]> git.proxmox.com Git - rustc.git/blob - src/llvm/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / lib / ExecutionEngine / Interpreter / ExternalFunctions.cpp
1 //===-- ExternalFunctions.cpp - Implement External Functions --------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains both code to deal with invoking "external" functions, but
11 // also contains code that implements "exported" external functions.
12 //
13 // There are currently two mechanisms for handling external functions in the
14 // Interpreter. The first is to implement lle_* wrapper functions that are
15 // specific to well-known library functions which manually translate the
16 // arguments from GenericValues and make the call. If such a wrapper does
17 // not exist, and libffi is available, then the Interpreter will attempt to
18 // invoke the function using libffi, after finding its address.
19 //
20 //===----------------------------------------------------------------------===//
21
22 #include "Interpreter.h"
23 #include "llvm/Config/config.h" // Detect libffi
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/Support/DynamicLibrary.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/ManagedStatic.h"
30 #include "llvm/Support/Mutex.h"
31 #include "llvm/Support/UniqueLock.h"
32 #include <cmath>
33 #include <csignal>
34 #include <cstdio>
35 #include <cstring>
36 #include <map>
37
38 #ifdef HAVE_FFI_CALL
39 #ifdef HAVE_FFI_H
40 #include <ffi.h>
41 #define USE_LIBFFI
42 #elif HAVE_FFI_FFI_H
43 #include <ffi/ffi.h>
44 #define USE_LIBFFI
45 #endif
46 #endif
47
48 using namespace llvm;
49
50 static ManagedStatic<sys::Mutex> FunctionsLock;
51
52 typedef GenericValue (*ExFunc)(FunctionType *,
53 const std::vector<GenericValue> &);
54 static ManagedStatic<std::map<const Function *, ExFunc> > ExportedFunctions;
55 static ManagedStatic<std::map<std::string, ExFunc> > FuncNames;
56
57 #ifdef USE_LIBFFI
58 typedef void (*RawFunc)();
59 static ManagedStatic<std::map<const Function *, RawFunc> > RawFunctions;
60 #endif
61
62 static Interpreter *TheInterpreter;
63
64 static char getTypeID(Type *Ty) {
65 switch (Ty->getTypeID()) {
66 case Type::VoidTyID: return 'V';
67 case Type::IntegerTyID:
68 switch (cast<IntegerType>(Ty)->getBitWidth()) {
69 case 1: return 'o';
70 case 8: return 'B';
71 case 16: return 'S';
72 case 32: return 'I';
73 case 64: return 'L';
74 default: return 'N';
75 }
76 case Type::FloatTyID: return 'F';
77 case Type::DoubleTyID: return 'D';
78 case Type::PointerTyID: return 'P';
79 case Type::FunctionTyID:return 'M';
80 case Type::StructTyID: return 'T';
81 case Type::ArrayTyID: return 'A';
82 default: return 'U';
83 }
84 }
85
86 // Try to find address of external function given a Function object.
87 // Please note, that interpreter doesn't know how to assemble a
88 // real call in general case (this is JIT job), that's why it assumes,
89 // that all external functions has the same (and pretty "general") signature.
90 // The typical example of such functions are "lle_X_" ones.
91 static ExFunc lookupFunction(const Function *F) {
92 // Function not found, look it up... start by figuring out what the
93 // composite function name should be.
94 std::string ExtName = "lle_";
95 FunctionType *FT = F->getFunctionType();
96 for (unsigned i = 0, e = FT->getNumContainedTypes(); i != e; ++i)
97 ExtName += getTypeID(FT->getContainedType(i));
98 ExtName += "_" + F->getName().str();
99
100 sys::ScopedLock Writer(*FunctionsLock);
101 ExFunc FnPtr = (*FuncNames)[ExtName];
102 if (!FnPtr)
103 FnPtr = (*FuncNames)["lle_X_" + F->getName().str()];
104 if (!FnPtr) // Try calling a generic function... if it exists...
