]> git.proxmox.com Git - rustc.git/blob - src/llvm/lib/CodeGen/TargetInstrInfo.cpp
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / lib / CodeGen / TargetInstrInfo.cpp
1 //===-- TargetInstrInfo.cpp - Target Instruction Information --------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Target/TargetInstrInfo.h"
15 #include "llvm/CodeGen/MachineFrameInfo.h"
16 #include "llvm/CodeGen/MachineInstrBuilder.h"
17 #include "llvm/CodeGen/MachineMemOperand.h"
18 #include "llvm/CodeGen/MachineRegisterInfo.h"
19 #include "llvm/CodeGen/PseudoSourceValue.h"
20 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
21 #include "llvm/CodeGen/StackMaps.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/MC/MCAsmInfo.h"
24 #include "llvm/MC/MCInstrItineraries.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/Target/TargetFrameLowering.h"
29 #include "llvm/Target/TargetLowering.h"
30 #include "llvm/Target/TargetMachine.h"
31 #include "llvm/Target/TargetRegisterInfo.h"
32 #include <cctype>
33 using namespace llvm;
34
35 static cl::opt<bool> DisableHazardRecognizer(
36 "disable-sched-hazard", cl::Hidden, cl::init(false),
37 cl::desc("Disable hazard detection during preRA scheduling"));
38
39 TargetInstrInfo::~TargetInstrInfo() {
40 }
41
42 const TargetRegisterClass*
43 TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
44 const TargetRegisterInfo *TRI,
45 const MachineFunction &MF) const {
46 if (OpNum >= MCID.getNumOperands())
47 return nullptr;
48
49 short RegClass = MCID.OpInfo[OpNum].RegClass;
50 if (MCID.OpInfo[OpNum].isLookupPtrRegClass())
51 return TRI->getPointerRegClass(MF, RegClass);
52
53 // Instructions like INSERT_SUBREG do not have fixed register classes.
54 if (RegClass < 0)
55 return nullptr;
56
57 // Otherwise just look it up normally.
58 return TRI->getRegClass(RegClass);
59 }
60
61 /// insertNoop - Insert a noop into the instruction stream at the specified
62 /// point.
63 void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB,
64 MachineBasicBlock::iterator MI) const {
65 llvm_unreachable("Target didn't implement insertNoop!");
66 }
67
68 /// Measure the specified inline asm to determine an approximation of its
69 /// length.
70 /// Comments (which run till the next SeparatorString or newline) do not
71 /// count as an instruction.
72 /// Any other non-whitespace text is considered an instruction, with
73 /// multiple instructions separated by SeparatorString or newlines.
74 /// Variable-length instructions are not handled here; this function
75 /// may be overloaded in the target code to do that.
76 unsigned TargetInstrInfo::getInlineAsmLength(const char *Str,
77 const MCAsmInfo &MAI) const {
78
79
80 // Count the number of instructions in the asm.
81 bool atInsnStart = true;
82 unsigned Length = 0;
83 for (; *Str; ++Str) {
84 if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
85 strlen(MAI.getSeparatorString())) == 0)
86 atInsnStart = true;
87 if (atInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) {
88 Length += MAI.getMaxInstLength();
89 atInsnStart = false;
90 }
91 if (atInsnStart && strncmp(Str, MAI.getCommentString(),
92 strlen(MAI.getCommentString())) == 0)
93 atInsnStart = false;
94 }
95
96 return Length;
97 }
98
99 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
100 /// after it, replacing it with an unconditional branch to NewDest.
101 void
102 TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
103 MachineBasicBlock *NewDest) const {
104 MachineBasicBlock *MBB = Tail->getParent();
105
106 // Remove all the old successors of MBB from the CFG.
107 while (!MBB->succ_empty())
108 MBB->removeSuccessor(MBB->succ_begin());
109
110 // Remove all the dead instructions from the end of MBB.
111 MBB->erase(Tail, MBB->end());
112
113 // If MBB isn't immediately before MBB, insert a branch to it.
114 if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest))
115 InsertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(),
116 Tail->getDebugLoc());
117 MBB->addSuccessor(NewDest);
118 }
119
120 // commuteInstruction - The default implementation of this method just exchanges
121 // the two operands returned by findCommutedOpIndices.
122 MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr *MI,
123 bool NewMI) const {
124 const MCInstrDesc &MCID = MI->getDesc();
125 bool HasDef = MCID.getNumDefs();
126 if (HasDef && !MI->getOperand(0).isReg())
127 // No idea how to commute this instruction. Target should implement its own.
