]> git.proxmox.com Git - rustc.git/blob - src/llvm/lib/IR/ConstantRange.cpp
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / lib / IR / ConstantRange.cpp
1 //===-- ConstantRange.cpp - ConstantRange implementation ------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Represent a range of possible values that may occur when the program is run
11 // for an integral value. This keeps track of a lower and upper bound for the
12 // constant, which MAY wrap around the end of the numeric range. To do this, it
13 // keeps track of a [lower, upper) bound, which specifies an interval just like
14 // STL iterators. When used with boolean values, the following are important
15 // ranges (other integral ranges use min/max values for special range values):
16 //
17 // [F, F) = {} = Empty set
18 // [T, F) = {T}
19 // [F, T) = {F}
20 // [T, T) = {F, T} = Full set
21 //
22 //===----------------------------------------------------------------------===//
23
24 #include "llvm/IR/InstrTypes.h"
25 #include "llvm/IR/ConstantRange.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/raw_ostream.h"
28 using namespace llvm;
29
30 /// Initialize a full (the default) or empty set for the specified type.
31 ///
32 ConstantRange::ConstantRange(uint32_t BitWidth, bool Full) {
33 if (Full)
34 Lower = Upper = APInt::getMaxValue(BitWidth);
35 else
36 Lower = Upper = APInt::getMinValue(BitWidth);
37 }
38
39 /// Initialize a range to hold the single specified value.
40 ///
41 ConstantRange::ConstantRange(APIntMoveTy V)
42 : Lower(std::move(V)), Upper(Lower + 1) {}
43
44 ConstantRange::ConstantRange(APIntMoveTy L, APIntMoveTy U)
45 : Lower(std::move(L)), Upper(std::move(U)) {
46 assert(Lower.getBitWidth() == Upper.getBitWidth() &&
47 "ConstantRange with unequal bit widths");
48 assert((Lower != Upper || (Lower.isMaxValue() || Lower.isMinValue())) &&
49 "Lower == Upper, but they aren't min or max value!");
50 }
51
52 ConstantRange ConstantRange::makeICmpRegion(unsigned Pred,
53 const ConstantRange &CR) {
54 if (CR.isEmptySet())
55 return CR;
56
57 uint32_t W = CR.getBitWidth();
58 switch (Pred) {
59 default: llvm_unreachable("Invalid ICmp predicate to makeICmpRegion()");
60 case CmpInst::ICMP_EQ:
61 return CR;
62 case CmpInst::ICMP_NE:
63 if (CR.isSingleElement())
64 return ConstantRange(CR.getUpper(), CR.getLower());
65 return ConstantRange(W);
66 case CmpInst::ICMP_ULT: {
67 APInt UMax(CR.getUnsignedMax());
68 if (UMax.isMinValue())
69 return ConstantRange(W, /* empty */ false);
70 return ConstantRange(APInt::getMinValue(W), UMax);
71 }
72 case CmpInst::ICMP_SLT: {
73 APInt SMax(CR.getSignedMax());
74 if (SMax.isMinSignedValue())
75 return ConstantRange(W, /* empty */ false);
76 return ConstantRange(APInt::getSignedMinValue(W), SMax);
77 }
78 case CmpInst::ICMP_ULE: {
79 APInt UMax(CR.getUnsignedMax());
80 if (UMax.isMaxValue())
81 return ConstantRange(W);
82 return ConstantRange(APInt::getMinValue(W), UMax + 1);
83 }
84 case CmpInst::ICMP_SLE: {
85 APInt SMax(CR.getSignedMax());
86 if (SMax.isMaxSignedValue())
87 return ConstantRange(W);
88 return ConstantRange(APInt::getSignedMinValue(W), SMax + 1);
89 }
90 case CmpInst::ICMP_UGT: {
91 APInt UMin(CR.getUnsignedMin());
92 if (UMin.isMaxValue())
93 return ConstantRange(W, /* empty */ false);
94 return ConstantRange(UMin + 1, APInt::getNullValue(W));
95 }
96 case CmpInst::ICMP_SGT: {
97 APInt SMin(CR.getSignedMin());
98 if (SMin.isMaxSignedValue())
99 return ConstantRange(W, /* empty */ false);
100 return ConstantRange(SMin + 1, APInt::getSignedMinValue(W));
101 }
102 case CmpInst::ICMP_UGE: {
103 APInt UMin(CR.getUnsignedMin());
104 if (UMin.isMinValue())
105 return ConstantRange(W);
106 return ConstantRange(UMin, APInt::getNullValue(W));
107 }
108 case CmpInst::ICMP_SGE: {
109 APInt SMin(CR.getSignedMin());
110 if (SMin.isMinSignedValue())
111 return ConstantRange(W);
112 return ConstantRange(SMin, APInt::getSignedMinValue(W));
113 }
114 }
115 }
116
117 /// isFullSet - Return true if this set contains all of the elements possible
118 /// for this data-type
119 bool ConstantRange::isFullSet() const {
120 return Lower == Upper && Lower.isMaxValue();
121 }
122
123 /// isEmptySet - Return true if this set contains no members.
