]> git.proxmox.com Git - rustc.git/blob - src/llvm/lib/CodeGen/AsmPrinter/EHStreamer.cpp
1bc86f6c222a914893da634fb1b421bcae943037
[rustc.git] / src / llvm / lib / CodeGen / AsmPrinter / EHStreamer.cpp
1 //===-- CodeGen/AsmPrinter/EHStreamer.cpp - Exception Directive Streamer --===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains support for writing exception info into assembly files.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "EHStreamer.h"
15 #include "llvm/CodeGen/AsmPrinter.h"
16 #include "llvm/CodeGen/MachineFunction.h"
17 #include "llvm/CodeGen/MachineInstr.h"
18 #include "llvm/CodeGen/MachineModuleInfo.h"
19 #include "llvm/IR/Function.h"
20 #include "llvm/MC/MCAsmInfo.h"
21 #include "llvm/MC/MCStreamer.h"
22 #include "llvm/MC/MCSymbol.h"
23 #include "llvm/Support/LEB128.h"
24 #include "llvm/Target/TargetLoweringObjectFile.h"
25
26 using namespace llvm;
27
28 EHStreamer::EHStreamer(AsmPrinter *A) : Asm(A), MMI(Asm->MMI) {}
29
30 EHStreamer::~EHStreamer() {}
31
32 /// How many leading type ids two landing pads have in common.
33 unsigned EHStreamer::sharedTypeIDs(const LandingPadInfo *L,
34 const LandingPadInfo *R) {
35 const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
36 unsigned LSize = LIds.size(), RSize = RIds.size();
37 unsigned MinSize = LSize < RSize ? LSize : RSize;
38 unsigned Count = 0;
39
40 for (; Count != MinSize; ++Count)
41 if (LIds[Count] != RIds[Count])
42 return Count;
43
44 return Count;
45 }
46
47 /// Compute the actions table and gather the first action index for each landing
48 /// pad site.
49 unsigned EHStreamer::
50 computeActionsTable(const SmallVectorImpl<const LandingPadInfo*> &LandingPads,
51 SmallVectorImpl<ActionEntry> &Actions,
52 SmallVectorImpl<unsigned> &FirstActions) {
53
54 // The action table follows the call-site table in the LSDA. The individual
55 // records are of two types:
56 //
57 // * Catch clause
58 // * Exception specification
59 //
60 // The two record kinds have the same format, with only small differences.
61 // They are distinguished by the "switch value" field: Catch clauses
62 // (TypeInfos) have strictly positive switch values, and exception
63 // specifications (FilterIds) have strictly negative switch values. Value 0
64 // indicates a catch-all clause.
65 //
66 // Negative type IDs index into FilterIds. Positive type IDs index into
67 // TypeInfos. The value written for a positive type ID is just the type ID
68 // itself. For a negative type ID, however, the value written is the
69 // (negative) byte offset of the corresponding FilterIds entry. The byte
70 // offset is usually equal to the type ID (because the FilterIds entries are
71 // written using a variable width encoding, which outputs one byte per entry
72 // as long as the value written is not too large) but can differ. This kind
73 // of complication does not occur for positive type IDs because type infos are
74 // output using a fixed width encoding. FilterOffsets[i] holds the byte
75 // offset corresponding to FilterIds[i].
