < Pairs; ++SI) {
3465 if (Pair[SI].Classification == Subscript::NonLinear) {
3466 // ignore these, but collect loops for later
3467 ++NonlinearSubscriptPairs;
3468 collectCommonLoops(Pair[SI].Src,
3469 LI->getLoopFor(Src->getParent()),
3470 Pair[SI].Loops);
3471 collectCommonLoops(Pair[SI].Dst,
3472 LI->getLoopFor(Dst->getParent()),
3473 Pair[SI].Loops);
3474 Result.Consistent = false;
3475 }
3476 else if (Pair[SI].Classification == Subscript::ZIV) {
3477 // always separable
3478 Separable.set(SI);
3479 }
3480 else {
3481 // SIV, RDIV, or MIV, so check for coupled group
3482 bool Done = true;
3483 for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
3484 SmallBitVector Intersection = Pair[SI].GroupLoops;
3485 Intersection &= Pair[SJ].GroupLoops;
3486 if (Intersection.any()) {
3487 // accumulate set of all the loops in group
3488 Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
3489 // accumulate set of all subscripts in group
3490 Pair[SJ].Group |= Pair[SI].Group;
3491 Done = false;
3492 }
3493 }
3494 if (Done) {
3495 if (Pair[SI].Group.count() == 1) {
3496 Separable.set(SI);
3497 ++SeparableSubscriptPairs;
3498 }
3499 else {
3500 Coupled.set(SI);
3501 ++CoupledSubscriptPairs;
3502 }
3503 }
3504 }
3505 }
3506
3507 DEBUG(dbgs() << " Separable = ");
3508 DEBUG(dumpSmallBitVector(Separable));
3509 DEBUG(dbgs() << " Coupled = ");
3510 DEBUG(dumpSmallBitVector(Coupled));
3511
3512 Constraint NewConstraint;
3513 NewConstraint.setAny(SE);
3514
3515 // test separable subscripts
3516 for (int SI = Separable.find_first(); SI >= 0; SI = Separable.find_next(SI)) {
3517 DEBUG(dbgs() << "testing subscript " << SI);
3518 switch (Pair[SI].Classification) {
3519 case Subscript::ZIV:
3520 DEBUG(dbgs() << ", ZIV\n");
3521 if (testZIV(Pair[SI].Src, Pair[SI].Dst, Result))
3522 return nullptr;
3523 break;
3524 case Subscript::SIV: {
3525 DEBUG(dbgs() << ", SIV\n");
3526 unsigned Level;
3527 const SCEV *SplitIter = nullptr;
3528 if (testSIV(Pair[SI].Src, Pair[SI].Dst, Level,
3529 Result, NewConstraint, SplitIter))
3530 return nullptr;
3531 break;
3532 }
3533 case Subscript::RDIV:
3534 DEBUG(dbgs() << ", RDIV\n");
3535 if (testRDIV(Pair[SI].Src, Pair[SI].Dst, Result))
3536 return nullptr;
3537 break;
3538 case Subscript::MIV:
3539 DEBUG(dbgs() << ", MIV\n");
3540 if (testMIV(Pair[SI].Src, Pair[SI].Dst, Pair[SI].Loops, Result))
3541 return nullptr;
3542 break;
3543 default:
3544 llvm_unreachable("subscript has unexpected classification");
3545 }
3546 }
3547
3548 if (Coupled.count()) {
3549 // test coupled subscript groups
3550 DEBUG(dbgs() << "starting on coupled subscripts\n");
3551 DEBUG(dbgs() << "MaxLevels + 1 = " << MaxLevels + 1 << "\n");
3552 SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
3553 for (unsigned II = 0; II <= MaxLevels; ++II)
3554 Constraints[II].setAny(SE);
3555 for (int SI = Coupled.find_first(); SI >= 0; SI = Coupled.find_next(SI)) {
3556 DEBUG(dbgs() << "testing subscript group " << SI << " { ");
3557 SmallBitVector Group(Pair[SI].Group);
3558 SmallBitVector Sivs(Pairs);
3559 SmallBitVector Mivs(Pairs);
3560 SmallBitVector ConstrainedLevels(MaxLevels + 1);
3561 for (int SJ = Group.find_first(); SJ >= 0; SJ = Group.find_next(SJ)) {
3562 DEBUG(dbgs() << SJ << " ");
3563 if (Pair[SJ].Classification == Subscript::SIV)
3564 Sivs.set(SJ);