124 ///
125 bool ConstantRange::isEmptySet() const {
126 return Lower == Upper && Lower.isMinValue();
127 }
128
129 /// isWrappedSet - Return true if this set wraps around the top of the range,
130 /// for example: [100, 8)
131 ///
132 bool ConstantRange::isWrappedSet() const {
133 return Lower.ugt(Upper);
134 }
135
136 /// isSignWrappedSet - Return true if this set wraps around the INT_MIN of
137 /// its bitwidth, for example: i8 [120, 140).
138 ///
139 bool ConstantRange::isSignWrappedSet() const {
140 return contains(APInt::getSignedMaxValue(getBitWidth())) &&
141 contains(APInt::getSignedMinValue(getBitWidth()));
142 }
143
144 /// getSetSize - Return the number of elements in this set.
145 ///
146 APInt ConstantRange::getSetSize() const {
147 if (isFullSet()) {
148 APInt Size(getBitWidth()+1, 0);
149 Size.setBit(getBitWidth());
150 return Size;
151 }
152
153 // This is also correct for wrapped sets.
154 return (Upper - Lower).zext(getBitWidth()+1);
155 }
156
157 /// getUnsignedMax - Return the largest unsigned value contained in the
158 /// ConstantRange.
159 ///
160 APInt ConstantRange::getUnsignedMax() const {
161 if (isFullSet() || isWrappedSet())
162 return APInt::getMaxValue(getBitWidth());
163 return getUpper() - 1;
164 }
165
166 /// getUnsignedMin - Return the smallest unsigned value contained in the
167 /// ConstantRange.
168 ///
169 APInt ConstantRange::getUnsignedMin() const {
170 if (isFullSet() || (isWrappedSet() && getUpper() != 0))
171 return APInt::getMinValue(getBitWidth());
172 return getLower();
173 }
174
175 /// getSignedMax - Return the largest signed value contained in the
176 /// ConstantRange.
177 ///
178 APInt ConstantRange::getSignedMax() const {
179 APInt SignedMax(APInt::getSignedMaxValue(getBitWidth()));
180 if (!isWrappedSet()) {
181 if (getLower().sle(getUpper() - 1))
182 return getUpper() - 1;
183 return SignedMax;
184 }
185 if (getLower().isNegative() == getUpper().isNegative())
186 return SignedMax;
187 return getUpper() - 1;
188 }
189
190 /// getSignedMin - Return the smallest signed value contained in the
191 /// ConstantRange.
192 ///
193 APInt ConstantRange::getSignedMin() const {
194 APInt SignedMin(APInt::getSignedMinValue(getBitWidth()));
195 if (!isWrappedSet()) {
196 if (getLower().sle(getUpper() - 1))
197 return getLower();
198 return SignedMin;
199 }
200 if ((getUpper() - 1).slt(getLower())) {
201 if (getUpper() != SignedMin)
202 return SignedMin;
203 }
204 return getLower();
205 }
206
207 /// contains - Return true if the specified value is in the set.
