]> git.proxmox.com Git - rustc.git/blob - src/llvm/lib/IR/AsmWriter.cpp
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / lib / IR / AsmWriter.cpp
1 //===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This library implements the functionality defined in llvm/IR/Writer.h
11 //
12 // Note that these routines must be extremely tolerant of various errors in the
13 // LLVM code, because it can be used for debugging transformations.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "AsmWriter.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/IR/AssemblyAnnotationWriter.h"
23 #include "llvm/IR/CFG.h"
24 #include "llvm/IR/CallingConv.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DebugInfo.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/IRPrintingPasses.h"
29 #include "llvm/IR/InlineAsm.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/IR/LLVMContext.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/Operator.h"
34 #include "llvm/IR/TypeFinder.h"
35 #include "llvm/IR/ValueSymbolTable.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/Dwarf.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/FormattedStream.h"
40 #include "llvm/Support/MathExtras.h"
41 #include <algorithm>
42 #include <cctype>
43 using namespace llvm;
44
45 // Make virtual table appear in this compilation unit.
46 AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
47
48 //===----------------------------------------------------------------------===//
49 // Helper Functions
50 //===----------------------------------------------------------------------===//
51
52 namespace {
53 struct OrderMap {
54 DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
55
56 unsigned size() const { return IDs.size(); }
57 std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
58 std::pair<unsigned, bool> lookup(const Value *V) const {
59 return IDs.lookup(V);
60 }
61 void index(const Value *V) {
62 // Explicitly sequence get-size and insert-value operations to avoid UB.
63 unsigned ID = IDs.size() + 1;
64 IDs[V].first = ID;
65 }
66 };
67 }
68
69 static void orderValue(const Value *V, OrderMap &OM) {
70 if (OM.lookup(V).first)
71 return;
72
73 if (const Constant *C = dyn_cast<Constant>(V))
74 if (C->getNumOperands() && !isa<GlobalValue>(C))
75 for (const Value *Op : C->operands())
76 if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
77 orderValue(Op, OM);
78
79 // Note: we cannot cache this lookup above, since inserting into the map
80 // changes the map's size, and thus affects the other IDs.
81 OM.index(V);
82 }
83
84 static OrderMap orderModule(const Module *M) {
85 // This needs to match the order used by ValueEnumerator::ValueEnumerator()
86 // and ValueEnumerator::incorporateFunction().
87 OrderMap OM;
88
89 for (const GlobalVariable &G : M->globals()) {
90 if (G.hasInitializer())
91 if (!isa<GlobalValue>(G.getInitializer()))
92 orderValue(G.getInitializer(), OM);
93 orderValue(&G, OM);
94 }
95 for (const GlobalAlias &A : M->aliases()) {
96 if (!isa<GlobalValue>(A.getAliasee()))
97 orderValue(A.getAliasee(), OM);
98 orderValue(&A, OM);
99 }
100 for (const Function &F : *M) {
101 if (F.hasPrefixData())
102 if (!isa<GlobalValue>(F.getPrefixData()))
103 orderValue(F.getPrefixData(), OM);
104
105 if (F.hasPrologueData())
106 if (!isa<GlobalValue>(F.getPrologueData()))
107 orderValue(F.getPrologueData(), OM);
108
109 orderValue(&F, OM);
110
111 if (F.isDeclaration())
112 continue;
113
114 for (const Argument &A : F.args())
115 orderValue(&A, OM);
116 for (const BasicBlock &BB : F) {
117 orderValue(&BB, OM);
118 for (const Instruction &I : BB) {
119 for (const Value *Op : I.operands())
120 if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
121 isa<InlineAsm>(*Op))
122 orderValue(Op, OM);
123 orderValue(&I, OM);
124 }
125 }
126 }
127 return OM;
128 }
129
130 static void predictValueUseListOrderImpl(const Value *V, const Function *F,
131 unsigned ID, const OrderMap &OM,
132 UseListOrderStack &Stack) {
133 // Predict use-list order for this one.
134 typedef std::pair<const Use *, unsigned> Entry;
135 SmallVector<Entry, 64> List;
136 for (const Use &U : V->uses())
137 // Check if this user will be serialized.
138 if (OM.lookup(U.getUser()).first)
139 List.push_back(std::make_pair(&U, List.size()));
140
141 if (List.size() < 2)
142 // We may have lost some users.
143 return;
144
145 bool GetsReversed =
146 !isa<GlobalVariable>(V) && !isa<Function>(V) && !isa<BasicBlock>(V);
147 if (auto *BA = dyn_cast<BlockAddress>(V))
148 ID = OM.lookup(BA->getBasicBlock()).first;
149 std::sort(List.begin(), List.end(), [&](const Entry &L, const Entry &R) {
150 const Use *LU = L.first;
151 const Use *RU = R.first;
152 if (LU == RU)
153 return false;
154
155 auto LID = OM.lookup(LU->getUser()).first;
156 auto RID = OM.lookup(RU->getUser()).first;
157
158 // If ID is 4, then expect: 7 6 5 1 2 3.
159 if (LID < RID) {
160 if (GetsReversed)
161 if (RID <= ID)
162 return true;
163 return false;
164 }
165 if (RID < LID) {
166 if (GetsReversed)
167 if (LID <= ID)
168 return false;
169 return true;
170 }
171
172 // LID and RID are equal, so we have different operands of the same user.
173 // Assume operands are added in order for all instructions.
174 if (GetsReversed)
175 if (LID <= ID)
176 return LU->getOperandNo() < RU->getOperandNo();
177 return LU->getOperandNo() > RU->getOperandNo();
178 });
179
180 if (std::is_sorted(
181 List.begin(), List.end(),
182 [](const Entry &L, const Entry &R) { return L.second < R.second; }))
183 // Order is already correct.
184 return;
185
186 // Store the shuffle.
187 Stack.emplace_back(V, F, List.size());
188 assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
189 for (size_t I = 0, E = List.size(); I != E; ++I)
190 Stack.back().Shuffle[I] = List[I].second;
191 }
192
193 static void predictValueUseListOrder(const Value *V, const Function *F,
194 OrderMap &OM, UseListOrderStack &Stack) {
195 auto &IDPair = OM[V];
196 assert(IDPair.first && "Unmapped value");
197 if (IDPair.second)
198 // Already predicted.
199 return;
200
201 // Do the actual prediction.
202 IDPair.second = true;
203 if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
204 predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
205
206 // Recursive descent into constants.
207 if (const Constant *C = dyn_cast<Constant>(V))
208 if (C->getNumOperands()) // Visit GlobalValues.
209 for (const Value *Op : C->operands())
210 if (isa<Constant>(Op)) // Visit GlobalValues.
211 predictValueUseListOrder(Op, F, OM, Stack);
212 }
213
214 static UseListOrderStack predictUseListOrder(const Module *M) {
215 OrderMap OM = orderModule(M);
216
217 // Use-list orders need to be serialized after all the users have been added
218 // to a value, or else the shuffles will be incomplete. Store them per
219 // function in a stack.
220 //
221 // Aside from function order, the order of values doesn't matter much here.
222 UseListOrderStack Stack;
223
224 // We want to visit the functions backward now so we can list function-local
225 // constants in the last Function they're used in. Module-level constants
226 // have already been visited above.
227 for (auto I = M->rbegin(), E = M->rend(); I != E; ++I) {
228 const Function &F = *I;
229 if (F.isDeclaration())
230 continue;
231 for (const BasicBlock &BB : F)
232 predictValueUseListOrder(&BB, &F, OM, Stack);
233 for (const Argument &A : F.args())
234 predictValueUseListOrder(&A, &F, OM, Stack);
235 for (const BasicBlock &BB : F)
236 for (const Instruction &I : BB)
237 for (const Value *Op : I.operands())
238 if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
239 predictValueUseListOrder(Op, &F, OM, Stack);
240 for (const BasicBlock &BB : F)
241 for (const Instruction &I : BB)
242 predictValueUseListOrder(&I, &F, OM, Stack);
243 }
244
245 // Visit globals last.
246 for (const GlobalVariable &G : M->globals())
247 predictValueUseListOrder(&G, nullptr, OM, Stack);
248 for (const Function &F : *M)
249 predictValueUseListOrder(&F, nullptr, OM, Stack);
250 for (const GlobalAlias &A : M->aliases())
251 predictValueUseListOrder(&A, nullptr, OM, Stack);
252 for (const GlobalVariable &G : M->globals())
253 if (G.hasInitializer())
254 predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
255 for (const GlobalAlias &A : M->aliases())
256 predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
257 for (const Function &F : *M)
258 if (F.hasPrefixData())
259 predictValueUseListOrder(F.getPrefixData(), nullptr, OM, Stack);
260
261 return Stack;
262 }
263
264 static const Module *getModuleFromVal(const Value *V) {
265 if (const Argument *MA = dyn_cast<Argument>(V))
266 return MA->getParent() ? MA->getParent()->getParent() : nullptr;
267
268 if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
269 return BB->getParent() ? BB->getParent()->getParent() : nullptr;
270
271 if (const Instruction *I = dyn_cast<Instruction>(V)) {
272 const Function *M = I->getParent() ? I->getParent()->getParent() : nullptr;
273 return M ? M->getParent() : nullptr;
274 }
275
276 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
277 return GV->getParent();
278 return nullptr;
279 }
280
281 static void PrintCallingConv(unsigned cc, raw_ostream &Out) {
282 switch (cc) {
283 default: Out << "cc" << cc; break;
284 case CallingConv::Fast: Out << "fastcc"; break;
285 case CallingConv::Cold: Out << "coldcc"; break;
286 case CallingConv::WebKit_JS: Out << "webkit_jscc"; break;
287 case CallingConv::AnyReg: Out << "anyregcc"; break;
288 case CallingConv::PreserveMost: Out << "preserve_mostcc"; break;
289 case CallingConv::PreserveAll: Out << "preserve_allcc"; break;
290 case CallingConv::GHC: Out << "ghccc"; break;
291 case CallingConv::X86_StdCall: Out << "x86_stdcallcc"; break;
292 case CallingConv::X86_FastCall: Out << "x86_fastcallcc"; break;
293 case CallingConv::X86_ThisCall: Out << "x86_thiscallcc"; break;
294 case CallingConv::X86_VectorCall:Out << "x86_vectorcallcc"; break;
295 case CallingConv::Intel_OCL_BI: Out << "intel_ocl_bicc"; break;
296 case CallingConv::ARM_APCS: Out << "arm_apcscc"; break;
297 case CallingConv::ARM_AAPCS: Out << "arm_aapcscc"; break;
298 case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break;
299 case CallingConv::MSP430_INTR: Out << "msp430_intrcc"; break;
300 case CallingConv::PTX_Kernel: Out << "ptx_kernel"; break;
301 case CallingConv::PTX_Device: Out << "ptx_device"; break;
302 case CallingConv::X86_64_SysV: Out << "x86_64_sysvcc"; break;
303 case CallingConv::X86_64_Win64: Out << "x86_64_win64cc"; break;
304 case CallingConv::SPIR_FUNC: Out << "spir_func"; break;
305 case CallingConv::SPIR_KERNEL: Out << "spir_kernel"; break;
306 }
307 }
308
309 // PrintEscapedString - Print each character of the specified string, escaping
310 // it if it is not printable or if it is an escape char.
311 static void PrintEscapedString(StringRef Name, raw_ostream &Out) {
312 for (unsigned i = 0, e = Name.size(); i != e; ++i) {
313 unsigned char C = Name[i];
314 if (isprint(C) && C != '\\' && C != '"')
315 Out << C;
316 else
317 Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
318 }
319 }
320
321 enum PrefixType {
322 GlobalPrefix,
323 ComdatPrefix,
324 LabelPrefix,
325 LocalPrefix,
326 NoPrefix
327 };
328
329 /// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
330 /// prefixed with % (if the string only contains simple characters) or is
331 /// surrounded with ""'s (if it has special chars in it). Print it out.
