]> git.proxmox.com Git - rustc.git/blob - src/llvm/lib/CodeGen/LiveVariables.cpp
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / lib / CodeGen / LiveVariables.cpp
1 //===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the LiveVariable analysis pass. For each machine
11 // instruction in the function, this pass calculates the set of registers that
12 // are immediately dead after the instruction (i.e., the instruction calculates
13 // the value, but it is never used) and the set of registers that are used by
14 // the instruction, but are never used after the instruction (i.e., they are
15 // killed).
16 //
17 // This class computes live variables using a sparse implementation based on
18 // the machine code SSA form. This class computes live variable information for
19 // each virtual and _register allocatable_ physical register in a function. It
20 // uses the dominance properties of SSA form to efficiently compute live
21 // variables for virtual registers, and assumes that physical registers are only
22 // live within a single basic block (allowing it to do a single local analysis
23 // to resolve physical register lifetimes in each basic block). If a physical
24 // register is not register allocatable, it is not tracked. This is useful for
25 // things like the stack pointer and condition codes.
26 //
27 //===----------------------------------------------------------------------===//
28
29 #include "llvm/CodeGen/LiveVariables.h"
30 #include "llvm/ADT/DepthFirstIterator.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallSet.h"
34 #include "llvm/CodeGen/MachineInstr.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/Passes.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Target/TargetInstrInfo.h"
40 #include <algorithm>
41 using namespace llvm;
42
43 char LiveVariables::ID = 0;
44 char &llvm::LiveVariablesID = LiveVariables::ID;
45 INITIALIZE_PASS_BEGIN(LiveVariables, "livevars",
46 "Live Variable Analysis", false, false)
47 INITIALIZE_PASS_DEPENDENCY(UnreachableMachineBlockElim)
48 INITIALIZE_PASS_END(LiveVariables, "livevars",
49 "Live Variable Analysis", false, false)
50
51
52 void LiveVariables::getAnalysisUsage(AnalysisUsage &AU) const {
53 AU.addRequiredID(UnreachableMachineBlockElimID);
54 AU.setPreservesAll();
55 MachineFunctionPass::getAnalysisUsage(AU);
56 }
57
58 MachineInstr *
59 LiveVariables::VarInfo::findKill(const MachineBasicBlock *MBB) const {
60 for (unsigned i = 0, e = Kills.size(); i != e; ++i)
61 if (Kills[i]->getParent() == MBB)
62 return Kills[i];
63 return nullptr;
64 }
65
66 void LiveVariables::VarInfo::dump() const {
67 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
68 dbgs() << " Alive in blocks: ";
69 for (SparseBitVector<>::iterator I = AliveBlocks.begin(),
70 E = AliveBlocks.end(); I != E; ++I)
71 dbgs() << *I << ", ";
72 dbgs() << "\n Killed by:";
73 if (Kills.empty())
74 dbgs() << " No instructions.\n";
75 else {
76 for (unsigned i = 0, e = Kills.size(); i != e; ++i)
77 dbgs() << "\n #" << i << ": " << *Kills[i];
78 dbgs() << "\n";
79 }
80 #endif
81 }
82
83 /// getVarInfo - Get (possibly creating) a VarInfo object for the given vreg.
84 LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) {
85 assert(TargetRegisterInfo::isVirtualRegister(RegIdx) &&
86 "getVarInfo: not a virtual register!");
87 VirtRegInfo.grow(RegIdx);
88 return VirtRegInfo[RegIdx];
89 }
90
91 void LiveVariables::MarkVirtRegAliveInBlock(VarInfo& VRInfo,
92 MachineBasicBlock *DefBlock,
93 MachineBasicBlock *MBB,
94 std::vector<MachineBasicBlock*> &WorkList) {
95 unsigned BBNum = MBB->getNumber();
96
97 // Check to see if this basic block is one of the killing blocks. If so,
98 // remove it.
