]> git.proxmox.com Git - rustc.git/blob - src/llvm/lib/MC/ELFObjectWriter.cpp
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / lib / MC / ELFObjectWriter.cpp
1 //===- lib/MC/ELFObjectWriter.cpp - ELF File Writer -----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements ELF object file writer information.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/MC/MCELFObjectWriter.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/StringMap.h"
19 #include "llvm/MC/MCAsmBackend.h"
20 #include "llvm/MC/MCAsmInfo.h"
21 #include "llvm/MC/MCAsmLayout.h"
22 #include "llvm/MC/MCAssembler.h"
23 #include "llvm/MC/MCContext.h"
24 #include "llvm/MC/MCELF.h"
25 #include "llvm/MC/MCELFSymbolFlags.h"
26 #include "llvm/MC/MCExpr.h"
27 #include "llvm/MC/MCFixupKindInfo.h"
28 #include "llvm/MC/MCObjectWriter.h"
29 #include "llvm/MC/MCSectionELF.h"
30 #include "llvm/MC/MCValue.h"
31 #include "llvm/MC/StringTableBuilder.h"
32 #include "llvm/Support/Compression.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ELF.h"
35 #include "llvm/Support/Endian.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include <vector>
38 using namespace llvm;
39
40 #undef DEBUG_TYPE
41 #define DEBUG_TYPE "reloc-info"
42
43 namespace {
44 class FragmentWriter {
45 bool IsLittleEndian;
46
47 public:
48 FragmentWriter(bool IsLittleEndian);
49 template <typename T> void write(MCDataFragment &F, T Val);
50 };
51
52 typedef DenseMap<const MCSectionELF *, uint32_t> SectionIndexMapTy;
53
54 class SymbolTableWriter {
55 MCAssembler &Asm;
56 FragmentWriter &FWriter;
57 bool Is64Bit;
58 SectionIndexMapTy &SectionIndexMap;
59
60 // The symbol .symtab fragment we are writting to.
61 MCDataFragment *SymtabF;
62
63 // .symtab_shndx fragment we are writting to.
64 MCDataFragment *ShndxF;
65
66 // The numbel of symbols written so far.
67 unsigned NumWritten;
68
69 void createSymtabShndx();
70
71 template <typename T> void write(MCDataFragment &F, T Value);
72
73 public:
74 SymbolTableWriter(MCAssembler &Asm, FragmentWriter &FWriter, bool Is64Bit,
75 SectionIndexMapTy &SectionIndexMap,
76 MCDataFragment *SymtabF);
77
78 void writeSymbol(uint32_t name, uint8_t info, uint64_t value, uint64_t size,
79 uint8_t other, uint32_t shndx, bool Reserved);
80 };
81
82 struct ELFRelocationEntry {
83 uint64_t Offset; // Where is the relocation.
84 const MCSymbol *Symbol; // The symbol to relocate with.
85 unsigned Type; // The type of the relocation.
86 uint64_t Addend; // The addend to use.
87
88 ELFRelocationEntry(uint64_t Offset, const MCSymbol *Symbol, unsigned Type,
89 uint64_t Addend)
90 : Offset(Offset), Symbol(Symbol), Type(Type), Addend(Addend) {}
91 };
92
93 class ELFObjectWriter : public MCObjectWriter {
94 FragmentWriter FWriter;
95
96 protected:
97
98 static bool isFixupKindPCRel(const MCAssembler &Asm, unsigned Kind);
99 static bool RelocNeedsGOT(MCSymbolRefExpr::VariantKind Variant);
100 static uint64_t SymbolValue(MCSymbolData &Data, const MCAsmLayout &Layout);
101 static bool isInSymtab(const MCAsmLayout &Layout, const MCSymbolData &Data,
102 bool Used, bool Renamed);
103 static bool isLocal(const MCSymbolData &Data, bool isUsedInReloc);
104 static bool IsELFMetaDataSection(const MCSectionData &SD);
105 static uint64_t DataSectionSize(const MCSectionData &SD);
106 static uint64_t GetSectionFileSize(const MCAsmLayout &Layout,
107 const MCSectionData &SD);
108 static uint64_t GetSectionAddressSize(const MCAsmLayout &Layout,
109 const MCSectionData &SD);
110
111 void WriteDataSectionData(MCAssembler &Asm,
112 const MCAsmLayout &Layout,
113 const MCSectionELF &Section);
114
115 /*static bool isFixupKindX86RIPRel(unsigned Kind) {
116 return Kind == X86::reloc_riprel_4byte ||
117 Kind == X86::reloc_riprel_4byte_movq_load;
118 }*/
119
120 /// ELFSymbolData - Helper struct for containing some precomputed
121 /// information on symbols.