3565 else
3566 Mivs.set(SJ);
3567 }
3568 DEBUG(dbgs() << "}\n");
3569 while (Sivs.any()) {
3570 bool Changed = false;
3571 for (int SJ = Sivs.find_first(); SJ >= 0; SJ = Sivs.find_next(SJ)) {
3572 DEBUG(dbgs() << "testing subscript " << SJ << ", SIV\n");
3573 // SJ is an SIV subscript that's part of the current coupled group
3574 unsigned Level;
3575 const SCEV *SplitIter = nullptr;
3576 DEBUG(dbgs() << "SIV\n");
3577 if (testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level,
3578 Result, NewConstraint, SplitIter))
3579 return nullptr;
3580 ConstrainedLevels.set(Level);
3581 if (intersectConstraints(&Constraints[Level], &NewConstraint)) {
3582 if (Constraints[Level].isEmpty()) {
3583 ++DeltaIndependence;
3584 return nullptr;
3585 }
3586 Changed = true;
3587 }
3588 Sivs.reset(SJ);
3589 }
3590 if (Changed) {
3591 // propagate, possibly creating new SIVs and ZIVs
3592 DEBUG(dbgs() << " propagating\n");
3593 DEBUG(dbgs() << "\tMivs = ");
3594 DEBUG(dumpSmallBitVector(Mivs));
3595 for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) {
3596 // SJ is an MIV subscript that's part of the current coupled group
3597 DEBUG(dbgs() << "\tSJ = " << SJ << "\n");
3598 if (propagate(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops,
3599 Constraints, Result.Consistent)) {
3600 DEBUG(dbgs() << "\t Changed\n");
3601 ++DeltaPropagations;
3602 Pair[SJ].Classification =
3603 classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
3604 Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
3605 Pair[SJ].Loops);
3606 switch (Pair[SJ].Classification) {
3607 case Subscript::ZIV:
3608 DEBUG(dbgs() << "ZIV\n");
3609 if (testZIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
3610 return nullptr;
3611 Mivs.reset(SJ);
3612 break;
3613 case Subscript::SIV:
3614 Sivs.set(SJ);
3615 Mivs.reset(SJ);
3616 break;
3617 case Subscript::RDIV:
3618 case Subscript::MIV:
3619 break;
3620 default:
3621 llvm_unreachable("bad subscript classification");
3622 }
3623 }
3624 }
3625 }
3626 }
3627
3628 // test & propagate remaining RDIVs
3629 for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) {
3630 if (Pair[SJ].Classification == Subscript::RDIV) {
3631 DEBUG(dbgs() << "RDIV test\n");
3632 if (testRDIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
3633 return nullptr;
3634 // I don't yet understand how to propagate RDIV results
3635 Mivs.reset(SJ);
3636 }
3637 }
3638
3639 // test remaining MIVs
3640 // This code is temporary.
3641 // Better to somehow test all remaining subscripts simultaneously.
3642 for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) {
3643 if (Pair[SJ].Classification == Subscript::MIV) {
3644 DEBUG(dbgs() << "MIV test\n");
3645 if (testMIV(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops, Result))
3646 return nullptr;
3647 }
3648 else
3649 llvm_unreachable("expected only MIV subscripts at this point");
3650 }
3651
3652 // update Result.DV from constraint vector
3653 DEBUG(dbgs() << " updating\n");
3654 for (int SJ = ConstrainedLevels.find_first();
3655 SJ >= 0; SJ = ConstrainedLevels.find_next(SJ)) {
3656 updateDirection(Result.DV[SJ - 1], Constraints[SJ]);
3657 if (Result.DV[SJ - 1].Direction == Dependence::DVEntry::NONE)
3658 return nullptr;
3659 }
3660 }
3661 }
3662
3663 // Make sure the Scalar flags are set correctly.