99 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
100 if (VRInfo.Kills[i]->getParent() == MBB) {
101 VRInfo.Kills.erase(VRInfo.Kills.begin()+i); // Erase entry
102 break;
103 }
104
105 if (MBB == DefBlock) return; // Terminate recursion
106
107 if (VRInfo.AliveBlocks.test(BBNum))
108 return; // We already know the block is live
109
110 // Mark the variable known alive in this bb
111 VRInfo.AliveBlocks.set(BBNum);
112
113 assert(MBB != &MF->front() && "Can't find reaching def for virtreg");
114 WorkList.insert(WorkList.end(), MBB->pred_rbegin(), MBB->pred_rend());
115 }
116
117 void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo,
118 MachineBasicBlock *DefBlock,
119 MachineBasicBlock *MBB) {
120 std::vector<MachineBasicBlock*> WorkList;
121 MarkVirtRegAliveInBlock(VRInfo, DefBlock, MBB, WorkList);
122
123 while (!WorkList.empty()) {
124 MachineBasicBlock *Pred = WorkList.back();
125 WorkList.pop_back();
126 MarkVirtRegAliveInBlock(VRInfo, DefBlock, Pred, WorkList);
127 }
128 }
129
130 void LiveVariables::HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB,
131 MachineInstr *MI) {
132 assert(MRI->getVRegDef(reg) && "Register use before def!");
133
134 unsigned BBNum = MBB->getNumber();
135
136 VarInfo& VRInfo = getVarInfo(reg);
137
138 // Check to see if this basic block is already a kill block.
139 if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) {
140 // Yes, this register is killed in this basic block already. Increase the
141 // live range by updating the kill instruction.
142 VRInfo.Kills.back() = MI;
143 return;
144 }
145
146 #ifndef NDEBUG
147 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
148 assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!");
149 #endif
150
151 // This situation can occur:
152 //
153 // ,------.
154 // | |
155 // | v
156 // | t2 = phi ... t1 ...
157 // | |
158 // | v
159 // | t1 = ...
160 // | ... = ... t1 ...
161 // | |
162 // `------'
163 //
164 // where there is a use in a PHI node that's a predecessor to the defining
165 // block. We don't want to mark all predecessors as having the value "alive"
166 // in this case.
167 if (MBB == MRI->getVRegDef(reg)->getParent()) return;
168
169 // Add a new kill entry for this basic block. If this virtual register is
170 // already marked as alive in this basic block, that means it is alive in at
171 // least one of the successor blocks, it's not a kill.
172 if (!VRInfo.AliveBlocks.test(BBNum))
173 VRInfo.Kills.push_back(MI);
174
175 // Update all dominating blocks to mark them as "known live".
176 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
177 E = MBB->pred_end(); PI != E; ++PI)
178 MarkVirtRegAliveInBlock(VRInfo, MRI->getVRegDef(reg)->getParent(), *PI);
179 }
180
181 void LiveVariables::HandleVirtRegDef(unsigned Reg, MachineInstr *MI) {
182 VarInfo &VRInfo = getVarInfo(Reg);
183
184 if (VRInfo.AliveBlocks.empty())
185 // If vr is not alive in any block, then defaults to dead.
186 VRInfo.Kills.push_back(MI);
187 }
188
189 /// FindLastPartialDef - Return the last partial def of the specified register.
190 /// Also returns the sub-registers that're defined by the instruction.
191 MachineInstr *LiveVariables::FindLastPartialDef(unsigned Reg,
192 SmallSet<unsigned,4> &PartDefRegs) {
193 unsigned LastDefReg = 0;
194 unsigned LastDefDist = 0;
195 MachineInstr *LastDef = nullptr;
196 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
197 unsigned SubReg = *SubRegs;
198 MachineInstr *Def = PhysRegDef[SubReg];
199 if (!Def)
200 continue;
201 unsigned Dist = DistanceMap[Def];
202 if (Dist > LastDefDist) {
203 LastDefReg = SubReg;
204 LastDef = Def;
205 LastDefDist = Dist;
206 }
207 }
208
209 if (!LastDef)
210 return nullptr;
211
212 PartDefRegs.insert(LastDefReg);
213 for (unsigned i = 0, e = LastDef->getNumOperands(); i != e; ++i) {
214 MachineOperand &MO = LastDef->getOperand(i);
215 if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0)
216 continue;
217 unsigned DefReg = MO.getReg();
218 if (TRI->isSubRegister(Reg, DefReg)) {
219 for (MCSubRegIterator SubRegs(DefReg, TRI, /*IncludeSelf=*/true);
220 SubRegs.isValid(); ++SubRegs)
221 PartDefRegs.insert(*SubRegs);
222 }
223 }
224 return LastDef;
225 }
226
227 /// HandlePhysRegUse - Turn previous partial def's into read/mod/writes. Add
228 /// implicit defs to a machine instruction if there was an earlier def of its
229 /// super-register.
