]> git.proxmox.com Git - rustc.git/blob - src/llvm/lib/CodeGen/MachineCombiner.cpp
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / lib / CodeGen / MachineCombiner.cpp
1 //===---- MachineCombiner.cpp - Instcombining on SSA form machine code ----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // The machine combiner pass uses machine trace metrics to ensure the combined
11 // instructions does not lengthen the critical path or the resource depth.
12 //===----------------------------------------------------------------------===//
13 #define DEBUG_TYPE "machine-combiner"
14
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/CodeGen/MachineDominators.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineFunctionPass.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineLoopInfo.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/MachineTraceMetrics.h"
24 #include "llvm/CodeGen/Passes.h"
25 #include "llvm/CodeGen/TargetSchedule.h"
26 #include "llvm/Support/CommandLine.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/Target/TargetInstrInfo.h"
30 #include "llvm/Target/TargetRegisterInfo.h"
31 #include "llvm/Target/TargetSubtargetInfo.h"
32
33 using namespace llvm;
34
35 STATISTIC(NumInstCombined, "Number of machineinst combined");
36
37 namespace {
38 class MachineCombiner : public MachineFunctionPass {
39 const TargetInstrInfo *TII;
40 const TargetRegisterInfo *TRI;
41 MCSchedModel SchedModel;
42 MachineRegisterInfo *MRI;
43 MachineTraceMetrics *Traces;
44 MachineTraceMetrics::Ensemble *MinInstr;
45
46 TargetSchedModel TSchedModel;
47
48 /// OptSize - True if optimizing for code size.
49 bool OptSize;
50
51 public:
52 static char ID;
53 MachineCombiner() : MachineFunctionPass(ID) {
54 initializeMachineCombinerPass(*PassRegistry::getPassRegistry());
55 }
56 void getAnalysisUsage(AnalysisUsage &AU) const override;
57 bool runOnMachineFunction(MachineFunction &MF) override;
58 const char *getPassName() const override { return "Machine InstCombiner"; }
59
60 private:
61 bool doSubstitute(unsigned NewSize, unsigned OldSize);
62 bool combineInstructions(MachineBasicBlock *);
63 MachineInstr *getOperandDef(const MachineOperand &MO);
64 unsigned getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs,
65 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
66 MachineTraceMetrics::Trace BlockTrace);
67 unsigned getLatency(MachineInstr *Root, MachineInstr *NewRoot,
68 MachineTraceMetrics::Trace BlockTrace);
69 bool
70 preservesCriticalPathLen(MachineBasicBlock *MBB, MachineInstr *Root,
71 MachineTraceMetrics::Trace BlockTrace,
72 SmallVectorImpl<MachineInstr *> &InsInstrs,
73 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg);
74 bool preservesResourceLen(MachineBasicBlock *MBB,
75 MachineTraceMetrics::Trace BlockTrace,
76 SmallVectorImpl<MachineInstr *> &InsInstrs,
77 SmallVectorImpl<MachineInstr *> &DelInstrs);
78 void instr2instrSC(SmallVectorImpl<MachineInstr *> &Instrs,
79 SmallVectorImpl<const MCSchedClassDesc *> &InstrsSC);
80 };
81 }
82
83 char MachineCombiner::ID = 0;
84 char &llvm::MachineCombinerID = MachineCombiner::ID;
85
86 INITIALIZE_PASS_BEGIN(MachineCombiner, "machine-combiner",
87 "Machine InstCombiner", false, false)
88 INITIALIZE_PASS_DEPENDENCY(MachineTraceMetrics)
89 INITIALIZE_PASS_END(MachineCombiner, "machine-combiner", "Machine InstCombiner",
90 false, false)
91
92 void MachineCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
93 AU.setPreservesCFG();
94 AU.addPreserved<MachineDominatorTree>();
95 AU.addPreserved<MachineLoopInfo>();
96 AU.addRequired<MachineTraceMetrics>();
97 AU.addPreserved<MachineTraceMetrics>();
98 MachineFunctionPass::getAnalysisUsage(AU);
99 }
100
101 MachineInstr *MachineCombiner::getOperandDef(const MachineOperand &MO) {
102 MachineInstr *DefInstr = nullptr;
103 // We need a virtual register definition.
