]> git.proxmox.com Git - rustc.git/blob - src/llvm/lib/ExecutionEngine/ExecutionEngine.cpp
Imported Upstream version 0.7
[rustc.git] / src / llvm / lib / ExecutionEngine / ExecutionEngine.cpp
1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the common interface used by the various execution engine
11 // subclasses.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "jit"
16 #include "llvm/ExecutionEngine/ExecutionEngine.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/ExecutionEngine/GenericValue.h"
20 #include "llvm/IR/Constants.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/IR/Operator.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/DynamicLibrary.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/Host.h"
29 #include "llvm/Support/MutexGuard.h"
30 #include "llvm/Support/TargetRegistry.h"
31 #include "llvm/Support/ValueHandle.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <cmath>
35 #include <cstring>
36 using namespace llvm;
37
38 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
39 STATISTIC(NumGlobals , "Number of global vars initialized");
40
41 ExecutionEngine *(*ExecutionEngine::JITCtor)(
42 Module *M,
43 std::string *ErrorStr,
44 JITMemoryManager *JMM,
45 bool GVsWithCode,
46 TargetMachine *TM) = 0;
47 ExecutionEngine *(*ExecutionEngine::MCJITCtor)(
48 Module *M,
49 std::string *ErrorStr,
50 JITMemoryManager *JMM,
51 bool GVsWithCode,
52 TargetMachine *TM) = 0;
53 ExecutionEngine *(*ExecutionEngine::InterpCtor)(Module *M,
54 std::string *ErrorStr) = 0;
55
56 ExecutionEngine::ExecutionEngine(Module *M)
57 : EEState(*this),
58 LazyFunctionCreator(0),
59 ExceptionTableRegister(0),
60 ExceptionTableDeregister(0) {
61 CompilingLazily = false;
62 GVCompilationDisabled = false;
63 SymbolSearchingDisabled = false;
64 Modules.push_back(M);
65 assert(M && "Module is null?");
66 }
67
68 ExecutionEngine::~ExecutionEngine() {
69 clearAllGlobalMappings();
70 for (unsigned i = 0, e = Modules.size(); i != e; ++i)
71 delete Modules[i];
72 }
73
74 void ExecutionEngine::DeregisterAllTables() {
75 if (ExceptionTableDeregister) {
76 DenseMap<const Function*, void*>::iterator it = AllExceptionTables.begin();
77 DenseMap<const Function*, void*>::iterator ite = AllExceptionTables.end();
78 for (; it != ite; ++it)
79 ExceptionTableDeregister(it->second);
80 AllExceptionTables.clear();
81 }
82 }
83
84 namespace {
85 /// \brief Helper class which uses a value handler to automatically deletes the
86 /// memory block when the GlobalVariable is destroyed.
87 class GVMemoryBlock : public CallbackVH {
88 GVMemoryBlock(const GlobalVariable *GV)
89 : CallbackVH(const_cast<GlobalVariable*>(GV)) {}
90
91 public:
92 /// \brief Returns the address the GlobalVariable should be written into. The
93 /// GVMemoryBlock object prefixes that.
94 static char *Create(const GlobalVariable *GV, const DataLayout& TD) {
95 Type *ElTy = GV->getType()->getElementType();
96 size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy);
97 void *RawMemory = ::operator new(
98 DataLayout::RoundUpAlignment(sizeof(GVMemoryBlock),
99 TD.getPreferredAlignment(GV))
100 + GVSize);
101 new(RawMemory) GVMemoryBlock(GV);
102 return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock);
103 }
104
105 virtual void deleted() {
106 // We allocated with operator new and with some extra memory hanging off the
107 // end, so don't just delete this. I'm not sure if this is actually
108 // required.
109 this->~GVMemoryBlock();
110 ::operator delete(this);
111 }
112 };
113 } // anonymous namespace
114
115 char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) {
116 return GVMemoryBlock::Create(GV, *getDataLayout());
117 }
118
119 bool ExecutionEngine::removeModule(Module *M) {
120 for(SmallVector<Module *, 1>::iterator I = Modules.begin(),
121 E = Modules.end(); I != E; ++I) {
122 Module *Found = *I;
123 if (Found == M) {
124 Modules.erase(I);
125 clearGlobalMappingsFromModule(M);
126 return true;
127 }
128 }
129 return false;
130 }
131
132 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) {
133 for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
134 if (Function *F = Modules[i]->getFunction(FnName))
135 return F;
136 }
137 return 0;
138 }
139
140
141 void *ExecutionEngineState::RemoveMapping(const MutexGuard &,
142 const GlobalValue *ToUnmap) {
143 GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap);
144 void *OldVal;
145
146 // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the
147 // GlobalAddressMap.
148 if (I == GlobalAddressMap.end())
149 OldVal = 0;
150 else {
151 OldVal = I->second;
152 GlobalAddressMap.erase(I);
153 }
154
155 GlobalAddressReverseMap.erase(OldVal);
156 return OldVal;
157 }
158
159 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
160 MutexGuard locked(lock);
161
162 DEBUG(dbgs() << "JIT: Map \'" << GV->getName()
163 << "\' to [" << Addr << "]\n";);
164 void *&CurVal = EEState.getGlobalAddressMap(locked)[GV];
165 assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!");
166 CurVal = Addr;
167
168 // If we are using the reverse mapping, add it too.