76
77 const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
78 SmallVector<int, 16> FilterOffsets;
79 FilterOffsets.reserve(FilterIds.size());
80 int Offset = -1;
81
82 for (std::vector<unsigned>::const_iterator
83 I = FilterIds.begin(), E = FilterIds.end(); I != E; ++I) {
84 FilterOffsets.push_back(Offset);
85 Offset -= getULEB128Size(*I);
86 }
87
88 FirstActions.reserve(LandingPads.size());
89
90 int FirstAction = 0;
91 unsigned SizeActions = 0;
92 const LandingPadInfo *PrevLPI = nullptr;
93
94 for (SmallVectorImpl<const LandingPadInfo *>::const_iterator
95 I = LandingPads.begin(), E = LandingPads.end(); I != E; ++I) {
96 const LandingPadInfo *LPI = *I;
97 const std::vector<int> &TypeIds = LPI->TypeIds;
98 unsigned NumShared = PrevLPI ? sharedTypeIDs(LPI, PrevLPI) : 0;
99 unsigned SizeSiteActions = 0;
100
101 if (NumShared < TypeIds.size()) {
102 unsigned SizeAction = 0;
103 unsigned PrevAction = (unsigned)-1;
104
105 if (NumShared) {
106 unsigned SizePrevIds = PrevLPI->TypeIds.size();
107 assert(Actions.size());
108 PrevAction = Actions.size() - 1;
109 SizeAction = getSLEB128Size(Actions[PrevAction].NextAction) +
110 getSLEB128Size(Actions[PrevAction].ValueForTypeID);
111
112 for (unsigned j = NumShared; j != SizePrevIds; ++j) {
113 assert(PrevAction != (unsigned)-1 && "PrevAction is invalid!");
114 SizeAction -= getSLEB128Size(Actions[PrevAction].ValueForTypeID);
115 SizeAction += -Actions[PrevAction].NextAction;
116 PrevAction = Actions[PrevAction].Previous;
117 }
118 }
119
120 // Compute the actions.
121 for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) {
122 int TypeID = TypeIds[J];
123 assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
124 int ValueForTypeID =
125 isFilterEHSelector(TypeID) ? FilterOffsets[-1 - TypeID] : TypeID;
126 unsigned SizeTypeID = getSLEB128Size(ValueForTypeID);
127
128 int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0;
129 SizeAction = SizeTypeID + getSLEB128Size(NextAction);
130 SizeSiteActions += SizeAction;
131
132 ActionEntry Action = { ValueForTypeID, NextAction, PrevAction };
133 Actions.push_back(Action);
134 PrevAction = Actions.size() - 1;
135 }
136
137 // Record the first action of the landing pad site.
138 FirstAction = SizeActions + SizeSiteActions - SizeAction + 1;
139 } // else identical - re-use previous FirstAction
140
141 // Information used when created the call-site table. The action record
142 // field of the call site record is the offset of the first associated
143 // action record, relative to the start of the actions table. This value is
144 // biased by 1 (1 indicating the start of the actions table), and 0
145 // indicates that there are no actions.
146 FirstActions.push_back(FirstAction);
147
148 // Compute this sites contribution to size.
149 SizeActions += SizeSiteActions;
150
151 PrevLPI = LPI;
152 }
153
154 return SizeActions;
155 }
156
157 /// Return `true' if this is a call to a function marked `nounwind'. Return
158 /// `false' otherwise.
159 bool EHStreamer::callToNoUnwindFunction(const MachineInstr *MI) {
160 assert(MI->isCall() && "This should be a call instruction!");
161
162 bool MarkedNoUnwind = false;
163 bool SawFunc = false;
164
165 for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
166 const MachineOperand &MO = MI->getOperand(I);
167
168 if (!MO.isGlobal()) continue;
169
170 const Function *F = dyn_cast<Function>(MO.getGlobal());
171 if (!F) continue;
172
173 if (SawFunc) {
174 // Be conservative. If we have more than one function operand for this
175 // call, then we can't make the assumption that it's the callee and
176 // not a parameter to the call.
177 //
178 // FIXME: Determine if there's a way to say that `F' is the callee or
179 // parameter.
180 MarkedNoUnwind = false;
181 break;
182 }
183
184 MarkedNoUnwind = F->doesNotThrow();
185 SawFunc = true;
186 }
187
188 return MarkedNoUnwind;
189 }
190
191 /// Compute the call-site table. The entry for an invoke has a try-range
192 /// containing the call, a non-zero landing pad, and an appropriate action. The
193 /// entry for an ordinary call has a try-range containing the call and zero for
194 /// the landing pad and the action. Calls marked 'nounwind' have no entry and
195 /// must not be contained in the try-range of any entry - they form gaps in the
196 /// table. Entries must be ordered by try-range address.
197 void EHStreamer::
198 computeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites,
199 const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
200 const SmallVectorImpl<unsigned> &FirstActions) {
201 // Invokes and nounwind calls have entries in PadMap (due to being bracketed
202 // by try-range labels when lowered). Ordinary calls do not, so appropriate
203 // try-ranges for them need be deduced so we can put them in the LSDA.