3664 SmallBitVector CompleteLoops(MaxLevels + 1);
3665 for (unsigned SI = 0; SI < Pairs; ++SI)
3666 CompleteLoops |= Pair[SI].Loops;
3667 for (unsigned II = 1; II <= CommonLevels; ++II)
3668 if (CompleteLoops[II])
3669 Result.DV[II - 1].Scalar = false;
3670
3671 if (PossiblyLoopIndependent) {
3672 // Make sure the LoopIndependent flag is set correctly.
3673 // All directions must include equal, otherwise no
3674 // loop-independent dependence is possible.
3675 for (unsigned II = 1; II <= CommonLevels; ++II) {
3676 if (!(Result.getDirection(II) & Dependence::DVEntry::EQ)) {
3677 Result.LoopIndependent = false;
3678 break;
3679 }
3680 }
3681 }
3682 else {
3683 // On the other hand, if all directions are equal and there's no
3684 // loop-independent dependence possible, then no dependence exists.
3685 bool AllEqual = true;
3686 for (unsigned II = 1; II <= CommonLevels; ++II) {
3687 if (Result.getDirection(II) != Dependence::DVEntry::EQ) {
3688 AllEqual = false;
3689 break;
3690 }
3691 }
3692 if (AllEqual)
3693 return nullptr;
3694 }
3695
3696 auto Final = make_unique<FullDependence>(Result);
3697 Result.DV = nullptr;
3698 return std::move(Final);
3699 }
3700
3701
3702
3703 //===----------------------------------------------------------------------===//
3704 // getSplitIteration -
3705 // Rather than spend rarely-used space recording the splitting iteration
3706 // during the Weak-Crossing SIV test, we re-compute it on demand.
3707 // The re-computation is basically a repeat of the entire dependence test,
3708 // though simplified since we know that the dependence exists.
3709 // It's tedious, since we must go through all propagations, etc.
3710 //
3711 // Care is required to keep this code up to date with respect to the routine
3712 // above, depends().
3713 //
3714 // Generally, the dependence analyzer will be used to build
3715 // a dependence graph for a function (basically a map from instructions
3716 // to dependences). Looking for cycles in the graph shows us loops
3717 // that cannot be trivially vectorized/parallelized.
3718 //
3719 // We can try to improve the situation by examining all the dependences
3720 // that make up the cycle, looking for ones we can break.
3721 // Sometimes, peeling the first or last iteration of a loop will break
3722 // dependences, and we've got flags for those possibilities.
3723 // Sometimes, splitting a loop at some other iteration will do the trick,
3724 // and we've got a flag for that case. Rather than waste the space to
3725 // record the exact iteration (since we rarely know), we provide
3726 // a method that calculates the iteration. It's a drag that it must work
3727 // from scratch, but wonderful in that it's possible.
3728 //
3729 // Here's an example:
3730 //
3731 // for (i = 0; i < 10; i++)
3732 // A[i] = ...
3733 // ... = A[11 - i]
3734 //
3735 // There's a loop-carried flow dependence from the store to the load,
3736 // found by the weak-crossing SIV test. The dependence will have a flag,
3737 // indicating that the dependence can be broken by splitting the loop.
3738 // Calling getSplitIteration will return 5.
3739 // Splitting the loop breaks the dependence, like so:
3740 //
3741 // for (i = 0; i <= 5; i++)
3742 // A[i] = ...
3743 // ... = A[11 - i]
3744 // for (i = 6; i < 10; i++)
3745 // A[i] = ...
3746 // ... = A[11 - i]
3747 //
3748 // breaks the dependence and allows us to vectorize/parallelize
3749 // both loops.
3750 const SCEV *DependenceAnalysis::getSplitIteration(const Dependence &Dep,
3751 unsigned SplitLevel) {
3752 assert(Dep.isSplitable(SplitLevel) &&
3753 "Dep should be splitable at SplitLevel");
3754 Instruction *Src = Dep.getSrc();
3755 Instruction *Dst = Dep.getDst();
3756 assert(Src->mayReadFromMemory() || Src->mayWriteToMemory());
3757 assert(Dst->mayReadFromMemory() || Dst->mayWriteToMemory());
3758 assert(isLoadOrStore(Src));
3759 assert(isLoadOrStore(Dst));
3760 Value *SrcPtr = getPointerOperand(Src);
3761 Value *DstPtr = getPointerOperand(Dst);
3762 assert(underlyingObjectsAlias(AA, DstPtr, SrcPtr) ==
3763 AliasAnalysis::MustAlias);
3764
3765 // establish loop nesting levels
3766 establishNestingLevels(Src, Dst);
3767
3768 FullDependence Result(Src, Dst, false, CommonLevels);
3769
3770 // See if there are GEPs we can use.