122 struct ELFSymbolData {
123 MCSymbolData *SymbolData;
124 uint64_t StringIndex;
125 uint32_t SectionIndex;
126 StringRef Name;
127
128 // Support lexicographic sorting.
129 bool operator<(const ELFSymbolData &RHS) const {
130 unsigned LHSType = MCELF::GetType(*SymbolData);
131 unsigned RHSType = MCELF::GetType(*RHS.SymbolData);
132 if (LHSType == ELF::STT_SECTION && RHSType != ELF::STT_SECTION)
133 return false;
134 if (LHSType != ELF::STT_SECTION && RHSType == ELF::STT_SECTION)
135 return true;
136 if (LHSType == ELF::STT_SECTION && RHSType == ELF::STT_SECTION)
137 return SectionIndex < RHS.SectionIndex;
138 return Name < RHS.Name;
139 }
140 };
141
142 /// The target specific ELF writer instance.
143 std::unique_ptr<MCELFObjectTargetWriter> TargetObjectWriter;
144
145 SmallPtrSet<const MCSymbol *, 16> UsedInReloc;
146 SmallPtrSet<const MCSymbol *, 16> WeakrefUsedInReloc;
147 DenseMap<const MCSymbol *, const MCSymbol *> Renames;
148
149 llvm::DenseMap<const MCSectionData *, std::vector<ELFRelocationEntry>>
150 Relocations;
151 StringTableBuilder ShStrTabBuilder;
152
153 /// @}
154 /// @name Symbol Table Data
155 /// @{
156
157 StringTableBuilder StrTabBuilder;
158 std::vector<uint64_t> FileSymbolData;
159 std::vector<ELFSymbolData> LocalSymbolData;
160 std::vector<ELFSymbolData> ExternalSymbolData;
161 std::vector<ELFSymbolData> UndefinedSymbolData;
162
163 /// @}
164
165 bool NeedsGOT;
166
167 // This holds the symbol table index of the last local symbol.
168 unsigned LastLocalSymbolIndex;
169 // This holds the .strtab section index.
170 unsigned StringTableIndex;
171 // This holds the .symtab section index.
172 unsigned SymbolTableIndex;
173
174 unsigned ShstrtabIndex;
175
176
177 // TargetObjectWriter wrappers.