105 FnPtr = (ExFunc)(intptr_t)
106 sys::DynamicLibrary::SearchForAddressOfSymbol("lle_X_" +
107 F->getName().str());
108 if (FnPtr)
109 ExportedFunctions->insert(std::make_pair(F, FnPtr)); // Cache for later
110 return FnPtr;
111 }
112
113 #ifdef USE_LIBFFI
114 static ffi_type *ffiTypeFor(Type *Ty) {
115 switch (Ty->getTypeID()) {
116 case Type::VoidTyID: return &ffi_type_void;
117 case Type::IntegerTyID:
118 switch (cast<IntegerType>(Ty)->getBitWidth()) {
119 case 8: return &ffi_type_sint8;
120 case 16: return &ffi_type_sint16;
121 case 32: return &ffi_type_sint32;
122 case 64: return &ffi_type_sint64;
123 }
124 case Type::FloatTyID: return &ffi_type_float;
125 case Type::DoubleTyID: return &ffi_type_double;
126 case Type::PointerTyID: return &ffi_type_pointer;
127 default: break;
128 }
129 // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc.
130 report_fatal_error("Type could not be mapped for use with libffi.");
131 return NULL;
132 }
133
134 static void *ffiValueFor(Type *Ty, const GenericValue &AV,
135 void *ArgDataPtr) {
136 switch (Ty->getTypeID()) {
137 case Type::IntegerTyID:
138 switch (cast<IntegerType>(Ty)->getBitWidth()) {
139 case 8: {
140 int8_t *I8Ptr = (int8_t *) ArgDataPtr;
141 *I8Ptr = (int8_t) AV.IntVal.getZExtValue();
142 return ArgDataPtr;
143 }
144 case 16: {
145 int16_t *I16Ptr = (int16_t *) ArgDataPtr;
146 *I16Ptr = (int16_t) AV.IntVal.getZExtValue();
147 return ArgDataPtr;
148 }
149 case 32: {
150 int32_t *I32Ptr = (int32_t *) ArgDataPtr;
151 *I32Ptr = (int32_t) AV.IntVal.getZExtValue();
152 return ArgDataPtr;
153 }
154 case 64: {
155 int64_t *I64Ptr = (int64_t *) ArgDataPtr;
156 *I64Ptr = (int64_t) AV.IntVal.getZExtValue();
157 return ArgDataPtr;
158 }
159 }
160 case Type::FloatTyID: {
161 float *FloatPtr = (float *) ArgDataPtr;
162 *FloatPtr = AV.FloatVal;
163 return ArgDataPtr;
164 }
165 case Type::DoubleTyID: {
166 double *DoublePtr = (double *) ArgDataPtr;
167 *DoublePtr = AV.DoubleVal;
168 return ArgDataPtr;
169 }
170 case Type::PointerTyID: {
171 void **PtrPtr = (void **) ArgDataPtr;
172 *PtrPtr = GVTOP(AV);
173 return ArgDataPtr;
174 }
175 default: break;
176 }
177 // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc.
178 report_fatal_error("Type value could not be mapped for use with libffi.");
179 return NULL;
180 }
181
182 static bool ffiInvoke(RawFunc Fn, Function *F,
183 const std::vector<GenericValue> &ArgVals,
184 const DataLayout *TD, GenericValue &Result) {
185 ffi_cif cif;
186 FunctionType *FTy = F->getFunctionType();
187 const unsigned NumArgs = F->arg_size();
188
189 // TODO: We don't have type information about the remaining arguments, because
190 // this information is never passed into ExecutionEngine::runFunction().