169 if (!EEState.getGlobalAddressReverseMap(locked).empty()) {
170 AssertingVH<const GlobalValue> &V =
171 EEState.getGlobalAddressReverseMap(locked)[Addr];
172 assert((V == 0 || GV == 0) && "GlobalMapping already established!");
173 V = GV;
174 }
175 }
176
177 void ExecutionEngine::clearAllGlobalMappings() {
178 MutexGuard locked(lock);
179
180 EEState.getGlobalAddressMap(locked).clear();
181 EEState.getGlobalAddressReverseMap(locked).clear();
182 }
183
184 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) {
185 MutexGuard locked(lock);
186
187 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI)
188 EEState.RemoveMapping(locked, FI);
189 for (Module::global_iterator GI = M->global_begin(), GE = M->global_end();
190 GI != GE; ++GI)
191 EEState.RemoveMapping(locked, GI);
192 }
193
194 void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) {
195 MutexGuard locked(lock);
196
197 ExecutionEngineState::GlobalAddressMapTy &Map =
198 EEState.getGlobalAddressMap(locked);
199
200 // Deleting from the mapping?
201 if (Addr == 0)
202 return EEState.RemoveMapping(locked, GV);
203
204 void *&CurVal = Map[GV];
205 void *OldVal = CurVal;
206
207 if (CurVal && !EEState.getGlobalAddressReverseMap(locked).empty())
208 EEState.getGlobalAddressReverseMap(locked).erase(CurVal);
209 CurVal = Addr;
210
211 // If we are using the reverse mapping, add it too.
212 if (!EEState.getGlobalAddressReverseMap(locked).empty()) {
213 AssertingVH<const GlobalValue> &V =
214 EEState.getGlobalAddressReverseMap(locked)[Addr];
215 assert((V == 0 || GV == 0) && "GlobalMapping already established!");
216 V = GV;
217 }
218 return OldVal;
219 }
220
221 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
222 MutexGuard locked(lock);
223
224 ExecutionEngineState::GlobalAddressMapTy::iterator I =
225 EEState.getGlobalAddressMap(locked).find(GV);
226 return I != EEState.getGlobalAddressMap(locked).end() ? I->second : 0;
227 }
228
229 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
230 MutexGuard locked(lock);
231
232 // If we haven't computed the reverse mapping yet, do so first.
233 if (EEState.getGlobalAddressReverseMap(locked).empty()) {
234 for (ExecutionEngineState::GlobalAddressMapTy::iterator
235 I = EEState.getGlobalAddressMap(locked).begin(),
236 E = EEState.getGlobalAddressMap(locked).end(); I != E; ++I)
237 EEState.getGlobalAddressReverseMap(locked).insert(std::make_pair(
238 I->second, I->first));
239 }
240
241 std::map<void *, AssertingVH<const GlobalValue> >::iterator I =
242 EEState.getGlobalAddressReverseMap(locked).find(Addr);
243 return I != EEState.getGlobalAddressReverseMap(locked).end() ? I->second : 0;
244 }
245
246 namespace {
247 class ArgvArray {
248 char *Array;
249 std::vector<char*> Values;
250 public:
251 ArgvArray() : Array(NULL) {}
252 ~ArgvArray() { clear(); }
253 void clear() {
254 delete[] Array;
255 Array = NULL;
256 for (size_t I = 0, E = Values.size(); I != E; ++I) {
257 delete[] Values[I];
258 }
259 Values.clear();
260 }
261 /// Turn a vector of strings into a nice argv style array of pointers to null
262 /// terminated strings.
263 void *reset(LLVMContext &C, ExecutionEngine *EE,
264 const std::vector<std::string> &InputArgv);
265 };
266 } // anonymous namespace
267 void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE,
268 const std::vector<std::string> &InputArgv) {
269 clear(); // Free the old contents.
270 unsigned PtrSize = EE->getDataLayout()->getPointerSize();
271 Array = new char[(InputArgv.size()+1)*PtrSize];
272
273 DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array << "\n");
274 Type *SBytePtr = Type::getInt8PtrTy(C);
275
276 for (unsigned i = 0; i != InputArgv.size(); ++i) {
277 unsigned Size = InputArgv[i].size()+1;
278 char *Dest = new char[Size];
279 Values.push_back(Dest);
280 DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n");
281
282 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest);
283 Dest[Size-1] = 0;
284
285 // Endian safe: Array[i] = (PointerTy)Dest;
286 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Array+i*PtrSize),
287 SBytePtr);
288 }
289
290 // Null terminate it
291 EE->StoreValueToMemory(PTOGV(0),
292 (GenericValue*)(Array+InputArgv.size()*PtrSize),
293 SBytePtr);
294 return Array;
295 }
296
297 void ExecutionEngine::runStaticConstructorsDestructors(Module *module,
298 bool isDtors) {
299 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors";
300 GlobalVariable *GV = module->getNamedGlobal(Name);
301
302 // If this global has internal linkage, or if it has a use, then it must be
303 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If
304 // this is the case, don't execute any of the global ctors, __main will do
305 // it.