230 void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) {
231 MachineInstr *LastDef = PhysRegDef[Reg];
232 // If there was a previous use or a "full" def all is well.
233 if (!LastDef && !PhysRegUse[Reg]) {
234 // Otherwise, the last sub-register def implicitly defines this register.
235 // e.g.
236 // AH =
237 // AL = ... <imp-def EAX>, <imp-kill AH>
238 // = AH
239 // ...
240 // = EAX
241 // All of the sub-registers must have been defined before the use of Reg!
242 SmallSet<unsigned, 4> PartDefRegs;
243 MachineInstr *LastPartialDef = FindLastPartialDef(Reg, PartDefRegs);
244 // If LastPartialDef is NULL, it must be using a livein register.
245 if (LastPartialDef) {
246 LastPartialDef->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/,
247 true/*IsImp*/));
248 PhysRegDef[Reg] = LastPartialDef;
249 SmallSet<unsigned, 8> Processed;
250 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
251 unsigned SubReg = *SubRegs;
252 if (Processed.count(SubReg))
253 continue;
254 if (PartDefRegs.count(SubReg))
255 continue;
256 // This part of Reg was defined before the last partial def. It's killed
257 // here.
258 LastPartialDef->addOperand(MachineOperand::CreateReg(SubReg,
259 false/*IsDef*/,
260 true/*IsImp*/));
261 PhysRegDef[SubReg] = LastPartialDef;
262 for (MCSubRegIterator SS(SubReg, TRI); SS.isValid(); ++SS)
263 Processed.insert(*SS);
264 }
265 }
266 } else if (LastDef && !PhysRegUse[Reg] &&
267 !LastDef->findRegisterDefOperand(Reg))
268 // Last def defines the super register, add an implicit def of reg.
269 LastDef->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/,
270 true/*IsImp*/));
271
272 // Remember this use.
273 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
274 SubRegs.isValid(); ++SubRegs)
275 PhysRegUse[*SubRegs] = MI;
276 }
277
278 /// FindLastRefOrPartRef - Return the last reference or partial reference of
279 /// the specified register.
280 MachineInstr *LiveVariables::FindLastRefOrPartRef(unsigned Reg) {
281 MachineInstr *LastDef = PhysRegDef[Reg];
282 MachineInstr *LastUse = PhysRegUse[Reg];
283 if (!LastDef && !LastUse)
284 return nullptr;
285
286 MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef;
287 unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef];
288 unsigned LastPartDefDist = 0;
289 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
290 unsigned SubReg = *SubRegs;
291 MachineInstr *Def = PhysRegDef[SubReg];
292 if (Def && Def != LastDef) {
293 // There was a def of this sub-register in between. This is a partial
294 // def, keep track of the last one.
295 unsigned Dist = DistanceMap[Def];
296 if (Dist > LastPartDefDist)
297 LastPartDefDist = Dist;
298 } else if (MachineInstr *Use = PhysRegUse[SubReg]) {
299 unsigned Dist = DistanceMap[Use];
300 if (Dist > LastRefOrPartRefDist) {
301 LastRefOrPartRefDist = Dist;
302 LastRefOrPartRef = Use;
303 }
304 }
305 }
306
307 return LastRefOrPartRef;
308 }
309
310 bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *MI) {
311 MachineInstr *LastDef = PhysRegDef[Reg];
312 MachineInstr *LastUse = PhysRegUse[Reg];
313 if (!LastDef && !LastUse)
314 return false;
315
316 MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef;
317 unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef];
318 // The whole register is used.
319 // AL =
320 // AH =
321 //
322 // = AX
323 // = AL, AX<imp-use, kill>
324 // AX =
325 //
326 // Or whole register is defined, but not used at all.
327 // AX<dead> =
328 // ...
329 // AX =
330 //
331 // Or whole register is defined, but only partly used.