178 bool is64Bit() const { return TargetObjectWriter->is64Bit(); }
179 bool hasRelocationAddend() const {
180 return TargetObjectWriter->hasRelocationAddend();
181 }
182 unsigned GetRelocType(const MCValue &Target, const MCFixup &Fixup,
183 bool IsPCRel) const {
184 return TargetObjectWriter->GetRelocType(Target, Fixup, IsPCRel);
185 }
186
187 public:
188 ELFObjectWriter(MCELFObjectTargetWriter *MOTW, raw_ostream &_OS,
189 bool IsLittleEndian)
190 : MCObjectWriter(_OS, IsLittleEndian), FWriter(IsLittleEndian),
191 TargetObjectWriter(MOTW), NeedsGOT(false) {}
192
193 virtual ~ELFObjectWriter();
194
195 void WriteWord(uint64_t W) {
196 if (is64Bit())
197 Write64(W);
198 else
199 Write32(W);
200 }
201
202 template <typename T> void write(MCDataFragment &F, T Value) {
203 FWriter.write(F, Value);
204 }
205
206 void WriteHeader(const MCAssembler &Asm,
207 uint64_t SectionDataSize,
208 unsigned NumberOfSections);
209
210 void WriteSymbol(SymbolTableWriter &Writer, ELFSymbolData &MSD,
211 const MCAsmLayout &Layout);
212
213 void WriteSymbolTable(MCDataFragment *SymtabF, MCAssembler &Asm,
214 const MCAsmLayout &Layout,
215 SectionIndexMapTy &SectionIndexMap);
216
217 bool shouldRelocateWithSymbol(const MCAssembler &Asm,
218 const MCSymbolRefExpr *RefA,
219 const MCSymbolData *SD, uint64_t C,
220 unsigned Type) const;
221
222 void RecordRelocation(const MCAssembler &Asm, const MCAsmLayout &Layout,
223 const MCFragment *Fragment, const MCFixup &Fixup,
224 MCValue Target, bool &IsPCRel,
225 uint64_t &FixedValue) override;
226
227 uint64_t getSymbolIndexInSymbolTable(const MCAssembler &Asm,
228 const MCSymbol *S);
229
230 // Map from a group section to the signature symbol
231 typedef DenseMap<const MCSectionELF*, const MCSymbol*> GroupMapTy;
232 // Map from a signature symbol to the group section
233 typedef DenseMap<const MCSymbol*, const MCSectionELF*> RevGroupMapTy;
234 // Map from a section to the section with the relocations
235 typedef DenseMap<const MCSectionELF*, const MCSectionELF*> RelMapTy;
236 // Map from a section to its offset
237 typedef DenseMap<const MCSectionELF*, uint64_t> SectionOffsetMapTy;
238
239 /// Compute the symbol table data
240 ///
241 /// \param Asm - The assembler.
242 /// \param SectionIndexMap - Maps a section to its index.
243 /// \param RevGroupMap - Maps a signature symbol to the group section.
244 /// \param NumRegularSections - Number of non-relocation sections.
245 void computeSymbolTable(MCAssembler &Asm, const MCAsmLayout &Layout,
246 const SectionIndexMapTy &SectionIndexMap,
247 const RevGroupMapTy &RevGroupMap,
248 unsigned NumRegularSections);
249
250 void ComputeIndexMap(MCAssembler &Asm,
251 SectionIndexMapTy &SectionIndexMap,
252 const RelMapTy &RelMap);
253
254 void CreateRelocationSections(MCAssembler &Asm, MCAsmLayout &Layout,
255 RelMapTy &RelMap);
256
257 void CompressDebugSections(MCAssembler &Asm, MCAsmLayout &Layout);
258
259 void WriteRelocations(MCAssembler &Asm, MCAsmLayout &Layout,
260 const RelMapTy &RelMap);
261
262 void CreateMetadataSections(MCAssembler &Asm, MCAsmLayout &Layout,
263 SectionIndexMapTy &SectionIndexMap,
264 const RelMapTy &RelMap);
265
266 // Create the sections that show up in the symbol table. Currently
267 // those are the .note.GNU-stack section and the group sections.