306 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return;
307
308 // Should be an array of '{ i32, void ()* }' structs. The first value is
309 // the init priority, which we ignore.
310 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
311 if (InitList == 0)
312 return;
313 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
314 ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i));
315 if (CS == 0) continue;
316
317 Constant *FP = CS->getOperand(1);
318 if (FP->isNullValue())
319 continue; // Found a sentinal value, ignore.
320
321 // Strip off constant expression casts.
322 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
323 if (CE->isCast())
324 FP = CE->getOperand(0);
325
326 // Execute the ctor/dtor function!
327 if (Function *F = dyn_cast<Function>(FP))
328 runFunction(F, std::vector<GenericValue>());
329
330 // FIXME: It is marginally lame that we just do nothing here if we see an
331 // entry we don't recognize. It might not be unreasonable for the verifier
332 // to not even allow this and just assert here.
333 }
334 }
335
336 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
337 // Execute global ctors/dtors for each module in the program.
338 for (unsigned i = 0, e = Modules.size(); i != e; ++i)
339 runStaticConstructorsDestructors(Modules[i], isDtors);
340 }
341
342 #ifndef NDEBUG
343 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null.
344 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) {
345 unsigned PtrSize = EE->getDataLayout()->getPointerSize();
346 for (unsigned i = 0; i < PtrSize; ++i)
347 if (*(i + (uint8_t*)Loc))
348 return false;
349 return true;
350 }
351 #endif
352
353 int ExecutionEngine::runFunctionAsMain(Function *Fn,
354 const std::vector<std::string> &argv,
355 const char * const * envp) {
356 std::vector<GenericValue> GVArgs;
357 GenericValue GVArgc;
358 GVArgc.IntVal = APInt(32, argv.size());
359
360 // Check main() type
361 unsigned NumArgs = Fn->getFunctionType()->getNumParams();
362 FunctionType *FTy = Fn->getFunctionType();
363 Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo();
364
365 // Check the argument types.
366 if (NumArgs > 3)
367 report_fatal_error("Invalid number of arguments of main() supplied");
368 if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty)
369 report_fatal_error("Invalid type for third argument of main() supplied");
370 if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty)
371 report_fatal_error("Invalid type for second argument of main() supplied");
372 if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32))
373 report_fatal_error("Invalid type for first argument of main() supplied");
374 if (!FTy->getReturnType()->isIntegerTy() &&
375 !FTy->getReturnType()->isVoidTy())
376 report_fatal_error("Invalid return type of main() supplied");
377
378 ArgvArray CArgv;
379 ArgvArray CEnv;
380 if (NumArgs) {
381 GVArgs.push_back(GVArgc); // Arg #0 = argc.
382 if (NumArgs > 1) {
383 // Arg #1 = argv.
384 GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv)));
385 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) &&
386 "argv[0] was null after CreateArgv");
387 if (NumArgs > 2) {
388 std::vector<std::string> EnvVars;
389 for (unsigned i = 0; envp[i]; ++i)
390 EnvVars.push_back(envp[i]);
391 // Arg #2 = envp.
392 GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars)));
393 }
394 }
395 }
396
397 return runFunction(Fn, GVArgs).IntVal.getZExtValue();
398 }
399
400 ExecutionEngine *ExecutionEngine::create(Module *M,
401 bool ForceInterpreter,
402 std::string *ErrorStr,
403 CodeGenOpt::Level OptLevel,
404 bool GVsWithCode) {
405 EngineBuilder EB = EngineBuilder(M)
406 .setEngineKind(ForceInterpreter
407 ? EngineKind::Interpreter
408 : EngineKind::JIT)
409 .setErrorStr(ErrorStr)
410 .setOptLevel(OptLevel)
411 .setAllocateGVsWithCode(GVsWithCode);
412
413 return EB.create();
414 }
415
416 /// createJIT - This is the factory method for creating a JIT for the current
417 /// machine, it does not fall back to the interpreter. This takes ownership
418 /// of the module.
419 ExecutionEngine *ExecutionEngine::createJIT(Module *M,
420 std::string *ErrorStr,
421 JITMemoryManager *JMM,
422 CodeGenOpt::Level OL,
423 bool GVsWithCode,
424 Reloc::Model RM,
425 CodeModel::Model CMM) {
426 if (ExecutionEngine::JITCtor == 0) {
427 if (ErrorStr)
428 *ErrorStr = "JIT has not been linked in.";
429 return 0;
430 }
431
432 // Use the defaults for extra parameters. Users can use EngineBuilder to
433 // set them.
434 EngineBuilder EB(M);
435 EB.setEngineKind(EngineKind::JIT);
436 EB.setErrorStr(ErrorStr);
437 EB.setRelocationModel(RM);
438 EB.setCodeModel(CMM);
439 EB.setAllocateGVsWithCode(GVsWithCode);
440 EB.setOptLevel(OL);
441 EB.setJITMemoryManager(JMM);
442
443 // TODO: permit custom TargetOptions here
444 TargetMachine *TM = EB.selectTarget();
445 if (!TM || (ErrorStr && ErrorStr->length() > 0)) return 0;
446
447 return ExecutionEngine::JITCtor(M, ErrorStr, JMM, GVsWithCode, TM);
448 }
449
450 ExecutionEngine *EngineBuilder::create(TargetMachine *TM) {
451 OwningPtr<TargetMachine> TheTM(TM); // Take ownership.
452
453 // Make sure we can resolve symbols in the program as well. The zero arg
454 // to the function tells DynamicLibrary to load the program, not a library.