128 return nullptr;
129 unsigned Idx1, Idx2;
130 if (!findCommutedOpIndices(MI, Idx1, Idx2)) {
131 assert(MI->isCommutable() && "Precondition violation: MI must be commutable.");
132 return nullptr;
133 }
134
135 assert(MI->getOperand(Idx1).isReg() && MI->getOperand(Idx2).isReg() &&
136 "This only knows how to commute register operands so far");
137 unsigned Reg0 = HasDef ? MI->getOperand(0).getReg() : 0;
138 unsigned Reg1 = MI->getOperand(Idx1).getReg();
139 unsigned Reg2 = MI->getOperand(Idx2).getReg();
140 unsigned SubReg0 = HasDef ? MI->getOperand(0).getSubReg() : 0;
141 unsigned SubReg1 = MI->getOperand(Idx1).getSubReg();
142 unsigned SubReg2 = MI->getOperand(Idx2).getSubReg();
143 bool Reg1IsKill = MI->getOperand(Idx1).isKill();
144 bool Reg2IsKill = MI->getOperand(Idx2).isKill();
145 // If destination is tied to either of the commuted source register, then
146 // it must be updated.
147 if (HasDef && Reg0 == Reg1 &&
148 MI->getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) {
149 Reg2IsKill = false;
150 Reg0 = Reg2;
151 SubReg0 = SubReg2;
152 } else if (HasDef && Reg0 == Reg2 &&
153 MI->getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) {
154 Reg1IsKill = false;
155 Reg0 = Reg1;
156 SubReg0 = SubReg1;
157 }
158
159 if (NewMI) {
160 // Create a new instruction.
161 MachineFunction &MF = *MI->getParent()->getParent();
162 MI = MF.CloneMachineInstr(MI);
163 }
164
165 if (HasDef) {
166 MI->getOperand(0).setReg(Reg0);
167 MI->getOperand(0).setSubReg(SubReg0);
168 }
169 MI->getOperand(Idx2).setReg(Reg1);
170 MI->getOperand(Idx1).setReg(Reg2);
171 MI->getOperand(Idx2).setSubReg(SubReg1);
172 MI->getOperand(Idx1).setSubReg(SubReg2);
173 MI->getOperand(Idx2).setIsKill(Reg1IsKill);
174 MI->getOperand(Idx1).setIsKill(Reg2IsKill);
175 return MI;
176 }
177
178 /// findCommutedOpIndices - If specified MI is commutable, return the two
179 /// operand indices that would swap value. Return true if the instruction
180 /// is not in a form which this routine understands.
181 bool TargetInstrInfo::findCommutedOpIndices(MachineInstr *MI,
182 unsigned &SrcOpIdx1,
183 unsigned &SrcOpIdx2) const {
184 assert(!MI->isBundle() &&
185 "TargetInstrInfo::findCommutedOpIndices() can't handle bundles");
186
187 const MCInstrDesc &MCID = MI->getDesc();
188 if (!MCID.isCommutable())
189 return false;
190 // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
191 // is not true, then the target must implement this.
192 SrcOpIdx1 = MCID.getNumDefs();
193 SrcOpIdx2 = SrcOpIdx1 + 1;
194 if (!MI->getOperand(SrcOpIdx1).isReg() ||
195 !MI->getOperand(SrcOpIdx2).isReg())
196 // No idea.
197 return false;
198 return true;
199 }
200
201
202 bool
203 TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
204 if (!MI->isTerminator()) return false;
205
206 // Conditional branch is a special case.