332 static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) {
333 assert(!Name.empty() && "Cannot get empty name!");
334 switch (Prefix) {
335 case NoPrefix: break;
336 case GlobalPrefix: OS << '@'; break;
337 case ComdatPrefix: OS << '$'; break;
338 case LabelPrefix: break;
339 case LocalPrefix: OS << '%'; break;
340 }
341
342 // Scan the name to see if it needs quotes first.
343 bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0]));
344 if (!NeedsQuotes) {
345 for (unsigned i = 0, e = Name.size(); i != e; ++i) {
346 // By making this unsigned, the value passed in to isalnum will always be
347 // in the range 0-255. This is important when building with MSVC because
348 // its implementation will assert. This situation can arise when dealing
349 // with UTF-8 multibyte characters.
350 unsigned char C = Name[i];
351 if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' &&
352 C != '_') {
353 NeedsQuotes = true;
354 break;
355 }
356 }
357 }
358
359 // If we didn't need any quotes, just write out the name in one blast.
360 if (!NeedsQuotes) {
361 OS << Name;
362 return;
363 }
364
365 // Okay, we need quotes. Output the quotes and escape any scary characters as
366 // needed.
367 OS << '"';
368 PrintEscapedString(Name, OS);
369 OS << '"';
370 }
371
372 /// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
373 /// prefixed with % (if the string only contains simple characters) or is
374 /// surrounded with ""'s (if it has special chars in it). Print it out.
375 static void PrintLLVMName(raw_ostream &OS, const Value *V) {
376 PrintLLVMName(OS, V->getName(),
377 isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
378 }
379
380
381 namespace llvm {
382
383 void TypePrinting::incorporateTypes(const Module &M) {
384 NamedTypes.run(M, false);
385
386 // The list of struct types we got back includes all the struct types, split
387 // the unnamed ones out to a numbering and remove the anonymous structs.
388 unsigned NextNumber = 0;
389
390 std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E;
391 for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) {
392 StructType *STy = *I;
393
394 // Ignore anonymous types.
395 if (STy->isLiteral())
396 continue;
397
398 if (STy->getName().empty())
399 NumberedTypes[STy] = NextNumber++;
400 else
401 *NextToUse++ = STy;
402 }
403
404 NamedTypes.erase(NextToUse, NamedTypes.end());
405 }
406
407
408 /// CalcTypeName - Write the specified type to the specified raw_ostream, making
409 /// use of type names or up references to shorten the type name where possible.
410 void TypePrinting::print(Type *Ty, raw_ostream &OS) {
411 switch (Ty->getTypeID()) {
412 case Type::VoidTyID: OS << "void"; return;
413 case Type::HalfTyID: OS << "half"; return;
414 case Type::FloatTyID: OS << "float"; return;
415 case Type::DoubleTyID: OS << "double"; return;
416 case Type::X86_FP80TyID: OS << "x86_fp80"; return;
417 case Type::FP128TyID: OS << "fp128"; return;
418 case Type::PPC_FP128TyID: OS << "ppc_fp128"; return;
419 case Type::LabelTyID: OS << "label"; return;
420 case Type::MetadataTyID: OS << "metadata"; return;
421 case Type::X86_MMXTyID: OS << "x86_mmx"; return;
422 case Type::IntegerTyID:
423 OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
424 return;
425
426 case Type::FunctionTyID: {
427 FunctionType *FTy = cast<FunctionType>(Ty);
428 print(FTy->getReturnType(), OS);
429 OS << " (";
430 for (FunctionType::param_iterator I = FTy->param_begin(),
431 E = FTy->param_end(); I != E; ++I) {
432 if (I != FTy->param_begin())
433 OS << ", ";
434 print(*I, OS);
435 }
436 if (FTy->isVarArg()) {
437 if (FTy->getNumParams()) OS << ", ";
438 OS << "...";
439 }
440 OS << ')';
441 return;
442 }
443 case Type::StructTyID: {
444 StructType *STy = cast<StructType>(Ty);
445
446 if (STy->isLiteral())
447 return printStructBody(STy, OS);
448
449 if (!STy->getName().empty())
450 return PrintLLVMName(OS, STy->getName(), LocalPrefix);
451
452 DenseMap<StructType*, unsigned>::iterator I = NumberedTypes.find(STy);
453 if (I != NumberedTypes.end())
454 OS << '%' << I->second;
455 else // Not enumerated, print the hex address.
456 OS << "%\"type " << STy << '\"';
457 return;
458 }
459 case Type::PointerTyID: {
460 PointerType *PTy = cast<PointerType>(Ty);
461 print(PTy->getElementType(), OS);
462 if (unsigned AddressSpace = PTy->getAddressSpace())
463 OS << " addrspace(" << AddressSpace << ')';
464 OS << '*';
465 return;
466 }
467 case Type::ArrayTyID: {
468 ArrayType *ATy = cast<ArrayType>(Ty);
469 OS << '[' << ATy->getNumElements() << " x ";
470 print(ATy->getElementType(), OS);
471 OS << ']';
472 return;
473 }
474 case Type::VectorTyID: {
475 VectorType *PTy = cast<VectorType>(Ty);
476 OS << "<" << PTy->getNumElements() << " x ";
477 print(PTy->getElementType(), OS);
478 OS << '>';
479 return;
480 }
481 }
482 llvm_unreachable("Invalid TypeID");
483 }
484
485 void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
486 if (STy->isOpaque()) {
487 OS << "opaque";
488 return;
489 }
490
491 if (STy->isPacked())
492 OS << '<';
493
494 if (STy->getNumElements() == 0) {
495 OS << "{}";
496 } else {
497 StructType::element_iterator I = STy->element_begin();
498 OS << "{ ";
499 print(*I++, OS);
500 for (StructType::element_iterator E = STy->element_end(); I != E; ++I) {
501 OS << ", ";
502 print(*I, OS);
503 }
504
505 OS << " }";
506 }
507 if (STy->isPacked())
508 OS << '>';
509 }
510
511 //===----------------------------------------------------------------------===//
512 // SlotTracker Class: Enumerate slot numbers for unnamed values
513 //===----------------------------------------------------------------------===//
514 /// This class provides computation of slot numbers for LLVM Assembly writing.
515 ///
516 class SlotTracker {
517 public:
518 /// ValueMap - A mapping of Values to slot numbers.
519 typedef DenseMap<const Value*, unsigned> ValueMap;
520
521 private:
522 /// TheModule - The module for which we are holding slot numbers.
523 const Module* TheModule;
524
525 /// TheFunction - The function for which we are holding slot numbers.
526 const Function* TheFunction;
527 bool FunctionProcessed;
528
529 /// mMap - The slot map for the module level data.
530 ValueMap mMap;
531 unsigned mNext;
532
533 /// fMap - The slot map for the function level data.
534 ValueMap fMap;
535 unsigned fNext;
536
537 /// mdnMap - Map for MDNodes.
538 DenseMap<const MDNode*, unsigned> mdnMap;
539 unsigned mdnNext;
540
541 /// asMap - The slot map for attribute sets.
542 DenseMap<AttributeSet, unsigned> asMap;
543 unsigned asNext;
544 public:
545 /// Construct from a module
546 explicit SlotTracker(const Module *M);
547 /// Construct from a function, starting out in incorp state.
548 explicit SlotTracker(const Function *F);
549
550 /// Return the slot number of the specified value in it's type
551 /// plane. If something is not in the SlotTracker, return -1.
552 int getLocalSlot(const Value *V);
553 int getGlobalSlot(const GlobalValue *V);
554 int getMetadataSlot(const MDNode *N);
555 int getAttributeGroupSlot(AttributeSet AS);
556
557 /// If you'd like to deal with a function instead of just a module, use
558 /// this method to get its data into the SlotTracker.
559 void incorporateFunction(const Function *F) {
560 TheFunction = F;
561 FunctionProcessed = false;
562 }
563
564 const Function *getFunction() const { return TheFunction; }
565
566 /// After calling incorporateFunction, use this method to remove the
567 /// most recently incorporated function from the SlotTracker. This
568 /// will reset the state of the machine back to just the module contents.
569 void purgeFunction();
570
571 /// MDNode map iterators.
572 typedef DenseMap<const MDNode*, unsigned>::iterator mdn_iterator;
573 mdn_iterator mdn_begin() { return mdnMap.begin(); }
574 mdn_iterator mdn_end() { return mdnMap.end(); }
575 unsigned mdn_size() const { return mdnMap.size(); }
576 bool mdn_empty() const { return mdnMap.empty(); }
577
578 /// AttributeSet map iterators.
579 typedef DenseMap<AttributeSet, unsigned>::iterator as_iterator;
580 as_iterator as_begin() { return asMap.begin(); }
581 as_iterator as_end() { return asMap.end(); }
582 unsigned as_size() const { return asMap.size(); }
583 bool as_empty() const { return asMap.empty(); }
584
585 /// This function does the actual initialization.
586 inline void initialize();
587
588 // Implementation Details
589 private:
590 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
591 void CreateModuleSlot(const GlobalValue *V);
592
593 /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
594 void CreateMetadataSlot(const MDNode *N);
595
596 /// CreateFunctionSlot - Insert the specified Value* into the slot table.
597 void CreateFunctionSlot(const Value *V);
598
599 /// \brief Insert the specified AttributeSet into the slot table.
600 void CreateAttributeSetSlot(AttributeSet AS);
601
602 /// Add all of the module level global variables (and their initializers)
603 /// and function declarations, but not the contents of those functions.
604 void processModule();
605
606 /// Add all of the functions arguments, basic blocks, and instructions.
607 void processFunction();
608
609 SlotTracker(const SlotTracker &) LLVM_DELETED_FUNCTION;
610 void operator=(const SlotTracker &) LLVM_DELETED_FUNCTION;
611 };
612
613 SlotTracker *createSlotTracker(const Module *M) {
614 return new SlotTracker(M);
615 }
616
617 static SlotTracker *createSlotTracker(const Value *V) {
618 if (const Argument *FA = dyn_cast<Argument>(V))
619 return new SlotTracker(FA->getParent());
620
621 if (const Instruction *I = dyn_cast<Instruction>(V))
622 if (I->getParent())
623 return new SlotTracker(I->getParent()->getParent());
624
625 if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
626 return new SlotTracker(BB->getParent());
627
628 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
629 return new SlotTracker(GV->getParent());
630
631 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
632 return new SlotTracker(GA->getParent());
633
634 if (const Function *Func = dyn_cast<Function>(V))
635 return new SlotTracker(Func);
636
637 return nullptr;
638 }
639
640 #if 0
641 #define ST_DEBUG(X) dbgs() << X
642 #else
643 #define ST_DEBUG(X)
644 #endif
645
646 // Module level constructor. Causes the contents of the Module (sans functions)
647 // to be added to the slot table.
648 SlotTracker::SlotTracker(const Module *M)
649 : TheModule(M), TheFunction(nullptr), FunctionProcessed(false), mNext(0),
650 fNext(0), mdnNext(0), asNext(0) {}
651
652 // Function level constructor. Causes the contents of the Module and the one
653 // function provided to be added to the slot table.
654 SlotTracker::SlotTracker(const Function *F)
655 : TheModule(F ? F->getParent() : nullptr), TheFunction(F),
656 FunctionProcessed(false), mNext(0), fNext(0), mdnNext(0), asNext(0) {}
657
658 inline void SlotTracker::initialize() {
659 if (TheModule) {
660 processModule();
661 TheModule = nullptr; ///< Prevent re-processing next time we're called.
662 }
663
664 if (TheFunction && !FunctionProcessed)
665 processFunction();
666 }
667
668 // Iterate through all the global variables, functions, and global
669 // variable initializers and create slots for them.
670 void SlotTracker::processModule() {
671 ST_DEBUG("begin processModule!\n");
672
673 // Add all of the unnamed global variables to the value table.
674 for (Module::const_global_iterator I = TheModule->global_begin(),
675 E = TheModule->global_end(); I != E; ++I) {
676 if (!I->hasName())
677 CreateModuleSlot(I);
678 }
679
680 // Add metadata used by named metadata.