332 // AX<dead> = AL<imp-def>
333 // = AL<kill>
334 // AX =
335 MachineInstr *LastPartDef = nullptr;
336 unsigned LastPartDefDist = 0;
337 SmallSet<unsigned, 8> PartUses;
338 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
339 unsigned SubReg = *SubRegs;
340 MachineInstr *Def = PhysRegDef[SubReg];
341 if (Def && Def != LastDef) {
342 // There was a def of this sub-register in between. This is a partial
343 // def, keep track of the last one.
344 unsigned Dist = DistanceMap[Def];
345 if (Dist > LastPartDefDist) {
346 LastPartDefDist = Dist;
347 LastPartDef = Def;
348 }
349 continue;
350 }
351 if (MachineInstr *Use = PhysRegUse[SubReg]) {
352 for (MCSubRegIterator SS(SubReg, TRI, /*IncludeSelf=*/true); SS.isValid();
353 ++SS)
354 PartUses.insert(*SS);
355 unsigned Dist = DistanceMap[Use];
356 if (Dist > LastRefOrPartRefDist) {
357 LastRefOrPartRefDist = Dist;
358 LastRefOrPartRef = Use;
359 }
360 }
361 }
362
363 if (!PhysRegUse[Reg]) {
364 // Partial uses. Mark register def dead and add implicit def of
365 // sub-registers which are used.
366 // EAX<dead> = op AL<imp-def>
367 // That is, EAX def is dead but AL def extends pass it.
368 PhysRegDef[Reg]->addRegisterDead(Reg, TRI, true);
369 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
370 unsigned SubReg = *SubRegs;
371 if (!PartUses.count(SubReg))
372 continue;
373 bool NeedDef = true;
374 if (PhysRegDef[Reg] == PhysRegDef[SubReg]) {
375 MachineOperand *MO = PhysRegDef[Reg]->findRegisterDefOperand(SubReg);
376 if (MO) {
377 NeedDef = false;
378 assert(!MO->isDead());
379 }
380 }
381 if (NeedDef)
382 PhysRegDef[Reg]->addOperand(MachineOperand::CreateReg(SubReg,
383 true/*IsDef*/, true/*IsImp*/));
384 MachineInstr *LastSubRef = FindLastRefOrPartRef(SubReg);
385 if (LastSubRef)
386 LastSubRef->addRegisterKilled(SubReg, TRI, true);
387 else {
388 LastRefOrPartRef->addRegisterKilled(SubReg, TRI, true);
389 for (MCSubRegIterator SS(SubReg, TRI, /*IncludeSelf=*/true);
390 SS.isValid(); ++SS)
391 PhysRegUse[*SS] = LastRefOrPartRef;
392 }
393 for (MCSubRegIterator SS(SubReg, TRI); SS.isValid(); ++SS)
394 PartUses.erase(*SS);
395 }
396 } else if (LastRefOrPartRef == PhysRegDef[Reg] && LastRefOrPartRef != MI) {
397 if (LastPartDef)
398 // The last partial def kills the register.
399 LastPartDef->addOperand(MachineOperand::CreateReg(Reg, false/*IsDef*/,
400 true/*IsImp*/, true/*IsKill*/));
401 else {
402 MachineOperand *MO =
403 LastRefOrPartRef->findRegisterDefOperand(Reg, false, TRI);
404 bool NeedEC = MO->isEarlyClobber() && MO->getReg() != Reg;
405 // If the last reference is the last def, then it's not used at all.
406 // That is, unless we are currently processing the last reference itself.
407 LastRefOrPartRef->addRegisterDead(Reg, TRI, true);
408 if (NeedEC) {
409 // If we are adding a subreg def and the superreg def is marked early
410 // clobber, add an early clobber marker to the subreg def.
411 MO = LastRefOrPartRef->findRegisterDefOperand(Reg);
412 if (MO)
413 MO->setIsEarlyClobber();
414 }
415 }
416 } else
417 LastRefOrPartRef->addRegisterKilled(Reg, TRI, true);
418 return true;
419 }
420
421 void LiveVariables::HandleRegMask(const MachineOperand &MO) {
422 // Call HandlePhysRegKill() for all live registers clobbered by Mask.
423 // Clobbered registers are always dead, sp there is no need to use
424 // HandlePhysRegDef().
