]> git.proxmox.com Git - rustc.git/blob - src/llvm/lib/Analysis/MemoryBuiltins.cpp
Imported Upstream version 0.6
[rustc.git] / src / llvm / lib / Analysis / MemoryBuiltins.cpp
1 //===------ MemoryBuiltins.cpp - Identify calls to memory builtins --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions identifies calls to builtin functions that allocate
11 // or free memory.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "memory-builtins"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/Analysis/MemoryBuiltins.h"
19 #include "llvm/GlobalVariable.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/Intrinsics.h"
22 #include "llvm/Metadata.h"
23 #include "llvm/Module.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/MathExtras.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/Target/TargetData.h"
29 #include "llvm/Target/TargetLibraryInfo.h"
30 #include "llvm/Transforms/Utils/Local.h"
31 using namespace llvm;
32
33 enum AllocType {
34 MallocLike = 1<<0, // allocates
35 CallocLike = 1<<1, // allocates + bzero
36 ReallocLike = 1<<2, // reallocates
37 StrDupLike = 1<<3,
38 AllocLike = MallocLike | CallocLike | StrDupLike,
39 AnyAlloc = MallocLike | CallocLike | ReallocLike | StrDupLike
40 };
41
42 struct AllocFnsTy {
43 LibFunc::Func Func;
44 AllocType AllocTy;
45 unsigned char NumParams;
46 // First and Second size parameters (or -1 if unused)
47 signed char FstParam, SndParam;
48 };
49
50 // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to
51 // know which functions are nounwind, noalias, nocapture parameters, etc.
52 static const AllocFnsTy AllocationFnData[] = {
53 {LibFunc::malloc, MallocLike, 1, 0, -1},
54 {LibFunc::valloc, MallocLike, 1, 0, -1},
55 {LibFunc::Znwj, MallocLike, 1, 0, -1}, // new(unsigned int)
56 {LibFunc::ZnwjRKSt9nothrow_t, MallocLike, 2, 0, -1}, // new(unsigned int, nothrow)
57 {LibFunc::Znwm, MallocLike, 1, 0, -1}, // new(unsigned long)
58 {LibFunc::ZnwmRKSt9nothrow_t, MallocLike, 2, 0, -1}, // new(unsigned long, nothrow)
59 {LibFunc::Znaj, MallocLike, 1, 0, -1}, // new[](unsigned int)
60 {LibFunc::ZnajRKSt9nothrow_t, MallocLike, 2, 0, -1}, // new[](unsigned int, nothrow)
61 {LibFunc::Znam, MallocLike, 1, 0, -1}, // new[](unsigned long)
62 {LibFunc::ZnamRKSt9nothrow_t, MallocLike, 2, 0, -1}, // new[](unsigned long, nothrow)
63 {LibFunc::posix_memalign, MallocLike, 3, 2, -1},
64 {LibFunc::calloc, CallocLike, 2, 0, 1},
65 {LibFunc::realloc, ReallocLike, 2, 1, -1},
66 {LibFunc::reallocf, ReallocLike, 2, 1, -1},
67 {LibFunc::strdup, StrDupLike, 1, -1, -1},
68 {LibFunc::strndup, StrDupLike, 2, 1, -1}
69 };
70
71
72 static Function *getCalledFunction(const Value *V, bool LookThroughBitCast) {
73 if (LookThroughBitCast)
74 V = V->stripPointerCasts();
75
76 CallSite CS(const_cast<Value*>(V));
77 if (!CS.getInstruction())
78 return 0;
79
80 Function *Callee = CS.getCalledFunction();
81 if (!Callee || !Callee->isDeclaration())
82 return 0;
83 return Callee;
84 }
85
86 /// \brief Returns the allocation data for the given value if it is a call to a
87 /// known allocation function, and NULL otherwise.
88 static const AllocFnsTy *getAllocationData(const Value *V, AllocType AllocTy,
89 const TargetLibraryInfo *TLI,
90 bool LookThroughBitCast = false) {
91 Function *Callee = getCalledFunction(V, LookThroughBitCast);
92 if (!Callee)
93 return 0;
94
95 // Make sure that the function is available.