208 ///
209 bool ConstantRange::contains(const APInt &V) const {
210 if (Lower == Upper)
211 return isFullSet();
212
213 if (!isWrappedSet())
214 return Lower.ule(V) && V.ult(Upper);
215 return Lower.ule(V) || V.ult(Upper);
216 }
217
218 /// contains - Return true if the argument is a subset of this range.
219 /// Two equal sets contain each other. The empty set contained by all other
220 /// sets.
221 ///
222 bool ConstantRange::contains(const ConstantRange &Other) const {
223 if (isFullSet() || Other.isEmptySet()) return true;
224 if (isEmptySet() || Other.isFullSet()) return false;
225
226 if (!isWrappedSet()) {
227 if (Other.isWrappedSet())
228 return false;
229
230 return Lower.ule(Other.getLower()) && Other.getUpper().ule(Upper);
231 }
232
233 if (!Other.isWrappedSet())
234 return Other.getUpper().ule(Upper) ||
235 Lower.ule(Other.getLower());
236
237 return Other.getUpper().ule(Upper) && Lower.ule(Other.getLower());
238 }
239
240 /// subtract - Subtract the specified constant from the endpoints of this
241 /// constant range.
242 ConstantRange ConstantRange::subtract(const APInt &Val) const {
243 assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width");
244 // If the set is empty or full, don't modify the endpoints.
245 if (Lower == Upper)
246 return *this;
247 return ConstantRange(Lower - Val, Upper - Val);
248 }
249
250 /// \brief Subtract the specified range from this range (aka relative complement
251 /// of the sets).
252 ConstantRange ConstantRange::difference(const ConstantRange &CR) const {
253 return intersectWith(CR.inverse());
254 }
255
256 /// intersectWith - Return the range that results from the intersection of this
257 /// range with another range. The resultant range is guaranteed to include all
258 /// elements contained in both input ranges, and to have the smallest possible
259 /// set size that does so. Because there may be two intersections with the
260 /// same set size, A.intersectWith(B) might not be equal to B.intersectWith(A).
261 ConstantRange ConstantRange::intersectWith(const ConstantRange &CR) const {
262 assert(getBitWidth() == CR.getBitWidth() &&
263 "ConstantRange types don't agree!");
264
265 // Handle common cases.
266 if ( isEmptySet() || CR.isFullSet()) return *this;
267 if (CR.isEmptySet() || isFullSet()) return CR;
268
269 if (!isWrappedSet() && CR.isWrappedSet())
270 return CR.intersectWith(*this);
271
272 if (!isWrappedSet() && !CR.isWrappedSet()) {
273 if (Lower.ult(CR.Lower)) {
274 if (Upper.ule(CR.Lower))
275 return ConstantRange(getBitWidth(), false);
276
277 if (Upper.ult(CR.Upper))
278 return ConstantRange(CR.Lower, Upper);
279
280 return CR;
281 }
282 if (Upper.ult(CR.Upper))
283 return *this;
284
285 if (Lower.ult(CR.Upper))
286 return ConstantRange(Lower, CR.Upper);
287
288 return ConstantRange(getBitWidth(), false);
289 }
290
291 if (isWrappedSet() && !CR.isWrappedSet()) {
292 if (CR.Lower.ult(Upper)) {
293 if (CR.Upper.ult(Upper))
294 return CR;
295
296 if (CR.Upper.ule(Lower))
297 return ConstantRange(CR.Lower, Upper);
298
299 if (getSetSize().ult(CR.getSetSize()))
300 return *this;
301 return CR;
302 }
303 if (CR.Lower.ult(Lower)) {
304 if (CR.Upper.ule(Lower))
305 return ConstantRange(getBitWidth(), false);
306
307 return ConstantRange(Lower, CR.Upper);
308 }
309 return CR;
310 }
311
312 if (CR.Upper.ult(Upper)) {
313 if (CR.Lower.ult(Upper)) {
314 if (getSetSize().ult(CR.getSetSize()))
315 return *this;
316 return CR;
317 }
318
319 if (CR.Lower.ult(Lower))
320 return ConstantRange(Lower, CR.Upper);
321
322 return CR;
323 }
324 if (CR.Upper.ule(Lower)) {
325 if (CR.Lower.ult(Lower))
326 return *this;
327
328 return ConstantRange(CR.Lower, Upper);
329 }
330 if (getSetSize().ult(CR.getSetSize()))
331 return *this;
332 return CR;
333 }
334
335
336 /// unionWith - Return the range that results from the union of this range with
337 /// another range. The resultant range is guaranteed to include the elements of
338 /// both sets, but may contain more. For example, [3, 9) union [12,15) is
339 /// [3, 15), which includes 9, 10, and 11, which were not included in either
340 /// set before.