425 for (unsigned Reg = 1, NumRegs = TRI->getNumRegs(); Reg != NumRegs; ++Reg) {
426 // Skip dead regs.
427 if (!PhysRegDef[Reg] && !PhysRegUse[Reg])
428 continue;
429 // Skip mask-preserved regs.
430 if (!MO.clobbersPhysReg(Reg))
431 continue;
432 // Kill the largest clobbered super-register.
433 // This avoids needless implicit operands.
434 unsigned Super = Reg;
435 for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR)
436 if ((PhysRegDef[*SR] || PhysRegUse[*SR]) && MO.clobbersPhysReg(*SR))
437 Super = *SR;
438 HandlePhysRegKill(Super, nullptr);
439 }
440 }
441
442 void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI,
443 SmallVectorImpl<unsigned> &Defs) {
444 // What parts of the register are previously defined?
445 SmallSet<unsigned, 32> Live;
446 if (PhysRegDef[Reg] || PhysRegUse[Reg]) {
447 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
448 SubRegs.isValid(); ++SubRegs)
449 Live.insert(*SubRegs);
450 } else {
451 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
452 unsigned SubReg = *SubRegs;
453 // If a register isn't itself defined, but all parts that make up of it
454 // are defined, then consider it also defined.
455 // e.g.
456 // AL =
457 // AH =
458 // = AX
459 if (Live.count(SubReg))
460 continue;
461 if (PhysRegDef[SubReg] || PhysRegUse[SubReg]) {
462 for (MCSubRegIterator SS(SubReg, TRI, /*IncludeSelf=*/true);
463 SS.isValid(); ++SS)
464 Live.insert(*SS);
465 }
466 }
467 }
468
469 // Start from the largest piece, find the last time any part of the register
470 // is referenced.
471 HandlePhysRegKill(Reg, MI);
472 // Only some of the sub-registers are used.
473 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
474 unsigned SubReg = *SubRegs;
475 if (!Live.count(SubReg))
476 // Skip if this sub-register isn't defined.
477 continue;
478 HandlePhysRegKill(SubReg, MI);
479 }
480
481 if (MI)
482 Defs.push_back(Reg); // Remember this def.
483 }
484
485 void LiveVariables::UpdatePhysRegDefs(MachineInstr *MI,
486 SmallVectorImpl<unsigned> &Defs) {
487 while (!Defs.empty()) {
488 unsigned Reg = Defs.back();
489 Defs.pop_back();
490 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
491 SubRegs.isValid(); ++SubRegs) {
492 unsigned SubReg = *SubRegs;
493 PhysRegDef[SubReg] = MI;
494 PhysRegUse[SubReg] = nullptr;
495 }
496 }
497 }
498
499 void LiveVariables::runOnInstr(MachineInstr *MI,
500 SmallVectorImpl<unsigned> &Defs) {
501 assert(!MI->isDebugValue());
502 // Process all of the operands of the instruction...
503 unsigned NumOperandsToProcess = MI->getNumOperands();
504
505 // Unless it is a PHI node. In this case, ONLY process the DEF, not any
506 // of the uses. They will be handled in other basic blocks.
507 if (MI->isPHI())
508 NumOperandsToProcess = 1;
509
510 // Clear kill and dead markers. LV will recompute them.
511 SmallVector<unsigned, 4> UseRegs;
512 SmallVector<unsigned, 4> DefRegs;
513 SmallVector<unsigned, 1> RegMasks;
514 for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
515 MachineOperand &MO = MI->getOperand(i);
516 if (MO.isRegMask()) {
517 RegMasks.push_back(i);
518 continue;
519 }
520 if (!MO.isReg() || MO.getReg() == 0)
521 continue;
522 unsigned MOReg = MO.getReg();
523 if (MO.isUse()) {
524 MO.setIsKill(false);
525 if (MO.readsReg())
526 UseRegs.push_back(MOReg);
527 } else /*MO.isDef()*/ {
528 MO.setIsDead(false);
529 DefRegs.push_back(MOReg);
530 }
531 }
532
533 MachineBasicBlock *MBB = MI->getParent();
534 // Process all uses.