96 StringRef FnName = Callee->getName();
97 LibFunc::Func TLIFn;
98 if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn))
99 return 0;
100
101 unsigned i = 0;
102 bool found = false;
103 for ( ; i < array_lengthof(AllocationFnData); ++i) {
104 if (AllocationFnData[i].Func == TLIFn) {
105 found = true;
106 break;
107 }
108 }
109 if (!found)
110 return 0;
111
112 const AllocFnsTy *FnData = &AllocationFnData[i];
113 if ((FnData->AllocTy & AllocTy) == 0)
114 return 0;
115
116 // Check function prototype.
117 int FstParam = FnData->FstParam;
118 int SndParam = FnData->SndParam;
119 FunctionType *FTy = Callee->getFunctionType();
120
121 if (FTy->getReturnType() == Type::getInt8PtrTy(FTy->getContext()) &&
122 FTy->getNumParams() == FnData->NumParams &&
123 (FstParam < 0 ||
124 (FTy->getParamType(FstParam)->isIntegerTy(32) ||
125 FTy->getParamType(FstParam)->isIntegerTy(64))) &&
126 (SndParam < 0 ||
127 FTy->getParamType(SndParam)->isIntegerTy(32) ||
128 FTy->getParamType(SndParam)->isIntegerTy(64)))
129 return FnData;
130 return 0;
131 }
132
133 static bool hasNoAliasAttr(const Value *V, bool LookThroughBitCast) {
134 ImmutableCallSite CS(LookThroughBitCast ? V->stripPointerCasts() : V);
135 return CS && CS.hasFnAttr(Attribute::NoAlias);
136 }
137
138
139 /// \brief Tests if a value is a call or invoke to a library function that
140 /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup
141 /// like).
142 bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI,
143 bool LookThroughBitCast) {
144 return getAllocationData(V, AnyAlloc, TLI, LookThroughBitCast);
145 }
146
147 /// \brief Tests if a value is a call or invoke to a function that returns a
148 /// NoAlias pointer (including malloc/calloc/realloc/strdup-like functions).
149 bool llvm::isNoAliasFn(const Value *V, const TargetLibraryInfo *TLI,
150 bool LookThroughBitCast) {
151 // it's safe to consider realloc as noalias since accessing the original
152 // pointer is undefined behavior
153 return isAllocationFn(V, TLI, LookThroughBitCast) ||
154 hasNoAliasAttr(V, LookThroughBitCast);
155 }
156
157 /// \brief Tests if a value is a call or invoke to a library function that
158 /// allocates uninitialized memory (such as malloc).
159 bool llvm::isMallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
160 bool LookThroughBitCast) {
161 return getAllocationData(V, MallocLike, TLI, LookThroughBitCast);
162 }
163
164 /// \brief Tests if a value is a call or invoke to a library function that
165 /// allocates zero-filled memory (such as calloc).
166 bool llvm::isCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
167 bool LookThroughBitCast) {
168 return getAllocationData(V, CallocLike, TLI, LookThroughBitCast);
169 }
170
171 /// \brief Tests if a value is a call or invoke to a library function that
172 /// allocates memory (either malloc, calloc, or strdup like).
173 bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
174 bool LookThroughBitCast) {
175 return getAllocationData(V, AllocLike, TLI, LookThroughBitCast);
176 }
177
178 /// \brief Tests if a value is a call or invoke to a library function that
179 /// reallocates memory (such as realloc).
180 bool llvm::isReallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
181 bool LookThroughBitCast) {
182 return getAllocationData(V, ReallocLike, TLI, LookThroughBitCast);
183 }
184
185 /// extractMallocCall - Returns the corresponding CallInst if the instruction
186 /// is a malloc call. Since CallInst::CreateMalloc() only creates calls, we
187 /// ignore InvokeInst here.
188 const CallInst *llvm::extractMallocCall(const Value *I,
189 const TargetLibraryInfo *TLI) {
190 return isMallocLikeFn(I, TLI) ? dyn_cast<CallInst>(I) : 0;
191 }
192
193 static Value *computeArraySize(const CallInst *CI, const TargetData *TD,
194 const TargetLibraryInfo *TLI,
195 bool LookThroughSExt = false) {
196 if (!CI)
197 return NULL;
198
199 // The size of the malloc's result type must be known to determine array size.
