]> git.proxmox.com Git - rustc.git/blob - src/llvm/lib/Analysis/LoopInfo.cpp
46c0eaabe1a3102e59ecc1b18f430800944b7dd4
[rustc.git] / src / llvm / lib / Analysis / LoopInfo.cpp
1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the LoopInfo class that is used to identify natural loops
11 // and determine the loop depth of various nodes of the CFG. Note that the
12 // loops identified may actually be several natural loops that share the same
13 // header node... not just a single natural loop.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/Analysis/LoopInfoImpl.h"
21 #include "llvm/Analysis/LoopIterator.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/CFG.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/Metadata.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Support/Debug.h"
30 #include <algorithm>
31 using namespace llvm;
32
33 // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops.
34 template class llvm::LoopBase<BasicBlock, Loop>;
35 template class llvm::LoopInfoBase<BasicBlock, Loop>;
36
37 // Always verify loopinfo if expensive checking is enabled.
38 #ifdef XDEBUG
39 static bool VerifyLoopInfo = true;
40 #else
41 static bool VerifyLoopInfo = false;
42 #endif
43 static cl::opt<bool,true>
44 VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo),
45 cl::desc("Verify loop info (time consuming)"));
46
47 char LoopInfo::ID = 0;
48 INITIALIZE_PASS_BEGIN(LoopInfo, "loops", "Natural Loop Information", true, true)
49 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
50 INITIALIZE_PASS_END(LoopInfo, "loops", "Natural Loop Information", true, true)
51
52 // Loop identifier metadata name.
53 static const char *const LoopMDName = "llvm.loop";
54
55 //===----------------------------------------------------------------------===//
56 // Loop implementation
57 //
58
59 /// isLoopInvariant - Return true if the specified value is loop invariant
60 ///
61 bool Loop::isLoopInvariant(Value *V) const {
62 if (Instruction *I = dyn_cast<Instruction>(V))
63 return !contains(I);
64 return true; // All non-instructions are loop invariant
65 }
66
67 /// hasLoopInvariantOperands - Return true if all the operands of the
68 /// specified instruction are loop invariant.
69 bool Loop::hasLoopInvariantOperands(Instruction *I) const {
70 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
71 if (!isLoopInvariant(I->getOperand(i)))
72 return false;
73
74 return true;
75 }
76
77 /// makeLoopInvariant - If the given value is an instruciton inside of the
78 /// loop and it can be hoisted, do so to make it trivially loop-invariant.
79 /// Return true if the value after any hoisting is loop invariant. This
80 /// function can be used as a slightly more aggressive replacement for
81 /// isLoopInvariant.
82 ///
83 /// If InsertPt is specified, it is the point to hoist instructions to.
84 /// If null, the terminator of the loop preheader is used.
85 ///
86 bool Loop::makeLoopInvariant(Value *V, bool &Changed,
87 Instruction *InsertPt) const {
88 if (Instruction *I = dyn_cast<Instruction>(V))
89 return makeLoopInvariant(I, Changed, InsertPt);
90 return true; // All non-instructions are loop-invariant.
91 }
92
93 /// makeLoopInvariant - If the given instruction is inside of the
94 /// loop and it can be hoisted, do so to make it trivially loop-invariant.
95 /// Return true if the instruction after any hoisting is loop invariant. This
96 /// function can be used as a slightly more aggressive replacement for
97 /// isLoopInvariant.
98 ///
99 /// If InsertPt is specified, it is the point to hoist instructions to.
100 /// If null, the terminator of the loop preheader is used.
101 ///
102 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
103 Instruction *InsertPt) const {
104 // Test if the value is already loop-invariant.
105 if (isLoopInvariant(I))
106 return true;
107 if (!isSafeToSpeculativelyExecute(I))
108 return false;
109 if (I->mayReadFromMemory())
110 return false;
111 // The landingpad instruction is immobile.
112 if (isa<LandingPadInst>(I))
113 return false;
114 // Determine the insertion point, unless one was given.
115 if (!InsertPt) {
116 BasicBlock *Preheader = getLoopPreheader();
117 // Without a preheader, hoisting is not feasible.
118 if (!Preheader)
119 return false;
120 InsertPt = Preheader->getTerminator();
121 }
122 // Don't hoist instructions with loop-variant operands.
123 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
124 if (!makeLoopInvariant(I->getOperand(i), Changed, InsertPt))
125 return false;
126
127 // Hoist.