207 if (MI->isBranch() && !MI->isBarrier())
208 return true;
209 if (!MI->isPredicable())
210 return true;
211 return !isPredicated(MI);
212 }
213
214
215 bool TargetInstrInfo::PredicateInstruction(MachineInstr *MI,
216 const SmallVectorImpl<MachineOperand> &Pred) const {
217 bool MadeChange = false;
218
219 assert(!MI->isBundle() &&
220 "TargetInstrInfo::PredicateInstruction() can't handle bundles");
221
222 const MCInstrDesc &MCID = MI->getDesc();
223 if (!MI->isPredicable())
224 return false;
225
226 for (unsigned j = 0, i = 0, e = MI->getNumOperands(); i != e; ++i) {
227 if (MCID.OpInfo[i].isPredicate()) {
228 MachineOperand &MO = MI->getOperand(i);
229 if (MO.isReg()) {
230 MO.setReg(Pred[j].getReg());
231 MadeChange = true;
232 } else if (MO.isImm()) {
233 MO.setImm(Pred[j].getImm());
234 MadeChange = true;
235 } else if (MO.isMBB()) {
236 MO.setMBB(Pred[j].getMBB());
237 MadeChange = true;
238 }
239 ++j;
240 }
241 }
242 return MadeChange;
243 }
244
245 bool TargetInstrInfo::hasLoadFromStackSlot(const MachineInstr *MI,
246 const MachineMemOperand *&MMO,
247 int &FrameIndex) const {
248 for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
249 oe = MI->memoperands_end();
250 o != oe;
251 ++o) {
252 if ((*o)->isLoad()) {
253 if (const FixedStackPseudoSourceValue *Value =
254 dyn_cast_or_null<FixedStackPseudoSourceValue>(
255 (*o)->getPseudoValue())) {
256 FrameIndex = Value->getFrameIndex();
257 MMO = *o;
258 return true;
259 }
260 }
261 }
262 return false;
263 }
264
265 bool TargetInstrInfo::hasStoreToStackSlot(const MachineInstr *MI,
266 const MachineMemOperand *&MMO,
267 int &FrameIndex) const {
268 for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
269 oe = MI->memoperands_end();
270 o != oe;
271 ++o) {
272 if ((*o)->isStore()) {
273 if (const FixedStackPseudoSourceValue *Value =
274 dyn_cast_or_null<FixedStackPseudoSourceValue>(
275 (*o)->getPseudoValue())) {
276 FrameIndex = Value->getFrameIndex();
277 MMO = *o;
278 return true;
279 }
280 }
281 }
282 return false;
283 }
284
285 bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC,
286 unsigned SubIdx, unsigned &Size,
287 unsigned &Offset,
288 const TargetMachine *TM) const {
289 if (!SubIdx) {
290 Size = RC->getSize();
291 Offset = 0;
292 return true;
293 }
294 unsigned BitSize =
295 TM->getSubtargetImpl()->getRegisterInfo()->getSubRegIdxSize(SubIdx);
296 // Convert bit size to byte size to be consistent with
297 // MCRegisterClass::getSize().
298 if (BitSize % 8)
299 return false;
300
301 int BitOffset =
302 TM->getSubtargetImpl()->getRegisterInfo()->getSubRegIdxOffset(SubIdx);
303 if (BitOffset < 0 || BitOffset % 8)
304 return false;
305
306 Size = BitSize /= 8;
307 Offset = (unsigned)BitOffset / 8;
308
309 assert(RC->getSize() >= (Offset + Size) && "bad subregister range");
310
311 if (!TM->getSubtargetImpl()->getDataLayout()->isLittleEndian()) {
312 Offset = RC->getSize() - (Offset + Size);
313 }
314 return true;
315 }
316
317 void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB,
318 MachineBasicBlock::iterator I,
319 unsigned DestReg,
320 unsigned SubIdx,
321 const MachineInstr *Orig,
322 const TargetRegisterInfo &TRI) const {
323 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
324 MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI);
325 MBB.insert(I, MI);
326 }
327
328 bool
329 TargetInstrInfo::produceSameValue(const MachineInstr *MI0,
330 const MachineInstr *MI1,
331 const MachineRegisterInfo *MRI) const {
332 return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
333 }
334
335 MachineInstr *TargetInstrInfo::duplicate(MachineInstr *Orig,
336 MachineFunction &MF) const {
337 assert(!Orig->isNotDuplicable() &&
338 "Instruction cannot be duplicated");
339 return MF.CloneMachineInstr(Orig);
340 }
341
342 // If the COPY instruction in MI can be folded to a stack operation, return
343 // the register class to use.
344 static const TargetRegisterClass *canFoldCopy(const MachineInstr *MI,
345 unsigned FoldIdx) {
346 assert(MI->isCopy() && "MI must be a COPY instruction");
347 if (MI->getNumOperands() != 2)
348 return nullptr;
349 assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand");
350
351 const MachineOperand &FoldOp = MI->getOperand(FoldIdx);
352 const MachineOperand &LiveOp = MI->getOperand(1-FoldIdx);
353
354 if (FoldOp.getSubReg() || LiveOp.getSubReg())
355 return nullptr;
356
357 unsigned FoldReg = FoldOp.getReg();
358 unsigned LiveReg = LiveOp.getReg();
359
360 assert(TargetRegisterInfo::isVirtualRegister(FoldReg) &&
361 "Cannot fold physregs");
362
363 const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
364 const TargetRegisterClass *RC = MRI.getRegClass(FoldReg);
365
366 if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg()))
367 return RC->contains(LiveOp.getReg()) ? RC : nullptr;
368
369 if (RC->hasSubClassEq(MRI.getRegClass(LiveReg)))
370 return RC;
371
372 // FIXME: Allow folding when register classes are memory compatible.