341 ///
342 ConstantRange ConstantRange::unionWith(const ConstantRange &CR) const {
343 assert(getBitWidth() == CR.getBitWidth() &&
344 "ConstantRange types don't agree!");
345
346 if ( isFullSet() || CR.isEmptySet()) return *this;
347 if (CR.isFullSet() || isEmptySet()) return CR;
348
349 if (!isWrappedSet() && CR.isWrappedSet()) return CR.unionWith(*this);
350
351 if (!isWrappedSet() && !CR.isWrappedSet()) {
352 if (CR.Upper.ult(Lower) || Upper.ult(CR.Lower)) {
353 // If the two ranges are disjoint, find the smaller gap and bridge it.
354 APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Upper;
355 if (d1.ult(d2))
356 return ConstantRange(Lower, CR.Upper);
357 return ConstantRange(CR.Lower, Upper);
358 }
359
360 APInt L = Lower, U = Upper;
361 if (CR.Lower.ult(L))
362 L = CR.Lower;
363 if ((CR.Upper - 1).ugt(U - 1))
364 U = CR.Upper;
365
366 if (L == 0 && U == 0)
367 return ConstantRange(getBitWidth());
368
369 return ConstantRange(L, U);
370 }
371
372 if (!CR.isWrappedSet()) {
373 // ------U L----- and ------U L----- : this
374 // L--U L--U : CR
375 if (CR.Upper.ule(Upper) || CR.Lower.uge(Lower))
376 return *this;
377
378 // ------U L----- : this
379 // L---------U : CR
380 if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper))
381 return ConstantRange(getBitWidth());
382
383 // ----U L---- : this
384 // L---U : CR
385 // <d1> <d2>
386 if (Upper.ule(CR.Lower) && CR.Upper.ule(Lower)) {
387 APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Upper;
388 if (d1.ult(d2))
389 return ConstantRange(Lower, CR.Upper);
390 return ConstantRange(CR.Lower, Upper);
391 }
392
393 // ----U L----- : this
394 // L----U : CR
395 if (Upper.ult(CR.Lower) && Lower.ult(CR.Upper))
396 return ConstantRange(CR.Lower, Upper);
397
398 // ------U L---- : this
399 // L-----U : CR
400 assert(CR.Lower.ult(Upper) && CR.Upper.ult(Lower) &&
401 "ConstantRange::unionWith missed a case with one range wrapped");
402 return ConstantRange(Lower, CR.Upper);
403 }
404
405 // ------U L---- and ------U L---- : this
406 // -U L----------- and ------------U L : CR
407 if (CR.Lower.ule(Upper) || Lower.ule(CR.Upper))
408 return ConstantRange(getBitWidth());
409
410 APInt L = Lower, U = Upper;
411 if (CR.Upper.ugt(U))
412 U = CR.Upper;
413 if (CR.Lower.ult(L))
414 L = CR.Lower;
415
416 return ConstantRange(L, U);
417 }
418
419 /// zeroExtend - Return a new range in the specified integer type, which must
420 /// be strictly larger than the current type. The returned range will
421 /// correspond to the possible range of values as if the source range had been
422 /// zero extended.