268 void CreateIndexedSections(MCAssembler &Asm, MCAsmLayout &Layout,
269 GroupMapTy &GroupMap,
270 RevGroupMapTy &RevGroupMap,
271 SectionIndexMapTy &SectionIndexMap,
272 const RelMapTy &RelMap);
273
274 void ExecutePostLayoutBinding(MCAssembler &Asm,
275 const MCAsmLayout &Layout) override;
276
277 void WriteSectionHeader(MCAssembler &Asm, const GroupMapTy &GroupMap,
278 const MCAsmLayout &Layout,
279 const SectionIndexMapTy &SectionIndexMap,
280 const SectionOffsetMapTy &SectionOffsetMap);
281
282 void ComputeSectionOrder(MCAssembler &Asm,
283 std::vector<const MCSectionELF*> &Sections);
284
285 void WriteSecHdrEntry(uint32_t Name, uint32_t Type, uint64_t Flags,
286 uint64_t Address, uint64_t Offset,
287 uint64_t Size, uint32_t Link, uint32_t Info,
288 uint64_t Alignment, uint64_t EntrySize);
289
290 void WriteRelocationsFragment(const MCAssembler &Asm,
291 MCDataFragment *F,
292 const MCSectionData *SD);
293
294 bool
295 IsSymbolRefDifferenceFullyResolvedImpl(const MCAssembler &Asm,
296 const MCSymbolData &DataA,
297 const MCFragment &FB,
298 bool InSet,
299 bool IsPCRel) const override;
300
301 void WriteObject(MCAssembler &Asm, const MCAsmLayout &Layout) override;
302 void WriteSection(MCAssembler &Asm,
303 const SectionIndexMapTy &SectionIndexMap,
304 uint32_t GroupSymbolIndex,
305 uint64_t Offset, uint64_t Size, uint64_t Alignment,
306 const MCSectionELF &Section);
307 };
308 }
309
310 FragmentWriter::FragmentWriter(bool IsLittleEndian)
311 : IsLittleEndian(IsLittleEndian) {}
312
313 template <typename T> void FragmentWriter::write(MCDataFragment &F, T Val) {
314 if (IsLittleEndian)
315 Val = support::endian::byte_swap<T, support::little>(Val);
316 else
317 Val = support::endian::byte_swap<T, support::big>(Val);
318 const char *Start = (const char *)&Val;
319 F.getContents().append(Start, Start + sizeof(T));
320 }
321
322 void SymbolTableWriter::createSymtabShndx() {
323 if (ShndxF)
324 return;
325
326 MCContext &Ctx = Asm.getContext();
327 const MCSectionELF *SymtabShndxSection =
328 Ctx.getELFSection(".symtab_shndxr", ELF::SHT_SYMTAB_SHNDX, 0,
329 SectionKind::getReadOnly(), 4, "");
330 MCSectionData *SymtabShndxSD =
331 &Asm.getOrCreateSectionData(*SymtabShndxSection);
332 SymtabShndxSD->setAlignment(4);
333 ShndxF = new MCDataFragment(SymtabShndxSD);
334 unsigned Index = SectionIndexMap.size() + 1;
335 SectionIndexMap[SymtabShndxSection] = Index;
336
337 for (unsigned I = 0; I < NumWritten; ++I)
338 write(*ShndxF, uint32_t(0));
339 }
340
341 template <typename T>
342 void SymbolTableWriter::write(MCDataFragment &F, T Value) {
343 FWriter.write(F, Value);
344 }
345
346 SymbolTableWriter::SymbolTableWriter(MCAssembler &Asm, FragmentWriter &FWriter,
347 bool Is64Bit,
348 SectionIndexMapTy &SectionIndexMap,
349 MCDataFragment *SymtabF)
350 : Asm(Asm), FWriter(FWriter), Is64Bit(Is64Bit),
351 SectionIndexMap(SectionIndexMap), SymtabF(SymtabF), ShndxF(nullptr),
352 NumWritten(0) {}
353
354 void SymbolTableWriter::writeSymbol(uint32_t name, uint8_t info, uint64_t value,
355 uint64_t size, uint8_t other,
356 uint32_t shndx, bool Reserved) {
357 bool LargeIndex = shndx >= ELF::SHN_LORESERVE && !Reserved;
358
359 if (LargeIndex)
360 createSymtabShndx();
361
362 if (ShndxF) {
363 if (LargeIndex)
364 write(*ShndxF, shndx);
365 else
366 write(*ShndxF, uint32_t(0));
367 }
368
369 uint16_t Index = LargeIndex ? uint16_t(ELF::SHN_XINDEX) : shndx;
370