681 for (Module::const_named_metadata_iterator
682 I = TheModule->named_metadata_begin(),
683 E = TheModule->named_metadata_end(); I != E; ++I) {
684 const NamedMDNode *NMD = I;
685 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
686 CreateMetadataSlot(NMD->getOperand(i));
687 }
688
689 for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
690 I != E; ++I) {
691 if (!I->hasName())
692 // Add all the unnamed functions to the table.
693 CreateModuleSlot(I);
694
695 // Add all the function attributes to the table.
696 // FIXME: Add attributes of other objects?
697 AttributeSet FnAttrs = I->getAttributes().getFnAttributes();
698 if (FnAttrs.hasAttributes(AttributeSet::FunctionIndex))
699 CreateAttributeSetSlot(FnAttrs);
700 }
701
702 ST_DEBUG("end processModule!\n");
703 }
704
705 // Process the arguments, basic blocks, and instructions of a function.
706 void SlotTracker::processFunction() {
707 ST_DEBUG("begin processFunction!\n");
708 fNext = 0;
709
710 // Add all the function arguments with no names.
711 for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
712 AE = TheFunction->arg_end(); AI != AE; ++AI)
713 if (!AI->hasName())
714 CreateFunctionSlot(AI);
715
716 ST_DEBUG("Inserting Instructions:\n");
717
718 SmallVector<std::pair<unsigned, MDNode *>, 4> MDForInst;
719
720 // Add all of the basic blocks and instructions with no names.
721 for (Function::const_iterator BB = TheFunction->begin(),
722 E = TheFunction->end(); BB != E; ++BB) {
723 if (!BB->hasName())
724 CreateFunctionSlot(BB);
725
726 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E;
727 ++I) {
728 if (!I->getType()->isVoidTy() && !I->hasName())
729 CreateFunctionSlot(I);
730
731 // Intrinsics can directly use metadata. We allow direct calls to any
732 // llvm.foo function here, because the target may not be linked into the
733 // optimizer.
734 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
735 if (Function *F = CI->getCalledFunction())
736 if (F->isIntrinsic())
737 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
738 if (auto *V = dyn_cast_or_null<MetadataAsValue>(I->getOperand(i)))
739 if (MDNode *N = dyn_cast<MDNode>(V->getMetadata()))
740 CreateMetadataSlot(N);
741
742 // Add all the call attributes to the table.
743 AttributeSet Attrs = CI->getAttributes().getFnAttributes();
744 if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
745 CreateAttributeSetSlot(Attrs);
746 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(I)) {
747 // Add all the call attributes to the table.
748 AttributeSet Attrs = II->getAttributes().getFnAttributes();
749 if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
750 CreateAttributeSetSlot(Attrs);
751 }
752
753 // Process metadata attached with this instruction.
754 I->getAllMetadata(MDForInst);
755 for (unsigned i = 0, e = MDForInst.size(); i != e; ++i)
756 CreateMetadataSlot(MDForInst[i].second);
757 MDForInst.clear();
758 }
759 }
760
761 FunctionProcessed = true;
762
763 ST_DEBUG("end processFunction!\n");
764 }
765
766 /// Clean up after incorporating a function. This is the only way to get out of
767 /// the function incorporation state that affects get*Slot/Create*Slot. Function
768 /// incorporation state is indicated by TheFunction != 0.
769 void SlotTracker::purgeFunction() {
770 ST_DEBUG("begin purgeFunction!\n");
771 fMap.clear(); // Simply discard the function level map
772 TheFunction = nullptr;
773 FunctionProcessed = false;
774 ST_DEBUG("end purgeFunction!\n");
775 }
776
777 /// getGlobalSlot - Get the slot number of a global value.
778 int SlotTracker::getGlobalSlot(const GlobalValue *V) {
779 // Check for uninitialized state and do lazy initialization.
780 initialize();
781
782 // Find the value in the module map
783 ValueMap::iterator MI = mMap.find(V);
784 return MI == mMap.end() ? -1 : (int)MI->second;
785 }
786
787 /// getMetadataSlot - Get the slot number of a MDNode.
788 int SlotTracker::getMetadataSlot(const MDNode *N) {
789 // Check for uninitialized state and do lazy initialization.
790 initialize();
791
792 // Find the MDNode in the module map
793 mdn_iterator MI = mdnMap.find(N);
794 return MI == mdnMap.end() ? -1 : (int)MI->second;
795 }
796
797
798 /// getLocalSlot - Get the slot number for a value that is local to a function.
799 int SlotTracker::getLocalSlot(const Value *V) {
800 assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
801
802 // Check for uninitialized state and do lazy initialization.
803 initialize();
804
805 ValueMap::iterator FI = fMap.find(V);
806 return FI == fMap.end() ? -1 : (int)FI->second;
807 }
808
809 int SlotTracker::getAttributeGroupSlot(AttributeSet AS) {
810 // Check for uninitialized state and do lazy initialization.
811 initialize();
812
813 // Find the AttributeSet in the module map.
814 as_iterator AI = asMap.find(AS);
815 return AI == asMap.end() ? -1 : (int)AI->second;
816 }
817
818 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
819 void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
820 assert(V && "Can't insert a null Value into SlotTracker!");
821 assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
822 assert(!V->hasName() && "Doesn't need a slot!");
823
824 unsigned DestSlot = mNext++;
825 mMap[V] = DestSlot;
826
827 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
828 DestSlot << " [");
829 // G = Global, F = Function, A = Alias, o = other
830 ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
831 (isa<Function>(V) ? 'F' :
832 (isa<GlobalAlias>(V) ? 'A' : 'o'))) << "]\n");
833 }
834
835 /// CreateSlot - Create a new slot for the specified value if it has no name.
836 void SlotTracker::CreateFunctionSlot(const Value *V) {
837 assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
838
839 unsigned DestSlot = fNext++;
840 fMap[V] = DestSlot;
841
842 // G = Global, F = Function, o = other
843 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
844 DestSlot << " [o]\n");
845 }
846
847 /// CreateModuleSlot - Insert the specified MDNode* into the slot table.
848 void SlotTracker::CreateMetadataSlot(const MDNode *N) {
849 assert(N && "Can't insert a null Value into SlotTracker!");
850
851 unsigned DestSlot = mdnNext;
852 if (!mdnMap.insert(std::make_pair(N, DestSlot)).second)
853 return;
854 ++mdnNext;
855
856 // Recursively add any MDNodes referenced by operands.
857 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
858 if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
859 CreateMetadataSlot(Op);
860 }
861
862 void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) {
863 assert(AS.hasAttributes(AttributeSet::FunctionIndex) &&
864 "Doesn't need a slot!");
865
866 as_iterator I = asMap.find(AS);
867 if (I != asMap.end())
868 return;
869
870 unsigned DestSlot = asNext++;
871 asMap[AS] = DestSlot;
872 }
873
874 //===----------------------------------------------------------------------===//
875 // AsmWriter Implementation
876 //===----------------------------------------------------------------------===//
877
878 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
879 TypePrinting *TypePrinter,
880 SlotTracker *Machine,
881 const Module *Context);
882
883 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
884 TypePrinting *TypePrinter,
885 SlotTracker *Machine, const Module *Context,
886 bool FromValue = false);
887
888 static const char *getPredicateText(unsigned predicate) {
889 const char * pred = "unknown";
890 switch (predicate) {
891 case FCmpInst::FCMP_FALSE: pred = "false"; break;
892 case FCmpInst::FCMP_OEQ: pred = "oeq"; break;
893 case FCmpInst::FCMP_OGT: pred = "ogt"; break;
894 case FCmpInst::FCMP_OGE: pred = "oge"; break;
895 case FCmpInst::FCMP_OLT: pred = "olt"; break;
896 case FCmpInst::FCMP_OLE: pred = "ole"; break;
897 case FCmpInst::FCMP_ONE: pred = "one"; break;
898 case FCmpInst::FCMP_ORD: pred = "ord"; break;
899 case FCmpInst::FCMP_UNO: pred = "uno"; break;
900 case FCmpInst::FCMP_UEQ: pred = "ueq"; break;
901 case FCmpInst::FCMP_UGT: pred = "ugt"; break;
902 case FCmpInst::FCMP_UGE: pred = "uge"; break;
903 case FCmpInst::FCMP_ULT: pred = "ult"; break;
904 case FCmpInst::FCMP_ULE: pred = "ule"; break;
905 case FCmpInst::FCMP_UNE: pred = "une"; break;
906 case FCmpInst::FCMP_TRUE: pred = "true"; break;
907 case ICmpInst::ICMP_EQ: pred = "eq"; break;
908 case ICmpInst::ICMP_NE: pred = "ne"; break;
909 case ICmpInst::ICMP_SGT: pred = "sgt"; break;
910 case ICmpInst::ICMP_SGE: pred = "sge"; break;
911 case ICmpInst::ICMP_SLT: pred = "slt"; break;
912 case ICmpInst::ICMP_SLE: pred = "sle"; break;
913 case ICmpInst::ICMP_UGT: pred = "ugt"; break;
914 case ICmpInst::ICMP_UGE: pred = "uge"; break;
915 case ICmpInst::ICMP_ULT: pred = "ult"; break;
916 case ICmpInst::ICMP_ULE: pred = "ule"; break;
917 }
918 return pred;
919 }
920
921 static void writeAtomicRMWOperation(raw_ostream &Out,
922 AtomicRMWInst::BinOp Op) {
923 switch (Op) {
924 default: Out << " <unknown operation " << Op << ">"; break;
925 case AtomicRMWInst::Xchg: Out << " xchg"; break;
926 case AtomicRMWInst::Add: Out << " add"; break;
927 case AtomicRMWInst::Sub: Out << " sub"; break;
928 case AtomicRMWInst::And: Out << " and"; break;
929 case AtomicRMWInst::Nand: Out << " nand"; break;
930 case AtomicRMWInst::Or: Out << " or"; break;
931 case AtomicRMWInst::Xor: Out << " xor"; break;
932 case AtomicRMWInst::Max: Out << " max"; break;
933 case AtomicRMWInst::Min: Out << " min"; break;
934 case AtomicRMWInst::UMax: Out << " umax"; break;
935 case AtomicRMWInst::UMin: Out << " umin"; break;
936 }
937 }
938
939 static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
940 if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U)) {
941 // Unsafe algebra implies all the others, no need to write them all out
942 if (FPO->hasUnsafeAlgebra())
943 Out << " fast";
944 else {
945 if (FPO->hasNoNaNs())
946 Out << " nnan";
947 if (FPO->hasNoInfs())
948 Out << " ninf";
949 if (FPO->hasNoSignedZeros())
950 Out << " nsz";
951 if (FPO->hasAllowReciprocal())
952 Out << " arcp";
953 }
954 }
955
956 if (const OverflowingBinaryOperator *OBO =
957 dyn_cast<OverflowingBinaryOperator>(U)) {
958 if (OBO->hasNoUnsignedWrap())
959 Out << " nuw";
960 if (OBO->hasNoSignedWrap())
961 Out << " nsw";
962 } else if (const PossiblyExactOperator *Div =
963 dyn_cast<PossiblyExactOperator>(U)) {
964 if (Div->isExact())
965 Out << " exact";
966 } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
967 if (GEP->isInBounds())
968 Out << " inbounds";
969 }
970 }
971
972 static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
973 TypePrinting &TypePrinter,
974 SlotTracker *Machine,
975 const Module *Context) {
976 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
977 if (CI->getType()->isIntegerTy(1)) {
978 Out << (CI->getZExtValue() ? "true" : "false");
979 return;
980 }
981 Out << CI->getValue();
982 return;
983 }
984
985 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
986 if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle ||
987 &CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble) {
988 // We would like to output the FP constant value in exponential notation,
989 // but we cannot do this if doing so will lose precision. Check here to
990 // make sure that we only output it in exponential format if we can parse
991 // the value back and get the same value.