423 ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const {
424 if (isEmptySet()) return ConstantRange(DstTySize, /*isFullSet=*/false);
425
426 unsigned SrcTySize = getBitWidth();
427 assert(SrcTySize < DstTySize && "Not a value extension");
428 if (isFullSet() || isWrappedSet()) {
429 // Change into [0, 1 << src bit width)
430 APInt LowerExt(DstTySize, 0);
431 if (!Upper) // special case: [X, 0) -- not really wrapping around
432 LowerExt = Lower.zext(DstTySize);
433 return ConstantRange(LowerExt, APInt::getOneBitSet(DstTySize, SrcTySize));
434 }
435
436 return ConstantRange(Lower.zext(DstTySize), Upper.zext(DstTySize));
437 }
438
439 /// signExtend - Return a new range in the specified integer type, which must
440 /// be strictly larger than the current type. The returned range will
441 /// correspond to the possible range of values as if the source range had been
442 /// sign extended.
443 ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const {
444 if (isEmptySet()) return ConstantRange(DstTySize, /*isFullSet=*/false);
445
446 unsigned SrcTySize = getBitWidth();
447 assert(SrcTySize < DstTySize && "Not a value extension");
448
449 // special case: [X, INT_MIN) -- not really wrapping around
450 if (Upper.isMinSignedValue())
451 return ConstantRange(Lower.sext(DstTySize), Upper.zext(DstTySize));
452
453 if (isFullSet() || isSignWrappedSet()) {
454 return ConstantRange(APInt::getHighBitsSet(DstTySize,DstTySize-SrcTySize+1),
455 APInt::getLowBitsSet(DstTySize, SrcTySize-1) + 1);
456 }
457
458 return ConstantRange(Lower.sext(DstTySize), Upper.sext(DstTySize));
459 }
460
461 /// truncate - Return a new range in the specified integer type, which must be
462 /// strictly smaller than the current type. The returned range will
463 /// correspond to the possible range of values as if the source range had been
464 /// truncated to the specified type.
465 ConstantRange ConstantRange::truncate(uint32_t DstTySize) const {
466 assert(getBitWidth() > DstTySize && "Not a value truncation");
467 if (isEmptySet())
468 return ConstantRange(DstTySize, /*isFullSet=*/false);
469 if (isFullSet())
470 return ConstantRange(DstTySize, /*isFullSet=*/true);
471
472 APInt MaxValue = APInt::getMaxValue(DstTySize).zext(getBitWidth());
473 APInt MaxBitValue(getBitWidth(), 0);
474 MaxBitValue.setBit(DstTySize);
475
476 APInt LowerDiv(Lower), UpperDiv(Upper);
477 ConstantRange Union(DstTySize, /*isFullSet=*/false);
478
479 // Analyze wrapped sets in their two parts: [0, Upper) \/ [Lower, MaxValue]
480 // We use the non-wrapped set code to analyze the [Lower, MaxValue) part, and
481 // then we do the union with [MaxValue, Upper)
482 if (isWrappedSet()) {
483 // if Upper is greater than Max Value, it covers the whole truncated range.
484 if (Upper.uge(MaxValue))
485 return ConstantRange(DstTySize, /*isFullSet=*/true);
486
487 Union = ConstantRange(APInt::getMaxValue(DstTySize),Upper.trunc(DstTySize));
488 UpperDiv = APInt::getMaxValue(getBitWidth());
489
490 // Union covers the MaxValue case, so return if the remaining range is just
491 // MaxValue.
492 if (LowerDiv == UpperDiv)
493 return Union;
494 }
495
496 // Chop off the most significant bits that are past the destination bitwidth.
497 if (LowerDiv.uge(MaxValue)) {
498 APInt Div(getBitWidth(), 0);
499 APInt::udivrem(LowerDiv, MaxBitValue, Div, LowerDiv);
500 UpperDiv = UpperDiv - MaxBitValue * Div;
501 }
502
503 if (UpperDiv.ule(MaxValue))
504 return ConstantRange(LowerDiv.trunc(DstTySize),
505 UpperDiv.trunc(DstTySize)).unionWith(Union);
506
507 // The truncated value wrapps around. Check if we can do better than fullset.
508 APInt UpperModulo = UpperDiv - MaxBitValue;
509 if (UpperModulo.ult(LowerDiv))
510 return ConstantRange(LowerDiv.trunc(DstTySize),
511 UpperModulo.trunc(DstTySize)).unionWith(Union);
512
513 return ConstantRange(DstTySize, /*isFullSet=*/true);
514 }
515
516 /// zextOrTrunc - make this range have the bit width given by \p DstTySize. The
517 /// value is zero extended, truncated, or left alone to make it that width.