204 RangeMapType PadMap;
205 for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
206 const LandingPadInfo *LandingPad = LandingPads[i];
207 for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
208 MCSymbol *BeginLabel = LandingPad->BeginLabels[j];
209 assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
210 PadRange P = { i, j };
211 PadMap[BeginLabel] = P;
212 }
213 }
214
215 // The end label of the previous invoke or nounwind try-range.
216 MCSymbol *LastLabel = nullptr;
217
218 // Whether there is a potentially throwing instruction (currently this means
219 // an ordinary call) between the end of the previous try-range and now.
220 bool SawPotentiallyThrowing = false;
221
222 // Whether the last CallSite entry was for an invoke.
223 bool PreviousIsInvoke = false;
224
225 bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
226
227 // Visit all instructions in order of address.
228 for (const auto &MBB : *Asm->MF) {
229 for (const auto &MI : MBB) {
230 if (!MI.isEHLabel()) {
231 if (MI.isCall())
232 SawPotentiallyThrowing |= !callToNoUnwindFunction(&MI);
233 continue;
234 }
235
236 // End of the previous try-range?
237 MCSymbol *BeginLabel = MI.getOperand(0).getMCSymbol();
238 if (BeginLabel == LastLabel)
239 SawPotentiallyThrowing = false;
240
241 // Beginning of a new try-range?
242 RangeMapType::const_iterator L = PadMap.find(BeginLabel);
243 if (L == PadMap.end())
244 // Nope, it was just some random label.
245 continue;
246
247 const PadRange &P = L->second;
248 const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
249 assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
250 "Inconsistent landing pad map!");
251
252 // For Dwarf exception handling (SjLj handling doesn't use this). If some
253 // instruction between the previous try-range and this one may throw,
254 // create a call-site entry with no landing pad for the region between the
255 // try-ranges.
256 if (SawPotentiallyThrowing && !IsSJLJ) {
257 CallSiteEntry Site = { LastLabel, BeginLabel, nullptr, 0 };
258 CallSites.push_back(Site);
259 PreviousIsInvoke = false;
260 }
261
262 LastLabel = LandingPad->EndLabels[P.RangeIndex];
263 assert(BeginLabel && LastLabel && "Invalid landing pad!");
264
265 if (!LandingPad->LandingPadLabel) {
266 // Create a gap.
267 PreviousIsInvoke = false;
268 } else {
269 // This try-range is for an invoke.
270 CallSiteEntry Site = {
271 BeginLabel,
272 LastLabel,
273 LandingPad,
274 FirstActions[P.PadIndex]
275 };
276
277 // Try to merge with the previous call-site. SJLJ doesn't do this
278 if (PreviousIsInvoke && !IsSJLJ) {
279 CallSiteEntry &Prev = CallSites.back();
280 if (Site.LPad == Prev.LPad && Site.Action == Prev.Action) {
281 // Extend the range of the previous entry.
282 Prev.EndLabel = Site.EndLabel;
283 continue;
284 }
285 }
286
287 // Otherwise, create a new call-site.
288 if (!IsSJLJ)
289 CallSites.push_back(Site);
290 else {
291 // SjLj EH must maintain the call sites in the order assigned
292 // to them by the SjLjPrepare pass.
293 unsigned SiteNo = MMI->getCallSiteBeginLabel(BeginLabel);
294 if (CallSites.size() < SiteNo)
295 CallSites.resize(SiteNo);
296 CallSites[SiteNo - 1] = Site;
297 }
298 PreviousIsInvoke = true;
299 }
300 }
301 }
302
303 // If some instruction between the previous try-range and the end of the
304 // function may throw, create a call-site entry with no landing pad for the
305 // region following the try-range.
306 if (SawPotentiallyThrowing && !IsSJLJ) {
307 CallSiteEntry Site = { LastLabel, nullptr, nullptr, 0 };
308 CallSites.push_back(Site);
309 }
310 }
311
312 /// Emit landing pads and actions.
313 ///
314 /// The general organization of the table is complex, but the basic concepts are
315 /// easy. First there is a header which describes the location and organization
316 /// of the three components that follow.
317 ///
318 /// 1. The landing pad site information describes the range of code covered by
319 /// the try. In our case it's an accumulation of the ranges covered by the
320 /// invokes in the try. There is also a reference to the landing pad that
321 /// handles the exception once processed. Finally an index into the actions
322 /// table.