455 if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr))
456 return 0;
457
458 // If the user specified a memory manager but didn't specify which engine to
459 // create, we assume they only want the JIT, and we fail if they only want
460 // the interpreter.
461 if (JMM) {
462 if (WhichEngine & EngineKind::JIT)
463 WhichEngine = EngineKind::JIT;
464 else {
465 if (ErrorStr)
466 *ErrorStr = "Cannot create an interpreter with a memory manager.";
467 return 0;
468 }
469 }
470
471 // Unless the interpreter was explicitly selected or the JIT is not linked,
472 // try making a JIT.
473 if ((WhichEngine & EngineKind::JIT) && TheTM) {
474 Triple TT(M->getTargetTriple());
475 if (!TM->getTarget().hasJIT()) {
476 errs() << "WARNING: This target JIT is not designed for the host"
477 << " you are running. If bad things happen, please choose"
478 << " a different -march switch.\n";
479 }
480
481 if (UseMCJIT && ExecutionEngine::MCJITCtor) {
482 ExecutionEngine *EE =
483 ExecutionEngine::MCJITCtor(M, ErrorStr, JMM,
484 AllocateGVsWithCode, TheTM.take());
485 if (EE) return EE;
486 } else if (ExecutionEngine::JITCtor) {
487 ExecutionEngine *EE =
488 ExecutionEngine::JITCtor(M, ErrorStr, JMM,
489 AllocateGVsWithCode, TheTM.take());
490 if (EE) return EE;
491 }
492 }
493
494 // If we can't make a JIT and we didn't request one specifically, try making
495 // an interpreter instead.
496 if (WhichEngine & EngineKind::Interpreter) {
497 if (ExecutionEngine::InterpCtor)
498 return ExecutionEngine::InterpCtor(M, ErrorStr);
499 if (ErrorStr)
500 *ErrorStr = "Interpreter has not been linked in.";
501 return 0;
502 }
503
504 if ((WhichEngine & EngineKind::JIT) && ExecutionEngine::JITCtor == 0 &&
505 ExecutionEngine::MCJITCtor == 0) {
506 if (ErrorStr)
507 *ErrorStr = "JIT has not been linked in.";
508 }
509
510 return 0;
511 }
512
513 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
514 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
515 return getPointerToFunction(F);
516
517 MutexGuard locked(lock);
518 if (void *P = EEState.getGlobalAddressMap(locked)[GV])
519 return P;
520
521 // Global variable might have been added since interpreter started.
522 if (GlobalVariable *GVar =
523 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV)))
524 EmitGlobalVariable(GVar);
525 else
526 llvm_unreachable("Global hasn't had an address allocated yet!");
527
528 return EEState.getGlobalAddressMap(locked)[GV];
529 }
530
531 /// \brief Converts a Constant* into a GenericValue, including handling of
532 /// ConstantExpr values.
533 GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
534 // If its undefined, return the garbage.
535 if (isa<UndefValue>(C)) {
536 GenericValue Result;
537 switch (C->getType()->getTypeID()) {
538 case Type::IntegerTyID:
539 case Type::X86_FP80TyID:
540 case Type::FP128TyID:
541 case Type::PPC_FP128TyID:
542 // Although the value is undefined, we still have to construct an APInt
543 // with the correct bit width.
544 Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0);
545 break;
546 default:
547 break;
548 }
549 return Result;
550 }
551
552 // Otherwise, if the value is a ConstantExpr...