104 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
105 DefInstr = MRI->getUniqueVRegDef(MO.getReg());
106 // PHI's have no depth etc.
107 if (DefInstr && DefInstr->isPHI())
108 DefInstr = nullptr;
109 return DefInstr;
110 }
111
112 /// getDepth - Computes depth of instructions in vector \InsInstr.
113 ///
114 /// \param InsInstrs is a vector of machine instructions
115 /// \param InstrIdxForVirtReg is a dense map of virtual register to index
116 /// of defining machine instruction in \p InsInstrs
117 /// \param BlockTrace is a trace of machine instructions
118 ///
119 /// \returns Depth of last instruction in \InsInstrs ("NewRoot")
120 unsigned
121 MachineCombiner::getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs,
122 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
123 MachineTraceMetrics::Trace BlockTrace) {
124
125 SmallVector<unsigned, 16> InstrDepth;
126 assert(TSchedModel.hasInstrSchedModel() && "Missing machine model\n");
127
128 // Foreach instruction in in the new sequence compute the depth based on the
129 // operands. Use the trace information when possible. For new operands which
130 // are tracked in the InstrIdxForVirtReg map depth is looked up in InstrDepth
131 for (auto *InstrPtr : InsInstrs) { // for each Use
132 unsigned IDepth = 0;
133 DEBUG(dbgs() << "NEW INSTR "; InstrPtr->dump(); dbgs() << "\n";);
134 for (unsigned i = 0, e = InstrPtr->getNumOperands(); i != e; ++i) {
135 const MachineOperand &MO = InstrPtr->getOperand(i);
136 // Check for virtual register operand.
137 if (!(MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())))
138 continue;
139 if (!MO.isUse())
140 continue;
141 unsigned DepthOp = 0;
142 unsigned LatencyOp = 0;
143 DenseMap<unsigned, unsigned>::iterator II =
144 InstrIdxForVirtReg.find(MO.getReg());
145 if (II != InstrIdxForVirtReg.end()) {
146 // Operand is new virtual register not in trace
147 assert(II->second < InstrDepth.size() && "Bad Index");
148 MachineInstr *DefInstr = InsInstrs[II->second];
149 assert(DefInstr &&
150 "There must be a definition for a new virtual register");
151 DepthOp = InstrDepth[II->second];
152 LatencyOp = TSchedModel.computeOperandLatency(
153 DefInstr, DefInstr->findRegisterDefOperandIdx(MO.getReg()),
154 InstrPtr, InstrPtr->findRegisterUseOperandIdx(MO.getReg()));
155 } else {
156 MachineInstr *DefInstr = getOperandDef(MO);
157 if (DefInstr) {
158 DepthOp = BlockTrace.getInstrCycles(DefInstr).Depth;
159 LatencyOp = TSchedModel.computeOperandLatency(
160 DefInstr, DefInstr->findRegisterDefOperandIdx(MO.getReg()),
161 InstrPtr, InstrPtr->findRegisterUseOperandIdx(MO.getReg()));
162 }
163 }
164 IDepth = std::max(IDepth, DepthOp + LatencyOp);
165 }
166 InstrDepth.push_back(IDepth);
167 }
168 unsigned NewRootIdx = InsInstrs.size() - 1;
169 return InstrDepth[NewRootIdx];
170 }
171
172 /// getLatency - Computes instruction latency as max of latency of defined
173 /// operands
174 ///
175 /// \param Root is a machine instruction that could be replaced by NewRoot.
176 /// It is used to compute a more accurate latency information for NewRoot in
177 /// case there is a dependent instruction in the same trace (\p BlockTrace)
178 /// \param NewRoot is the instruction for which the latency is computed
179 /// \param BlockTrace is a trace of machine instructions
180 ///
181 /// \returns Latency of \p NewRoot
182 unsigned MachineCombiner::getLatency(MachineInstr *Root, MachineInstr *NewRoot,
183 MachineTraceMetrics::Trace BlockTrace) {
184
185 assert(TSchedModel.hasInstrSchedModel() && "Missing machine model\n");
186
187 // Check each definition in NewRoot and compute the latency
188 unsigned NewRootLatency = 0;
189
190 for (unsigned i = 0, e = NewRoot->getNumOperands(); i != e; ++i) {
191 const MachineOperand &MO = NewRoot->getOperand(i);
192 // Check for virtual register operand.