128 I->moveBefore(InsertPt);
129 Changed = true;
130 return true;
131 }
132
133 /// getCanonicalInductionVariable - Check to see if the loop has a canonical
134 /// induction variable: an integer recurrence that starts at 0 and increments
135 /// by one each time through the loop. If so, return the phi node that
136 /// corresponds to it.
137 ///
138 /// The IndVarSimplify pass transforms loops to have a canonical induction
139 /// variable.
140 ///
141 PHINode *Loop::getCanonicalInductionVariable() const {
142 BasicBlock *H = getHeader();
143
144 BasicBlock *Incoming = nullptr, *Backedge = nullptr;
145 pred_iterator PI = pred_begin(H);
146 assert(PI != pred_end(H) &&
147 "Loop must have at least one backedge!");
148 Backedge = *PI++;
149 if (PI == pred_end(H)) return nullptr; // dead loop
150 Incoming = *PI++;
151 if (PI != pred_end(H)) return nullptr; // multiple backedges?
152
153 if (contains(Incoming)) {
154 if (contains(Backedge))
155 return nullptr;
156 std::swap(Incoming, Backedge);
157 } else if (!contains(Backedge))
158 return nullptr;
159
160 // Loop over all of the PHI nodes, looking for a canonical indvar.
161 for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
162 PHINode *PN = cast<PHINode>(I);
163 if (ConstantInt *CI =
164 dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
165 if (CI->isNullValue())
166 if (Instruction *Inc =
167 dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
168 if (Inc->getOpcode() == Instruction::Add &&
169 Inc->getOperand(0) == PN)
170 if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
171 if (CI->equalsInt(1))
172 return PN;
173 }
174 return nullptr;
175 }
176
177 /// isLCSSAForm - Return true if the Loop is in LCSSA form
178 bool Loop::isLCSSAForm(DominatorTree &DT) const {
179 for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) {
180 BasicBlock *BB = *BI;
181 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;++I)
182 for (Use &U : I->uses()) {
183 Instruction *UI = cast<Instruction>(U.getUser());
184 BasicBlock *UserBB = UI->getParent();
185 if (PHINode *P = dyn_cast<PHINode>(UI))
186 UserBB = P->getIncomingBlock(U);
187
188 // Check the current block, as a fast-path, before checking whether
189 // the use is anywhere in the loop. Most values are used in the same
190 // block they are defined in. Also, blocks not reachable from the
191 // entry are special; uses in them don't need to go through PHIs.
192 if (UserBB != BB &&
193 !contains(UserBB) &&
194 DT.isReachableFromEntry(UserBB))
195 return false;
196 }
197 }
198
199 return true;
200 }
201
202 /// isLoopSimplifyForm - Return true if the Loop is in the form that
203 /// the LoopSimplify form transforms loops to, which is sometimes called
204 /// normal form.
205 bool Loop::isLoopSimplifyForm() const {
206 // Normal-form loops have a preheader, a single backedge, and all of their
207 // exits have all their predecessors inside the loop.
208 return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
209 }
210
211 /// isSafeToClone - Return true if the loop body is safe to clone in practice.
212 /// Routines that reform the loop CFG and split edges often fail on indirectbr.
213 bool Loop::isSafeToClone() const {
214 // Return false if any loop blocks contain indirectbrs, or there are any calls
215 // to noduplicate functions.
216 for (Loop::block_iterator I = block_begin(), E = block_end(); I != E; ++I) {
217 if (isa<IndirectBrInst>((*I)->getTerminator()))
218 return false;
219
220 if (const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator()))
221 if (II->cannotDuplicate())
222 return false;
223
224 for (BasicBlock::iterator BI = (*I)->begin(), BE = (*I)->end(); BI != BE; ++BI) {
225 if (const CallInst *CI = dyn_cast<CallInst>(BI)) {
226 if (CI->cannotDuplicate())
227 return false;
228 }
229 }
230 }
231 return true;
232 }
233
234 MDNode *Loop::getLoopID() const {
235 MDNode *LoopID = nullptr;
236 if (isLoopSimplifyForm()) {
237 LoopID = getLoopLatch()->getTerminator()->getMetadata(LoopMDName);
238 } else {
239 // Go through each predecessor of the loop header and check the
240 // terminator for the metadata.
241 BasicBlock *H = getHeader();
242 for (block_iterator I = block_begin(), IE = block_end(); I != IE; ++I) {
243 TerminatorInst *TI = (*I)->getTerminator();
244 MDNode *MD = nullptr;
245
246 // Check if this terminator branches to the loop header.