553 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
554 Constant *Op0 = CE->getOperand(0);
555 switch (CE->getOpcode()) {
556 case Instruction::GetElementPtr: {
557 // Compute the index
558 GenericValue Result = getConstantValue(Op0);
559 APInt Offset(TD->getPointerSizeInBits(), 0);
560 cast<GEPOperator>(CE)->accumulateConstantOffset(*TD, Offset);
561
562 char* tmp = (char*) Result.PointerVal;
563 Result = PTOGV(tmp + Offset.getSExtValue());
564 return Result;
565 }
566 case Instruction::Trunc: {
567 GenericValue GV = getConstantValue(Op0);
568 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
569 GV.IntVal = GV.IntVal.trunc(BitWidth);
570 return GV;
571 }
572 case Instruction::ZExt: {
573 GenericValue GV = getConstantValue(Op0);
574 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
575 GV.IntVal = GV.IntVal.zext(BitWidth);
576 return GV;
577 }
578 case Instruction::SExt: {
579 GenericValue GV = getConstantValue(Op0);
580 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
581 GV.IntVal = GV.IntVal.sext(BitWidth);
582 return GV;
583 }
584 case Instruction::FPTrunc: {
585 // FIXME long double
586 GenericValue GV = getConstantValue(Op0);
587 GV.FloatVal = float(GV.DoubleVal);
588 return GV;
589 }
590 case Instruction::FPExt:{
591 // FIXME long double
592 GenericValue GV = getConstantValue(Op0);
593 GV.DoubleVal = double(GV.FloatVal);
594 return GV;
595 }
596 case Instruction::UIToFP: {
597 GenericValue GV = getConstantValue(Op0);
598 if (CE->getType()->isFloatTy())
599 GV.FloatVal = float(GV.IntVal.roundToDouble());
600 else if (CE->getType()->isDoubleTy())
601 GV.DoubleVal = GV.IntVal.roundToDouble();
602 else if (CE->getType()->isX86_FP80Ty()) {
603 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended);
604 (void)apf.convertFromAPInt(GV.IntVal,
605 false,
606 APFloat::rmNearestTiesToEven);
607 GV.IntVal = apf.bitcastToAPInt();
608 }
609 return GV;
610 }
611 case Instruction::SIToFP: {
612 GenericValue GV = getConstantValue(Op0);
613 if (CE->getType()->isFloatTy())
614 GV.FloatVal = float(GV.IntVal.signedRoundToDouble());
615 else if (CE->getType()->isDoubleTy())
616 GV.DoubleVal = GV.IntVal.signedRoundToDouble();
617 else if (CE->getType()->isX86_FP80Ty()) {
618 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended);
619 (void)apf.convertFromAPInt(GV.IntVal,
620 true,
621 APFloat::rmNearestTiesToEven);
622 GV.IntVal = apf.bitcastToAPInt();
623 }
624 return GV;
625 }
626 case Instruction::FPToUI: // double->APInt conversion handles sign
627 case Instruction::FPToSI: {
628 GenericValue GV = getConstantValue(Op0);
629 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
630 if (Op0->getType()->isFloatTy())
631 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth);
632 else if (Op0->getType()->isDoubleTy())
633 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth);
634 else if (Op0->getType()->isX86_FP80Ty()) {
635 APFloat apf = APFloat(APFloat::x87DoubleExtended, GV.IntVal);
636 uint64_t v;
637 bool ignored;
638 (void)apf.convertToInteger(&v, BitWidth,
639 CE->getOpcode()==Instruction::FPToSI,
640 APFloat::rmTowardZero, &ignored);
641 GV.IntVal = v; // endian?
642 }
643 return GV;
644 }
645 case Instruction::PtrToInt: {
646 GenericValue GV = getConstantValue(Op0);
647 uint32_t PtrWidth = TD->getTypeSizeInBits(Op0->getType());
648 assert(PtrWidth <= 64 && "Bad pointer width");
649 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal));
650 uint32_t IntWidth = TD->getTypeSizeInBits(CE->getType());
651 GV.IntVal = GV.IntVal.zextOrTrunc(IntWidth);
652 return GV;
653 }
654 case Instruction::IntToPtr: {
655 GenericValue GV = getConstantValue(Op0);
656 uint32_t PtrWidth = TD->getTypeSizeInBits(CE->getType());
657 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth);
658 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width");
659 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue()));
660 return GV;
661 }
662 case Instruction::BitCast: {
663 GenericValue GV = getConstantValue(Op0);
664 Type* DestTy = CE->getType();
665 switch (Op0->getType()->getTypeID()) {
666 default: llvm_unreachable("Invalid bitcast operand");
667 case Type::IntegerTyID:
668 assert(DestTy->isFloatingPointTy() && "invalid bitcast");
669 if (DestTy->isFloatTy())
670 GV.FloatVal = GV.IntVal.bitsToFloat();
671 else if (DestTy->isDoubleTy())
672 GV.DoubleVal = GV.IntVal.bitsToDouble();
673 break;
674 case Type::FloatTyID:
675 assert(DestTy->isIntegerTy(32) && "Invalid bitcast");
676 GV.IntVal = APInt::floatToBits(GV.FloatVal);
677 break;
678 case Type::DoubleTyID:
679 assert(DestTy->isIntegerTy(64) && "Invalid bitcast");
680 GV.IntVal = APInt::doubleToBits(GV.DoubleVal);
681 break;
682 case Type::PointerTyID:
683 assert(DestTy->isPointerTy() && "Invalid bitcast");
684 break; // getConstantValue(Op0) above already converted it
685 }
686 return GV;
687 }
688 case Instruction::Add:
689 case Instruction::FAdd:
690 case Instruction::Sub:
691 case Instruction::FSub:
692 case Instruction::Mul:
693 case Instruction::FMul:
694 case Instruction::UDiv:
695 case Instruction::SDiv:
696 case Instruction::URem:
697 case Instruction::SRem:
698 case Instruction::And:
699 case Instruction::Or:
700 case Instruction::Xor: {
701 GenericValue LHS = getConstantValue(Op0);
702 GenericValue RHS = getConstantValue(CE->getOperand(1));
703 GenericValue GV;
704 switch (CE->getOperand(0)->getType()->getTypeID()) {
705 default: llvm_unreachable("Bad add type!");
706 case Type::IntegerTyID:
707 switch (CE->getOpcode()) {
708 default: llvm_unreachable("Invalid integer opcode");
709 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break;
710 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break;
711 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break;
712 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break;
713 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break;
714 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break;
715 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break;
716 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break;
717 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break;
718 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break;
719 }
720 break;
721 case Type::FloatTyID:
722 switch (CE->getOpcode()) {
723 default: llvm_unreachable("Invalid float opcode");
724 case Instruction::FAdd:
725 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break;
726 case Instruction::FSub:
727 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break;
728 case Instruction::FMul:
729 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break;
730 case Instruction::FDiv:
731 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break;
732 case Instruction::FRem:
733 GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break;
734 }
735 break;
736 case Type::DoubleTyID:
737 switch (CE->getOpcode()) {
738 default: llvm_unreachable("Invalid double opcode");
739 case Instruction::FAdd:
740 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break;
741 case Instruction::FSub:
742 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break;
743 case Instruction::FMul:
744 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break;
745 case Instruction::FDiv:
746 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break;
747 case Instruction::FRem:
748 GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break;
749 }
750 break;
751 case Type::X86_FP80TyID:
752 case Type::PPC_FP128TyID:
753 case Type::FP128TyID: {
754 const fltSemantics &Sem = CE->getOperand(0)->getType()->getFltSemantics();
755 APFloat apfLHS = APFloat(Sem, LHS.IntVal);
756 switch (CE->getOpcode()) {
757 default: llvm_unreachable("Invalid long double opcode");
758 case Instruction::FAdd:
759 apfLHS.add(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven);
760 GV.IntVal = apfLHS.bitcastToAPInt();
761 break;
762 case Instruction::FSub:
763 apfLHS.subtract(APFloat(Sem, RHS.IntVal),
764 APFloat::rmNearestTiesToEven);
765 GV.IntVal = apfLHS.bitcastToAPInt();
766 break;
767 case Instruction::FMul:
768 apfLHS.multiply(APFloat(Sem, RHS.IntVal),
769 APFloat::rmNearestTiesToEven);
770 GV.IntVal = apfLHS.bitcastToAPInt();
771 break;
772 case Instruction::FDiv:
773 apfLHS.divide(APFloat(Sem, RHS.IntVal),
774 APFloat::rmNearestTiesToEven);
775 GV.IntVal = apfLHS.bitcastToAPInt();
776 break;
777 case Instruction::FRem:
778 apfLHS.mod(APFloat(Sem, RHS.IntVal),
779 APFloat::rmNearestTiesToEven);
780 GV.IntVal = apfLHS.bitcastToAPInt();
781 break;
782 }
783 }
784 break;
785 }
786 return GV;
787 }
788 default:
789 break;
790 }
791
792 SmallString<256> Msg;
793 raw_svector_ostream OS(Msg);
794 OS << "ConstantExpr not handled: " << *CE;
795 report_fatal_error(OS.str());
796 }
797
798 // Otherwise, we have a simple constant.
799 GenericValue Result;
800 switch (C->getType()->getTypeID()) {
801 case Type::FloatTyID:
802 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat();
803 break;
804 case Type::DoubleTyID:
805 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble();
806 break;
807 case Type::X86_FP80TyID:
808 case Type::FP128TyID:
809 case Type::PPC_FP128TyID:
810 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt();
811 break;
812 case Type::IntegerTyID:
813 Result.IntVal = cast<ConstantInt>(C)->getValue();
814 break;
815 case Type::PointerTyID:
816 if (isa<ConstantPointerNull>(C))
817 Result.PointerVal = 0;
818 else if (const Function *F = dyn_cast<Function>(C))
819 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
820 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
821 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
822 else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
823 Result = PTOGV(getPointerToBasicBlock(const_cast<BasicBlock*>(
824 BA->getBasicBlock())));
825 else
826 llvm_unreachable("Unknown constant pointer type!");
827 break;
828 default:
829 SmallString<256> Msg;
830 raw_svector_ostream OS(Msg);
831 OS << "ERROR: Constant unimplemented for type: " << *C->getType();
832 report_fatal_error(OS.str());
833 }
834
835 return Result;
836 }
837
838 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
839 /// with the integer held in IntVal.
840 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
841 unsigned StoreBytes) {
842 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
843 const uint8_t *Src = (const uint8_t *)IntVal.getRawData();
844
845 if (sys::isLittleEndianHost()) {
846 // Little-endian host - the source is ordered from LSB to MSB. Order the
847 // destination from LSB to MSB: Do a straight copy.
848 memcpy(Dst, Src, StoreBytes);
849 } else {
850 // Big-endian host - the source is an array of 64 bit words ordered from
851 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination
852 // from MSB to LSB: Reverse the word order, but not the bytes in a word.
853 while (StoreBytes > sizeof(uint64_t)) {
854 StoreBytes -= sizeof(uint64_t);
855 // May not be aligned so use memcpy.