193 if (!(MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())))
194 continue;
195 if (!MO.isDef())
196 continue;
197 // Get the first instruction that uses MO
198 MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(MO.getReg());
199 RI++;
200 MachineInstr *UseMO = RI->getParent();
201 unsigned LatencyOp = 0;
202 if (UseMO && BlockTrace.isDepInTrace(Root, UseMO)) {
203 LatencyOp = TSchedModel.computeOperandLatency(
204 NewRoot, NewRoot->findRegisterDefOperandIdx(MO.getReg()), UseMO,
205 UseMO->findRegisterUseOperandIdx(MO.getReg()));
206 } else {
207 LatencyOp = TSchedModel.computeInstrLatency(NewRoot->getOpcode());
208 }
209 NewRootLatency = std::max(NewRootLatency, LatencyOp);
210 }
211 return NewRootLatency;
212 }
213
214 /// preservesCriticalPathlen - True when the new instruction sequence does not
215 /// lengthen the critical path. The DAGCombine code sequence ends in MI
216 /// (Machine Instruction) Root. The new code sequence ends in MI NewRoot. A
217 /// necessary condition for the new sequence to replace the old sequence is that
218 /// is cannot lengthen the critical path. This is decided by the formula
219 /// (NewRootDepth + NewRootLatency) <= (RootDepth + RootLatency + RootSlack)).
220 /// The slack is the number of cycles Root can be delayed before the critical
221 /// patch becomes longer.
222 bool MachineCombiner::preservesCriticalPathLen(
223 MachineBasicBlock *MBB, MachineInstr *Root,
224 MachineTraceMetrics::Trace BlockTrace,
225 SmallVectorImpl<MachineInstr *> &InsInstrs,
226 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) {
227
228 assert(TSchedModel.hasInstrSchedModel() && "Missing machine model\n");
229 // NewRoot is the last instruction in the \p InsInstrs vector
230 // Get depth and latency of NewRoot
231 unsigned NewRootIdx = InsInstrs.size() - 1;
232 MachineInstr *NewRoot = InsInstrs[NewRootIdx];
233 unsigned NewRootDepth = getDepth(InsInstrs, InstrIdxForVirtReg, BlockTrace);
234 unsigned NewRootLatency = getLatency(Root, NewRoot, BlockTrace);
235
236 // Get depth, latency and slack of Root
237 unsigned RootDepth = BlockTrace.getInstrCycles(Root).Depth;
238 unsigned RootLatency = TSchedModel.computeInstrLatency(Root);
239 unsigned RootSlack = BlockTrace.getInstrSlack(Root);
240
241 DEBUG(dbgs() << "DEPENDENCE DATA FOR " << Root << "\n";
242 dbgs() << " NewRootDepth: " << NewRootDepth
243 << " NewRootLatency: " << NewRootLatency << "\n";
244 dbgs() << " RootDepth: " << RootDepth << " RootLatency: " << RootLatency
245 << " RootSlack: " << RootSlack << "\n";
246 dbgs() << " NewRootDepth + NewRootLatency "
247 << NewRootDepth + NewRootLatency << "\n";
248 dbgs() << " RootDepth + RootLatency + RootSlack "
249 << RootDepth + RootLatency + RootSlack << "\n";);
250
251 /// True when the new sequence does not lenghten the critical path.