992 //
993 bool ignored;
994 bool isHalf = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEhalf;
995 bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble;
996 bool isInf = CFP->getValueAPF().isInfinity();
997 bool isNaN = CFP->getValueAPF().isNaN();
998 if (!isHalf && !isInf && !isNaN) {
999 double Val = isDouble ? CFP->getValueAPF().convertToDouble() :
1000 CFP->getValueAPF().convertToFloat();
1001 SmallString<128> StrVal;
1002 raw_svector_ostream(StrVal) << Val;
1003
1004 // Check to make sure that the stringized number is not some string like
1005 // "Inf" or NaN, that atof will accept, but the lexer will not. Check
1006 // that the string matches the "[-+]?[0-9]" regex.
1007 //
1008 if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
1009 ((StrVal[0] == '-' || StrVal[0] == '+') &&
1010 (StrVal[1] >= '0' && StrVal[1] <= '9'))) {
1011 // Reparse stringized version!
1012 if (APFloat(APFloat::IEEEdouble, StrVal).convertToDouble() == Val) {
1013 Out << StrVal.str();
1014 return;
1015 }
1016 }
1017 }
1018 // Otherwise we could not reparse it to exactly the same value, so we must
1019 // output the string in hexadecimal format! Note that loading and storing
1020 // floating point types changes the bits of NaNs on some hosts, notably
1021 // x86, so we must not use these types.
1022 static_assert(sizeof(double) == sizeof(uint64_t),
1023 "assuming that double is 64 bits!");
1024 char Buffer[40];
1025 APFloat apf = CFP->getValueAPF();
1026 // Halves and floats are represented in ASCII IR as double, convert.
1027 if (!isDouble)
1028 apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
1029 &ignored);
1030 Out << "0x" <<
1031 utohex_buffer(uint64_t(apf.bitcastToAPInt().getZExtValue()),
1032 Buffer+40);
1033 return;
1034 }
1035
1036 // Either half, or some form of long double.
1037 // These appear as a magic letter identifying the type, then a
1038 // fixed number of hex digits.
1039 Out << "0x";
1040 // Bit position, in the current word, of the next nibble to print.
1041 int shiftcount;
1042
1043 if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) {
1044 Out << 'K';
1045 // api needed to prevent premature destruction
1046 APInt api = CFP->getValueAPF().bitcastToAPInt();
1047 const uint64_t* p = api.getRawData();
1048 uint64_t word = p[1];
1049 shiftcount = 12;
1050 int width = api.getBitWidth();
1051 for (int j=0; j<width; j+=4, shiftcount-=4) {
1052 unsigned int nibble = (word>>shiftcount) & 15;
1053 if (nibble < 10)
1054 Out << (unsigned char)(nibble + '0');
1055 else
1056 Out << (unsigned char)(nibble - 10 + 'A');
1057 if (shiftcount == 0 && j+4 < width) {
1058 word = *p;
1059 shiftcount = 64;
1060 if (width-j-4 < 64)
1061 shiftcount = width-j-4;
1062 }
1063 }
1064 return;
1065 } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad) {
1066 shiftcount = 60;
1067 Out << 'L';
1068 } else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble) {
1069 shiftcount = 60;
1070 Out << 'M';
1071 } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEhalf) {
1072 shiftcount = 12;
1073 Out << 'H';
1074 } else
1075 llvm_unreachable("Unsupported floating point type");
1076 // api needed to prevent premature destruction
1077 APInt api = CFP->getValueAPF().bitcastToAPInt();
1078 const uint64_t* p = api.getRawData();
1079 uint64_t word = *p;
1080 int width = api.getBitWidth();
1081 for (int j=0; j<width; j+=4, shiftcount-=4) {
1082 unsigned int nibble = (word>>shiftcount) & 15;
1083 if (nibble < 10)
1084 Out << (unsigned char)(nibble + '0');
1085 else
1086 Out << (unsigned char)(nibble - 10 + 'A');
1087 if (shiftcount == 0 && j+4 < width) {
1088 word = *(++p);
1089 shiftcount = 64;
1090 if (width-j-4 < 64)
1091 shiftcount = width-j-4;
1092 }
1093 }
1094 return;
1095 }
1096
1097 if (isa<ConstantAggregateZero>(CV)) {
1098 Out << "zeroinitializer";
1099 return;
1100 }
1101
1102 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
1103 Out << "blockaddress(";
1104 WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine,
1105 Context);
1106 Out << ", ";
1107 WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine,
1108 Context);
1109 Out << ")";
1110 return;
1111 }
1112
1113 if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
1114 Type *ETy = CA->getType()->getElementType();
1115 Out << '[';
1116 TypePrinter.print(ETy, Out);
1117 Out << ' ';
1118 WriteAsOperandInternal(Out, CA->getOperand(0),
1119 &TypePrinter, Machine,
1120 Context);
1121 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1122 Out << ", ";
1123 TypePrinter.print(ETy, Out);
1124 Out << ' ';
1125 WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine,
1126 Context);
1127 }
1128 Out << ']';
1129 return;
1130 }
1131
1132 if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) {
1133 // As a special case, print the array as a string if it is an array of
1134 // i8 with ConstantInt values.
1135 if (CA->isString()) {
1136 Out << "c\"";
1137 PrintEscapedString(CA->getAsString(), Out);
1138 Out << '"';
1139 return;
1140 }
1141
1142 Type *ETy = CA->getType()->getElementType();
1143 Out << '[';
1144 TypePrinter.print(ETy, Out);
1145 Out << ' ';
1146 WriteAsOperandInternal(Out, CA->getElementAsConstant(0),
1147 &TypePrinter, Machine,
1148 Context);
1149 for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) {
1150 Out << ", ";
1151 TypePrinter.print(ETy, Out);
1152 Out << ' ';
1153 WriteAsOperandInternal(Out, CA->getElementAsConstant(i), &TypePrinter,
1154 Machine, Context);
1155 }
1156 Out << ']';
1157 return;
1158 }
1159
1160
1161 if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
1162 if (CS->getType()->isPacked())
1163 Out << '<';
1164 Out << '{';
1165 unsigned N = CS->getNumOperands();
1166 if (N) {
1167 Out << ' ';
1168 TypePrinter.print(CS->getOperand(0)->getType(), Out);
1169 Out << ' ';
1170
1171 WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine,
1172 Context);
1173
1174 for (unsigned i = 1; i < N; i++) {
1175 Out << ", ";
1176 TypePrinter.print(CS->getOperand(i)->getType(), Out);
1177 Out << ' ';
1178
1179 WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine,
1180 Context);
1181 }
1182 Out << ' ';
1183 }
1184
1185 Out << '}';
1186 if (CS->getType()->isPacked())
1187 Out << '>';
1188 return;
1189 }
1190
1191 if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) {
1192 Type *ETy = CV->getType()->getVectorElementType();
1193 Out << '<';
1194 TypePrinter.print(ETy, Out);
1195 Out << ' ';
1196 WriteAsOperandInternal(Out, CV->getAggregateElement(0U), &TypePrinter,
1197 Machine, Context);
1198 for (unsigned i = 1, e = CV->getType()->getVectorNumElements(); i != e;++i){
1199 Out << ", ";
1200 TypePrinter.print(ETy, Out);
1201 Out << ' ';
1202 WriteAsOperandInternal(Out, CV->getAggregateElement(i), &TypePrinter,
1203 Machine, Context);
1204 }
1205 Out << '>';
1206 return;
1207 }
1208
1209 if (isa<ConstantPointerNull>(CV)) {
1210 Out << "null";
1211 return;
1212 }
1213
1214 if (isa<UndefValue>(CV)) {
1215 Out << "undef";
1216 return;
1217 }
1218
1219 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1220 Out << CE->getOpcodeName();
1221 WriteOptimizationInfo(Out, CE);
1222 if (CE->isCompare())
1223 Out << ' ' << getPredicateText(CE->getPredicate());
1224 Out << " (";
1225
1226 for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
1227 TypePrinter.print((*OI)->getType(), Out);
1228 Out << ' ';
1229 WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context);
1230 if (OI+1 != CE->op_end())
1231 Out << ", ";
1232 }
1233
1234 if (CE->hasIndices()) {
1235 ArrayRef<unsigned> Indices = CE->getIndices();
1236 for (unsigned i = 0, e = Indices.size(); i != e; ++i)
1237 Out << ", " << Indices[i];
1238 }
1239
1240 if (CE->isCast()) {
1241 Out << " to ";
1242 TypePrinter.print(CE->getType(), Out);
1243 }
1244
1245 Out << ')';
1246 return;
1247 }
1248
1249 Out << "<placeholder or erroneous Constant>";
1250 }
1251
1252 static void writeMDTuple(raw_ostream &Out, const MDTuple *Node,
1253 TypePrinting *TypePrinter, SlotTracker *Machine,
1254 const Module *Context) {
1255 Out << "!{";
1256 for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
1257 const Metadata *MD = Node->getOperand(mi);
1258 if (!MD)
1259 Out << "null";
1260 else if (auto *MDV = dyn_cast<ValueAsMetadata>(MD)) {
1261 Value *V = MDV->getValue();
1262 TypePrinter->print(V->getType(), Out);
1263 Out << ' ';
1264 WriteAsOperandInternal(Out, V, TypePrinter, Machine, Context);
1265 } else {
1266 WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
1267 }
1268 if (mi + 1 != me)
1269 Out << ", ";
1270 }
1271
1272 Out << "}";
1273 }
1274
1275 namespace {
1276 struct FieldSeparator {
1277 bool Skip;
1278 FieldSeparator() : Skip(true) {}
1279 };
1280 raw_ostream &operator<<(raw_ostream &OS, FieldSeparator &FS) {
1281 if (FS.Skip) {
1282 FS.Skip = false;
1283 return OS;
1284 }
1285 return OS << ", ";
1286 }
1287 } // end namespace
1288
1289 static void writeMDLocation(raw_ostream &Out, const MDLocation *DL,
1290 TypePrinting *TypePrinter, SlotTracker *Machine,
1291 const Module *Context) {
1292 Out << "!MDLocation(";
1293 FieldSeparator FS;
1294 // Always output the line, since 0 is a relevant and important value for it.
1295 Out << FS << "line: " << DL->getLine();
1296 if (DL->getColumn())
1297 Out << FS << "column: " << DL->getColumn();
1298 Out << FS << "scope: ";
1299 WriteAsOperandInternal(Out, DL->getScope(), TypePrinter, Machine, Context);
1300 if (DL->getInlinedAt()) {
1301 Out << FS << "inlinedAt: ";
1302 WriteAsOperandInternal(Out, DL->getInlinedAt(), TypePrinter, Machine,
1303 Context);
1304 }
1305 Out << ")";
1306 }
1307
1308 static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
1309 TypePrinting *TypePrinter,
1310 SlotTracker *Machine,
1311 const Module *Context) {
1312 assert(isa<UniquableMDNode>(Node) && "Expected uniquable MDNode");
1313
1314 auto *Uniquable = cast<UniquableMDNode>(Node);
1315 if (Uniquable->isDistinct())
1316 Out << "distinct ";
1317
1318 switch (Uniquable->getMetadataID()) {
1319 default:
1320 llvm_unreachable("Expected uniquable MDNode");
1321 #define HANDLE_UNIQUABLE_LEAF(CLASS) \
1322 case Metadata::CLASS##Kind: \
1323 write##CLASS(Out, cast<CLASS>(Uniquable), TypePrinter, Machine, Context); \
1324 break;
1325 #include "llvm/IR/Metadata.def"
1326 }
1327 }
1328
1329 // Full implementation of printing a Value as an operand with support for
1330 // TypePrinting, etc.
1331 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1332 TypePrinting *TypePrinter,
1333 SlotTracker *Machine,
1334 const Module *Context) {
1335 if (V->hasName()) {
1336 PrintLLVMName(Out, V);
1337 return;
1338 }
1339
1340 const Constant *CV = dyn_cast<Constant>(V);
1341 if (CV && !isa<GlobalValue>(CV)) {
1342 assert(TypePrinter && "Constants require TypePrinting!");
1343 WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context);
1344 return;
1345 }
1346
1347 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1348 Out << "asm ";
1349 if (IA->hasSideEffects())
1350 Out << "sideeffect ";
1351 if (IA->isAlignStack())
1352 Out << "alignstack ";
1353 // We don't emit the AD_ATT dialect as it's the assumed default.