191 if (ArgVals.size() > NumArgs && F->isVarArg()) {
192 report_fatal_error("Calling external var arg function '" + F->getName()
193 + "' is not supported by the Interpreter.");
194 }
195
196 unsigned ArgBytes = 0;
197
198 std::vector<ffi_type*> args(NumArgs);
199 for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end();
200 A != E; ++A) {
201 const unsigned ArgNo = A->getArgNo();
202 Type *ArgTy = FTy->getParamType(ArgNo);
203 args[ArgNo] = ffiTypeFor(ArgTy);
204 ArgBytes += TD->getTypeStoreSize(ArgTy);
205 }
206
207 SmallVector<uint8_t, 128> ArgData;
208 ArgData.resize(ArgBytes);
209 uint8_t *ArgDataPtr = ArgData.data();
210 SmallVector<void*, 16> values(NumArgs);
211 for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end();
212 A != E; ++A) {
213 const unsigned ArgNo = A->getArgNo();
214 Type *ArgTy = FTy->getParamType(ArgNo);
215 values[ArgNo] = ffiValueFor(ArgTy, ArgVals[ArgNo], ArgDataPtr);
216 ArgDataPtr += TD->getTypeStoreSize(ArgTy);
217 }
218
219 Type *RetTy = FTy->getReturnType();
220 ffi_type *rtype = ffiTypeFor(RetTy);
221
222 if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, NumArgs, rtype, &args[0]) == FFI_OK) {
223 SmallVector<uint8_t, 128> ret;
224 if (RetTy->getTypeID() != Type::VoidTyID)
225 ret.resize(TD->getTypeStoreSize(RetTy));
226 ffi_call(&cif, Fn, ret.data(), values.data());
227 switch (RetTy->getTypeID()) {
228 case Type::IntegerTyID:
229 switch (cast<IntegerType>(RetTy)->getBitWidth()) {
230 case 8: Result.IntVal = APInt(8 , *(int8_t *) ret.data()); break;
231 case 16: Result.IntVal = APInt(16, *(int16_t*) ret.data()); break;
232 case 32: Result.IntVal = APInt(32, *(int32_t*) ret.data()); break;
233 case 64: Result.IntVal = APInt(64, *(int64_t*) ret.data()); break;
234 }
235 break;
236 case Type::FloatTyID: Result.FloatVal = *(float *) ret.data(); break;
237 case Type::DoubleTyID: Result.DoubleVal = *(double*) ret.data(); break;
238 case Type::PointerTyID: Result.PointerVal = *(void **) ret.data(); break;
239 default: break;
240 }
241 return true;
242 }
243
244 return false;
245 }
246 #endif // USE_LIBFFI
247
248 GenericValue Interpreter::callExternalFunction(Function *F,
249 const std::vector<GenericValue> &ArgVals) {
250 TheInterpreter = this;
251
252 unique_lock<sys::Mutex> Guard(*FunctionsLock);
253
254 // Do a lookup to see if the function is in our cache... this should just be a
255 // deferred annotation!
256 std::map<const Function *, ExFunc>::iterator FI = ExportedFunctions->find(F);
257 if (ExFunc Fn = (FI == ExportedFunctions->end()) ? lookupFunction(F)
258 : FI->second) {
259 Guard.unlock();
260 return Fn(F->getFunctionType(), ArgVals);
261 }
262
263 #ifdef USE_LIBFFI
264 std::map<const Function *, RawFunc>::iterator RF = RawFunctions->find(F);
265 RawFunc RawFn;
266 if (RF == RawFunctions->end()) {
267 RawFn = (RawFunc)(intptr_t)
268 sys::DynamicLibrary::SearchForAddressOfSymbol(F->getName());
269 if (!RawFn)
270 RawFn = (RawFunc)(intptr_t)getPointerToGlobalIfAvailable(F);
271 if (RawFn != 0)
272 RawFunctions->insert(std::make_pair(F, RawFn)); // Cache for later
273 } else {
274 RawFn = RF->second;
275 }
276
277 Guard.unlock();
278
279 GenericValue Result;
280 if (RawFn != 0 && ffiInvoke(RawFn, F, ArgVals, getDataLayout(), Result))
281 return Result;
282 #endif // USE_LIBFFI
283
284 if (F->getName() == "__main")
285 errs() << "Tried to execute an unknown external function: "
286 << *F->getType() << " __main\n";
287 else
288 report_fatal_error("Tried to execute an unknown external function: " +
289 F->getName());
290 #ifndef USE_LIBFFI
291 errs() << "Recompiling LLVM with --enable-libffi might help.\n";
292 #endif
293 return GenericValue();
294 }
295
296
297 //===----------------------------------------------------------------------===//
298 // Functions "exported" to the running application...
299 //
300
301 // void atexit(Function*)
302 static
303 GenericValue lle_X_atexit(FunctionType *FT,
304 const std::vector<GenericValue> &Args) {
305 assert(Args.size() == 1);
306 TheInterpreter->addAtExitHandler((Function*)GVTOP(Args[0]));
307 GenericValue GV;
308 GV.IntVal = 0;
309 return GV;
310 }
311
312 // void exit(int)
313 static
314 GenericValue lle_X_exit(FunctionType *FT,
315 const std::vector<GenericValue> &Args) {
316 TheInterpreter->exitCalled(Args[0]);
317 return GenericValue();
318 }
319
320 // void abort(void)
321 static
322 GenericValue lle_X_abort(FunctionType *FT,
323 const std::vector<GenericValue> &Args) {
324 //FIXME: should we report or raise here?