252 return ((NewRootDepth + NewRootLatency) <=
253 (RootDepth + RootLatency + RootSlack));
254 }
255
256 /// helper routine to convert instructions into SC
257 void MachineCombiner::instr2instrSC(
258 SmallVectorImpl<MachineInstr *> &Instrs,
259 SmallVectorImpl<const MCSchedClassDesc *> &InstrsSC) {
260 for (auto *InstrPtr : Instrs) {
261 unsigned Opc = InstrPtr->getOpcode();
262 unsigned Idx = TII->get(Opc).getSchedClass();
263 const MCSchedClassDesc *SC = SchedModel.getSchedClassDesc(Idx);
264 InstrsSC.push_back(SC);
265 }
266 }
267 /// preservesResourceLen - True when the new instructions do not increase
268 /// resource length
269 bool MachineCombiner::preservesResourceLen(
270 MachineBasicBlock *MBB, MachineTraceMetrics::Trace BlockTrace,
271 SmallVectorImpl<MachineInstr *> &InsInstrs,
272 SmallVectorImpl<MachineInstr *> &DelInstrs) {
273
274 // Compute current resource length
275
276 //ArrayRef<const MachineBasicBlock *> MBBarr(MBB);
277 SmallVector <const MachineBasicBlock *, 1> MBBarr;
278 MBBarr.push_back(MBB);
279 unsigned ResLenBeforeCombine = BlockTrace.getResourceLength(MBBarr);
280
281 // Deal with SC rather than Instructions.
282 SmallVector<const MCSchedClassDesc *, 16> InsInstrsSC;
283 SmallVector<const MCSchedClassDesc *, 16> DelInstrsSC;
284
285 instr2instrSC(InsInstrs, InsInstrsSC);
286 instr2instrSC(DelInstrs, DelInstrsSC);
287
288 ArrayRef<const MCSchedClassDesc *> MSCInsArr = makeArrayRef(InsInstrsSC);
289 ArrayRef<const MCSchedClassDesc *> MSCDelArr = makeArrayRef(DelInstrsSC);
290
291 // Compute new resource length
292 unsigned ResLenAfterCombine =
293 BlockTrace.getResourceLength(MBBarr, MSCInsArr, MSCDelArr);
294
295 DEBUG(dbgs() << "RESOURCE DATA: \n";
296 dbgs() << " resource len before: " << ResLenBeforeCombine
297 << " after: " << ResLenAfterCombine << "\n";);
298
299 return ResLenAfterCombine <= ResLenBeforeCombine;
300 }
301
302 /// \returns true when new instruction sequence should be generated
303 /// independent if it lenghtens critical path or not
304 bool MachineCombiner::doSubstitute(unsigned NewSize, unsigned OldSize) {
305 if (OptSize && (NewSize < OldSize))
306 return true;
307 if (!TSchedModel.hasInstrSchedModel())
308 return true;
309 return false;
310 }
311
312 /// combineInstructions - substitute a slow code sequence with a faster one by
313 /// evaluating instruction combining pattern.
314 /// The prototype of such a pattern is MUl + ADD -> MADD. Performs instruction
315 /// combining based on machine trace metrics. Only combine a sequence of
316 /// instructions when this neither lengthens the critical path nor increases
317 /// resource pressure. When optimizing for codesize always combine when the new
318 /// sequence is shorter.
319 bool MachineCombiner::combineInstructions(MachineBasicBlock *MBB) {
320 bool Changed = false;
321 DEBUG(dbgs() << "Combining MBB " << MBB->getName() << "\n");
322
323 auto BlockIter = MBB->begin();
324
325 while (BlockIter != MBB->end()) {
326 auto &MI = *BlockIter++;
327
328 DEBUG(dbgs() << "INSTR "; MI.dump(); dbgs() << "\n";);
329 SmallVector<MachineCombinerPattern::MC_PATTERN, 16> Pattern;
330 // The motivating example is:
331 //
332 // MUL Other MUL_op1 MUL_op2 Other
333 // \ / \ | /
334 // ADD/SUB => MADD/MSUB
335 // (=Root) (=NewRoot)
336
337 // The DAGCombine code always replaced MUL + ADD/SUB by MADD. While this is
338 // usually beneficial for code size it unfortunately can hurt performance
339 // when the ADD is on the critical path, but the MUL is not. With the
340 // substitution the MUL becomes part of the critical path (in form of the
341 // MADD) and can lengthen it on architectures where the MADD latency is
342 // longer than the ADD latency.