247 for (unsigned i = 0, ie = TI->getNumSuccessors(); i != ie; ++i) {
248 if (TI->getSuccessor(i) == H) {
249 MD = TI->getMetadata(LoopMDName);
250 break;
251 }
252 }
253 if (!MD)
254 return nullptr;
255
256 if (!LoopID)
257 LoopID = MD;
258 else if (MD != LoopID)
259 return nullptr;
260 }
261 }
262 if (!LoopID || LoopID->getNumOperands() == 0 ||
263 LoopID->getOperand(0) != LoopID)
264 return nullptr;
265 return LoopID;
266 }
267
268 void Loop::setLoopID(MDNode *LoopID) const {
269 assert(LoopID && "Loop ID should not be null");
270 assert(LoopID->getNumOperands() > 0 && "Loop ID needs at least one operand");
271 assert(LoopID->getOperand(0) == LoopID && "Loop ID should refer to itself");
272
273 if (isLoopSimplifyForm()) {
274 getLoopLatch()->getTerminator()->setMetadata(LoopMDName, LoopID);
275 return;
276 }
277
278 BasicBlock *H = getHeader();
279 for (block_iterator I = block_begin(), IE = block_end(); I != IE; ++I) {
280 TerminatorInst *TI = (*I)->getTerminator();
281 for (unsigned i = 0, ie = TI->getNumSuccessors(); i != ie; ++i) {
282 if (TI->getSuccessor(i) == H)
283 TI->setMetadata(LoopMDName, LoopID);
284 }
285 }
286 }
287
288 bool Loop::isAnnotatedParallel() const {
289 MDNode *desiredLoopIdMetadata = getLoopID();
290
291 if (!desiredLoopIdMetadata)
292 return false;
293
294 // The loop branch contains the parallel loop metadata. In order to ensure
295 // that any parallel-loop-unaware optimization pass hasn't added loop-carried
296 // dependencies (thus converted the loop back to a sequential loop), check
297 // that all the memory instructions in the loop contain parallelism metadata
298 // that point to the same unique "loop id metadata" the loop branch does.
299 for (block_iterator BB = block_begin(), BE = block_end(); BB != BE; ++BB) {
300 for (BasicBlock::iterator II = (*BB)->begin(), EE = (*BB)->end();
301 II != EE; II++) {
302
303 if (!II->mayReadOrWriteMemory())
304 continue;
305
306 // The memory instruction can refer to the loop identifier metadata
307 // directly or indirectly through another list metadata (in case of
308 // nested parallel loops). The loop identifier metadata refers to
309 // itself so we can check both cases with the same routine.
310 MDNode *loopIdMD = II->getMetadata("llvm.mem.parallel_loop_access");
311
312 if (!loopIdMD)
313 return false;
314
315 bool loopIdMDFound = false;
316 for (unsigned i = 0, e = loopIdMD->getNumOperands(); i < e; ++i) {
317 if (loopIdMD->getOperand(i) == desiredLoopIdMetadata) {
318 loopIdMDFound = true;
319 break;
320 }
321 }
322
323 if (!loopIdMDFound)
324 return false;
325 }
326 }
327 return true;
328 }
329
330
331 /// hasDedicatedExits - Return true if no exit block for the loop
332 /// has a predecessor that is outside the loop.
333 bool Loop::hasDedicatedExits() const {
334 // Each predecessor of each exit block of a normal loop is contained
335 // within the loop.
336 SmallVector<BasicBlock *, 4> ExitBlocks;
337 getExitBlocks(ExitBlocks);
338 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
339 for (pred_iterator PI = pred_begin(ExitBlocks[i]),
340 PE = pred_end(ExitBlocks[i]); PI != PE; ++PI)
341 if (!contains(*PI))
342 return false;
343 // All the requirements are met.
344 return true;
345 }
346
347 /// getUniqueExitBlocks - Return all unique successor blocks of this loop.
348 /// These are the blocks _outside of the current loop_ which are branched to.
349 /// This assumes that loop exits are in canonical form.
350 ///
351 void
352 Loop::getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const {
353 assert(hasDedicatedExits() &&
354 "getUniqueExitBlocks assumes the loop has canonical form exits!");
355
356 SmallVector<BasicBlock *, 32> switchExitBlocks;
357
358 for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) {
359
360 BasicBlock *current = *BI;
361 switchExitBlocks.clear();
362
363 for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I) {
364 // If block is inside the loop then it is not a exit block.