373 return nullptr;
374 }
375
376 void TargetInstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
377 llvm_unreachable("Not a MachO target");
378 }
379
380 bool TargetInstrInfo::
381 canFoldMemoryOperand(const MachineInstr *MI,
382 const SmallVectorImpl<unsigned> &Ops) const {
383 return MI->isCopy() && Ops.size() == 1 && canFoldCopy(MI, Ops[0]);
384 }
385
386 static MachineInstr* foldPatchpoint(MachineFunction &MF,
387 MachineInstr *MI,
388 const SmallVectorImpl<unsigned> &Ops,
389 int FrameIndex,
390 const TargetInstrInfo &TII) {
391 unsigned StartIdx = 0;
392 switch (MI->getOpcode()) {
393 case TargetOpcode::STACKMAP:
394 StartIdx = 2; // Skip ID, nShadowBytes.
395 break;
396 case TargetOpcode::PATCHPOINT: {
397 // For PatchPoint, the call args are not foldable.
398 PatchPointOpers opers(MI);
399 StartIdx = opers.getVarIdx();
400 break;
401 }
402 default:
403 llvm_unreachable("unexpected stackmap opcode");
404 }
405
406 // Return false if any operands requested for folding are not foldable (not
407 // part of the stackmap's live values).
408 for (SmallVectorImpl<unsigned>::const_iterator I = Ops.begin(), E = Ops.end();
409 I != E; ++I) {
410 if (*I < StartIdx)
411 return nullptr;
412 }
413
414 MachineInstr *NewMI =
415 MF.CreateMachineInstr(TII.get(MI->getOpcode()), MI->getDebugLoc(), true);
416 MachineInstrBuilder MIB(MF, NewMI);
417
418 // No need to fold return, the meta data, and function arguments
419 for (unsigned i = 0; i < StartIdx; ++i)
420 MIB.addOperand(MI->getOperand(i));
421
422 for (unsigned i = StartIdx; i < MI->getNumOperands(); ++i) {
423 MachineOperand &MO = MI->getOperand(i);
424 if (std::find(Ops.begin(), Ops.end(), i) != Ops.end()) {
425 unsigned SpillSize;
426 unsigned SpillOffset;
427 // Compute the spill slot size and offset.
428 const TargetRegisterClass *RC =
429 MF.getRegInfo().getRegClass(MO.getReg());
430 bool Valid = TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize,
431 SpillOffset, &MF.getTarget());
432 if (!Valid)
433 report_fatal_error("cannot spill patchpoint subregister operand");
434 MIB.addImm(StackMaps::IndirectMemRefOp);
435 MIB.addImm(SpillSize);
436 MIB.addFrameIndex(FrameIndex);
437 MIB.addImm(SpillOffset);
438 }
439 else
440 MIB.addOperand(MO);
441 }
442 return NewMI;
443 }
444
445 /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
446 /// slot into the specified machine instruction for the specified operand(s).
447 /// If this is possible, a new instruction is returned with the specified
448 /// operand folded, otherwise NULL is returned. The client is responsible for
449 /// removing the old instruction and adding the new one in the instruction
450 /// stream.
451 MachineInstr*
452 TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI,
453 const SmallVectorImpl<unsigned> &Ops,
454 int FI) const {
455 unsigned Flags = 0;
456 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
457 if (MI->getOperand(Ops[i]).isDef())
458 Flags |= MachineMemOperand::MOStore;
459 else
460 Flags |= MachineMemOperand::MOLoad;
461
462 MachineBasicBlock *MBB = MI->getParent();
463 assert(MBB && "foldMemoryOperand needs an inserted instruction");
464 MachineFunction &MF = *MBB->getParent();
465
466 MachineInstr *NewMI = nullptr;
467
468 if (MI->getOpcode() == TargetOpcode::STACKMAP ||
469 MI->getOpcode() == TargetOpcode::PATCHPOINT) {
470 // Fold stackmap/patchpoint.
471 NewMI = foldPatchpoint(MF, MI, Ops, FI, *this);
472 } else {
473 // Ask the target to do the actual folding.
474 NewMI =foldMemoryOperandImpl(MF, MI, Ops, FI);
475 }
476
477 if (NewMI) {
478 NewMI->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
479 // Add a memory operand, foldMemoryOperandImpl doesn't do that.