343 //
344 // For each instruction we check if it can be the root of a combiner
345 // pattern. Then for each pattern the new code sequence in form of MI is
346 // generated and evaluated. When the efficiency criteria (don't lengthen
347 // critical path, don't use more resources) is met the new sequence gets
348 // hooked up into the basic block before the old sequence is removed.
349 //
350 // The algorithm does not try to evaluate all patterns and pick the best.
351 // This is only an artificial restriction though. In practice there is
352 // mostly one pattern and hasPattern() can order patterns based on an
353 // internal cost heuristic.
354
355 if (TII->hasPattern(MI, Pattern)) {
356 for (auto P : Pattern) {
357 SmallVector<MachineInstr *, 16> InsInstrs;
358 SmallVector<MachineInstr *, 16> DelInstrs;
359 DenseMap<unsigned, unsigned> InstrIdxForVirtReg;
360 if (!MinInstr)
361 MinInstr = Traces->getEnsemble(MachineTraceMetrics::TS_MinInstrCount);
362 MachineTraceMetrics::Trace BlockTrace = MinInstr->getTrace(MBB);
363 Traces->verifyAnalysis();
364 TII->genAlternativeCodeSequence(MI, P, InsInstrs, DelInstrs,
365 InstrIdxForVirtReg);
366 // Found pattern, but did not generate alternative sequence.
367 // This can happen e.g. when an immediate could not be materialized
368 // in a single instruction.
369 if (!InsInstrs.size())
370 continue;
371 // Substitute when we optimize for codesize and the new sequence has
372 // fewer instructions OR
373 // the new sequence neither lenghten the critical path nor increases
374 // resource pressure.
375 if (doSubstitute(InsInstrs.size(), DelInstrs.size()) ||
376 (preservesCriticalPathLen(MBB, &MI, BlockTrace, InsInstrs,
377 InstrIdxForVirtReg) &&
378 preservesResourceLen(MBB, BlockTrace, InsInstrs, DelInstrs))) {
379 for (auto *InstrPtr : InsInstrs)
380 MBB->insert((MachineBasicBlock::iterator) & MI,
381 (MachineInstr *)InstrPtr);
382 for (auto *InstrPtr : DelInstrs)
383 InstrPtr->eraseFromParentAndMarkDBGValuesForRemoval();
384
385 Changed = true;
386 ++NumInstCombined;
387
388 Traces->invalidate(MBB);
389 Traces->verifyAnalysis();
390 // Eagerly stop after the first pattern fired
391 break;
392 } else {
393 // Cleanup instructions of the alternative code sequence. There is no
394 // use for them.
395 for (auto *InstrPtr : InsInstrs) {
396 MachineFunction *MF = MBB->getParent();
397 MF->DeleteMachineInstr((MachineInstr *)InstrPtr);
398 }
399 }
400 InstrIdxForVirtReg.clear();
401 }
402 }
403 }
404
405 return Changed;
406 }
407
408 bool MachineCombiner::runOnMachineFunction(MachineFunction &MF) {
409 const TargetSubtargetInfo &STI =
410 MF.getTarget().getSubtarget<TargetSubtargetInfo>();
411 TII = STI.getInstrInfo();
412 TRI = STI.getRegisterInfo();
413 SchedModel = STI.getSchedModel();
414 TSchedModel.init(SchedModel, &STI, TII);
415 MRI = &MF.getRegInfo();
416 Traces = &getAnalysis<MachineTraceMetrics>();
417 MinInstr = 0;
418
419 OptSize = MF.getFunction()->getAttributes().hasAttribute(
420 AttributeSet::FunctionIndex, Attribute::OptimizeForSize);
421
422 DEBUG(dbgs() << getPassName() << ": " << MF.getName() << '\n');
423 if (!TII->useMachineCombiner()) {
424 DEBUG(dbgs() << " Skipping pass: Target does not support machine combiner\n");
425 return false;
426 }
427
428 bool Changed = false;
429
430 // Try to combine instructions.
431 for (auto &MBB : MF)
432 Changed |= combineInstructions(&MBB);
433
434 return Changed;
435 }