323 /// 2. The action table, in our case, is composed of pairs of type IDs and next
324 /// action offset. Starting with the action index from the landing pad
325 /// site, each type ID is checked for a match to the current exception. If
326 /// it matches then the exception and type id are passed on to the landing
327 /// pad. Otherwise the next action is looked up. This chain is terminated
328 /// with a next action of zero. If no type id is found then the frame is
329 /// unwound and handling continues.
330 /// 3. Type ID table contains references to all the C++ typeinfo for all
331 /// catches in the function. This tables is reverse indexed base 1.
332 void EHStreamer::emitExceptionTable() {
333 const std::vector<const GlobalValue *> &TypeInfos = MMI->getTypeInfos();
334 const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
335 const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads();
336
337 // Sort the landing pads in order of their type ids. This is used to fold
338 // duplicate actions.
339 SmallVector<const LandingPadInfo *, 64> LandingPads;
340 LandingPads.reserve(PadInfos.size());
341
342 for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
343 LandingPads.push_back(&PadInfos[i]);
344
345 // Order landing pads lexicographically by type id.
346 std::sort(LandingPads.begin(), LandingPads.end(),
347 [](const LandingPadInfo *L,
348 const LandingPadInfo *R) { return L->TypeIds < R->TypeIds; });
349
350 // Compute the actions table and gather the first action index for each
351 // landing pad site.
352 SmallVector<ActionEntry, 32> Actions;
353 SmallVector<unsigned, 64> FirstActions;
354 unsigned SizeActions =
355 computeActionsTable(LandingPads, Actions, FirstActions);
356
357 // Compute the call-site table.
358 SmallVector<CallSiteEntry, 64> CallSites;
359 computeCallSiteTable(CallSites, LandingPads, FirstActions);
360
361 // Final tallies.
362
363 // Call sites.
364 bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
365 bool HaveTTData = IsSJLJ ? (!TypeInfos.empty() || !FilterIds.empty()) : true;
366
367 unsigned CallSiteTableLength;
368 if (IsSJLJ)
369 CallSiteTableLength = 0;
370 else {
371 unsigned SiteStartSize = 4; // dwarf::DW_EH_PE_udata4
372 unsigned SiteLengthSize = 4; // dwarf::DW_EH_PE_udata4
373 unsigned LandingPadSize = 4; // dwarf::DW_EH_PE_udata4
374 CallSiteTableLength =
375 CallSites.size() * (SiteStartSize + SiteLengthSize + LandingPadSize);
376 }
377
378 for (unsigned i = 0, e = CallSites.size(); i < e; ++i) {
379 CallSiteTableLength += getULEB128Size(CallSites[i].Action);
380 if (IsSJLJ)
381 CallSiteTableLength += getULEB128Size(i);
382 }
383
384 // Type infos.
385 const MCSection *LSDASection = Asm->getObjFileLowering().getLSDASection();
386 unsigned TTypeEncoding;
387 unsigned TypeFormatSize;
388
389 if (!HaveTTData) {
390 // For SjLj exceptions, if there is no TypeInfo, then we just explicitly say
391 // that we're omitting that bit.
392 TTypeEncoding = dwarf::DW_EH_PE_omit;
393 // dwarf::DW_EH_PE_absptr
394 TypeFormatSize = Asm->getDataLayout().getPointerSize();
395 } else {
396 // Okay, we have actual filters or typeinfos to emit. As such, we need to
397 // pick a type encoding for them. We're about to emit a list of pointers to
398 // typeinfo objects at the end of the LSDA. However, unless we're in static
399 // mode, this reference will require a relocation by the dynamic linker.
400 //
401 // Because of this, we have a couple of options:
402 //
403 // 1) If we are in -static mode, we can always use an absolute reference
404 // from the LSDA, because the static linker will resolve it.
405 //
406 // 2) Otherwise, if the LSDA section is writable, we can output the direct
407 // reference to the typeinfo and allow the dynamic linker to relocate
408 // it. Since it is in a writable section, the dynamic linker won't
409 // have a problem.
410 //
411 // 3) Finally, if we're in PIC mode and the LDSA section isn't writable,
412 // we need to use some form of indirection. For example, on Darwin,
413 // we can output a statically-relocatable reference to a dyld stub. The
414 // offset to the stub is constant, but the contents are in a section
415 // that is updated by the dynamic linker. This is easy enough, but we
416 // need to tell the personality function of the unwinder to indirect
417 // through the dyld stub.