480 assert((!(Flags & MachineMemOperand::MOStore) ||
481 NewMI->mayStore()) &&
482 "Folded a def to a non-store!");
483 assert((!(Flags & MachineMemOperand::MOLoad) ||
484 NewMI->mayLoad()) &&
485 "Folded a use to a non-load!");
486 const MachineFrameInfo &MFI = *MF.getFrameInfo();
487 assert(MFI.getObjectOffset(FI) != -1);
488 MachineMemOperand *MMO =
489 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
490 Flags, MFI.getObjectSize(FI),
491 MFI.getObjectAlignment(FI));
492 NewMI->addMemOperand(MF, MMO);
493
494 // FIXME: change foldMemoryOperandImpl semantics to also insert NewMI.
495 return MBB->insert(MI, NewMI);
496 }
497
498 // Straight COPY may fold as load/store.
499 if (!MI->isCopy() || Ops.size() != 1)
500 return nullptr;
501
502 const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]);
503 if (!RC)
504 return nullptr;
505
506 const MachineOperand &MO = MI->getOperand(1-Ops[0]);
507 MachineBasicBlock::iterator Pos = MI;
508 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
509
510 if (Flags == MachineMemOperand::MOStore)
511 storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI);
512 else
513 loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI);
514 return --Pos;
515 }
516
517 /// foldMemoryOperand - Same as the previous version except it allows folding
518 /// of any load and store from / to any address, not just from a specific
519 /// stack slot.
520 MachineInstr*
521 TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI,
522 const SmallVectorImpl<unsigned> &Ops,
523 MachineInstr* LoadMI) const {
524 assert(LoadMI->canFoldAsLoad() && "LoadMI isn't foldable!");
525 #ifndef NDEBUG
526 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
527 assert(MI->getOperand(Ops[i]).isUse() && "Folding load into def!");
528 #endif
529 MachineBasicBlock &MBB = *MI->getParent();
530 MachineFunction &MF = *MBB.getParent();
531
532 // Ask the target to do the actual folding.
533 MachineInstr *NewMI = nullptr;
534 int FrameIndex = 0;
535
536 if ((MI->getOpcode() == TargetOpcode::STACKMAP ||
537 MI->getOpcode() == TargetOpcode::PATCHPOINT) &&
538 isLoadFromStackSlot(LoadMI, FrameIndex)) {
539 // Fold stackmap/patchpoint.
540 NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this);
541 } else {
542 // Ask the target to do the actual folding.
543 NewMI = foldMemoryOperandImpl(MF, MI, Ops, LoadMI);
544 }
545
546 if (!NewMI) return nullptr;
547
548 NewMI = MBB.insert(MI, NewMI);
549
550 // Copy the memoperands from the load to the folded instruction.
551 if (MI->memoperands_empty()) {
552 NewMI->setMemRefs(LoadMI->memoperands_begin(),
553 LoadMI->memoperands_end());
554 }
555 else {
556 // Handle the rare case of folding multiple loads.
557 NewMI->setMemRefs(MI->memoperands_begin(),
558 MI->memoperands_end());
559 for (MachineInstr::mmo_iterator I = LoadMI->memoperands_begin(),
560 E = LoadMI->memoperands_end(); I != E; ++I) {
561 NewMI->addMemOperand(MF, *I);
562 }
563 }
564 return NewMI;
565 }
566
567 bool TargetInstrInfo::
568 isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
569 AliasAnalysis *AA) const {
570 const MachineFunction &MF = *MI->getParent()->getParent();
571 const MachineRegisterInfo &MRI = MF.getRegInfo();
572
573 // Remat clients assume operand 0 is the defined register.
574 if (!MI->getNumOperands() || !MI->getOperand(0).isReg())
575 return false;
576 unsigned DefReg = MI->getOperand(0).getReg();
577
578 // A sub-register definition can only be rematerialized if the instruction
579 // doesn't read the other parts of the register. Otherwise it is really a
580 // read-modify-write operation on the full virtual register which cannot be
581 // moved safely.
582 if (TargetRegisterInfo::isVirtualRegister(DefReg) &&
583 MI->getOperand(0).getSubReg() && MI->readsVirtualRegister(DefReg))
584 return false;
585
586 // A load from a fixed stack slot can be rematerialized. This may be
587 // redundant with subsequent checks, but it's target-independent,
588 // simple, and a common case.
589 int FrameIdx = 0;
590 if (isLoadFromStackSlot(MI, FrameIdx) &&
591 MF.getFrameInfo()->isImmutableObjectIndex(FrameIdx))
592 return true;
593
594 // Avoid instructions obviously unsafe for remat.