535 for (unsigned i = 0, e = UseRegs.size(); i != e; ++i) {
536 unsigned MOReg = UseRegs[i];
537 if (TargetRegisterInfo::isVirtualRegister(MOReg))
538 HandleVirtRegUse(MOReg, MBB, MI);
539 else if (!MRI->isReserved(MOReg))
540 HandlePhysRegUse(MOReg, MI);
541 }
542
543 // Process all masked registers. (Call clobbers).
544 for (unsigned i = 0, e = RegMasks.size(); i != e; ++i)
545 HandleRegMask(MI->getOperand(RegMasks[i]));
546
547 // Process all defs.
548 for (unsigned i = 0, e = DefRegs.size(); i != e; ++i) {
549 unsigned MOReg = DefRegs[i];
550 if (TargetRegisterInfo::isVirtualRegister(MOReg))
551 HandleVirtRegDef(MOReg, MI);
552 else if (!MRI->isReserved(MOReg))
553 HandlePhysRegDef(MOReg, MI, Defs);
554 }
555 UpdatePhysRegDefs(MI, Defs);
556 }
557
558 void LiveVariables::runOnBlock(MachineBasicBlock *MBB, const unsigned NumRegs) {
559 // Mark live-in registers as live-in.
560 SmallVector<unsigned, 4> Defs;
561 for (MachineBasicBlock::livein_iterator II = MBB->livein_begin(),
562 EE = MBB->livein_end(); II != EE; ++II) {
563 assert(TargetRegisterInfo::isPhysicalRegister(*II) &&
564 "Cannot have a live-in virtual register!");
565 HandlePhysRegDef(*II, nullptr, Defs);
566 }
567
568 // Loop over all of the instructions, processing them.
569 DistanceMap.clear();
570 unsigned Dist = 0;
571 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
572 I != E; ++I) {
573 MachineInstr *MI = I;
574 if (MI->isDebugValue())
575 continue;
576 DistanceMap.insert(std::make_pair(MI, Dist++));
577
578 runOnInstr(MI, Defs);
579 }
580
581 // Handle any virtual assignments from PHI nodes which might be at the
582 // bottom of this basic block. We check all of our successor blocks to see
583 // if they have PHI nodes, and if so, we simulate an assignment at the end
584 // of the current block.
585 if (!PHIVarInfo[MBB->getNumber()].empty()) {
586 SmallVectorImpl<unsigned> &VarInfoVec = PHIVarInfo[MBB->getNumber()];
587
588 for (SmallVectorImpl<unsigned>::iterator I = VarInfoVec.begin(),
589 E = VarInfoVec.end(); I != E; ++I)
590 // Mark it alive only in the block we are representing.
591 MarkVirtRegAliveInBlock(getVarInfo(*I),MRI->getVRegDef(*I)->getParent(),
592 MBB);
593 }
594
595 // MachineCSE may CSE instructions which write to non-allocatable physical
596 // registers across MBBs. Remember if any reserved register is liveout.
597 SmallSet<unsigned, 4> LiveOuts;
598 for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(),
599 SE = MBB->succ_end(); SI != SE; ++SI) {
600 MachineBasicBlock *SuccMBB = *SI;
601 if (SuccMBB->isLandingPad())
602 continue;
603 for (MachineBasicBlock::livein_iterator LI = SuccMBB->livein_begin(),
604 LE = SuccMBB->livein_end(); LI != LE; ++LI) {
605 unsigned LReg = *LI;
606 if (!TRI->isInAllocatableClass(LReg))
607 // Ignore other live-ins, e.g. those that are live into landing pads.
608 LiveOuts.insert(LReg);
609 }
610 }
611
612 // Loop over PhysRegDef / PhysRegUse, killing any registers that are
613 // available at the end of the basic block.
614 for (unsigned i = 0; i != NumRegs; ++i)
615 if ((PhysRegDef[i] || PhysRegUse[i]) && !LiveOuts.count(i))
616 HandlePhysRegDef(i, nullptr, Defs);
617 }
618
619 bool LiveVariables::runOnMachineFunction(MachineFunction &mf) {
620 MF = &mf;
621 MRI = &mf.getRegInfo();
622 TRI = MF->getSubtarget().getRegisterInfo();
623
624 const unsigned NumRegs = TRI->getNumRegs();
625 PhysRegDef.assign(NumRegs, nullptr);
626 PhysRegUse.assign(NumRegs, nullptr);
627 PHIVarInfo.resize(MF->getNumBlockIDs());
628 PHIJoins.clear();
629
630 // FIXME: LiveIntervals will be updated to remove its dependence on
631 // LiveVariables to improve compilation time and eliminate bizarre pass
632 // dependencies. Until then, we can't change much in -O0.