1354 if (IA->getDialect() == InlineAsm::AD_Intel)
1355 Out << "inteldialect ";
1356 Out << '"';
1357 PrintEscapedString(IA->getAsmString(), Out);
1358 Out << "\", \"";
1359 PrintEscapedString(IA->getConstraintString(), Out);
1360 Out << '"';
1361 return;
1362 }
1363
1364 if (auto *MD = dyn_cast<MetadataAsValue>(V)) {
1365 WriteAsOperandInternal(Out, MD->getMetadata(), TypePrinter, Machine,
1366 Context, /* FromValue */ true);
1367 return;
1368 }
1369
1370 char Prefix = '%';
1371 int Slot;
1372 // If we have a SlotTracker, use it.
1373 if (Machine) {
1374 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1375 Slot = Machine->getGlobalSlot(GV);
1376 Prefix = '@';
1377 } else {
1378 Slot = Machine->getLocalSlot(V);
1379
1380 // If the local value didn't succeed, then we may be referring to a value
1381 // from a different function. Translate it, as this can happen when using
1382 // address of blocks.
1383 if (Slot == -1)
1384 if ((Machine = createSlotTracker(V))) {
1385 Slot = Machine->getLocalSlot(V);
1386 delete Machine;
1387 }
1388 }
1389 } else if ((Machine = createSlotTracker(V))) {
1390 // Otherwise, create one to get the # and then destroy it.
1391 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1392 Slot = Machine->getGlobalSlot(GV);
1393 Prefix = '@';
1394 } else {
1395 Slot = Machine->getLocalSlot(V);
1396 }
1397 delete Machine;
1398 Machine = nullptr;
1399 } else {
1400 Slot = -1;
1401 }
1402
1403 if (Slot != -1)
1404 Out << Prefix << Slot;
1405 else
1406 Out << "<badref>";
1407 }
1408
1409 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
1410 TypePrinting *TypePrinter,
1411 SlotTracker *Machine, const Module *Context,
1412 bool FromValue) {
1413 if (const MDNode *N = dyn_cast<MDNode>(MD)) {
1414 if (!Machine)
1415 Machine = new SlotTracker(Context);
1416 int Slot = Machine->getMetadataSlot(N);
1417 if (Slot == -1)
1418 // Give the pointer value instead of "badref", since this comes up all
1419 // the time when debugging.
1420 Out << "<" << N << ">";
1421 else
1422 Out << '!' << Slot;
1423 return;
1424 }
1425
1426 if (const MDString *MDS = dyn_cast<MDString>(MD)) {
1427 Out << "!\"";
1428 PrintEscapedString(MDS->getString(), Out);
1429 Out << '"';
1430 return;
1431 }
1432
1433 auto *V = cast<ValueAsMetadata>(MD);
1434 assert(TypePrinter && "TypePrinter required for metadata values");
1435 assert((FromValue || !isa<LocalAsMetadata>(V)) &&
1436 "Unexpected function-local metadata outside of value argument");
1437
1438 TypePrinter->print(V->getValue()->getType(), Out);
1439 Out << ' ';
1440 WriteAsOperandInternal(Out, V->getValue(), TypePrinter, Machine, Context);
1441 }
1442
1443 void AssemblyWriter::init() {
1444 if (!TheModule)
1445 return;
1446 TypePrinter.incorporateTypes(*TheModule);
1447 for (const Function &F : *TheModule)
1448 if (const Comdat *C = F.getComdat())
1449 Comdats.insert(C);
1450 for (const GlobalVariable &GV : TheModule->globals())
1451 if (const Comdat *C = GV.getComdat())
1452 Comdats.insert(C);
1453 }
1454
1455
1456 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
1457 const Module *M,
1458 AssemblyAnnotationWriter *AAW)
1459 : Out(o), TheModule(M), Machine(Mac), AnnotationWriter(AAW) {
1460 init();
1461 }
1462
1463 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, const Module *M,
1464 AssemblyAnnotationWriter *AAW)
1465 : Out(o), TheModule(M), ModuleSlotTracker(createSlotTracker(M)),
1466 Machine(*ModuleSlotTracker), AnnotationWriter(AAW) {
1467 init();
1468 }
1469
1470 AssemblyWriter::~AssemblyWriter() { }
1471
1472 void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
1473 if (!Operand) {
1474 Out << "<null operand!>";
1475 return;
1476 }
1477 if (PrintType) {
1478 TypePrinter.print(Operand->getType(), Out);
1479 Out << ' ';
1480 }
1481 WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
1482 }
1483
1484 void AssemblyWriter::writeAtomic(AtomicOrdering Ordering,
1485 SynchronizationScope SynchScope) {
1486 if (Ordering == NotAtomic)
1487 return;
1488
1489 switch (SynchScope) {
1490 case SingleThread: Out << " singlethread"; break;
1491 case CrossThread: break;
1492 }
1493
1494 switch (Ordering) {
1495 default: Out << " <bad ordering " << int(Ordering) << ">"; break;
1496 case Unordered: Out << " unordered"; break;
1497 case Monotonic: Out << " monotonic"; break;
1498 case Acquire: Out << " acquire"; break;
1499 case Release: Out << " release"; break;
1500 case AcquireRelease: Out << " acq_rel"; break;
1501 case SequentiallyConsistent: Out << " seq_cst"; break;
1502 }
1503 }
1504
1505 void AssemblyWriter::writeAtomicCmpXchg(AtomicOrdering SuccessOrdering,
1506 AtomicOrdering FailureOrdering,
1507 SynchronizationScope SynchScope) {
1508 assert(SuccessOrdering != NotAtomic && FailureOrdering != NotAtomic);
1509
1510 switch (SynchScope) {
1511 case SingleThread: Out << " singlethread"; break;
1512 case CrossThread: break;
1513 }
1514
1515 switch (SuccessOrdering) {
1516 default: Out << " <bad ordering " << int(SuccessOrdering) << ">"; break;
1517 case Unordered: Out << " unordered"; break;
1518 case Monotonic: Out << " monotonic"; break;
1519 case Acquire: Out << " acquire"; break;
1520 case Release: Out << " release"; break;
1521 case AcquireRelease: Out << " acq_rel"; break;
1522 case SequentiallyConsistent: Out << " seq_cst"; break;
1523 }
1524
1525 switch (FailureOrdering) {
1526 default: Out << " <bad ordering " << int(FailureOrdering) << ">"; break;
1527 case Unordered: Out << " unordered"; break;
1528 case Monotonic: Out << " monotonic"; break;
1529 case Acquire: Out << " acquire"; break;
1530 case Release: Out << " release"; break;
1531 case AcquireRelease: Out << " acq_rel"; break;
1532 case SequentiallyConsistent: Out << " seq_cst"; break;
1533 }
1534 }
1535
1536 void AssemblyWriter::writeParamOperand(const Value *Operand,
1537 AttributeSet Attrs, unsigned Idx) {
1538 if (!Operand) {
1539 Out << "<null operand!>";
1540 return;
1541 }
1542
1543 // Print the type
1544 TypePrinter.print(Operand->getType(), Out);
1545 // Print parameter attributes list
1546 if (Attrs.hasAttributes(Idx))
1547 Out << ' ' << Attrs.getAsString(Idx);
1548 Out << ' ';
1549 // Print the operand
1550 WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
1551 }
1552
1553 void AssemblyWriter::printModule(const Module *M) {
1554 Machine.initialize();
1555
1556 if (shouldPreserveAssemblyUseListOrder())
1557 UseListOrders = predictUseListOrder(M);
1558
1559 if (!M->getModuleIdentifier().empty() &&
1560 // Don't print the ID if it will start a new line (which would
1561 // require a comment char before it).
1562 M->getModuleIdentifier().find('\n') == std::string::npos)
1563 Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
1564
1565 const std::string &DL = M->getDataLayoutStr();
1566 if (!DL.empty())
1567 Out << "target datalayout = \"" << DL << "\"\n";
1568 if (!M->getTargetTriple().empty())
1569 Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
1570
1571 if (!M->getModuleInlineAsm().empty()) {
1572 // Split the string into lines, to make it easier to read the .ll file.
1573 std::string Asm = M->getModuleInlineAsm();
1574 size_t CurPos = 0;
1575 size_t NewLine = Asm.find_first_of('\n', CurPos);
1576 Out << '\n';
1577 while (NewLine != std::string::npos) {
1578 // We found a newline, print the portion of the asm string from the
1579 // last newline up to this newline.
1580 Out << "module asm \"";
1581 PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
1582 Out);
1583 Out << "\"\n";
1584 CurPos = NewLine+1;
1585 NewLine = Asm.find_first_of('\n', CurPos);
1586 }
1587 std::string rest(Asm.begin()+CurPos, Asm.end());
1588 if (!rest.empty()) {
1589 Out << "module asm \"";
1590 PrintEscapedString(rest, Out);
1591 Out << "\"\n";
1592 }
1593 }
1594
1595 printTypeIdentities();
1596
1597 // Output all comdats.
1598 if (!Comdats.empty())
1599 Out << '\n';
1600 for (const Comdat *C : Comdats) {
1601 printComdat(C);
1602 if (C != Comdats.back())
1603 Out << '\n';
1604 }
1605
1606 // Output all globals.
1607 if (!M->global_empty()) Out << '\n';
1608 for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
1609 I != E; ++I) {
1610 printGlobal(I); Out << '\n';
1611 }
1612
1613 // Output all aliases.
1614 if (!M->alias_empty()) Out << "\n";
1615 for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
1616 I != E; ++I)
1617 printAlias(I);
1618
1619 // Output global use-lists.
1620 printUseLists(nullptr);
1621
1622 // Output all of the functions.
1623 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1624 printFunction(I);
1625 assert(UseListOrders.empty() && "All use-lists should have been consumed");
1626
1627 // Output all attribute groups.
1628 if (!Machine.as_empty()) {
1629 Out << '\n';
1630 writeAllAttributeGroups();
1631 }
1632
1633 // Output named metadata.
1634 if (!M->named_metadata_empty()) Out << '\n';
1635
1636 for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
1637 E = M->named_metadata_end(); I != E; ++I)
1638 printNamedMDNode(I);
1639
1640 // Output metadata.