371 raw_svector_ostream OS(SymtabF->getContents());
372
373 if (Is64Bit) {
374 write(*SymtabF, name); // st_name
375 write(*SymtabF, info); // st_info
376 write(*SymtabF, other); // st_other
377 write(*SymtabF, Index); // st_shndx
378 write(*SymtabF, value); // st_value
379 write(*SymtabF, size); // st_size
380 } else {
381 write(*SymtabF, name); // st_name
382 write(*SymtabF, uint32_t(value)); // st_value
383 write(*SymtabF, uint32_t(size)); // st_size
384 write(*SymtabF, info); // st_info
385 write(*SymtabF, other); // st_other
386 write(*SymtabF, Index); // st_shndx
387 }
388
389 ++NumWritten;
390 }
391
392 bool ELFObjectWriter::isFixupKindPCRel(const MCAssembler &Asm, unsigned Kind) {
393 const MCFixupKindInfo &FKI =
394 Asm.getBackend().getFixupKindInfo((MCFixupKind) Kind);
395
396 return FKI.Flags & MCFixupKindInfo::FKF_IsPCRel;
397 }
398
399 bool ELFObjectWriter::RelocNeedsGOT(MCSymbolRefExpr::VariantKind Variant) {
400 switch (Variant) {
401 default:
402 return false;
403 case MCSymbolRefExpr::VK_GOT:
404 case MCSymbolRefExpr::VK_PLT:
405 case MCSymbolRefExpr::VK_GOTPCREL:
406 case MCSymbolRefExpr::VK_GOTOFF:
407 case MCSymbolRefExpr::VK_TPOFF:
408 case MCSymbolRefExpr::VK_TLSGD:
409 case MCSymbolRefExpr::VK_GOTTPOFF:
410 case MCSymbolRefExpr::VK_INDNTPOFF:
411 case MCSymbolRefExpr::VK_NTPOFF:
412 case MCSymbolRefExpr::VK_GOTNTPOFF:
413 case MCSymbolRefExpr::VK_TLSLDM:
414 case MCSymbolRefExpr::VK_DTPOFF:
415 case MCSymbolRefExpr::VK_TLSLD:
416 return true;
417 }
418 }
419
420 ELFObjectWriter::~ELFObjectWriter()
421 {}
422
423 // Emit the ELF header.
424 void ELFObjectWriter::WriteHeader(const MCAssembler &Asm,
425 uint64_t SectionDataSize,
426 unsigned NumberOfSections) {
427 // ELF Header
428 // ----------
429 //
430 // Note
431 // ----
432 // emitWord method behaves differently for ELF32 and ELF64, writing
433 // 4 bytes in the former and 8 in the latter.
434
435 Write8(0x7f); // e_ident[EI_MAG0]
436 Write8('E'); // e_ident[EI_MAG1]
437 Write8('L'); // e_ident[EI_MAG2]
438 Write8('F'); // e_ident[EI_MAG3]
439
440 Write8(is64Bit() ? ELF::ELFCLASS64 : ELF::ELFCLASS32); // e_ident[EI_CLASS]
441
442 // e_ident[EI_DATA]
443 Write8(isLittleEndian() ? ELF::ELFDATA2LSB : ELF::ELFDATA2MSB);
444
445 Write8(ELF::EV_CURRENT); // e_ident[EI_VERSION]
446 // e_ident[EI_OSABI]
447 Write8(TargetObjectWriter->getOSABI());
448 Write8(0); // e_ident[EI_ABIVERSION]
449
450 WriteZeros(ELF::EI_NIDENT - ELF::EI_PAD);
451
452 Write16(ELF::ET_REL); // e_type
453
454 Write16(TargetObjectWriter->getEMachine()); // e_machine = target
455
456 Write32(ELF::EV_CURRENT); // e_version
457 WriteWord(0); // e_entry, no entry point in .o file
458 WriteWord(0); // e_phoff, no program header for .o
459 WriteWord(SectionDataSize + (is64Bit() ? sizeof(ELF::Elf64_Ehdr) :
460 sizeof(ELF::Elf32_Ehdr))); // e_shoff = sec hdr table off in bytes
461
462 // e_flags = whatever the target wants
463 Write32(Asm.getELFHeaderEFlags());
464
465 // e_ehsize = ELF header size
466 Write16(is64Bit() ? sizeof(ELF::Elf64_Ehdr) : sizeof(ELF::Elf32_Ehdr));
467
468 Write16(0); // e_phentsize = prog header entry size
469 Write16(0); // e_phnum = # prog header entries = 0
470
471 // e_shentsize = Section header entry size
472 Write16(is64Bit() ? sizeof(ELF::Elf64_Shdr) : sizeof(ELF::Elf32_Shdr));
473
474 // e_shnum = # of section header ents
475 if (NumberOfSections >= ELF::SHN_LORESERVE)
476 Write16(ELF::SHN_UNDEF);
477 else
478 Write16(NumberOfSections);