595 if (MI->isNotDuplicable() || MI->mayStore() ||
596 MI->hasUnmodeledSideEffects())
597 return false;
598
599 // Don't remat inline asm. We have no idea how expensive it is
600 // even if it's side effect free.
601 if (MI->isInlineAsm())
602 return false;
603
604 // Avoid instructions which load from potentially varying memory.
605 if (MI->mayLoad() && !MI->isInvariantLoad(AA))
606 return false;
607
608 // If any of the registers accessed are non-constant, conservatively assume
609 // the instruction is not rematerializable.
610 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
611 const MachineOperand &MO = MI->getOperand(i);
612 if (!MO.isReg()) continue;
613 unsigned Reg = MO.getReg();
614 if (Reg == 0)
615 continue;
616
617 // Check for a well-behaved physical register.
618 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
619 if (MO.isUse()) {
620 // If the physreg has no defs anywhere, it's just an ambient register
621 // and we can freely move its uses. Alternatively, if it's allocatable,
622 // it could get allocated to something with a def during allocation.
623 if (!MRI.isConstantPhysReg(Reg, MF))
624 return false;
625 } else {
626 // A physreg def. We can't remat it.
627 return false;
628 }
629 continue;
630 }
631
632 // Only allow one virtual-register def. There may be multiple defs of the
633 // same virtual register, though.
634 if (MO.isDef() && Reg != DefReg)
635 return false;
636
637 // Don't allow any virtual-register uses. Rematting an instruction with
638 // virtual register uses would length the live ranges of the uses, which
639 // is not necessarily a good idea, certainly not "trivial".
640 if (MO.isUse())
641 return false;
642 }
643
644 // Everything checked out.
645 return true;
646 }
647
648 int TargetInstrInfo::getSPAdjust(const MachineInstr *MI) const {
649 const MachineFunction *MF = MI->getParent()->getParent();
650 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
651 bool StackGrowsDown =
652 TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown;
653
654 int FrameSetupOpcode = getCallFrameSetupOpcode();
655 int FrameDestroyOpcode = getCallFrameDestroyOpcode();
656
657 if (MI->getOpcode() != FrameSetupOpcode &&
658 MI->getOpcode() != FrameDestroyOpcode)
659 return 0;
660
661 int SPAdj = MI->getOperand(0).getImm();
662
663 if ((!StackGrowsDown && MI->getOpcode() == FrameSetupOpcode) ||
664 (StackGrowsDown && MI->getOpcode() == FrameDestroyOpcode))
665 SPAdj = -SPAdj;
666
667 return SPAdj;
668 }
669
670 /// isSchedulingBoundary - Test if the given instruction should be
671 /// considered a scheduling boundary. This primarily includes labels
672 /// and terminators.
673 bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
674 const MachineBasicBlock *MBB,
675 const MachineFunction &MF) const {
676 // Terminators and labels can't be scheduled around.
677 if (MI->isTerminator() || MI->isPosition())
678 return true;
679
680 // Don't attempt to schedule around any instruction that defines
681 // a stack-oriented pointer, as it's unlikely to be profitable. This
682 // saves compile time, because it doesn't require every single
683 // stack slot reference to depend on the instruction that does the
684 // modification.
685 const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
686 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
687 if (MI->modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI))
688 return true;
689
690 return false;
691 }
692
693 // Provide a global flag for disabling the PreRA hazard recognizer that targets
694 // may choose to honor.
695 bool TargetInstrInfo::usePreRAHazardRecognizer() const {
696 return !DisableHazardRecognizer;
697 }
698
699 // Default implementation of CreateTargetRAHazardRecognizer.
700 ScheduleHazardRecognizer *TargetInstrInfo::
701 CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
702 const ScheduleDAG *DAG) const {
703 // Dummy hazard recognizer allows all instructions to issue.
704 return new ScheduleHazardRecognizer();
705 }
706
707 // Default implementation of CreateTargetMIHazardRecognizer.
708 ScheduleHazardRecognizer *TargetInstrInfo::
709 CreateTargetMIHazardRecognizer(const InstrItineraryData *II,
710 const ScheduleDAG *DAG) const {
711 return (ScheduleHazardRecognizer *)
712 new ScoreboardHazardRecognizer(II, DAG, "misched");
713 }
714
715 // Default implementation of CreateTargetPostRAHazardRecognizer.
716 ScheduleHazardRecognizer *TargetInstrInfo::
717 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
718 const ScheduleDAG *DAG) const {
719 return (ScheduleHazardRecognizer *)
720 new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched");
721 }
722
723 //===----------------------------------------------------------------------===//
724 // SelectionDAG latency interface.