856 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t));
857 Src += sizeof(uint64_t);
858 }
859
860 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes);
861 }
862 }
863
864 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val,
865 GenericValue *Ptr, Type *Ty) {
866 const unsigned StoreBytes = getDataLayout()->getTypeStoreSize(Ty);
867
868 switch (Ty->getTypeID()) {
869 case Type::IntegerTyID:
870 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes);
871 break;
872 case Type::FloatTyID:
873 *((float*)Ptr) = Val.FloatVal;
874 break;
875 case Type::DoubleTyID:
876 *((double*)Ptr) = Val.DoubleVal;
877 break;
878 case Type::X86_FP80TyID:
879 memcpy(Ptr, Val.IntVal.getRawData(), 10);
880 break;
881 case Type::PointerTyID:
882 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts.
883 if (StoreBytes != sizeof(PointerTy))
884 memset(&(Ptr->PointerVal), 0, StoreBytes);
885
886 *((PointerTy*)Ptr) = Val.PointerVal;
887 break;
888 default:
889 dbgs() << "Cannot store value of type " << *Ty << "!\n";
890 }
891
892 if (sys::isLittleEndianHost() != getDataLayout()->isLittleEndian())
893 // Host and target are different endian - reverse the stored bytes.
894 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr);
895 }
896
897 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
898 /// from Src into IntVal, which is assumed to be wide enough and to hold zero.
899 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) {
900 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!");
901 uint8_t *Dst = reinterpret_cast<uint8_t *>(
902 const_cast<uint64_t *>(IntVal.getRawData()));
903
904 if (sys::isLittleEndianHost())
905 // Little-endian host - the destination must be ordered from LSB to MSB.
906 // The source is ordered from LSB to MSB: Do a straight copy.
907 memcpy(Dst, Src, LoadBytes);
908 else {
909 // Big-endian - the destination is an array of 64 bit words ordered from
910 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is
911 // ordered from MSB to LSB: Reverse the word order, but not the bytes in
912 // a word.
913 while (LoadBytes > sizeof(uint64_t)) {
914 LoadBytes -= sizeof(uint64_t);
915 // May not be aligned so use memcpy.
916 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t));
917 Dst += sizeof(uint64_t);
918 }
919
920 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes);
921 }
922 }
923
924 /// FIXME: document
925 ///
926 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
927 GenericValue *Ptr,
928 Type *Ty) {
929 const unsigned LoadBytes = getDataLayout()->getTypeStoreSize(Ty);
930
931 switch (Ty->getTypeID()) {
932 case Type::IntegerTyID:
933 // An APInt with all words initially zero.
934 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0);
935 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes);
936 break;
937 case Type::FloatTyID:
938 Result.FloatVal = *((float*)Ptr);
939 break;
940 case Type::DoubleTyID:
941 Result.DoubleVal = *((double*)Ptr);
942 break;
943 case Type::PointerTyID:
944 Result.PointerVal = *((PointerTy*)Ptr);
945 break;
946 case Type::X86_FP80TyID: {
947 // This is endian dependent, but it will only work on x86 anyway.
948 // FIXME: Will not trap if loading a signaling NaN.
949 uint64_t y[2];
950 memcpy(y, Ptr, 10);
951 Result.IntVal = APInt(80, y);
952 break;
953 }
954 default:
955 SmallString<256> Msg;
956 raw_svector_ostream OS(Msg);
957 OS << "Cannot load value of type " << *Ty << "!";
958 report_fatal_error(OS.str());
959 }
960 }
961
962 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
963 DEBUG(dbgs() << "JIT: Initializing " << Addr << " ");
964 DEBUG(Init->dump());
965 if (isa<UndefValue>(Init))
966 return;
967
968 if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) {
969 unsigned ElementSize =
970 getDataLayout()->getTypeAllocSize(CP->getType()->getElementType());
971 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
972 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
973 return;
974 }
975
976 if (isa<ConstantAggregateZero>(Init)) {
977 memset(Addr, 0, (size_t)getDataLayout()->getTypeAllocSize(Init->getType()));
978 return;
979 }
980
981 if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) {
982 unsigned ElementSize =
983 getDataLayout()->getTypeAllocSize(CPA->getType()->getElementType());
984 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
985 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
986 return;
987 }
988
989 if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) {
990 const StructLayout *SL =
991 getDataLayout()->getStructLayout(cast<StructType>(CPS->getType()));
992 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
993 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i));
994 return;
995 }
996
997 if (const ConstantDataSequential *CDS =
998 dyn_cast<ConstantDataSequential>(Init)) {
999 // CDS is already laid out in host memory order.
1000 StringRef Data = CDS->getRawDataValues();
1001 memcpy(Addr, Data.data(), Data.size());
1002 return;
1003 }
1004
1005 if (Init->getType()->isFirstClassType()) {
1006 GenericValue Val = getConstantValue(Init);
1007 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
1008 return;
1009 }
1010
1011 DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n");
1012 llvm_unreachable("Unknown constant type to initialize memory with!");
1013 }
1014
1015 /// EmitGlobals - Emit all of the global variables to memory, storing their
1016 /// addresses into GlobalAddress. This must make sure to copy the contents of
1017 /// their initializers into the memory.
1018 void ExecutionEngine::emitGlobals() {
1019 // Loop over all of the global variables in the program, allocating the memory
1020 // to hold them. If there is more than one module, do a prepass over globals
1021 // to figure out how the different modules should link together.