518 ConstantRange ConstantRange::zextOrTrunc(uint32_t DstTySize) const {
519 unsigned SrcTySize = getBitWidth();
520 if (SrcTySize > DstTySize)
521 return truncate(DstTySize);
522 if (SrcTySize < DstTySize)
523 return zeroExtend(DstTySize);
524 return *this;
525 }
526
527 /// sextOrTrunc - make this range have the bit width given by \p DstTySize. The
528 /// value is sign extended, truncated, or left alone to make it that width.
529 ConstantRange ConstantRange::sextOrTrunc(uint32_t DstTySize) const {
530 unsigned SrcTySize = getBitWidth();
531 if (SrcTySize > DstTySize)
532 return truncate(DstTySize);
533 if (SrcTySize < DstTySize)
534 return signExtend(DstTySize);
535 return *this;
536 }
537
538 ConstantRange
539 ConstantRange::add(const ConstantRange &Other) const {
540 if (isEmptySet() || Other.isEmptySet())
541 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
542 if (isFullSet() || Other.isFullSet())
543 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
544
545 APInt Spread_X = getSetSize(), Spread_Y = Other.getSetSize();
546 APInt NewLower = getLower() + Other.getLower();
547 APInt NewUpper = getUpper() + Other.getUpper() - 1;
548 if (NewLower == NewUpper)
549 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
550
551 ConstantRange X = ConstantRange(NewLower, NewUpper);
552 if (X.getSetSize().ult(Spread_X) || X.getSetSize().ult(Spread_Y))
553 // We've wrapped, therefore, full set.
554 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
555
556 return X;
557 }
558
559 ConstantRange
560 ConstantRange::sub(const ConstantRange &Other) const {
561 if (isEmptySet() || Other.isEmptySet())
562 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
563 if (isFullSet() || Other.isFullSet())
564 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
565
566 APInt Spread_X = getSetSize(), Spread_Y = Other.getSetSize();
567 APInt NewLower = getLower() - Other.getUpper() + 1;
568 APInt NewUpper = getUpper() - Other.getLower();
569 if (NewLower == NewUpper)
570 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
571
572 ConstantRange X = ConstantRange(NewLower, NewUpper);
573 if (X.getSetSize().ult(Spread_X) || X.getSetSize().ult(Spread_Y))
574 // We've wrapped, therefore, full set.
575 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
576
577 return X;
578 }
579
580 ConstantRange
581 ConstantRange::multiply(const ConstantRange &Other) const {
582 // TODO: If either operand is a single element and the multiply is known to
583 // be non-wrapping, round the result min and max value to the appropriate
584 // multiple of that element. If wrapping is possible, at least adjust the
585 // range according to the greatest power-of-two factor of the single element.
586
587 if (isEmptySet() || Other.isEmptySet())
588 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
589
590 APInt this_min = getUnsignedMin().zext(getBitWidth() * 2);
591 APInt this_max = getUnsignedMax().zext(getBitWidth() * 2);
592 APInt Other_min = Other.getUnsignedMin().zext(getBitWidth() * 2);
593 APInt Other_max = Other.getUnsignedMax().zext(getBitWidth() * 2);
594
595 ConstantRange Result_zext = ConstantRange(this_min * Other_min,
596 this_max * Other_max + 1);
597 return Result_zext.truncate(getBitWidth());
598 }
599
600 ConstantRange
601 ConstantRange::smax(const ConstantRange &Other) const {
602 // X smax Y is: range(smax(X_smin, Y_smin),
603 // smax(X_smax, Y_smax))
604 if (isEmptySet() || Other.isEmptySet())
605 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
606 APInt NewL = APIntOps::smax(getSignedMin(), Other.getSignedMin());
607 APInt NewU = APIntOps::smax(getSignedMax(), Other.getSignedMax()) + 1;
608 if (NewU == NewL)
609 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
610 return ConstantRange(NewL, NewU);
611 }
612
613 ConstantRange
614 ConstantRange::umax(const ConstantRange &Other) const {
615 // X umax Y is: range(umax(X_umin, Y_umin),
616 // umax(X_umax, Y_umax))
617 if (isEmptySet() || Other.isEmptySet())
618 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
619 APInt NewL = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
620 APInt NewU = APIntOps::umax(getUnsignedMax(), Other.getUnsignedMax()) + 1;
621 if (NewU == NewL)
622 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
623 return ConstantRange(NewL, NewU);
624 }
625
626 ConstantRange
627 ConstantRange::udiv(const ConstantRange &RHS) const {
628 if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax() == 0)
629 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
630 if (RHS.isFullSet())
631 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
632
633 APInt Lower = getUnsignedMin().udiv(RHS.getUnsignedMax());
634
635 APInt RHS_umin = RHS.getUnsignedMin();
636 if (RHS_umin == 0) {
637 // We want the lowest value in RHS excluding zero. Usually that would be 1
638 // except for a range in the form of [X, 1) in which case it would be X.