3771 bool UsefulGEP = false;
3772 GEPOperator *SrcGEP = dyn_cast<GEPOperator>(SrcPtr);
3773 GEPOperator *DstGEP = dyn_cast<GEPOperator>(DstPtr);
3774 if (SrcGEP && DstGEP &&
3775 SrcGEP->getPointerOperandType() == DstGEP->getPointerOperandType()) {
3776 const SCEV *SrcPtrSCEV = SE->getSCEV(SrcGEP->getPointerOperand());
3777 const SCEV *DstPtrSCEV = SE->getSCEV(DstGEP->getPointerOperand());
3778 UsefulGEP =
3779 isLoopInvariant(SrcPtrSCEV, LI->getLoopFor(Src->getParent())) &&
3780 isLoopInvariant(DstPtrSCEV, LI->getLoopFor(Dst->getParent()));
3781 }
3782 unsigned Pairs = UsefulGEP ? SrcGEP->idx_end() - SrcGEP->idx_begin() : 1;
3783 SmallVector<Subscript, 4> Pair(Pairs);
3784 if (UsefulGEP) {
3785 unsigned P = 0;
3786 for (GEPOperator::const_op_iterator SrcIdx = SrcGEP->idx_begin(),
3787 SrcEnd = SrcGEP->idx_end(),
3788 DstIdx = DstGEP->idx_begin();
3789 SrcIdx != SrcEnd;
3790 ++SrcIdx, ++DstIdx, ++P) {
3791 Pair[P].Src = SE->getSCEV(*SrcIdx);
3792 Pair[P].Dst = SE->getSCEV(*DstIdx);
3793 }
3794 }
3795 else {
3796 const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
3797 const SCEV *DstSCEV = SE->getSCEV(DstPtr);
3798 Pair[0].Src = SrcSCEV;
3799 Pair[0].Dst = DstSCEV;
3800 }
3801
3802 if (Delinearize && Pairs == 1 && CommonLevels > 1 &&
3803 tryDelinearize(Pair[0].Src, Pair[0].Dst, Pair, SE->getElementSize(Src))) {
3804 DEBUG(dbgs() << " delinerized GEP\n");
3805 Pairs = Pair.size();
3806 }
3807
3808 for (unsigned P = 0; P < Pairs; ++P) {
3809 Pair[P].Loops.resize(MaxLevels + 1);
3810 Pair[P].GroupLoops.resize(MaxLevels + 1);
3811 Pair[P].Group.resize(Pairs);
3812 removeMatchingExtensions(&Pair[P]);
3813 Pair[P].Classification =
3814 classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
3815 Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
3816 Pair[P].Loops);
3817 Pair[P].GroupLoops = Pair[P].Loops;
3818 Pair[P].Group.set(P);
3819 }
3820
3821 SmallBitVector Separable(Pairs);
3822 SmallBitVector Coupled(Pairs);
3823
3824 // partition subscripts into separable and minimally-coupled groups
3825 for (unsigned SI = 0; SI < Pairs; ++SI) {
3826 if (Pair[SI].Classification == Subscript::NonLinear) {
3827 // ignore these, but collect loops for later
3828 collectCommonLoops(Pair[SI].Src,
3829 LI->getLoopFor(Src->getParent()),
3830 Pair[SI].Loops);
3831 collectCommonLoops(Pair[SI].Dst,
3832 LI->getLoopFor(Dst->getParent()),
3833 Pair[SI].Loops);
3834 Result.Consistent = false;
3835 }
3836 else if (Pair[SI].Classification == Subscript::ZIV)
3837 Separable.set(SI);
3838 else {
3839 // SIV, RDIV, or MIV, so check for coupled group
3840 bool Done = true;
3841 for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
3842 SmallBitVector Intersection = Pair[SI].GroupLoops;
3843 Intersection &= Pair[SJ].GroupLoops;
3844 if (Intersection.any()) {
3845 // accumulate set of all the loops in group
3846 Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
3847 // accumulate set of all subscripts in group
3848 Pair[SJ].Group |= Pair[SI].Group;
3849 Done = false;
3850 }