1641 if (!Machine.mdn_empty()) {
1642 Out << '\n';
1643 writeAllMDNodes();
1644 }
1645 }
1646
1647 void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
1648 Out << '!';
1649 StringRef Name = NMD->getName();
1650 if (Name.empty()) {
1651 Out << "<empty name> ";
1652 } else {
1653 if (isalpha(static_cast<unsigned char>(Name[0])) ||
1654 Name[0] == '-' || Name[0] == '$' ||
1655 Name[0] == '.' || Name[0] == '_')
1656 Out << Name[0];
1657 else
1658 Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F);
1659 for (unsigned i = 1, e = Name.size(); i != e; ++i) {
1660 unsigned char C = Name[i];
1661 if (isalnum(static_cast<unsigned char>(C)) || C == '-' || C == '$' ||
1662 C == '.' || C == '_')
1663 Out << C;
1664 else
1665 Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
1666 }
1667 }
1668 Out << " = !{";
1669 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
1670 if (i) Out << ", ";
1671 int Slot = Machine.getMetadataSlot(NMD->getOperand(i));
1672 if (Slot == -1)
1673 Out << "<badref>";
1674 else
1675 Out << '!' << Slot;
1676 }
1677 Out << "}\n";
1678 }
1679
1680
1681 static void PrintLinkage(GlobalValue::LinkageTypes LT,
1682 formatted_raw_ostream &Out) {
1683 switch (LT) {
1684 case GlobalValue::ExternalLinkage: break;
1685 case GlobalValue::PrivateLinkage: Out << "private "; break;
1686 case GlobalValue::InternalLinkage: Out << "internal "; break;
1687 case GlobalValue::LinkOnceAnyLinkage: Out << "linkonce "; break;
1688 case GlobalValue::LinkOnceODRLinkage: Out << "linkonce_odr "; break;
1689 case GlobalValue::WeakAnyLinkage: Out << "weak "; break;
1690 case GlobalValue::WeakODRLinkage: Out << "weak_odr "; break;
1691 case GlobalValue::CommonLinkage: Out << "common "; break;
1692 case GlobalValue::AppendingLinkage: Out << "appending "; break;
1693 case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
1694 case GlobalValue::AvailableExternallyLinkage:
1695 Out << "available_externally ";
1696 break;
1697 }
1698 }
1699
1700
1701 static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
1702 formatted_raw_ostream &Out) {
1703 switch (Vis) {
1704 case GlobalValue::DefaultVisibility: break;
1705 case GlobalValue::HiddenVisibility: Out << "hidden "; break;
1706 case GlobalValue::ProtectedVisibility: Out << "protected "; break;
1707 }
1708 }
1709
1710 static void PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT,
1711 formatted_raw_ostream &Out) {
1712 switch (SCT) {
1713 case GlobalValue::DefaultStorageClass: break;
1714 case GlobalValue::DLLImportStorageClass: Out << "dllimport "; break;
1715 case GlobalValue::DLLExportStorageClass: Out << "dllexport "; break;
1716 }
1717 }
1718
1719 static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,
1720 formatted_raw_ostream &Out) {
1721 switch (TLM) {
1722 case GlobalVariable::NotThreadLocal:
1723 break;
1724 case GlobalVariable::GeneralDynamicTLSModel:
1725 Out << "thread_local ";
1726 break;
1727 case GlobalVariable::LocalDynamicTLSModel:
1728 Out << "thread_local(localdynamic) ";
1729 break;
1730 case GlobalVariable::InitialExecTLSModel:
1731 Out << "thread_local(initialexec) ";
1732 break;
1733 case GlobalVariable::LocalExecTLSModel:
1734 Out << "thread_local(localexec) ";
1735 break;
1736 }
1737 }
1738
1739 static void maybePrintComdat(formatted_raw_ostream &Out,
1740 const GlobalObject &GO) {
1741 const Comdat *C = GO.getComdat();
1742 if (!C)
1743 return;
1744
1745 if (isa<GlobalVariable>(GO))
1746 Out << ',';
1747 Out << " comdat";
1748
1749 if (GO.getName() == C->getName())
1750 return;
1751
1752 Out << '(';
1753 PrintLLVMName(Out, C->getName(), ComdatPrefix);
1754 Out << ')';
1755 }
1756
1757 void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
1758 if (GV->isMaterializable())
1759 Out << "; Materializable\n";
1760
1761 WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent());
1762 Out << " = ";
1763
1764 if (!GV->hasInitializer() && GV->hasExternalLinkage())
1765 Out << "external ";
1766
1767 PrintLinkage(GV->getLinkage(), Out);
1768 PrintVisibility(GV->getVisibility(), Out);
1769 PrintDLLStorageClass(GV->getDLLStorageClass(), Out);
1770 PrintThreadLocalModel(GV->getThreadLocalMode(), Out);
1771 if (GV->hasUnnamedAddr())
1772 Out << "unnamed_addr ";
1773
1774 if (unsigned AddressSpace = GV->getType()->getAddressSpace())
1775 Out << "addrspace(" << AddressSpace << ") ";
1776 if (GV->isExternallyInitialized()) Out << "externally_initialized ";
1777 Out << (GV->isConstant() ? "constant " : "global ");
1778 TypePrinter.print(GV->getType()->getElementType(), Out);
1779
1780 if (GV->hasInitializer()) {
1781 Out << ' ';
1782 writeOperand(GV->getInitializer(), false);
1783 }
1784
1785 if (GV->hasSection()) {
1786 Out << ", section \"";
1787 PrintEscapedString(GV->getSection(), Out);
1788 Out << '"';
1789 }
1790 maybePrintComdat(Out, *GV);
1791 if (GV->getAlignment())
1792 Out << ", align " << GV->getAlignment();
1793
1794 printInfoComment(*GV);
1795 }
1796
1797 void AssemblyWriter::printAlias(const GlobalAlias *GA) {
1798 if (GA->isMaterializable())
1799 Out << "; Materializable\n";
1800
1801 // Don't crash when dumping partially built GA
1802 if (!GA->hasName())
1803 Out << "<<nameless>> = ";
1804 else {
1805 PrintLLVMName(Out, GA);
1806 Out << " = ";
1807 }
1808 PrintLinkage(GA->getLinkage(), Out);
1809 PrintVisibility(GA->getVisibility(), Out);
1810 PrintDLLStorageClass(GA->getDLLStorageClass(), Out);
1811 PrintThreadLocalModel(GA->getThreadLocalMode(), Out);
1812 if (GA->hasUnnamedAddr())
1813 Out << "unnamed_addr ";
1814
1815 Out << "alias ";
1816
1817 const Constant *Aliasee = GA->getAliasee();
1818
1819 if (!Aliasee) {
1820 TypePrinter.print(GA->getType(), Out);
1821 Out << " <<NULL ALIASEE>>";
1822 } else {
1823 writeOperand(Aliasee, !isa<ConstantExpr>(Aliasee));
1824 }
1825
1826 printInfoComment(*GA);
1827 Out << '\n';
1828 }
1829
1830 void AssemblyWriter::printComdat(const Comdat *C) {
1831 C->print(Out);
1832 }
1833
1834 void AssemblyWriter::printTypeIdentities() {
1835 if (TypePrinter.NumberedTypes.empty() &&
1836 TypePrinter.NamedTypes.empty())
1837 return;
1838
1839 Out << '\n';
1840
1841 // We know all the numbers that each type is used and we know that it is a
1842 // dense assignment. Convert the map to an index table.
1843 std::vector<StructType*> NumberedTypes(TypePrinter.NumberedTypes.size());
1844 for (DenseMap<StructType*, unsigned>::iterator I =
1845 TypePrinter.NumberedTypes.begin(), E = TypePrinter.NumberedTypes.end();
1846 I != E; ++I) {
1847 assert(I->second < NumberedTypes.size() && "Didn't get a dense numbering?");
1848 NumberedTypes[I->second] = I->first;
1849 }
1850
1851 // Emit all numbered types.
1852 for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) {
1853 Out << '%' << i << " = type ";
1854
1855 // Make sure we print out at least one level of the type structure, so
1856 // that we do not get %2 = type %2
1857 TypePrinter.printStructBody(NumberedTypes[i], Out);
1858 Out << '\n';
1859 }
1860
1861 for (unsigned i = 0, e = TypePrinter.NamedTypes.size(); i != e; ++i) {
1862 PrintLLVMName(Out, TypePrinter.NamedTypes[i]->getName(), LocalPrefix);
1863 Out << " = type ";
1864
1865 // Make sure we print out at least one level of the type structure, so
1866 // that we do not get %FILE = type %FILE
1867 TypePrinter.printStructBody(TypePrinter.NamedTypes[i], Out);
1868 Out << '\n';
1869 }
1870 }
1871
1872 /// printFunction - Print all aspects of a function.
1873 ///
1874 void AssemblyWriter::printFunction(const Function *F) {
1875 // Print out the return type and name.
1876 Out << '\n';
1877
1878 if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
1879
1880 if (F->isMaterializable())
1881 Out << "; Materializable\n";
1882
1883 const AttributeSet &Attrs = F->getAttributes();
1884 if (Attrs.hasAttributes(AttributeSet::FunctionIndex)) {
1885 AttributeSet AS = Attrs.getFnAttributes();
1886 std::string AttrStr;
1887
1888 unsigned Idx = 0;
1889 for (unsigned E = AS.getNumSlots(); Idx != E; ++Idx)
1890 if (AS.getSlotIndex(Idx) == AttributeSet::FunctionIndex)
1891 break;
1892
1893 for (AttributeSet::iterator I = AS.begin(Idx), E = AS.end(Idx);
1894 I != E; ++I) {
1895 Attribute Attr = *I;
1896 if (!Attr.isStringAttribute()) {
1897 if (!AttrStr.empty()) AttrStr += ' ';
1898 AttrStr += Attr.getAsString();
1899 }
1900 }
1901
1902 if (!AttrStr.empty())
1903 Out << "; Function Attrs: " << AttrStr << '\n';
1904 }
1905
1906 if (F->isDeclaration())
1907 Out << "declare ";
1908 else
1909 Out << "define ";
1910
1911 PrintLinkage(F->getLinkage(), Out);
1912 PrintVisibility(F->getVisibility(), Out);
1913 PrintDLLStorageClass(F->getDLLStorageClass(), Out);
1914
1915 // Print the calling convention.
1916 if (F->getCallingConv() != CallingConv::C) {
1917 PrintCallingConv(F->getCallingConv(), Out);
1918 Out << " ";
1919 }
1920
1921 FunctionType *FT = F->getFunctionType();
1922 if (Attrs.hasAttributes(AttributeSet::ReturnIndex))
1923 Out << Attrs.getAsString(AttributeSet::ReturnIndex) << ' ';
1924 TypePrinter.print(F->getReturnType(), Out);
1925 Out << ' ';
1926 WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent());
1927 Out << '(';
1928 Machine.incorporateFunction(F);
1929
1930 // Loop over the arguments, printing them...
1931
1932 unsigned Idx = 1;
1933 if (!F->isDeclaration()) {
1934 // If this isn't a declaration, print the argument names as well.
1935 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
1936 I != E; ++I) {
1937 // Insert commas as we go... the first arg doesn't get a comma
1938 if (I != F->arg_begin()) Out << ", ";
1939 printArgument(I, Attrs, Idx);
1940 Idx++;
1941 }
1942 } else {
1943 // Otherwise, print the types from the function type.
1944 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1945 // Insert commas as we go... the first arg doesn't get a comma
1946 if (i) Out << ", ";
1947
1948 // Output type...
1949 TypePrinter.print(FT->getParamType(i), Out);
1950
1951 if (Attrs.hasAttributes(i+1))
1952 Out << ' ' << Attrs.getAsString(i+1);
1953 }
1954 }
1955
1956 // Finish printing arguments...
1957 if (FT->isVarArg()) {
1958 if (FT->getNumParams()) Out << ", ";
1959 Out << "..."; // Output varargs portion of signature!
1960 }
1961 Out << ')';
1962 if (F->hasUnnamedAddr())
1963 Out << " unnamed_addr";
1964 if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
1965 Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttributes());
1966 if (F->hasSection()) {
1967 Out << " section \"";
1968 PrintEscapedString(F->getSection(), Out);
1969 Out << '"';
1970 }
1971 maybePrintComdat(Out, *F);
1972 if (F->getAlignment())
1973 Out << " align " << F->getAlignment();
1974 if (F->hasGC())
1975 Out << " gc \"" << F->getGC() << '"';
1976 if (F->hasPrefixData()) {
1977 Out << " prefix ";
1978 writeOperand(F->getPrefixData(), true);
1979 }
1980 if (F->hasPrologueData()) {
1981 Out << " prologue ";
1982 writeOperand(F->getPrologueData(), true);
1983 }
1984
1985 if (F->isDeclaration()) {
1986 Out << '\n';
1987 } else {
1988 Out << " {";
1989 // Output all of the function's basic blocks.
1990 for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
1991 printBasicBlock(I);
1992
1993 // Output the function's use-lists.
1994 printUseLists(F);
1995
1996 Out << "}\n";
1997 }
1998
1999 Machine.purgeFunction();
2000 }
2001
2002 /// printArgument - This member is called for every argument that is passed into
2003 /// the function. Simply print it out
2004 ///
2005 void AssemblyWriter::printArgument(const Argument *Arg,
2006 AttributeSet Attrs, unsigned Idx) {
2007 // Output type...