479
480 // e_shstrndx = Section # of '.shstrtab'
481 if (ShstrtabIndex >= ELF::SHN_LORESERVE)
482 Write16(ELF::SHN_XINDEX);
483 else
484 Write16(ShstrtabIndex);
485 }
486
487 uint64_t ELFObjectWriter::SymbolValue(MCSymbolData &Data,
488 const MCAsmLayout &Layout) {
489 if (Data.isCommon() && Data.isExternal())
490 return Data.getCommonAlignment();
491
492 uint64_t Res;
493 if (!Layout.getSymbolOffset(&Data, Res))
494 return 0;
495
496 if (Layout.getAssembler().isThumbFunc(&Data.getSymbol()))
497 Res |= 1;
498
499 return Res;
500 }
501
502 void ELFObjectWriter::ExecutePostLayoutBinding(MCAssembler &Asm,
503 const MCAsmLayout &Layout) {
504 // The presence of symbol versions causes undefined symbols and
505 // versions declared with @@@ to be renamed.
506
507 for (MCSymbolData &OriginalData : Asm.symbols()) {
508 const MCSymbol &Alias = OriginalData.getSymbol();
509
510 // Not an alias.
511 if (!Alias.isVariable())
512 continue;
513 auto *Ref = dyn_cast<MCSymbolRefExpr>(Alias.getVariableValue());
514 if (!Ref)
515 continue;
516 const MCSymbol &Symbol = Ref->getSymbol();
517 MCSymbolData &SD = Asm.getSymbolData(Symbol);
518
519 StringRef AliasName = Alias.getName();
520 size_t Pos = AliasName.find('@');
521 if (Pos == StringRef::npos)
522 continue;
523
524 // Aliases defined with .symvar copy the binding from the symbol they alias.
525 // This is the first place we are able to copy this information.
526 OriginalData.setExternal(SD.isExternal());
527 MCELF::SetBinding(OriginalData, MCELF::GetBinding(SD));
528
529 StringRef Rest = AliasName.substr(Pos);
530 if (!Symbol.isUndefined() && !Rest.startswith("@@@"))
531 continue;
532
533 // FIXME: produce a better error message.
534 if (Symbol.isUndefined() && Rest.startswith("@@") &&
535 !Rest.startswith("@@@"))
536 report_fatal_error("A @@ version cannot be undefined");
537
538 Renames.insert(std::make_pair(&Symbol, &Alias));
539 }
540 }
541
542 static uint8_t mergeTypeForSet(uint8_t origType, uint8_t newType) {
543 uint8_t Type = newType;
544
545 // Propagation rules:
546 // IFUNC > FUNC > OBJECT > NOTYPE
547 // TLS_OBJECT > OBJECT > NOTYPE
548 //
549 // dont let the new type degrade the old type
550 switch (origType) {
551 default:
552 break;
553 case ELF::STT_GNU_IFUNC:
554 if (Type == ELF::STT_FUNC || Type == ELF::STT_OBJECT ||
555 Type == ELF::STT_NOTYPE || Type == ELF::STT_TLS)
556 Type = ELF::STT_GNU_IFUNC;
557 break;
558 case ELF::STT_FUNC:
559 if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE ||
560 Type == ELF::STT_TLS)
561 Type = ELF::STT_FUNC;
562 break;
563 case ELF::STT_OBJECT:
564 if (Type == ELF::STT_NOTYPE)
565 Type = ELF::STT_OBJECT;
566 break;
567 case ELF::STT_TLS:
568 if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE ||
569 Type == ELF::STT_GNU_IFUNC || Type == ELF::STT_FUNC)
570 Type = ELF::STT_TLS;
571 break;
572 }
573
574 return Type;
575 }
576
577 void ELFObjectWriter::WriteSymbol(SymbolTableWriter &Writer, ELFSymbolData &MSD,
578 const MCAsmLayout &Layout) {
579 MCSymbolData &OrigData = *MSD.SymbolData;
580 assert((!OrigData.getFragment() ||
581 (&OrigData.getFragment()->getParent()->getSection() ==
582 &OrigData.getSymbol().getSection())) &&
583 "The symbol's section doesn't match the fragment's symbol");
584 const MCSymbol *Base = Layout.getBaseSymbol(OrigData.getSymbol());
585
586 // This has to be in sync with when computeSymbolTable uses SHN_ABS or
587 // SHN_COMMON.