418 //
419 // FIXME: When (3) is actually implemented, we'll have to emit the stubs
420 // somewhere. This predicate should be moved to a shared location that is
421 // in target-independent code.
422 //
423 TTypeEncoding = Asm->getObjFileLowering().getTTypeEncoding();
424 TypeFormatSize = Asm->GetSizeOfEncodedValue(TTypeEncoding);
425 }
426
427 // Begin the exception table.
428 // Sometimes we want not to emit the data into separate section (e.g. ARM
429 // EHABI). In this case LSDASection will be NULL.
430 if (LSDASection)
431 Asm->OutStreamer.SwitchSection(LSDASection);
432 Asm->EmitAlignment(2);
433
434 // Emit the LSDA.
435 MCSymbol *GCCETSym =
436 Asm->OutContext.GetOrCreateSymbol(Twine("GCC_except_table")+
437 Twine(Asm->getFunctionNumber()));
438 Asm->OutStreamer.EmitLabel(GCCETSym);
439 Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("exception",
440 Asm->getFunctionNumber()));
441
442 if (IsSJLJ)
443 Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("_LSDA_",
444 Asm->getFunctionNumber()));
445
446 // Emit the LSDA header.
447 Asm->EmitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart");
448 Asm->EmitEncodingByte(TTypeEncoding, "@TType");
449
450 // The type infos need to be aligned. GCC does this by inserting padding just
451 // before the type infos. However, this changes the size of the exception
452 // table, so you need to take this into account when you output the exception
453 // table size. However, the size is output using a variable length encoding.
454 // So by increasing the size by inserting padding, you may increase the number
455 // of bytes used for writing the size. If it increases, say by one byte, then
456 // you now need to output one less byte of padding to get the type infos
457 // aligned. However this decreases the size of the exception table. This
458 // changes the value you have to output for the exception table size. Due to
459 // the variable length encoding, the number of bytes used for writing the
460 // length may decrease. If so, you then have to increase the amount of
461 // padding. And so on. If you look carefully at the GCC code you will see that
462 // it indeed does this in a loop, going on and on until the values stabilize.
463 // We chose another solution: don't output padding inside the table like GCC
464 // does, instead output it before the table.
465 unsigned SizeTypes = TypeInfos.size() * TypeFormatSize;
466 unsigned CallSiteTableLengthSize = getULEB128Size(CallSiteTableLength);
467 unsigned TTypeBaseOffset =
468 sizeof(int8_t) + // Call site format
469 CallSiteTableLengthSize + // Call site table length size
470 CallSiteTableLength + // Call site table length
471 SizeActions + // Actions size
472 SizeTypes;
473 unsigned TTypeBaseOffsetSize = getULEB128Size(TTypeBaseOffset);
474 unsigned TotalSize =
475 sizeof(int8_t) + // LPStart format
476 sizeof(int8_t) + // TType format
477 (HaveTTData ? TTypeBaseOffsetSize : 0) + // TType base offset size
478 TTypeBaseOffset; // TType base offset
479 unsigned SizeAlign = (4 - TotalSize) & 3;
480
481 if (HaveTTData) {
482 // Account for any extra padding that will be added to the call site table
483 // length.
484 Asm->EmitULEB128(TTypeBaseOffset, "@TType base offset", SizeAlign);
485 SizeAlign = 0;
486 }
487
488 bool VerboseAsm = Asm->OutStreamer.isVerboseAsm();
489
490 // SjLj Exception handling
491 if (IsSJLJ) {
492 Asm->EmitEncodingByte(dwarf::DW_EH_PE_udata4, "Call site");
493
494 // Add extra padding if it wasn't added to the TType base offset.
495 Asm->EmitULEB128(CallSiteTableLength, "Call site table length", SizeAlign);
496
497 // Emit the landing pad site information.
498 unsigned idx = 0;
499 for (SmallVectorImpl<CallSiteEntry>::const_iterator
500 I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) {
501 const CallSiteEntry &S = *I;
502
503 // Offset of the landing pad, counted in 16-byte bundles relative to the
504 // @LPStart address.