365 if (contains(*I))
366 continue;
367
368 pred_iterator PI = pred_begin(*I);
369 BasicBlock *firstPred = *PI;
370
371 // If current basic block is this exit block's first predecessor
372 // then only insert exit block in to the output ExitBlocks vector.
373 // This ensures that same exit block is not inserted twice into
374 // ExitBlocks vector.
375 if (current != firstPred)
376 continue;
377
378 // If a terminator has more then two successors, for example SwitchInst,
379 // then it is possible that there are multiple edges from current block
380 // to one exit block.
381 if (std::distance(succ_begin(current), succ_end(current)) <= 2) {
382 ExitBlocks.push_back(*I);
383 continue;
384 }
385
386 // In case of multiple edges from current block to exit block, collect
387 // only one edge in ExitBlocks. Use switchExitBlocks to keep track of
388 // duplicate edges.
389 if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I)
390 == switchExitBlocks.end()) {
391 switchExitBlocks.push_back(*I);
392 ExitBlocks.push_back(*I);
393 }
394 }
395 }
396 }
397
398 /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
399 /// block, return that block. Otherwise return null.
400 BasicBlock *Loop::getUniqueExitBlock() const {
401 SmallVector<BasicBlock *, 8> UniqueExitBlocks;
402 getUniqueExitBlocks(UniqueExitBlocks);
403 if (UniqueExitBlocks.size() == 1)
404 return UniqueExitBlocks[0];
405 return nullptr;
406 }
407
408 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
409 void Loop::dump() const {
410 print(dbgs());
411 }
412 #endif
413
414 //===----------------------------------------------------------------------===//
415 // UnloopUpdater implementation
416 //
417
418 namespace {
419 /// Find the new parent loop for all blocks within the "unloop" whose last
420 /// backedges has just been removed.
421 class UnloopUpdater {
422 Loop *Unloop;
423 LoopInfo *LI;
424
425 LoopBlocksDFS DFS;
426
427 // Map unloop's immediate subloops to their nearest reachable parents. Nested
428 // loops within these subloops will not change parents. However, an immediate
429 // subloop's new parent will be the nearest loop reachable from either its own
430 // exits *or* any of its nested loop's exits.
431 DenseMap<Loop*, Loop*> SubloopParents;
432
433 // Flag the presence of an irreducible backedge whose destination is a block
434 // directly contained by the original unloop.
435 bool FoundIB;
436
437 public:
438 UnloopUpdater(Loop *UL, LoopInfo *LInfo) :
439 Unloop(UL), LI(LInfo), DFS(UL), FoundIB(false) {}
440
441 void updateBlockParents();
442
443 void removeBlocksFromAncestors();
444
445 void updateSubloopParents();
446
447 protected:
448 Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop);
449 };
450 } // end anonymous namespace
451
452 /// updateBlockParents - Update the parent loop for all blocks that are directly
453 /// contained within the original "unloop".
454 void UnloopUpdater::updateBlockParents() {
455 if (Unloop->getNumBlocks()) {
456 // Perform a post order CFG traversal of all blocks within this loop,
457 // propagating the nearest loop from sucessors to predecessors.
458 LoopBlocksTraversal Traversal(DFS, LI);
459 for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
460 POE = Traversal.end(); POI != POE; ++POI) {
461
462 Loop *L = LI->getLoopFor(*POI);
463 Loop *NL = getNearestLoop(*POI, L);
464
465 if (NL != L) {
466 // For reducible loops, NL is now an ancestor of Unloop.
467 assert((NL != Unloop && (!NL || NL->contains(Unloop))) &&
468 "uninitialized successor");
469 LI->changeLoopFor(*POI, NL);
470 }
471 else {
472 // Or the current block is part of a subloop, in which case its parent
473 // is unchanged.
474 assert((FoundIB || Unloop->contains(L)) && "uninitialized successor");
475 }
476 }
477 }
478 // Each irreducible loop within the unloop induces a round of iteration using
479 // the DFS result cached by Traversal.
480 bool Changed = FoundIB;
481 for (unsigned NIters = 0; Changed; ++NIters) {
482 assert(NIters < Unloop->getNumBlocks() && "runaway iterative algorithm");
483
484 // Iterate over the postorder list of blocks, propagating the nearest loop
485 // from successors to predecessors as before.
486 Changed = false;
487 for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(),
488 POE = DFS.endPostorder(); POI != POE; ++POI) {
489
490 Loop *L = LI->getLoopFor(*POI);
491 Loop *NL = getNearestLoop(*POI, L);
492 if (NL != L) {
493 assert(NL != Unloop && (!NL || NL->contains(Unloop)) &&
494 "uninitialized successor");
495 LI->changeLoopFor(*POI, NL);
496 Changed = true;
497 }
498 }
499 }
500 }
501
502 /// removeBlocksFromAncestors - Remove unloop's blocks from all ancestors below
503 /// their new parents.