639 if (RHS.getUpper() == 1)
640 RHS_umin = RHS.getLower();
641 else
642 RHS_umin = APInt(getBitWidth(), 1);
643 }
644
645 APInt Upper = getUnsignedMax().udiv(RHS_umin) + 1;
646
647 // If the LHS is Full and the RHS is a wrapped interval containing 1 then
648 // this could occur.
649 if (Lower == Upper)
650 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
651
652 return ConstantRange(Lower, Upper);
653 }
654
655 ConstantRange
656 ConstantRange::binaryAnd(const ConstantRange &Other) const {
657 if (isEmptySet() || Other.isEmptySet())
658 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
659
660 // TODO: replace this with something less conservative
661
662 APInt umin = APIntOps::umin(Other.getUnsignedMax(), getUnsignedMax());
663 if (umin.isAllOnesValue())
664 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
665 return ConstantRange(APInt::getNullValue(getBitWidth()), umin + 1);
666 }
667
668 ConstantRange
669 ConstantRange::binaryOr(const ConstantRange &Other) const {
670 if (isEmptySet() || Other.isEmptySet())
671 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
672
673 // TODO: replace this with something less conservative
674
675 APInt umax = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
676 if (umax.isMinValue())
677 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
678 return ConstantRange(umax, APInt::getNullValue(getBitWidth()));
679 }
680
681 ConstantRange
682 ConstantRange::shl(const ConstantRange &Other) const {
683 if (isEmptySet() || Other.isEmptySet())
684 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
685
686 APInt min = getUnsignedMin().shl(Other.getUnsignedMin());
687 APInt max = getUnsignedMax().shl(Other.getUnsignedMax());
688
689 // there's no overflow!
690 APInt Zeros(getBitWidth(), getUnsignedMax().countLeadingZeros());
691 if (Zeros.ugt(Other.getUnsignedMax()))
692 return ConstantRange(min, max + 1);
693
694 // FIXME: implement the other tricky cases
695 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
696 }
697
698 ConstantRange
699 ConstantRange::lshr(const ConstantRange &Other) const {
700 if (isEmptySet() || Other.isEmptySet())
701 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
702
703 APInt max = getUnsignedMax().lshr(Other.getUnsignedMin());
704 APInt min = getUnsignedMin().lshr(Other.getUnsignedMax());
705 if (min == max + 1)
706 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
707
708 return ConstantRange(min, max + 1);
709 }
710
711 ConstantRange ConstantRange::inverse() const {
712 if (isFullSet())
713 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
714 if (isEmptySet())
715 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
716 return ConstantRange(Upper, Lower);
717 }
718
719 /// print - Print out the bounds to a stream...
720 ///
721 void ConstantRange::print(raw_ostream &OS) const {
722 if (isFullSet())
723 OS << "full-set";
724 else if (isEmptySet())
725 OS << "empty-set";
726 else
727 OS << "[" << Lower << "," << Upper << ")";
728 }
729
730 /// dump - Allow printing from a debugger easily...
731 ///
732 void ConstantRange::dump() const {
733 print(dbgs());
734 }