325 //report_fatal_error("Interpreted program raised SIGABRT");
326 raise (SIGABRT);
327 return GenericValue();
328 }
329
330 // int sprintf(char *, const char *, ...) - a very rough implementation to make
331 // output useful.
332 static
333 GenericValue lle_X_sprintf(FunctionType *FT,
334 const std::vector<GenericValue> &Args) {
335 char *OutputBuffer = (char *)GVTOP(Args[0]);
336 const char *FmtStr = (const char *)GVTOP(Args[1]);
337 unsigned ArgNo = 2;
338
339 // printf should return # chars printed. This is completely incorrect, but
340 // close enough for now.
341 GenericValue GV;
342 GV.IntVal = APInt(32, strlen(FmtStr));
343 while (1) {
344 switch (*FmtStr) {
345 case 0: return GV; // Null terminator...
346 default: // Normal nonspecial character
347 sprintf(OutputBuffer++, "%c", *FmtStr++);
348 break;
349 case '\\': { // Handle escape codes
350 sprintf(OutputBuffer, "%c%c", *FmtStr, *(FmtStr+1));
351 FmtStr += 2; OutputBuffer += 2;
352 break;
353 }
354 case '%': { // Handle format specifiers
355 char FmtBuf[100] = "", Buffer[1000] = "";
356 char *FB = FmtBuf;
357 *FB++ = *FmtStr++;
358 char Last = *FB++ = *FmtStr++;
359 unsigned HowLong = 0;
360 while (Last != 'c' && Last != 'd' && Last != 'i' && Last != 'u' &&
361 Last != 'o' && Last != 'x' && Last != 'X' && Last != 'e' &&
362 Last != 'E' && Last != 'g' && Last != 'G' && Last != 'f' &&
363 Last != 'p' && Last != 's' && Last != '%') {
364 if (Last == 'l' || Last == 'L') HowLong++; // Keep track of l's
365 Last = *FB++ = *FmtStr++;
366 }
367 *FB = 0;
368
369 switch (Last) {
370 case '%':
371 memcpy(Buffer, "%", 2); break;
372 case 'c':
373 sprintf(Buffer, FmtBuf, uint32_t(Args[ArgNo++].IntVal.getZExtValue()));
374 break;
375 case 'd': case 'i':
376 case 'u': case 'o':
377 case 'x': case 'X':
378 if (HowLong >= 1) {
379 if (HowLong == 1 &&
380 TheInterpreter->getDataLayout()->getPointerSizeInBits() == 64 &&
381 sizeof(long) < sizeof(int64_t)) {
382 // Make sure we use %lld with a 64 bit argument because we might be
383 // compiling LLI on a 32 bit compiler.
384 unsigned Size = strlen(FmtBuf);
385 FmtBuf[Size] = FmtBuf[Size-1];
386 FmtBuf[Size+1] = 0;
387 FmtBuf[Size-1] = 'l';
388 }
389 sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal.getZExtValue());
390 } else
391 sprintf(Buffer, FmtBuf,uint32_t(Args[ArgNo++].IntVal.getZExtValue()));
392 break;
393 case 'e': case 'E': case 'g': case 'G': case 'f':
394 sprintf(Buffer, FmtBuf, Args[ArgNo++].DoubleVal); break;
395 case 'p':
396 sprintf(Buffer, FmtBuf, (void*)GVTOP(Args[ArgNo++])); break;
397 case 's':
398 sprintf(Buffer, FmtBuf, (char*)GVTOP(Args[ArgNo++])); break;
399 default:
400 errs() << "<unknown printf code '" << *FmtStr << "'!>";
401 ArgNo++; break;
402 }
403 size_t Len = strlen(Buffer);
404 memcpy(OutputBuffer, Buffer, Len + 1);
405 OutputBuffer += Len;
406 }
407 break;
408 }
409 }
410 return GV;
411 }
412
413 // int printf(const char *, ...) - a very rough implementation to make output
414 // useful.