505 if (VerboseAsm) {
506 Asm->OutStreamer.AddComment(">> Call Site " + Twine(idx) + " <<");
507 Asm->OutStreamer.AddComment(" On exception at call site "+Twine(idx));
508 }
509 Asm->EmitULEB128(idx);
510
511 // Offset of the first associated action record, relative to the start of
512 // the action table. This value is biased by 1 (1 indicates the start of
513 // the action table), and 0 indicates that there are no actions.
514 if (VerboseAsm) {
515 if (S.Action == 0)
516 Asm->OutStreamer.AddComment(" Action: cleanup");
517 else
518 Asm->OutStreamer.AddComment(" Action: " +
519 Twine((S.Action - 1) / 2 + 1));
520 }
521 Asm->EmitULEB128(S.Action);
522 }
523 } else {
524 // Itanium LSDA exception handling
525
526 // The call-site table is a list of all call sites that may throw an
527 // exception (including C++ 'throw' statements) in the procedure
528 // fragment. It immediately follows the LSDA header. Each entry indicates,
529 // for a given call, the first corresponding action record and corresponding
530 // landing pad.
531 //
532 // The table begins with the number of bytes, stored as an LEB128
533 // compressed, unsigned integer. The records immediately follow the record
534 // count. They are sorted in increasing call-site address. Each record
535 // indicates:
536 //
537 // * The position of the call-site.
538 // * The position of the landing pad.
539 // * The first action record for that call site.
540 //
541 // A missing entry in the call-site table indicates that a call is not
542 // supposed to throw.
543
544 // Emit the landing pad call site table.
545 Asm->EmitEncodingByte(dwarf::DW_EH_PE_udata4, "Call site");
546
547 // Add extra padding if it wasn't added to the TType base offset.
548 Asm->EmitULEB128(CallSiteTableLength, "Call site table length", SizeAlign);
549
550 unsigned Entry = 0;
551 for (SmallVectorImpl<CallSiteEntry>::const_iterator
552 I = CallSites.begin(), E = CallSites.end(); I != E; ++I) {
553 const CallSiteEntry &S = *I;
554
555 MCSymbol *EHFuncBeginSym =
556 Asm->GetTempSymbol("eh_func_begin", Asm->getFunctionNumber());
557
558 MCSymbol *BeginLabel = S.BeginLabel;
559 if (!BeginLabel)
560 BeginLabel = EHFuncBeginSym;
561 MCSymbol *EndLabel = S.EndLabel;
562 if (!EndLabel)
563 EndLabel = Asm->GetTempSymbol("eh_func_end", Asm->getFunctionNumber());
564
565
566 // Offset of the call site relative to the previous call site, counted in
567 // number of 16-byte bundles. The first call site is counted relative to
568 // the start of the procedure fragment.
569 if (VerboseAsm)
570 Asm->OutStreamer.AddComment(">> Call Site " + Twine(++Entry) + " <<");
571 Asm->EmitLabelDifference(BeginLabel, EHFuncBeginSym, 4);
572 if (VerboseAsm)
573 Asm->OutStreamer.AddComment(Twine(" Call between ") +
574 BeginLabel->getName() + " and " +
575 EndLabel->getName());
576 Asm->EmitLabelDifference(EndLabel, BeginLabel, 4);
577
578 // Offset of the landing pad, counted in 16-byte bundles relative to the
579 // @LPStart address.
580 if (!S.LPad) {
581 if (VerboseAsm)
582 Asm->OutStreamer.AddComment(" has no landing pad");
583 Asm->OutStreamer.EmitIntValue(0, 4/*size*/);
584 } else {
585 if (VerboseAsm)
586 Asm->OutStreamer.AddComment(Twine(" jumps to ") +
587 S.LPad->LandingPadLabel->getName());
588 Asm->EmitLabelDifference(S.LPad->LandingPadLabel, EHFuncBeginSym, 4);
589 }
590
591 // Offset of the first associated action record, relative to the start of
592 // the action table. This value is biased by 1 (1 indicates the start of
593 // the action table), and 0 indicates that there are no actions.