200 Type *T = getMallocAllocatedType(CI, TLI);
201 if (!T || !T->isSized() || !TD)
202 return NULL;
203
204 unsigned ElementSize = TD->getTypeAllocSize(T);
205 if (StructType *ST = dyn_cast<StructType>(T))
206 ElementSize = TD->getStructLayout(ST)->getSizeInBytes();
207
208 // If malloc call's arg can be determined to be a multiple of ElementSize,
209 // return the multiple. Otherwise, return NULL.
210 Value *MallocArg = CI->getArgOperand(0);
211 Value *Multiple = NULL;
212 if (ComputeMultiple(MallocArg, ElementSize, Multiple,
213 LookThroughSExt))
214 return Multiple;
215
216 return NULL;
217 }
218
219 /// isArrayMalloc - Returns the corresponding CallInst if the instruction
220 /// is a call to malloc whose array size can be determined and the array size
221 /// is not constant 1. Otherwise, return NULL.
222 const CallInst *llvm::isArrayMalloc(const Value *I,
223 const TargetData *TD,
224 const TargetLibraryInfo *TLI) {
225 const CallInst *CI = extractMallocCall(I, TLI);
226 Value *ArraySize = computeArraySize(CI, TD, TLI);
227
228 if (ArraySize &&
229 ArraySize != ConstantInt::get(CI->getArgOperand(0)->getType(), 1))
230 return CI;
231
232 // CI is a non-array malloc or we can't figure out that it is an array malloc.
233 return NULL;
234 }
235
236 /// getMallocType - Returns the PointerType resulting from the malloc call.
237 /// The PointerType depends on the number of bitcast uses of the malloc call:
238 /// 0: PointerType is the calls' return type.
239 /// 1: PointerType is the bitcast's result type.
240 /// >1: Unique PointerType cannot be determined, return NULL.
241 PointerType *llvm::getMallocType(const CallInst *CI,
242 const TargetLibraryInfo *TLI) {
243 assert(isMallocLikeFn(CI, TLI) && "getMallocType and not malloc call");
244
245 PointerType *MallocType = NULL;
246 unsigned NumOfBitCastUses = 0;
247
248 // Determine if CallInst has a bitcast use.
249 for (Value::const_use_iterator UI = CI->use_begin(), E = CI->use_end();
250 UI != E; )
251 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(*UI++)) {
252 MallocType = cast<PointerType>(BCI->getDestTy());
253 NumOfBitCastUses++;
254 }
255
256 // Malloc call has 1 bitcast use, so type is the bitcast's destination type.
257 if (NumOfBitCastUses == 1)
258 return MallocType;
259
260 // Malloc call was not bitcast, so type is the malloc function's return type.
261 if (NumOfBitCastUses == 0)
262 return cast<PointerType>(CI->getType());
263
264 // Type could not be determined.
265 return NULL;
266 }
267
268 /// getMallocAllocatedType - Returns the Type allocated by malloc call.
269 /// The Type depends on the number of bitcast uses of the malloc call:
270 /// 0: PointerType is the malloc calls' return type.
271 /// 1: PointerType is the bitcast's result type.
272 /// >1: Unique PointerType cannot be determined, return NULL.
273 Type *llvm::getMallocAllocatedType(const CallInst *CI,
274 const TargetLibraryInfo *TLI) {
275 PointerType *PT = getMallocType(CI, TLI);
276 return PT ? PT->getElementType() : NULL;
277 }
278
279 /// getMallocArraySize - Returns the array size of a malloc call. If the
280 /// argument passed to malloc is a multiple of the size of the malloced type,
281 /// then return that multiple. For non-array mallocs, the multiple is
282 /// constant 1. Otherwise, return NULL for mallocs whose array size cannot be
283 /// determined.
284 Value *llvm::getMallocArraySize(CallInst *CI, const TargetData *TD,
285 const TargetLibraryInfo *TLI,
286 bool LookThroughSExt) {
287 assert(isMallocLikeFn(CI, TLI) && "getMallocArraySize and not malloc call");
288 return computeArraySize(CI, TD, TLI, LookThroughSExt);
289 }
290
291
292 /// extractCallocCall - Returns the corresponding CallInst if the instruction
293 /// is a calloc call.