1022 std::map<std::pair<std::string, Type*>,
1023 const GlobalValue*> LinkedGlobalsMap;
1024
1025 if (Modules.size() != 1) {
1026 for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
1027 Module &M = *Modules[m];
1028 for (Module::const_global_iterator I = M.global_begin(),
1029 E = M.global_end(); I != E; ++I) {
1030 const GlobalValue *GV = I;
1031 if (GV->hasLocalLinkage() || GV->isDeclaration() ||
1032 GV->hasAppendingLinkage() || !GV->hasName())
1033 continue;// Ignore external globals and globals with internal linkage.
1034
1035 const GlobalValue *&GVEntry =
1036 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
1037
1038 // If this is the first time we've seen this global, it is the canonical
1039 // version.
1040 if (!GVEntry) {
1041 GVEntry = GV;
1042 continue;
1043 }
1044
1045 // If the existing global is strong, never replace it.
1046 if (GVEntry->hasExternalLinkage() ||
1047 GVEntry->hasDLLImportLinkage() ||
1048 GVEntry->hasDLLExportLinkage())
1049 continue;
1050
1051 // Otherwise, we know it's linkonce/weak, replace it if this is a strong
1052 // symbol. FIXME is this right for common?
1053 if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
1054 GVEntry = GV;
1055 }
1056 }
1057 }
1058
1059 std::vector<const GlobalValue*> NonCanonicalGlobals;
1060 for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
1061 Module &M = *Modules[m];
1062 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
1063 I != E; ++I) {
1064 // In the multi-module case, see what this global maps to.
1065 if (!LinkedGlobalsMap.empty()) {
1066 if (const GlobalValue *GVEntry =
1067 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) {
1068 // If something else is the canonical global, ignore this one.
1069 if (GVEntry != &*I) {
1070 NonCanonicalGlobals.push_back(I);
1071 continue;
1072 }
1073 }
1074 }
1075
1076 if (!I->isDeclaration()) {
1077 addGlobalMapping(I, getMemoryForGV(I));
1078 } else {
1079 // External variable reference. Try to use the dynamic loader to
1080 // get a pointer to it.
1081 if (void *SymAddr =
1082 sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName()))
1083 addGlobalMapping(I, SymAddr);
1084 else {
1085 report_fatal_error("Could not resolve external global address: "
1086 +I->getName());
1087 }
1088 }
1089 }
1090
1091 // If there are multiple modules, map the non-canonical globals to their
1092 // canonical location.
1093 if (!NonCanonicalGlobals.empty()) {
1094 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) {
1095 const GlobalValue *GV = NonCanonicalGlobals[i];
1096 const GlobalValue *CGV =
1097 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
1098 void *Ptr = getPointerToGlobalIfAvailable(CGV);
1099 assert(Ptr && "Canonical global wasn't codegen'd!");
1100 addGlobalMapping(GV, Ptr);
1101 }
1102 }
1103
1104 // Now that all of the globals are set up in memory, loop through them all
1105 // and initialize their contents.
1106 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
1107 I != E; ++I) {
1108 if (!I->isDeclaration()) {
1109 if (!LinkedGlobalsMap.empty()) {
1110 if (const GlobalValue *GVEntry =
1111 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())])
1112 if (GVEntry != &*I) // Not the canonical variable.
1113 continue;
1114 }
1115 EmitGlobalVariable(I);
1116 }
1117 }
1118 }
1119 }
1120
1121 // EmitGlobalVariable - This method emits the specified global variable to the
1122 // address specified in GlobalAddresses, or allocates new memory if it's not
1123 // already in the map.
1124 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
1125 void *GA = getPointerToGlobalIfAvailable(GV);
1126
1127 if (GA == 0) {
1128 // If it's not already specified, allocate memory for the global.
1129 GA = getMemoryForGV(GV);
1130 addGlobalMapping(GV, GA);
1131 }
1132
1133 // Don't initialize if it's thread local, let the client do it.
1134 if (!GV->isThreadLocal())
1135 InitializeMemory(GV->getInitializer(), GA);
1136
1137 Type *ElTy = GV->getType()->getElementType();
1138 size_t GVSize = (size_t)getDataLayout()->getTypeAllocSize(ElTy);
1139 NumInitBytes += (unsigned)GVSize;
1140 ++NumGlobals;
1141 }
1142
1143 ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE)
1144 : EE(EE), GlobalAddressMap(this) {
1145 }
1146
1147 sys::Mutex *
1148 ExecutionEngineState::AddressMapConfig::getMutex(ExecutionEngineState *EES) {
1149 return &EES->EE.lock;
1150 }
1151
1152 void ExecutionEngineState::AddressMapConfig::onDelete(ExecutionEngineState *EES,
1153 const GlobalValue *Old) {
1154 void *OldVal = EES->GlobalAddressMap.lookup(Old);
1155 EES->GlobalAddressReverseMap.erase(OldVal);
1156 }
1157
1158 void ExecutionEngineState::AddressMapConfig::onRAUW(ExecutionEngineState *,
1159 const GlobalValue *,
1160 const GlobalValue *) {
1161 llvm_unreachable("The ExecutionEngine doesn't know how to handle a"
1162 " RAUW on a value it has a global mapping for.");
1163 }