725 //===----------------------------------------------------------------------===//
726
727 int
728 TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
729 SDNode *DefNode, unsigned DefIdx,
730 SDNode *UseNode, unsigned UseIdx) const {
731 if (!ItinData || ItinData->isEmpty())
732 return -1;
733
734 if (!DefNode->isMachineOpcode())
735 return -1;
736
737 unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass();
738 if (!UseNode->isMachineOpcode())
739 return ItinData->getOperandCycle(DefClass, DefIdx);
740 unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass();
741 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
742 }
743
744 int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
745 SDNode *N) const {
746 if (!ItinData || ItinData->isEmpty())
747 return 1;
748
749 if (!N->isMachineOpcode())
750 return 1;
751
752 return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass());
753 }
754
755 //===----------------------------------------------------------------------===//
756 // MachineInstr latency interface.
757 //===----------------------------------------------------------------------===//
758
759 unsigned
760 TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
761 const MachineInstr *MI) const {
762 if (!ItinData || ItinData->isEmpty())
763 return 1;
764
765 unsigned Class = MI->getDesc().getSchedClass();
766 int UOps = ItinData->Itineraries[Class].NumMicroOps;
767 if (UOps >= 0)
768 return UOps;
769
770 // The # of u-ops is dynamically determined. The specific target should
771 // override this function to return the right number.
772 return 1;
773 }
774
775 /// Return the default expected latency for a def based on it's opcode.
776 unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel &SchedModel,
777 const MachineInstr *DefMI) const {
778 if (DefMI->isTransient())
779 return 0;
780 if (DefMI->mayLoad())
781 return SchedModel.LoadLatency;
782 if (isHighLatencyDef(DefMI->getOpcode()))
783 return SchedModel.HighLatency;
784 return 1;
785 }
786
787 unsigned TargetInstrInfo::getPredicationCost(const MachineInstr *) const {
788 return 0;
789 }
790
791 unsigned TargetInstrInfo::
792 getInstrLatency(const InstrItineraryData *ItinData,
793 const MachineInstr *MI,
794 unsigned *PredCost) const {
795 // Default to one cycle for no itinerary. However, an "empty" itinerary may
796 // still have a MinLatency property, which getStageLatency checks.
797 if (!ItinData)
798 return MI->mayLoad() ? 2 : 1;
799
800 return ItinData->getStageLatency(MI->getDesc().getSchedClass());
801 }
802
803 bool TargetInstrInfo::hasLowDefLatency(const InstrItineraryData *ItinData,
804 const MachineInstr *DefMI,
805 unsigned DefIdx) const {
806 if (!ItinData || ItinData->isEmpty())
807 return false;
808
809 unsigned DefClass = DefMI->getDesc().getSchedClass();
810 int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
811 return (DefCycle != -1 && DefCycle <= 1);
812 }
813
814 /// Both DefMI and UseMI must be valid. By default, call directly to the
815 /// itinerary. This may be overriden by the target.
816 int TargetInstrInfo::
817 getOperandLatency(const InstrItineraryData *ItinData,
818 const MachineInstr *DefMI, unsigned DefIdx,
819 const MachineInstr *UseMI, unsigned UseIdx) const {
820 unsigned DefClass = DefMI->getDesc().getSchedClass();
821 unsigned UseClass = UseMI->getDesc().getSchedClass();
822 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
823 }
824
825 /// If we can determine the operand latency from the def only, without itinerary
826 /// lookup, do so. Otherwise return -1.
827 int TargetInstrInfo::computeDefOperandLatency(
828 const InstrItineraryData *ItinData,
829 const MachineInstr *DefMI) const {
830
831 // Let the target hook getInstrLatency handle missing itineraries.
832 if (!ItinData)
833 return getInstrLatency(ItinData, DefMI);
834
835 if(ItinData->isEmpty())
836 return defaultDefLatency(ItinData->SchedModel, DefMI);
837
838 // ...operand lookup required
839 return -1;
840 }
841
842 /// computeOperandLatency - Compute and return the latency of the given data
843 /// dependent def and use when the operand indices are already known. UseMI may
844 /// be NULL for an unknown use.
845 ///
846 /// FindMin may be set to get the minimum vs. expected latency. Minimum
847 /// latency is used for scheduling groups, while expected latency is for
848 /// instruction cost and critical path.