294 const CallInst *llvm::extractCallocCall(const Value *I,
295 const TargetLibraryInfo *TLI) {
296 return isCallocLikeFn(I, TLI) ? cast<CallInst>(I) : 0;
297 }
298
299
300 /// isFreeCall - Returns non-null if the value is a call to the builtin free()
301 const CallInst *llvm::isFreeCall(const Value *I, const TargetLibraryInfo *TLI) {
302 const CallInst *CI = dyn_cast<CallInst>(I);
303 if (!CI)
304 return 0;
305 Function *Callee = CI->getCalledFunction();
306 if (Callee == 0 || !Callee->isDeclaration())
307 return 0;
308
309 StringRef FnName = Callee->getName();
310 LibFunc::Func TLIFn;
311 if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn))
312 return 0;
313
314 if (TLIFn != LibFunc::free &&
315 TLIFn != LibFunc::ZdlPv && // operator delete(void*)
316 TLIFn != LibFunc::ZdaPv) // operator delete[](void*)
317 return 0;
318
319 // Check free prototype.
320 // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin
321 // attribute will exist.
322 FunctionType *FTy = Callee->getFunctionType();
323 if (!FTy->getReturnType()->isVoidTy())
324 return 0;
325 if (FTy->getNumParams() != 1)
326 return 0;
327 if (FTy->getParamType(0) != Type::getInt8PtrTy(Callee->getContext()))
328 return 0;
329
330 return CI;
331 }
332
333
334
335 //===----------------------------------------------------------------------===//
336 // Utility functions to compute size of objects.
337 //
338
339
340 /// \brief Compute the size of the object pointed by Ptr. Returns true and the
341 /// object size in Size if successful, and false otherwise.
342 /// If RoundToAlign is true, then Size is rounded up to the aligment of allocas,
343 /// byval arguments, and global variables.
344 bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const TargetData *TD,
345 const TargetLibraryInfo *TLI, bool RoundToAlign) {
346 if (!TD)
347 return false;
348
349 ObjectSizeOffsetVisitor Visitor(TD, TLI, Ptr->getContext(), RoundToAlign);
350 SizeOffsetType Data = Visitor.compute(const_cast<Value*>(Ptr));
351 if (!Visitor.bothKnown(Data))
352 return false;
353
354 APInt ObjSize = Data.first, Offset = Data.second;
355 // check for overflow
356 if (Offset.slt(0) || ObjSize.ult(Offset))
357 Size = 0;
358 else
359 Size = (ObjSize - Offset).getZExtValue();
360 return true;
361 }
362
363
364 STATISTIC(ObjectVisitorArgument,
365 "Number of arguments with unsolved size and offset");
366 STATISTIC(ObjectVisitorLoad,
367 "Number of load instructions with unsolved size and offset");
368
369
370 APInt ObjectSizeOffsetVisitor::align(APInt Size, uint64_t Align) {
371 if (RoundToAlign && Align)
372 return APInt(IntTyBits, RoundUpToAlignment(Size.getZExtValue(), Align));
373 return Size;
374 }
375
376 ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const TargetData *TD,
377 const TargetLibraryInfo *TLI,
378 LLVMContext &Context,
379 bool RoundToAlign)
380 : TD(TD), TLI(TLI), RoundToAlign(RoundToAlign) {
381 IntegerType *IntTy = TD->getIntPtrType(Context);
382 IntTyBits = IntTy->getBitWidth();
383 Zero = APInt::getNullValue(IntTyBits);
384 }
385
386 SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) {
387 V = V->stripPointerCasts();
388 if (Instruction *I = dyn_cast<Instruction>(V)) {
389 // If we have already seen this instruction, bail out. Cycles can happen in
390 // unreachable code after constant propagation.