3851 }
3852 if (Done) {
3853 if (Pair[SI].Group.count() == 1)
3854 Separable.set(SI);
3855 else
3856 Coupled.set(SI);
3857 }
3858 }
3859 }
3860
3861 Constraint NewConstraint;
3862 NewConstraint.setAny(SE);
3863
3864 // test separable subscripts
3865 for (int SI = Separable.find_first(); SI >= 0; SI = Separable.find_next(SI)) {
3866 switch (Pair[SI].Classification) {
3867 case Subscript::SIV: {
3868 unsigned Level;
3869 const SCEV *SplitIter = nullptr;
3870 (void) testSIV(Pair[SI].Src, Pair[SI].Dst, Level,
3871 Result, NewConstraint, SplitIter);
3872 if (Level == SplitLevel) {
3873 assert(SplitIter != nullptr);
3874 return SplitIter;
3875 }
3876 break;
3877 }
3878 case Subscript::ZIV:
3879 case Subscript::RDIV:
3880 case Subscript::MIV:
3881 break;
3882 default:
3883 llvm_unreachable("subscript has unexpected classification");
3884 }
3885 }
3886
3887 if (Coupled.count()) {
3888 // test coupled subscript groups
3889 SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
3890 for (unsigned II = 0; II <= MaxLevels; ++II)
3891 Constraints[II].setAny(SE);
3892 for (int SI = Coupled.find_first(); SI >= 0; SI = Coupled.find_next(SI)) {
3893 SmallBitVector Group(Pair[SI].Group);
3894 SmallBitVector Sivs(Pairs);
3895 SmallBitVector Mivs(Pairs);
3896 SmallBitVector ConstrainedLevels(MaxLevels + 1);
3897 for (int SJ = Group.find_first(); SJ >= 0; SJ = Group.find_next(SJ)) {
3898 if (Pair[SJ].Classification == Subscript::SIV)
3899 Sivs.set(SJ);
3900 else
3901 Mivs.set(SJ);
3902 }
3903 while (Sivs.any()) {
3904 bool Changed = false;
3905 for (int SJ = Sivs.find_first(); SJ >= 0; SJ = Sivs.find_next(SJ)) {
3906 // SJ is an SIV subscript that's part of the current coupled group
3907 unsigned Level;
3908 const SCEV *SplitIter = nullptr;
3909 (void) testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level,
3910 Result, NewConstraint, SplitIter);
3911 if (Level == SplitLevel && SplitIter)
3912 return SplitIter;
3913 ConstrainedLevels.set(Level);
3914 if (intersectConstraints(&Constraints[Level], &NewConstraint))
3915 Changed = true;
3916 Sivs.reset(SJ);
3917 }
3918 if (Changed) {
3919 // propagate, possibly creating new SIVs and ZIVs
3920 for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) {
3921 // SJ is an MIV subscript that's part of the current coupled group
3922 if (propagate(Pair[SJ].Src, Pair[SJ].Dst,
3923 Pair[SJ].Loops, Constraints, Result.Consistent)) {
3924 Pair[SJ].Classification =
3925 classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
3926 Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
3927 Pair[SJ].Loops);
3928 switch (Pair[SJ].Classification) {
3929 case Subscript::ZIV:
3930 Mivs.reset(SJ);
3931 break;
3932 case Subscript::SIV:
3933 Sivs.set(SJ);
3934 Mivs.reset(SJ);
3935 break;
3936 case Subscript::RDIV:
3937 case Subscript::MIV:
3938 break;
3939 default:
3940 llvm_unreachable("bad subscript classification");
3941 }
3942 }
3943 }
3944 }
3945 }
3946 }
3947 }
3948 llvm_unreachable("somehow reached end of routine");
3949 return nullptr;
3950 }