415 static
416 GenericValue lle_X_printf(FunctionType *FT,
417 const std::vector<GenericValue> &Args) {
418 char Buffer[10000];
419 std::vector<GenericValue> NewArgs;
420 NewArgs.push_back(PTOGV((void*)&Buffer[0]));
421 NewArgs.insert(NewArgs.end(), Args.begin(), Args.end());
422 GenericValue GV = lle_X_sprintf(FT, NewArgs);
423 outs() << Buffer;
424 return GV;
425 }
426
427 // int sscanf(const char *format, ...);
428 static
429 GenericValue lle_X_sscanf(FunctionType *FT,
430 const std::vector<GenericValue> &args) {
431 assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!");
432
433 char *Args[10];
434 for (unsigned i = 0; i < args.size(); ++i)
435 Args[i] = (char*)GVTOP(args[i]);
436
437 GenericValue GV;
438 GV.IntVal = APInt(32, sscanf(Args[0], Args[1], Args[2], Args[3], Args[4],
439 Args[5], Args[6], Args[7], Args[8], Args[9]));
440 return GV;
441 }
442
443 // int scanf(const char *format, ...);
444 static
445 GenericValue lle_X_scanf(FunctionType *FT,
446 const std::vector<GenericValue> &args) {
447 assert(args.size() < 10 && "Only handle up to 10 args to scanf right now!");
448
449 char *Args[10];
450 for (unsigned i = 0; i < args.size(); ++i)
451 Args[i] = (char*)GVTOP(args[i]);
452
453 GenericValue GV;
454 GV.IntVal = APInt(32, scanf( Args[0], Args[1], Args[2], Args[3], Args[4],
455 Args[5], Args[6], Args[7], Args[8], Args[9]));
456 return GV;
457 }
458
459 // int fprintf(FILE *, const char *, ...) - a very rough implementation to make
460 // output useful.
461 static
462 GenericValue lle_X_fprintf(FunctionType *FT,
463 const std::vector<GenericValue> &Args) {
464 assert(Args.size() >= 2);
465 char Buffer[10000];
466 std::vector<GenericValue> NewArgs;
467 NewArgs.push_back(PTOGV(Buffer));
468 NewArgs.insert(NewArgs.end(), Args.begin()+1, Args.end());
469 GenericValue GV = lle_X_sprintf(FT, NewArgs);
470
471 fputs(Buffer, (FILE *) GVTOP(Args[0]));
472 return GV;
473 }
474
475 static GenericValue lle_X_memset(FunctionType *FT,
476 const std::vector<GenericValue> &Args) {
477 int val = (int)Args[1].IntVal.getSExtValue();
478 size_t len = (size_t)Args[2].IntVal.getZExtValue();
479 memset((void *)GVTOP(Args[0]), val, len);
480 // llvm.memset.* returns void, lle_X_* returns GenericValue,
481 // so here we return GenericValue with IntVal set to zero
482 GenericValue GV;
483 GV.IntVal = 0;
484 return GV;
485 }
486
487 static GenericValue lle_X_memcpy(FunctionType *FT,
488 const std::vector<GenericValue> &Args) {
489 memcpy(GVTOP(Args[0]), GVTOP(Args[1]),
490 (size_t)(Args[2].IntVal.getLimitedValue()));
491
492 // llvm.memcpy* returns void, lle_X_* returns GenericValue,
493 // so here we return GenericValue with IntVal set to zero
494 GenericValue GV;
495 GV.IntVal = 0;
496 return GV;
497 }
498
499 void Interpreter::initializeExternalFunctions() {
500 sys::ScopedLock Writer(*FunctionsLock);
501 (*FuncNames)["lle_X_atexit"] = lle_X_atexit;
502 (*FuncNames)["lle_X_exit"] = lle_X_exit;
503 (*FuncNames)["lle_X_abort"] = lle_X_abort;
504
505 (*FuncNames)["lle_X_printf"] = lle_X_printf;
506 (*FuncNames)["lle_X_sprintf"] = lle_X_sprintf;
507 (*FuncNames)["lle_X_sscanf"] = lle_X_sscanf;
508 (*FuncNames)["lle_X_scanf"] = lle_X_scanf;
509 (*FuncNames)["lle_X_fprintf"] = lle_X_fprintf;
510 (*FuncNames)["lle_X_memset"] = lle_X_memset;
511 (*FuncNames)["lle_X_memcpy"] = lle_X_memcpy;
512 }