391 if (!SeenInsts.insert(I))
392 return unknown();
393
394 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
395 return visitGEPOperator(*GEP);
396 return visit(*I);
397 }
398 if (Argument *A = dyn_cast<Argument>(V))
399 return visitArgument(*A);
400 if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V))
401 return visitConstantPointerNull(*P);
402 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
403 return visitGlobalVariable(*GV);
404 if (UndefValue *UV = dyn_cast<UndefValue>(V))
405 return visitUndefValue(*UV);
406 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
407 if (CE->getOpcode() == Instruction::IntToPtr)
408 return unknown(); // clueless
409 if (CE->getOpcode() == Instruction::GetElementPtr)
410 return visitGEPOperator(cast<GEPOperator>(*CE));
411 }
412
413 DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: " << *V
414 << '\n');
415 return unknown();
416 }
417
418 SizeOffsetType ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) {
419 if (!I.getAllocatedType()->isSized())
420 return unknown();
421
422 APInt Size(IntTyBits, TD->getTypeAllocSize(I.getAllocatedType()));
423 if (!I.isArrayAllocation())
424 return std::make_pair(align(Size, I.getAlignment()), Zero);
425
426 Value *ArraySize = I.getArraySize();
427 if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) {
428 Size *= C->getValue().zextOrSelf(IntTyBits);
429 return std::make_pair(align(Size, I.getAlignment()), Zero);
430 }
431 return unknown();
432 }
433
434 SizeOffsetType ObjectSizeOffsetVisitor::visitArgument(Argument &A) {
435 // no interprocedural analysis is done at the moment
436 if (!A.hasByValAttr()) {
437 ++ObjectVisitorArgument;
438 return unknown();
439 }
440 PointerType *PT = cast<PointerType>(A.getType());
441 APInt Size(IntTyBits, TD->getTypeAllocSize(PT->getElementType()));
442 return std::make_pair(align(Size, A.getParamAlignment()), Zero);
443 }
444
445 SizeOffsetType ObjectSizeOffsetVisitor::visitCallSite(CallSite CS) {
446 const AllocFnsTy *FnData = getAllocationData(CS.getInstruction(), AnyAlloc,
447 TLI);
448 if (!FnData)
449 return unknown();
450
451 // handle strdup-like functions separately
452 if (FnData->AllocTy == StrDupLike) {
453 APInt Size(IntTyBits, GetStringLength(CS.getArgument(0)));
454 if (!Size)
455 return unknown();
456
457 // strndup limits strlen
458 if (FnData->FstParam > 0) {
459 ConstantInt *Arg= dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam));
460 if (!Arg)
461 return unknown();
462
463 APInt MaxSize = Arg->getValue().zextOrSelf(IntTyBits);
464 if (Size.ugt(MaxSize))
465 Size = MaxSize + 1;
466 }
467 return std::make_pair(Size, Zero);
468 }
469
470 ConstantInt *Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam));
471 if (!Arg)
472 return unknown();
473
474 APInt Size = Arg->getValue().zextOrSelf(IntTyBits);
475 // size determined by just 1 parameter
476 if (FnData->SndParam < 0)
477 return std::make_pair(Size, Zero);
478
479 Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->SndParam));
480 if (!Arg)
481 return unknown();
482
483 Size *= Arg->getValue().zextOrSelf(IntTyBits);
484 return std::make_pair(Size, Zero);
485
486 // TODO: handle more standard functions (+ wchar cousins):
487 // - strdup / strndup
488 // - strcpy / strncpy
489 // - strcat / strncat
490 // - memcpy / memmove
491 // - strcat / strncat
492 // - memset
493 }
494
495 SizeOffsetType
496 ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull&) {
497 return std::make_pair(Zero, Zero);
498 }
499
500 SizeOffsetType
501 ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst&) {
502 return unknown();
503 }
504
505 SizeOffsetType
506 ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst&) {
507 // Easy cases were already folded by previous passes.
508 return unknown();
509 }
510
511 SizeOffsetType ObjectSizeOffsetVisitor::visitGEPOperator(GEPOperator &GEP) {
512 SizeOffsetType PtrData = compute(GEP.getPointerOperand());
513 if (!bothKnown(PtrData) || !GEP.hasAllConstantIndices())
514 return unknown();
515
516 SmallVector<Value*, 8> Ops(GEP.idx_begin(), GEP.idx_end());
517 APInt Offset(IntTyBits,TD->getIndexedOffset(GEP.getPointerOperandType(),Ops));
518 return std::make_pair(PtrData.first, PtrData.second + Offset);
519 }
520
521 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV){
522 if (!GV.hasDefinitiveInitializer())
523 return unknown();
524
525 APInt Size(IntTyBits, TD->getTypeAllocSize(GV.getType()->getElementType()));
526 return std::make_pair(align(Size, GV.getAlignment()), Zero);
527 }
528
529 SizeOffsetType ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst&) {
530 // clueless
531 return unknown();
532 }
533
534 SizeOffsetType ObjectSizeOffsetVisitor::visitLoadInst(LoadInst&) {
535 ++ObjectVisitorLoad;
536 return unknown();
537 }
538
539 SizeOffsetType ObjectSizeOffsetVisitor::visitPHINode(PHINode&) {
540 // too complex to analyze statically.