588 bool IsReserved = !Base || OrigData.isCommon();
589
590 // Binding and Type share the same byte as upper and lower nibbles
591 uint8_t Binding = MCELF::GetBinding(OrigData);
592 uint8_t Type = MCELF::GetType(OrigData);
593 MCSymbolData *BaseSD = nullptr;
594 if (Base) {
595 BaseSD = &Layout.getAssembler().getSymbolData(*Base);
596 Type = mergeTypeForSet(Type, MCELF::GetType(*BaseSD));
597 }
598 uint8_t Info = (Binding << ELF_STB_Shift) | (Type << ELF_STT_Shift);
599
600 // Other and Visibility share the same byte with Visibility using the lower
601 // 2 bits
602 uint8_t Visibility = MCELF::GetVisibility(OrigData);
603 uint8_t Other = MCELF::getOther(OrigData) << (ELF_STO_Shift - ELF_STV_Shift);
604 Other |= Visibility;
605
606 uint64_t Value = SymbolValue(OrigData, Layout);
607 uint64_t Size = 0;
608
609 const MCExpr *ESize = OrigData.getSize();
610 if (!ESize && Base)
611 ESize = BaseSD->getSize();
612
613 if (ESize) {
614 int64_t Res;
615 if (!ESize->EvaluateAsAbsolute(Res, Layout))
616 report_fatal_error("Size expression must be absolute.");
617 Size = Res;
618 }
619
620 // Write out the symbol table entry
621 Writer.writeSymbol(MSD.StringIndex, Info, Value, Size, Other,
622 MSD.SectionIndex, IsReserved);
623 }
624
625 void ELFObjectWriter::WriteSymbolTable(MCDataFragment *SymtabF,
626 MCAssembler &Asm,
627 const MCAsmLayout &Layout,
628 SectionIndexMapTy &SectionIndexMap) {
629 // The string table must be emitted first because we need the index
630 // into the string table for all the symbol names.
631
632 // FIXME: Make sure the start of the symbol table is aligned.
633
634 SymbolTableWriter Writer(Asm, FWriter, is64Bit(), SectionIndexMap, SymtabF);
635
636 // The first entry is the undefined symbol entry.
637 Writer.writeSymbol(0, 0, 0, 0, 0, 0, false);
638
639 for (unsigned i = 0, e = FileSymbolData.size(); i != e; ++i) {
640 Writer.writeSymbol(FileSymbolData[i], ELF::STT_FILE | ELF::STB_LOCAL, 0, 0,
641 ELF::STV_DEFAULT, ELF::SHN_ABS, true);
642 }
643
644 // Write the symbol table entries.