633 if (!MRI->isSSA())
634 report_fatal_error("regalloc=... not currently supported with -O0");
635
636 analyzePHINodes(mf);
637
638 // Calculate live variable information in depth first order on the CFG of the
639 // function. This guarantees that we will see the definition of a virtual
640 // register before its uses due to dominance properties of SSA (except for PHI
641 // nodes, which are treated as a special case).
642 MachineBasicBlock *Entry = MF->begin();
643 SmallPtrSet<MachineBasicBlock*,16> Visited;
644
645 for (MachineBasicBlock *MBB : depth_first_ext(Entry, Visited)) {
646 runOnBlock(MBB, NumRegs);
647
648 PhysRegDef.assign(NumRegs, nullptr);
649 PhysRegUse.assign(NumRegs, nullptr);
650 }
651
652 // Convert and transfer the dead / killed information we have gathered into
653 // VirtRegInfo onto MI's.
654 for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i) {
655 const unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
656 for (unsigned j = 0, e2 = VirtRegInfo[Reg].Kills.size(); j != e2; ++j)
657 if (VirtRegInfo[Reg].Kills[j] == MRI->getVRegDef(Reg))
658 VirtRegInfo[Reg].Kills[j]->addRegisterDead(Reg, TRI);
659 else
660 VirtRegInfo[Reg].Kills[j]->addRegisterKilled(Reg, TRI);
661 }
662
663 // Check to make sure there are no unreachable blocks in the MC CFG for the
664 // function. If so, it is due to a bug in the instruction selector or some
665 // other part of the code generator if this happens.
666 #ifndef NDEBUG
667 for(MachineFunction::iterator i = MF->begin(), e = MF->end(); i != e; ++i)
668 assert(Visited.count(&*i) != 0 && "unreachable basic block found");
669 #endif
670
671 PhysRegDef.clear();
672 PhysRegUse.clear();
673 PHIVarInfo.clear();
674
675 return false;
676 }
677
678 /// replaceKillInstruction - Update register kill info by replacing a kill
679 /// instruction with a new one.
680 void LiveVariables::replaceKillInstruction(unsigned Reg, MachineInstr *OldMI,
681 MachineInstr *NewMI) {
682 VarInfo &VI = getVarInfo(Reg);
683 std::replace(VI.Kills.begin(), VI.Kills.end(), OldMI, NewMI);
684 }
685
686 /// removeVirtualRegistersKilled - Remove all killed info for the specified
687 /// instruction.
688 void LiveVariables::removeVirtualRegistersKilled(MachineInstr *MI) {
689 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
690 MachineOperand &MO = MI->getOperand(i);
691 if (MO.isReg() && MO.isKill()) {
692 MO.setIsKill(false);
693 unsigned Reg = MO.getReg();
694 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
695 bool removed = getVarInfo(Reg).removeKill(MI);
696 assert(removed && "kill not in register's VarInfo?");
697 (void)removed;
698 }
699 }
700 }
701 }
702
703 /// analyzePHINodes - Gather information about the PHI nodes in here. In
704 /// particular, we want to map the variable information of a virtual register
705 /// which is used in a PHI node. We map that to the BB the vreg is coming from.
706 ///
707 void LiveVariables::analyzePHINodes(const MachineFunction& Fn) {
708 for (const auto &MBB : Fn)
709 for (const auto &BBI : MBB) {
710 if (!BBI.isPHI())
711 break;
712 for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2)
713 if (BBI.getOperand(i).readsReg())
714 PHIVarInfo[BBI.getOperand(i + 1).getMBB()->getNumber()]
715 .push_back(BBI.getOperand(i).getReg());
716 }
717 }
718
719 bool LiveVariables::VarInfo::isLiveIn(const MachineBasicBlock &MBB,
720 unsigned Reg,
721 MachineRegisterInfo &MRI) {
722 unsigned Num = MBB.getNumber();
723
724 // Reg is live-through.
725 if (AliveBlocks.test(Num))
726 return true;
727
728 // Registers defined in MBB cannot be live in.