2008 TypePrinter.print(Arg->getType(), Out);
2009
2010 // Output parameter attributes list
2011 if (Attrs.hasAttributes(Idx))
2012 Out << ' ' << Attrs.getAsString(Idx);
2013
2014 // Output name, if available...
2015 if (Arg->hasName()) {
2016 Out << ' ';
2017 PrintLLVMName(Out, Arg);
2018 }
2019 }
2020
2021 /// printBasicBlock - This member is called for each basic block in a method.
2022 ///
2023 void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
2024 if (BB->hasName()) { // Print out the label if it exists...
2025 Out << "\n";
2026 PrintLLVMName(Out, BB->getName(), LabelPrefix);
2027 Out << ':';
2028 } else if (!BB->use_empty()) { // Don't print block # of no uses...
2029 Out << "\n; <label>:";
2030 int Slot = Machine.getLocalSlot(BB);
2031 if (Slot != -1)
2032 Out << Slot;
2033 else
2034 Out << "<badref>";
2035 }
2036
2037 if (!BB->getParent()) {
2038 Out.PadToColumn(50);
2039 Out << "; Error: Block without parent!";
2040 } else if (BB != &BB->getParent()->getEntryBlock()) { // Not the entry block?
2041 // Output predecessors for the block.
2042 Out.PadToColumn(50);
2043 Out << ";";
2044 const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
2045
2046 if (PI == PE) {
2047 Out << " No predecessors!";
2048 } else {
2049 Out << " preds = ";
2050 writeOperand(*PI, false);
2051 for (++PI; PI != PE; ++PI) {
2052 Out << ", ";
2053 writeOperand(*PI, false);
2054 }
2055 }
2056 }
2057
2058 Out << "\n";
2059
2060 if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
2061
2062 // Output all of the instructions in the basic block...
2063 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
2064 printInstructionLine(*I);
2065 }
2066
2067 if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
2068 }
2069
2070 /// printInstructionLine - Print an instruction and a newline character.
2071 void AssemblyWriter::printInstructionLine(const Instruction &I) {
2072 printInstruction(I);
2073 Out << '\n';
2074 }
2075
2076 /// printInfoComment - Print a little comment after the instruction indicating
2077 /// which slot it occupies.
2078 ///
2079 void AssemblyWriter::printInfoComment(const Value &V) {
2080 if (AnnotationWriter)
2081 AnnotationWriter->printInfoComment(V, Out);
2082 }
2083
2084 // This member is called for each Instruction in a function..
2085 void AssemblyWriter::printInstruction(const Instruction &I) {
2086 if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
2087
2088 // Print out indentation for an instruction.
2089 Out << " ";
2090
2091 // Print out name if it exists...
2092 if (I.hasName()) {
2093 PrintLLVMName(Out, &I);
2094 Out << " = ";
2095 } else if (!I.getType()->isVoidTy()) {
2096 // Print out the def slot taken.
2097 int SlotNum = Machine.getLocalSlot(&I);
2098 if (SlotNum == -1)
2099 Out << "<badref> = ";
2100 else
2101 Out << '%' << SlotNum << " = ";
2102 }
2103
2104 if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
2105 if (CI->isMustTailCall())
2106 Out << "musttail ";
2107 else if (CI->isTailCall())
2108 Out << "tail ";
2109 }
2110
2111 // Print out the opcode...
2112 Out << I.getOpcodeName();
2113
2114 // If this is an atomic load or store, print out the atomic marker.
2115 if ((isa<LoadInst>(I) && cast<LoadInst>(I).isAtomic()) ||
2116 (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic()))
2117 Out << " atomic";
2118
2119 if (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isWeak())
2120 Out << " weak";
2121
2122 // If this is a volatile operation, print out the volatile marker.
2123 if ((isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) ||
2124 (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) ||
2125 (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) ||
2126 (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile()))
2127 Out << " volatile";
2128
2129 // Print out optimization information.
2130 WriteOptimizationInfo(Out, &I);
2131
2132 // Print out the compare instruction predicates
2133 if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
2134 Out << ' ' << getPredicateText(CI->getPredicate());
2135
2136 // Print out the atomicrmw operation
2137 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I))
2138 writeAtomicRMWOperation(Out, RMWI->getOperation());
2139
2140 // Print out the type of the operands...
2141 const Value *Operand = I.getNumOperands() ? I.getOperand(0) : nullptr;
2142
2143 // Special case conditional branches to swizzle the condition out to the front
2144 if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
2145 const BranchInst &BI(cast<BranchInst>(I));
2146 Out << ' ';
2147 writeOperand(BI.getCondition(), true);
2148 Out << ", ";
2149 writeOperand(BI.getSuccessor(0), true);
2150 Out << ", ";
2151 writeOperand(BI.getSuccessor(1), true);
2152
2153 } else if (isa<SwitchInst>(I)) {
2154 const SwitchInst& SI(cast<SwitchInst>(I));
2155 // Special case switch instruction to get formatting nice and correct.
2156 Out << ' ';
2157 writeOperand(SI.getCondition(), true);
2158 Out << ", ";
2159 writeOperand(SI.getDefaultDest(), true);
2160 Out << " [";
2161 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
2162 i != e; ++i) {
2163 Out << "\n ";
2164 writeOperand(i.getCaseValue(), true);
2165 Out << ", ";
2166 writeOperand(i.getCaseSuccessor(), true);
2167 }
2168 Out << "\n ]";
2169 } else if (isa<IndirectBrInst>(I)) {
2170 // Special case indirectbr instruction to get formatting nice and correct.
2171 Out << ' ';
2172 writeOperand(Operand, true);
2173 Out << ", [";
2174
2175 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2176 if (i != 1)
2177 Out << ", ";
2178 writeOperand(I.getOperand(i), true);
2179 }
2180 Out << ']';
2181 } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
2182 Out << ' ';
2183 TypePrinter.print(I.getType(), Out);
2184 Out << ' ';
2185
2186 for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
2187 if (op) Out << ", ";
2188 Out << "[ ";
2189 writeOperand(PN->getIncomingValue(op), false); Out << ", ";
2190 writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
2191 }
2192 } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
2193 Out << ' ';
2194 writeOperand(I.getOperand(0), true);
2195 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
2196 Out << ", " << *i;
2197 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
2198 Out << ' ';
2199 writeOperand(I.getOperand(0), true); Out << ", ";
2200 writeOperand(I.getOperand(1), true);
2201 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
2202 Out << ", " << *i;
2203 } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) {
2204 Out << ' ';
2205 TypePrinter.print(I.getType(), Out);
2206 Out << " personality ";
2207 writeOperand(I.getOperand(0), true); Out << '\n';
2208
2209 if (LPI->isCleanup())
2210 Out << " cleanup";
2211
2212 for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
2213 if (i != 0 || LPI->isCleanup()) Out << "\n";
2214 if (LPI->isCatch(i))
2215 Out << " catch ";
2216 else
2217 Out << " filter ";
2218
2219 writeOperand(LPI->getClause(i), true);
2220 }
2221 } else if (isa<ReturnInst>(I) && !Operand) {
2222 Out << " void";
2223 } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
2224 // Print the calling convention being used.
2225 if (CI->getCallingConv() != CallingConv::C) {
2226 Out << " ";
2227 PrintCallingConv(CI->getCallingConv(), Out);
2228 }
2229
2230 Operand = CI->getCalledValue();
2231 PointerType *PTy = cast<PointerType>(Operand->getType());
2232 FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
2233 Type *RetTy = FTy->getReturnType();
2234 const AttributeSet &PAL = CI->getAttributes();
2235
2236 if (PAL.hasAttributes(AttributeSet::ReturnIndex))
2237 Out << ' ' << PAL.getAsString(AttributeSet::ReturnIndex);
2238
2239 // If possible, print out the short form of the call instruction. We can
2240 // only do this if the first argument is a pointer to a nonvararg function,
2241 // and if the return type is not a pointer to a function.
2242 //
2243 Out << ' ';
2244 if (!FTy->isVarArg() &&
2245 (!RetTy->isPointerTy() ||
2246 !cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) {
2247 TypePrinter.print(RetTy, Out);
2248 Out << ' ';
2249 writeOperand(Operand, false);
2250 } else {
2251 writeOperand(Operand, true);
2252 }
2253 Out << '(';
2254 for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) {
2255 if (op > 0)
2256 Out << ", ";
2257 writeParamOperand(CI->getArgOperand(op), PAL, op + 1);
2258 }
2259
2260 // Emit an ellipsis if this is a musttail call in a vararg function. This
2261 // is only to aid readability, musttail calls forward varargs by default.
2262 if (CI->isMustTailCall() && CI->getParent() &&
2263 CI->getParent()->getParent() &&
2264 CI->getParent()->getParent()->isVarArg())
2265 Out << ", ...";
2266
2267 Out << ')';
2268 if (PAL.hasAttributes(AttributeSet::FunctionIndex))
2269 Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
2270 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
2271 Operand = II->getCalledValue();
2272 PointerType *PTy = cast<PointerType>(Operand->getType());
2273 FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
2274 Type *RetTy = FTy->getReturnType();
2275 const AttributeSet &PAL = II->getAttributes();
2276
2277 // Print the calling convention being used.
2278 if (II->getCallingConv() != CallingConv::C) {
2279 Out << " ";
2280 PrintCallingConv(II->getCallingConv(), Out);
2281 }
2282
2283 if (PAL.hasAttributes(AttributeSet::ReturnIndex))
2284 Out << ' ' << PAL.getAsString(AttributeSet::ReturnIndex);
2285
2286 // If possible, print out the short form of the invoke instruction. We can
2287 // only do this if the first argument is a pointer to a nonvararg function,
2288 // and if the return type is not a pointer to a function.
2289 //
2290 Out << ' ';
2291 if (!FTy->isVarArg() &&
2292 (!RetTy->isPointerTy() ||
2293 !cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) {
2294 TypePrinter.print(RetTy, Out);
2295 Out << ' ';
2296 writeOperand(Operand, false);
2297 } else {
2298 writeOperand(Operand, true);
2299 }
2300 Out << '(';
2301 for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) {
2302 if (op)
2303 Out << ", ";
2304 writeParamOperand(II->getArgOperand(op), PAL, op + 1);
2305 }
2306
2307 Out << ')';
2308 if (PAL.hasAttributes(AttributeSet::FunctionIndex))
2309 Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
2310
2311 Out << "\n to ";
2312 writeOperand(II->getNormalDest(), true);
2313 Out << " unwind ";
2314 writeOperand(II->getUnwindDest(), true);
2315
2316 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
2317 Out << ' ';
2318 if (AI->isUsedWithInAlloca())
2319 Out << "inalloca ";
2320 TypePrinter.print(AI->getAllocatedType(), Out);
2321 if (!AI->getArraySize() || AI->isArrayAllocation()) {
2322 Out << ", ";
2323 writeOperand(AI->getArraySize(), true);
2324 }
2325 if (AI->getAlignment()) {
2326 Out << ", align " << AI->getAlignment();
2327 }
2328 } else if (isa<CastInst>(I)) {
2329 if (Operand) {
2330 Out << ' ';
2331 writeOperand(Operand, true); // Work with broken code
2332 }
2333 Out << " to ";
2334 TypePrinter.print(I.getType(), Out);
2335 } else if (isa<VAArgInst>(I)) {
2336 if (Operand) {
2337 Out << ' ';
2338 writeOperand(Operand, true); // Work with broken code
2339 }
2340 Out << ", ";
2341 TypePrinter.print(I.getType(), Out);
2342 } else if (Operand) { // Print the normal way.
2343
2344 // PrintAllTypes - Instructions who have operands of all the same type
2345 // omit the type from all but the first operand. If the instruction has
2346 // different type operands (for example br), then they are all printed.
2347 bool PrintAllTypes = false;
2348 Type *TheType = Operand->getType();
2349
2350 // Select, Store and ShuffleVector always print all types.