541 return unknown();
542 }
543
544 SizeOffsetType ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) {
545 SizeOffsetType TrueSide = compute(I.getTrueValue());
546 SizeOffsetType FalseSide = compute(I.getFalseValue());
547 if (bothKnown(TrueSide) && bothKnown(FalseSide) && TrueSide == FalseSide)
548 return TrueSide;
549 return unknown();
550 }
551
552 SizeOffsetType ObjectSizeOffsetVisitor::visitUndefValue(UndefValue&) {
553 return std::make_pair(Zero, Zero);
554 }
555
556 SizeOffsetType ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) {
557 DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I << '\n');
558 return unknown();
559 }
560
561
562 ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator(const TargetData *TD,
563 const TargetLibraryInfo *TLI,
564 LLVMContext &Context)
565 : TD(TD), TLI(TLI), Context(Context), Builder(Context, TargetFolder(TD)) {
566 IntTy = TD->getIntPtrType(Context);
567 Zero = ConstantInt::get(IntTy, 0);
568 }
569
570 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute(Value *V) {
571 SizeOffsetEvalType Result = compute_(V);
572
573 if (!bothKnown(Result)) {
574 // erase everything that was computed in this iteration from the cache, so
575 // that no dangling references are left behind. We could be a bit smarter if
576 // we kept a dependency graph. It's probably not worth the complexity.
577 for (PtrSetTy::iterator I=SeenVals.begin(), E=SeenVals.end(); I != E; ++I) {
578 CacheMapTy::iterator CacheIt = CacheMap.find(*I);
579 // non-computable results can be safely cached
580 if (CacheIt != CacheMap.end() && anyKnown(CacheIt->second))
581 CacheMap.erase(CacheIt);
582 }
583 }
584
585 SeenVals.clear();
586 return Result;
587 }
588
589 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute_(Value *V) {
590 ObjectSizeOffsetVisitor Visitor(TD, TLI, Context);
591 SizeOffsetType Const = Visitor.compute(V);
592 if (Visitor.bothKnown(Const))
593 return std::make_pair(ConstantInt::get(Context, Const.first),
594 ConstantInt::get(Context, Const.second));
595
596 V = V->stripPointerCasts();
597
598 // check cache
599 CacheMapTy::iterator CacheIt = CacheMap.find(V);
600 if (CacheIt != CacheMap.end())
601 return CacheIt->second;
602
603 // always generate code immediately before the instruction being
604 // processed, so that the generated code dominates the same BBs
605 Instruction *PrevInsertPoint = Builder.GetInsertPoint();
606 if (Instruction *I = dyn_cast<Instruction>(V))
607 Builder.SetInsertPoint(I);
608
609 // record the pointers that were handled in this run, so that they can be
610 // cleaned later if something fails
611 SeenVals.insert(V);
612
613 // now compute the size and offset
614 SizeOffsetEvalType Result;
615 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
616 Result = visitGEPOperator(*GEP);
617 } else if (Instruction *I = dyn_cast<Instruction>(V)) {
618 Result = visit(*I);
619 } else if (isa<Argument>(V) ||
620 (isa<ConstantExpr>(V) &&
621 cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) ||
622 isa<GlobalVariable>(V)) {
623 // ignore values where we cannot do more than what ObjectSizeVisitor can
624 Result = unknown();
625 } else {
626 DEBUG(dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: "
627 << *V << '\n');
628 Result = unknown();
629 }
630
631 if (PrevInsertPoint)
632 Builder.SetInsertPoint(PrevInsertPoint);
633
634 // Don't reuse CacheIt since it may be invalid at this point.