729 const MachineInstr *Def = MRI.getVRegDef(Reg);
730 if (Def && Def->getParent() == &MBB)
731 return false;
732
733 // Reg was not defined in MBB, was it killed here?
734 return findKill(&MBB);
735 }
736
737 bool LiveVariables::isLiveOut(unsigned Reg, const MachineBasicBlock &MBB) {
738 LiveVariables::VarInfo &VI = getVarInfo(Reg);
739
740 // Loop over all of the successors of the basic block, checking to see if
741 // the value is either live in the block, or if it is killed in the block.
742 SmallVector<MachineBasicBlock*, 8> OpSuccBlocks;
743 for (MachineBasicBlock::const_succ_iterator SI = MBB.succ_begin(),
744 E = MBB.succ_end(); SI != E; ++SI) {
745 MachineBasicBlock *SuccMBB = *SI;
746
747 // Is it alive in this successor?
748 unsigned SuccIdx = SuccMBB->getNumber();
749 if (VI.AliveBlocks.test(SuccIdx))
750 return true;
751 OpSuccBlocks.push_back(SuccMBB);
752 }
753
754 // Check to see if this value is live because there is a use in a successor
755 // that kills it.
756 switch (OpSuccBlocks.size()) {
757 case 1: {
758 MachineBasicBlock *SuccMBB = OpSuccBlocks[0];
759 for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i)
760 if (VI.Kills[i]->getParent() == SuccMBB)
761 return true;
762 break;
763 }
764 case 2: {
765 MachineBasicBlock *SuccMBB1 = OpSuccBlocks[0], *SuccMBB2 = OpSuccBlocks[1];
766 for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i)
767 if (VI.Kills[i]->getParent() == SuccMBB1 ||
768 VI.Kills[i]->getParent() == SuccMBB2)
769 return true;
770 break;
771 }
772 default:
773 std::sort(OpSuccBlocks.begin(), OpSuccBlocks.end());
774 for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i)
775 if (std::binary_search(OpSuccBlocks.begin(), OpSuccBlocks.end(),
776 VI.Kills[i]->getParent()))
777 return true;
778 }
779 return false;
780 }
781
782 /// addNewBlock - Add a new basic block BB as an empty succcessor to DomBB. All
783 /// variables that are live out of DomBB will be marked as passing live through
784 /// BB.
785 void LiveVariables::addNewBlock(MachineBasicBlock *BB,
786 MachineBasicBlock *DomBB,
787 MachineBasicBlock *SuccBB) {
788 const unsigned NumNew = BB->getNumber();
789
790 SmallSet<unsigned, 16> Defs, Kills;
791
792 MachineBasicBlock::iterator BBI = SuccBB->begin(), BBE = SuccBB->end();
793 for (; BBI != BBE && BBI->isPHI(); ++BBI) {
794 // Record the def of the PHI node.
795 Defs.insert(BBI->getOperand(0).getReg());
796
797 // All registers used by PHI nodes in SuccBB must be live through BB.
798 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
799 if (BBI->getOperand(i+1).getMBB() == BB)
800 getVarInfo(BBI->getOperand(i).getReg()).AliveBlocks.set(NumNew);
801 }
802
803 // Record all vreg defs and kills of all instructions in SuccBB.
804 for (; BBI != BBE; ++BBI) {
805 for (MachineInstr::mop_iterator I = BBI->operands_begin(),
806 E = BBI->operands_end(); I != E; ++I) {
807 if (I->isReg() && TargetRegisterInfo::isVirtualRegister(I->getReg())) {
808 if (I->isDef())
809 Defs.insert(I->getReg());
810 else if (I->isKill())
811 Kills.insert(I->getReg());
812 }
813 }
814 }
815
816 // Update info for all live variables
817 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
818 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
819
820 // If the Defs is defined in the successor it can't be live in BB.
821 if (Defs.count(Reg))
822 continue;
823
824 // If the register is either killed in or live through SuccBB it's also live
825 // through BB.
826 VarInfo &VI = getVarInfo(Reg);
827 if (Kills.count(Reg) || VI.AliveBlocks.test(SuccBB->getNumber()))
828 VI.AliveBlocks.set(NumNew);
829 }
830 }