2351 if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
2352 || isa<ReturnInst>(I)) {
2353 PrintAllTypes = true;
2354 } else {
2355 for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
2356 Operand = I.getOperand(i);
2357 // note that Operand shouldn't be null, but the test helps make dump()
2358 // more tolerant of malformed IR
2359 if (Operand && Operand->getType() != TheType) {
2360 PrintAllTypes = true; // We have differing types! Print them all!
2361 break;
2362 }
2363 }
2364 }
2365
2366 if (!PrintAllTypes) {
2367 Out << ' ';
2368 TypePrinter.print(TheType, Out);
2369 }
2370
2371 Out << ' ';
2372 for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
2373 if (i) Out << ", ";
2374 writeOperand(I.getOperand(i), PrintAllTypes);
2375 }
2376 }
2377
2378 // Print atomic ordering/alignment for memory operations
2379 if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
2380 if (LI->isAtomic())
2381 writeAtomic(LI->getOrdering(), LI->getSynchScope());
2382 if (LI->getAlignment())
2383 Out << ", align " << LI->getAlignment();
2384 } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
2385 if (SI->isAtomic())
2386 writeAtomic(SI->getOrdering(), SI->getSynchScope());
2387 if (SI->getAlignment())
2388 Out << ", align " << SI->getAlignment();
2389 } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) {
2390 writeAtomicCmpXchg(CXI->getSuccessOrdering(), CXI->getFailureOrdering(),
2391 CXI->getSynchScope());
2392 } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) {
2393 writeAtomic(RMWI->getOrdering(), RMWI->getSynchScope());
2394 } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) {
2395 writeAtomic(FI->getOrdering(), FI->getSynchScope());
2396 }
2397
2398 // Print Metadata info.
2399 SmallVector<std::pair<unsigned, MDNode *>, 4> InstMD;
2400 I.getAllMetadata(InstMD);
2401 if (!InstMD.empty()) {
2402 SmallVector<StringRef, 8> MDNames;
2403 I.getType()->getContext().getMDKindNames(MDNames);
2404 for (unsigned i = 0, e = InstMD.size(); i != e; ++i) {
2405 unsigned Kind = InstMD[i].first;
2406 if (Kind < MDNames.size()) {
2407 Out << ", !" << MDNames[Kind];
2408 } else {
2409 Out << ", !<unknown kind #" << Kind << ">";
2410 }
2411 Out << ' ';
2412 WriteAsOperandInternal(Out, InstMD[i].second, &TypePrinter, &Machine,
2413 TheModule);
2414 }
2415 }
2416 printInfoComment(I);
2417 }
2418
2419 static void WriteMDNodeComment(const MDNode *Node,
2420 formatted_raw_ostream &Out) {
2421 if (Node->getNumOperands() < 1)
2422 return;
2423
2424 Metadata *Op = Node->getOperand(0);
2425 if (!Op || !isa<MDString>(Op))
2426 return;
2427
2428 DIDescriptor Desc(Node);
2429 if (!Desc.Verify())
2430 return;
2431
2432 unsigned Tag = Desc.getTag();
2433 Out.PadToColumn(50);
2434 if (dwarf::TagString(Tag)) {
2435 Out << "; ";
2436 Desc.print(Out);
2437 } else if (Tag == dwarf::DW_TAG_user_base) {
2438 Out << "; [ DW_TAG_user_base ]";
2439 }
2440 }
2441
2442 void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) {
2443 Out << '!' << Slot << " = ";
2444 printMDNodeBody(Node);
2445 }
2446
2447 void AssemblyWriter::writeAllMDNodes() {
2448 SmallVector<const MDNode *, 16> Nodes;
2449 Nodes.resize(Machine.mdn_size());
2450 for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end();
2451 I != E; ++I)
2452 Nodes[I->second] = cast<MDNode>(I->first);
2453
2454 for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
2455 writeMDNode(i, Nodes[i]);
2456 }
2457 }
2458
2459 void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
2460 WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule);
2461 WriteMDNodeComment(Node, Out);
2462 Out << "\n";
2463 }
2464
2465 void AssemblyWriter::writeAllAttributeGroups() {
2466 std::vector<std::pair<AttributeSet, unsigned> > asVec;
2467 asVec.resize(Machine.as_size());
2468
2469 for (SlotTracker::as_iterator I = Machine.as_begin(), E = Machine.as_end();
2470 I != E; ++I)
2471 asVec[I->second] = *I;
2472
2473 for (std::vector<std::pair<AttributeSet, unsigned> >::iterator
2474 I = asVec.begin(), E = asVec.end(); I != E; ++I)
2475 Out << "attributes #" << I->second << " = { "
2476 << I->first.getAsString(AttributeSet::FunctionIndex, true) << " }\n";
2477 }
2478
2479 } // namespace llvm
2480
2481 void AssemblyWriter::printUseListOrder(const UseListOrder &Order) {
2482 bool IsInFunction = Machine.getFunction();
2483 if (IsInFunction)
2484 Out << " ";
2485
2486 Out << "uselistorder";
2487 if (const BasicBlock *BB =
2488 IsInFunction ? nullptr : dyn_cast<BasicBlock>(Order.V)) {
2489 Out << "_bb ";
2490 writeOperand(BB->getParent(), false);
2491 Out << ", ";
2492 writeOperand(BB, false);
2493 } else {
2494 Out << " ";
2495 writeOperand(Order.V, true);
2496 }
2497 Out << ", { ";
2498
2499 assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
2500 Out << Order.Shuffle[0];
2501 for (unsigned I = 1, E = Order.Shuffle.size(); I != E; ++I)
2502 Out << ", " << Order.Shuffle[I];
2503 Out << " }\n";
2504 }
2505
2506 void AssemblyWriter::printUseLists(const Function *F) {
2507 auto hasMore =
2508 [&]() { return !UseListOrders.empty() && UseListOrders.back().F == F; };
2509 if (!hasMore())
2510 // Nothing to do.
2511 return;
2512
2513 Out << "\n; uselistorder directives\n";
2514 while (hasMore()) {
2515 printUseListOrder(UseListOrders.back());
2516 UseListOrders.pop_back();
2517 }
2518 }
2519
2520 //===----------------------------------------------------------------------===//
2521 // External Interface declarations
2522 //===----------------------------------------------------------------------===//
2523
2524 void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
2525 SlotTracker SlotTable(this);
2526 formatted_raw_ostream OS(ROS);
2527 AssemblyWriter W(OS, SlotTable, this, AAW);
2528 W.printModule(this);
2529 }
2530
2531 void NamedMDNode::print(raw_ostream &ROS) const {
2532 SlotTracker SlotTable(getParent());
2533 formatted_raw_ostream OS(ROS);
2534 AssemblyWriter W(OS, SlotTable, getParent(), nullptr);
2535 W.printNamedMDNode(this);
2536 }
2537
2538 void Comdat::print(raw_ostream &ROS) const {
2539 PrintLLVMName(ROS, getName(), ComdatPrefix);
2540 ROS << " = comdat ";
2541
2542 switch (getSelectionKind()) {
2543 case Comdat::Any:
2544 ROS << "any";
2545 break;
2546 case Comdat::ExactMatch:
2547 ROS << "exactmatch";
2548 break;
2549 case Comdat::Largest:
2550 ROS << "largest";
2551 break;
2552 case Comdat::NoDuplicates:
2553 ROS << "noduplicates";
2554 break;
2555 case Comdat::SameSize:
2556 ROS << "samesize";
2557 break;
2558 }
2559
2560 ROS << '\n';
2561 }
2562
2563 void Type::print(raw_ostream &OS) const {
2564 TypePrinting TP;
2565 TP.print(const_cast<Type*>(this), OS);
2566
2567 // If the type is a named struct type, print the body as well.
2568 if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
2569 if (!STy->isLiteral()) {
2570 OS << " = type ";
2571 TP.printStructBody(STy, OS);
2572 }
2573 }
2574
2575 void Value::print(raw_ostream &ROS) const {
2576 formatted_raw_ostream OS(ROS);
2577 if (const Instruction *I = dyn_cast<Instruction>(this)) {
2578 const Function *F = I->getParent() ? I->getParent()->getParent() : nullptr;
2579 SlotTracker SlotTable(F);
2580 AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), nullptr);
2581 W.printInstruction(*I);
2582 } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
2583 SlotTracker SlotTable(BB->getParent());
2584 AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), nullptr);
2585 W.printBasicBlock(BB);
2586 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
2587 SlotTracker SlotTable(GV->getParent());
2588 AssemblyWriter W(OS, SlotTable, GV->getParent(), nullptr);
2589 if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
2590 W.printGlobal(V);
2591 else if (const Function *F = dyn_cast<Function>(GV))
2592 W.printFunction(F);
2593 else
2594 W.printAlias(cast<GlobalAlias>(GV));
2595 } else if (const MetadataAsValue *V = dyn_cast<MetadataAsValue>(this)) {
2596 V->getMetadata()->print(ROS);
2597 } else if (const Constant *C = dyn_cast<Constant>(this)) {
2598 TypePrinting TypePrinter;
2599 TypePrinter.print(C->getType(), OS);
2600 OS << ' ';
2601 WriteConstantInternal(OS, C, TypePrinter, nullptr, nullptr);
2602 } else if (isa<InlineAsm>(this) || isa<Argument>(this)) {
2603 this->printAsOperand(OS);
2604 } else {
2605 llvm_unreachable("Unknown value to print out!");
2606 }
2607 }
2608
2609 void Value::printAsOperand(raw_ostream &O, bool PrintType, const Module *M) const {
2610 // Fast path: Don't construct and populate a TypePrinting object if we
2611 // won't be needing any types printed.
2612 if (!PrintType && ((!isa<Constant>(this) && !isa<MetadataAsValue>(this)) ||
2613 hasName() || isa<GlobalValue>(this))) {
2614 WriteAsOperandInternal(O, this, nullptr, nullptr, M);
2615 return;
2616 }
2617
2618 if (!M)
2619 M = getModuleFromVal(this);
2620
2621 TypePrinting TypePrinter;
2622 if (M)
2623 TypePrinter.incorporateTypes(*M);
2624 if (PrintType) {
2625 TypePrinter.print(getType(), O);
2626 O << ' ';
2627 }
2628
2629 WriteAsOperandInternal(O, this, &TypePrinter, nullptr, M);
2630 }
2631
2632 void Metadata::print(raw_ostream &ROS) const {
2633 formatted_raw_ostream OS(ROS);
2634 if (auto *N = dyn_cast<MDNode>(this)) {
2635 SlotTracker SlotTable(static_cast<Function *>(nullptr));
2636 AssemblyWriter W(OS, SlotTable, nullptr, nullptr);
2637 W.printMDNodeBody(N);
2638
2639 return;
2640 }
2641 printAsOperand(OS);
2642 }
2643
2644 void Metadata::printAsOperand(raw_ostream &ROS, bool PrintType,
2645 const Module *M) const {
2646 formatted_raw_ostream OS(ROS);
2647
2648 std::unique_ptr<TypePrinting> TypePrinter;
2649 if (PrintType) {
2650 TypePrinter.reset(new TypePrinting);
2651 if (M)
2652 TypePrinter->incorporateTypes(*M);
2653 }
2654 WriteAsOperandInternal(OS, this, TypePrinter.get(), nullptr, M,
2655 /* FromValue */ true);
2656 }
2657
2658 // Value::dump - allow easy printing of Values from the debugger.
2659 void Value::dump() const { print(dbgs()); dbgs() << '\n'; }
2660
2661 // Type::dump - allow easy printing of Types from the debugger.
2662 void Type::dump() const { print(dbgs()); dbgs() << '\n'; }
2663
2664 // Module::dump() - Allow printing of Modules from the debugger.
2665 void Module::dump() const { print(dbgs(), nullptr); }
2666
2667 // \brief Allow printing of Comdats from the debugger.
2668 void Comdat::dump() const { print(dbgs()); }
2669
2670 // NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
2671 void NamedMDNode::dump() const { print(dbgs()); }
2672
2673 void Metadata::dump() const {
2674 print(dbgs());
2675 dbgs() << '\n';
2676 }