635 CacheMap[V] = Result;
636 return Result;
637 }
638
639 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) {
640 if (!I.getAllocatedType()->isSized())
641 return unknown();
642
643 // must be a VLA
644 assert(I.isArrayAllocation());
645 Value *ArraySize = I.getArraySize();
646 Value *Size = ConstantInt::get(ArraySize->getType(),
647 TD->getTypeAllocSize(I.getAllocatedType()));
648 Size = Builder.CreateMul(Size, ArraySize);
649 return std::make_pair(Size, Zero);
650 }
651
652 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitCallSite(CallSite CS) {
653 const AllocFnsTy *FnData = getAllocationData(CS.getInstruction(), AnyAlloc,
654 TLI);
655 if (!FnData)
656 return unknown();
657
658 // handle strdup-like functions separately
659 if (FnData->AllocTy == StrDupLike) {
660 // TODO
661 return unknown();
662 }
663
664 Value *FirstArg = CS.getArgument(FnData->FstParam);
665 FirstArg = Builder.CreateZExt(FirstArg, IntTy);
666 if (FnData->SndParam < 0)
667 return std::make_pair(FirstArg, Zero);
668
669 Value *SecondArg = CS.getArgument(FnData->SndParam);
670 SecondArg = Builder.CreateZExt(SecondArg, IntTy);
671 Value *Size = Builder.CreateMul(FirstArg, SecondArg);
672 return std::make_pair(Size, Zero);
673
674 // TODO: handle more standard functions (+ wchar cousins):
675 // - strdup / strndup
676 // - strcpy / strncpy
677 // - strcat / strncat
678 // - memcpy / memmove
679 // - strcat / strncat
680 // - memset
681 }
682
683 SizeOffsetEvalType
684 ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst&) {
685 return unknown();
686 }
687
688 SizeOffsetEvalType
689 ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst&) {
690 return unknown();
691 }
692
693 SizeOffsetEvalType
694 ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) {
695 SizeOffsetEvalType PtrData = compute_(GEP.getPointerOperand());
696 if (!bothKnown(PtrData))
697 return unknown();
698
699 Value *Offset = EmitGEPOffset(&Builder, *TD, &GEP, /*NoAssumptions=*/true);
700 Offset = Builder.CreateAdd(PtrData.second, Offset);
701 return std::make_pair(PtrData.first, Offset);
702 }
703
704 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst&) {
705 // clueless
706 return unknown();
707 }
708
709 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst&) {
710 return unknown();
711 }
712
713 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) {
714 // create 2 PHIs: one for size and another for offset
715 PHINode *SizePHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
716 PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
717
718 // insert right away in the cache to handle recursive PHIs
719 CacheMap[&PHI] = std::make_pair(SizePHI, OffsetPHI);
720
721 // compute offset/size for each PHI incoming pointer
722 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) {
723 Builder.SetInsertPoint(PHI.getIncomingBlock(i)->getFirstInsertionPt());
724 SizeOffsetEvalType EdgeData = compute_(PHI.getIncomingValue(i));
725
726 if (!bothKnown(EdgeData)) {
727 OffsetPHI->replaceAllUsesWith(UndefValue::get(IntTy));
728 OffsetPHI->eraseFromParent();
729 SizePHI->replaceAllUsesWith(UndefValue::get(IntTy));
730 SizePHI->eraseFromParent();
731 return unknown();
732 }
733 SizePHI->addIncoming(EdgeData.first, PHI.getIncomingBlock(i));
734 OffsetPHI->addIncoming(EdgeData.second, PHI.getIncomingBlock(i));
735 }
736
737 Value *Size = SizePHI, *Offset = OffsetPHI, *Tmp;
738 if ((Tmp = SizePHI->hasConstantValue())) {
739 Size = Tmp;
740 SizePHI->replaceAllUsesWith(Size);
741 SizePHI->eraseFromParent();
742 }
743 if ((Tmp = OffsetPHI->hasConstantValue())) {
744 Offset = Tmp;
745 OffsetPHI->replaceAllUsesWith(Offset);
746 OffsetPHI->eraseFromParent();
747 }
748 return std::make_pair(Size, Offset);
749 }
750
751 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) {
752 SizeOffsetEvalType TrueSide = compute_(I.getTrueValue());
753 SizeOffsetEvalType FalseSide = compute_(I.getFalseValue());
754
755 if (!bothKnown(TrueSide) || !bothKnown(FalseSide))
756 return unknown();
757 if (TrueSide == FalseSide)
758 return TrueSide;
759
760 Value *Size = Builder.CreateSelect(I.getCondition(), TrueSide.first,
761 FalseSide.first);
762 Value *Offset = Builder.CreateSelect(I.getCondition(), TrueSide.second,
763 FalseSide.second);
764 return std::make_pair(Size, Offset);
765 }
766
767 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) {
768 DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I <<'\n');
769 return unknown();
770 }