504 void UnloopUpdater::removeBlocksFromAncestors() {
505 // Remove all unloop's blocks (including those in nested subloops) from
506 // ancestors below the new parent loop.
507 for (Loop::block_iterator BI = Unloop->block_begin(),
508 BE = Unloop->block_end(); BI != BE; ++BI) {
509 Loop *OuterParent = LI->getLoopFor(*BI);
510 if (Unloop->contains(OuterParent)) {
511 while (OuterParent->getParentLoop() != Unloop)
512 OuterParent = OuterParent->getParentLoop();
513 OuterParent = SubloopParents[OuterParent];
514 }
515 // Remove blocks from former Ancestors except Unloop itself which will be
516 // deleted.
517 for (Loop *OldParent = Unloop->getParentLoop(); OldParent != OuterParent;
518 OldParent = OldParent->getParentLoop()) {
519 assert(OldParent && "new loop is not an ancestor of the original");
520 OldParent->removeBlockFromLoop(*BI);
521 }
522 }
523 }
524
525 /// updateSubloopParents - Update the parent loop for all subloops directly
526 /// nested within unloop.
527 void UnloopUpdater::updateSubloopParents() {
528 while (!Unloop->empty()) {
529 Loop *Subloop = *std::prev(Unloop->end());
530 Unloop->removeChildLoop(std::prev(Unloop->end()));
531
532 assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop");
533 if (Loop *Parent = SubloopParents[Subloop])
534 Parent->addChildLoop(Subloop);
535 else
536 LI->addTopLevelLoop(Subloop);
537 }
538 }
539
540 /// getNearestLoop - Return the nearest parent loop among this block's
541 /// successors. If a successor is a subloop header, consider its parent to be
542 /// the nearest parent of the subloop's exits.
543 ///
544 /// For subloop blocks, simply update SubloopParents and return NULL.
545 Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) {
546
547 // Initially for blocks directly contained by Unloop, NearLoop == Unloop and
548 // is considered uninitialized.
549 Loop *NearLoop = BBLoop;
550
551 Loop *Subloop = nullptr;
552 if (NearLoop != Unloop && Unloop->contains(NearLoop)) {
553 Subloop = NearLoop;
554 // Find the subloop ancestor that is directly contained within Unloop.
555 while (Subloop->getParentLoop() != Unloop) {
556 Subloop = Subloop->getParentLoop();
557 assert(Subloop && "subloop is not an ancestor of the original loop");
558 }
559 // Get the current nearest parent of the Subloop exits, initially Unloop.
560 NearLoop =
561 SubloopParents.insert(std::make_pair(Subloop, Unloop)).first->second;
562 }
563
564 succ_iterator I = succ_begin(BB), E = succ_end(BB);
565 if (I == E) {
566 assert(!Subloop && "subloop blocks must have a successor");
567 NearLoop = nullptr; // unloop blocks may now exit the function.
568 }
569 for (; I != E; ++I) {
570 if (*I == BB)
571 continue; // self loops are uninteresting
572
573 Loop *L = LI->getLoopFor(*I);
574 if (L == Unloop) {
575 // This successor has not been processed. This path must lead to an
576 // irreducible backedge.
577 assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB");
578 FoundIB = true;
579 }
580 if (L != Unloop && Unloop->contains(L)) {
581 // Successor is in a subloop.
582 if (Subloop)
583 continue; // Branching within subloops. Ignore it.
584
585 // BB branches from the original into a subloop header.
586 assert(L->getParentLoop() == Unloop && "cannot skip into nested loops");
587
588 // Get the current nearest parent of the Subloop's exits.
589 L = SubloopParents[L];
590 // L could be Unloop if the only exit was an irreducible backedge.
591 }
592 if (L == Unloop) {
593 continue;
594 }
595 // Handle critical edges from Unloop into a sibling loop.
596 if (L && !L->contains(Unloop)) {
597 L = L->getParentLoop();
598 }
599 // Remember the nearest parent loop among successors or subloop exits.