849 ///
850 /// Depending on the subtarget's itinerary properties, this may or may not need
851 /// to call getOperandLatency(). For most subtargets, we don't need DefIdx or
852 /// UseIdx to compute min latency.
853 unsigned TargetInstrInfo::
854 computeOperandLatency(const InstrItineraryData *ItinData,
855 const MachineInstr *DefMI, unsigned DefIdx,
856 const MachineInstr *UseMI, unsigned UseIdx) const {
857
858 int DefLatency = computeDefOperandLatency(ItinData, DefMI);
859 if (DefLatency >= 0)
860 return DefLatency;
861
862 assert(ItinData && !ItinData->isEmpty() && "computeDefOperandLatency fail");
863
864 int OperLatency = 0;
865 if (UseMI)
866 OperLatency = getOperandLatency(ItinData, DefMI, DefIdx, UseMI, UseIdx);
867 else {
868 unsigned DefClass = DefMI->getDesc().getSchedClass();
869 OperLatency = ItinData->getOperandCycle(DefClass, DefIdx);
870 }
871 if (OperLatency >= 0)
872 return OperLatency;
873
874 // No operand latency was found.
875 unsigned InstrLatency = getInstrLatency(ItinData, DefMI);
876
877 // Expected latency is the max of the stage latency and itinerary props.
878 InstrLatency = std::max(InstrLatency,
879 defaultDefLatency(ItinData->SchedModel, DefMI));
880 return InstrLatency;
881 }
882
883 bool TargetInstrInfo::getRegSequenceInputs(
884 const MachineInstr &MI, unsigned DefIdx,
885 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
886 assert((MI.isRegSequence() ||
887 MI.isRegSequenceLike()) && "Instruction do not have the proper type");
888
889 if (!MI.isRegSequence())
890 return getRegSequenceLikeInputs(MI, DefIdx, InputRegs);
891
892 // We are looking at:
893 // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
894 assert(DefIdx == 0 && "REG_SEQUENCE only has one def");
895 for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx;
896 OpIdx += 2) {
897 const MachineOperand &MOReg = MI.getOperand(OpIdx);
898 const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1);
899 assert(MOSubIdx.isImm() &&
900 "One of the subindex of the reg_sequence is not an immediate");
901 // Record Reg:SubReg, SubIdx.
902 InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(),
903 (unsigned)MOSubIdx.getImm()));
904 }
905 return true;
906 }
907
908 bool TargetInstrInfo::getExtractSubregInputs(
909 const MachineInstr &MI, unsigned DefIdx,
910 RegSubRegPairAndIdx &InputReg) const {
911 assert((MI.isExtractSubreg() ||
912 MI.isExtractSubregLike()) && "Instruction do not have the proper type");
913
914 if (!MI.isExtractSubreg())
915 return getExtractSubregLikeInputs(MI, DefIdx, InputReg);
916
917 // We are looking at:
918 // Def = EXTRACT_SUBREG v0.sub1, sub0.
919 assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def");
920 const MachineOperand &MOReg = MI.getOperand(1);
921 const MachineOperand &MOSubIdx = MI.getOperand(2);
922 assert(MOSubIdx.isImm() &&
923 "The subindex of the extract_subreg is not an immediate");
924
925 InputReg.Reg = MOReg.getReg();
926 InputReg.SubReg = MOReg.getSubReg();
927 InputReg.SubIdx = (unsigned)MOSubIdx.getImm();
928 return true;
929 }
930
931 bool TargetInstrInfo::getInsertSubregInputs(
932 const MachineInstr &MI, unsigned DefIdx,
933 RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const {
934 assert((MI.isInsertSubreg() ||
935 MI.isInsertSubregLike()) && "Instruction do not have the proper type");
936
937 if (!MI.isInsertSubreg())
938 return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg);
939
940 // We are looking at:
941 // Def = INSERT_SEQUENCE v0, v1, sub0.
942 assert(DefIdx == 0 && "INSERT_SUBREG only has one def");
943 const MachineOperand &MOBaseReg = MI.getOperand(1);
944 const MachineOperand &MOInsertedReg = MI.getOperand(2);
945 const MachineOperand &MOSubIdx = MI.getOperand(3);
946 assert(MOSubIdx.isImm() &&
947 "One of the subindex of the reg_sequence is not an immediate");
948 BaseReg.Reg = MOBaseReg.getReg();
949 BaseReg.SubReg = MOBaseReg.getSubReg();
950
951 InsertedReg.Reg = MOInsertedReg.getReg();
952 InsertedReg.SubReg = MOInsertedReg.getSubReg();
953 InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm();
954 return true;
955 }