594 if (VerboseAsm) {
595 if (S.Action == 0)
596 Asm->OutStreamer.AddComment(" On action: cleanup");
597 else
598 Asm->OutStreamer.AddComment(" On action: " +
599 Twine((S.Action - 1) / 2 + 1));
600 }
601 Asm->EmitULEB128(S.Action);
602 }
603 }
604
605 // Emit the Action Table.
606 int Entry = 0;
607 for (SmallVectorImpl<ActionEntry>::const_iterator
608 I = Actions.begin(), E = Actions.end(); I != E; ++I) {
609 const ActionEntry &Action = *I;
610
611 if (VerboseAsm) {
612 // Emit comments that decode the action table.
613 Asm->OutStreamer.AddComment(">> Action Record " + Twine(++Entry) + " <<");
614 }
615
616 // Type Filter
617 //
618 // Used by the runtime to match the type of the thrown exception to the
619 // type of the catch clauses or the types in the exception specification.
620 if (VerboseAsm) {
621 if (Action.ValueForTypeID > 0)
622 Asm->OutStreamer.AddComment(" Catch TypeInfo " +
623 Twine(Action.ValueForTypeID));
624 else if (Action.ValueForTypeID < 0)
625 Asm->OutStreamer.AddComment(" Filter TypeInfo " +
626 Twine(Action.ValueForTypeID));
627 else
628 Asm->OutStreamer.AddComment(" Cleanup");
629 }
630 Asm->EmitSLEB128(Action.ValueForTypeID);
631
632 // Action Record
633 //
634 // Self-relative signed displacement in bytes of the next action record,
635 // or 0 if there is no next action record.
636 if (VerboseAsm) {
637 if (Action.NextAction == 0) {
638 Asm->OutStreamer.AddComment(" No further actions");
639 } else {
640 unsigned NextAction = Entry + (Action.NextAction + 1) / 2;
641 Asm->OutStreamer.AddComment(" Continue to action "+Twine(NextAction));
642 }
643 }
644 Asm->EmitSLEB128(Action.NextAction);
645 }
646
647 emitTypeInfos(TTypeEncoding);
648
649 Asm->EmitAlignment(2);
650 }
651
652 void EHStreamer::emitTypeInfos(unsigned TTypeEncoding) {
653 const std::vector<const GlobalValue *> &TypeInfos = MMI->getTypeInfos();
654 const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
655
656 bool VerboseAsm = Asm->OutStreamer.isVerboseAsm();
657
658 int Entry = 0;
659 // Emit the Catch TypeInfos.
660 if (VerboseAsm && !TypeInfos.empty()) {
661 Asm->OutStreamer.AddComment(">> Catch TypeInfos <<");
662 Asm->OutStreamer.AddBlankLine();
663 Entry = TypeInfos.size();
664 }
665
666 for (std::vector<const GlobalValue *>::const_reverse_iterator
667 I = TypeInfos.rbegin(), E = TypeInfos.rend(); I != E; ++I) {
668 const GlobalValue *GV = *I;
669 if (VerboseAsm)
670 Asm->OutStreamer.AddComment("TypeInfo " + Twine(Entry--));
671 Asm->EmitTTypeReference(GV, TTypeEncoding);
672 }
673
674 // Emit the Exception Specifications.
675 if (VerboseAsm && !FilterIds.empty()) {
676 Asm->OutStreamer.AddComment(">> Filter TypeInfos <<");
677 Asm->OutStreamer.AddBlankLine();
678 Entry = 0;
679 }
680 for (std::vector<unsigned>::const_iterator
681 I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) {
682 unsigned TypeID = *I;
683 if (VerboseAsm) {
684 --Entry;
685 if (isFilterEHSelector(TypeID))
686 Asm->OutStreamer.AddComment("FilterInfo " + Twine(Entry));
687 }
688
689 Asm->EmitULEB128(TypeID);
690 }
691 }
692
693 /// Emit all exception information that should come after the content.
694 void EHStreamer::endModule() {
695 llvm_unreachable("Should be implemented");
696 }
697
698 /// Gather pre-function exception information. Assumes it's being emitted
699 /// immediately after the function entry point.
700 void EHStreamer::beginFunction(const MachineFunction *MF) {
701 llvm_unreachable("Should be implemented");
702 }
703
704 /// Gather and emit post-function exception information.
705 void EHStreamer::endFunction(const MachineFunction *) {
706 llvm_unreachable("Should be implemented");
707 }