600 if (NearLoop == Unloop || !NearLoop || NearLoop->contains(L))
601 NearLoop = L;
602 }
603 if (Subloop) {
604 SubloopParents[Subloop] = NearLoop;
605 return BBLoop;
606 }
607 return NearLoop;
608 }
609
610 //===----------------------------------------------------------------------===//
611 // LoopInfo implementation
612 //
613 bool LoopInfo::runOnFunction(Function &) {
614 releaseMemory();
615 LI.Analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree());
616 return false;
617 }
618
619 /// updateUnloop - The last backedge has been removed from a loop--now the
620 /// "unloop". Find a new parent for the blocks contained within unloop and
621 /// update the loop tree. We don't necessarily have valid dominators at this
622 /// point, but LoopInfo is still valid except for the removal of this loop.
623 ///
624 /// Note that Unloop may now be an empty loop. Calling Loop::getHeader without
625 /// checking first is illegal.
626 void LoopInfo::updateUnloop(Loop *Unloop) {
627
628 // First handle the special case of no parent loop to simplify the algorithm.
629 if (!Unloop->getParentLoop()) {
630 // Since BBLoop had no parent, Unloop blocks are no longer in a loop.
631 for (Loop::block_iterator I = Unloop->block_begin(),
632 E = Unloop->block_end(); I != E; ++I) {
633
634 // Don't reparent blocks in subloops.
635 if (getLoopFor(*I) != Unloop)
636 continue;
637
638 // Blocks no longer have a parent but are still referenced by Unloop until
639 // the Unloop object is deleted.
640 LI.changeLoopFor(*I, nullptr);
641 }
642
643 // Remove the loop from the top-level LoopInfo object.
644 for (LoopInfo::iterator I = LI.begin();; ++I) {
645 assert(I != LI.end() && "Couldn't find loop");
646 if (*I == Unloop) {
647 LI.removeLoop(I);
648 break;
649 }
650 }
651
652 // Move all of the subloops to the top-level.
653 while (!Unloop->empty())
654 LI.addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end())));
655
656 return;
657 }
658
659 // Update the parent loop for all blocks within the loop. Blocks within
660 // subloops will not change parents.
661 UnloopUpdater Updater(Unloop, this);
662 Updater.updateBlockParents();
663
664 // Remove blocks from former ancestor loops.
665 Updater.removeBlocksFromAncestors();
666
667 // Add direct subloops as children in their new parent loop.
668 Updater.updateSubloopParents();
669
670 // Remove unloop from its parent loop.
671 Loop *ParentLoop = Unloop->getParentLoop();
672 for (Loop::iterator I = ParentLoop->begin();; ++I) {
673 assert(I != ParentLoop->end() && "Couldn't find loop");
674 if (*I == Unloop) {
675 ParentLoop->removeChildLoop(I);
676 break;
677 }
678 }
679 }
680
681 void LoopInfo::verifyAnalysis() const {
682 // LoopInfo is a FunctionPass, but verifying every loop in the function
683 // each time verifyAnalysis is called is very expensive. The
684 // -verify-loop-info option can enable this. In order to perform some
685 // checking by default, LoopPass has been taught to call verifyLoop
686 // manually during loop pass sequences.
687
688 if (!VerifyLoopInfo) return;
689
690 DenseSet<const Loop*> Loops;
691 for (iterator I = begin(), E = end(); I != E; ++I) {
692 assert(!(*I)->getParentLoop() && "Top-level loop has a parent!");
693 (*I)->verifyLoopNest(&Loops);
694 }
695
696 // Verify that blocks are mapped to valid loops.
697 for (DenseMap<BasicBlock*, Loop*>::const_iterator I = LI.BBMap.begin(),
698 E = LI.BBMap.end(); I != E; ++I) {
699 assert(Loops.count(I->second) && "orphaned loop");
700 assert(I->second->contains(I->first) && "orphaned block");
701 }
702 }
703
704 void LoopInfo::getAnalysisUsage(AnalysisUsage &AU) const {
705 AU.setPreservesAll();
706 AU.addRequired<DominatorTreeWrapperPass>();
707 }
708
709 void LoopInfo::print(raw_ostream &OS, const Module*) const {
710 LI.print(OS);
711 }
712
713 //===----------------------------------------------------------------------===//
714 // LoopBlocksDFS implementation
715 //
716
717 /// Traverse the loop blocks and store the DFS result.
718 /// Useful for clients that just want the final DFS result and don't need to
719 /// visit blocks during the initial traversal.
720 void LoopBlocksDFS::perform(LoopInfo *LI) {
721 LoopBlocksTraversal Traversal(*this, LI);
722 for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
723 POE = Traversal.end(); POI != POE; ++POI) ;
724 }