645 LastLocalSymbolIndex = FileSymbolData.size() + LocalSymbolData.size() + 1;
646
647 for (unsigned i = 0, e = LocalSymbolData.size(); i != e; ++i) {
648 ELFSymbolData &MSD = LocalSymbolData[i];
649 WriteSymbol(Writer, MSD, Layout);
650 }
651
652 for (unsigned i = 0, e = ExternalSymbolData.size(); i != e; ++i) {
653 ELFSymbolData &MSD = ExternalSymbolData[i];
654 MCSymbolData &Data = *MSD.SymbolData;
655 assert(((Data.getFlags() & ELF_STB_Global) ||
656 (Data.getFlags() & ELF_STB_Weak)) &&
657 "External symbol requires STB_GLOBAL or STB_WEAK flag");
658 WriteSymbol(Writer, MSD, Layout);
659 if (MCELF::GetBinding(Data) == ELF::STB_LOCAL)
660 LastLocalSymbolIndex++;
661 }
662
663 for (unsigned i = 0, e = UndefinedSymbolData.size(); i != e; ++i) {
664 ELFSymbolData &MSD = UndefinedSymbolData[i];
665 MCSymbolData &Data = *MSD.SymbolData;
666 WriteSymbol(Writer, MSD, Layout);
667 if (MCELF::GetBinding(Data) == ELF::STB_LOCAL)
668 LastLocalSymbolIndex++;
669 }
670 }
671
672 // It is always valid to create a relocation with a symbol. It is preferable
673 // to use a relocation with a section if that is possible. Using the section
674 // allows us to omit some local symbols from the symbol table.
675 bool ELFObjectWriter::shouldRelocateWithSymbol(const MCAssembler &Asm,
676 const MCSymbolRefExpr *RefA,
677 const MCSymbolData *SD,
678 uint64_t C,
679 unsigned Type) const {
680 // A PCRel relocation to an absolute value has no symbol (or section). We
681 // represent that with a relocation to a null section.
682 if (!RefA)
683 return false;
684
685 MCSymbolRefExpr::VariantKind Kind = RefA->getKind();
686 switch (Kind) {
687 default:
688 break;
689 // The .odp creation emits a relocation against the symbol ".TOC." which
690 // create a R_PPC64_TOC relocation. However the relocation symbol name
691 // in final object creation should be NULL, since the symbol does not
692 // really exist, it is just the reference to TOC base for the current
693 // object file. Since the symbol is undefined, returning false results
694 // in a relocation with a null section which is the desired result.
695 case MCSymbolRefExpr::VK_PPC_TOCBASE:
696 return false;
697
698 // These VariantKind cause the relocation to refer to something other than
699 // the symbol itself, like a linker generated table. Since the address of
700 // symbol is not relevant, we cannot replace the symbol with the
701 // section and patch the difference in the addend.
702 case MCSymbolRefExpr::VK_GOT:
703 case MCSymbolRefExpr::VK_PLT:
704 case MCSymbolRefExpr::VK_GOTPCREL:
705 case MCSymbolRefExpr::VK_Mips_GOT:
706 case MCSymbolRefExpr::VK_PPC_GOT_LO:
707 case MCSymbolRefExpr::VK_PPC_GOT_HI:
708 case MCSymbolRefExpr::VK_PPC_GOT_HA:
709 return true;
710 }
711
712 // An undefined symbol is not in any section, so the relocation has to point
713 // to the symbol itself.
714 const MCSymbol &Sym = SD->getSymbol();
715 if (Sym.isUndefined())
716 return true;
717
718 unsigned Binding = MCELF::GetBinding(*SD);
719 switch(Binding) {
720 default:
721 llvm_unreachable("Invalid Binding");
722 case ELF::STB_LOCAL:
723 break;
724 case ELF::STB_WEAK:
725 // If the symbol is weak, it might be overridden by a symbol in another
726 // file. The relocation has to point to the symbol so that the linker
727 // can update it.
728 return true;
729 case ELF::STB_GLOBAL:
730 // Global ELF symbols can be preempted by the dynamic linker. The relocation
731 // has to point to the symbol for a reason analogous to the STB_WEAK case.
732 return true;
733 }
734
735 // If a relocation points to a mergeable section, we have to be careful.
736 // If the offset is zero, a relocation with the section will encode the
737 // same information. With a non-zero offset, the situation is different.
738 // For example, a relocation can point 42 bytes past the end of a string.
739 // If we change such a relocation to use the section, the linker would think
740 // that it pointed to another string and subtracting 42 at runtime will
741 // produce the wrong value.
742 auto &Sec = cast<MCSectionELF>(Sym.getSection());
743 unsigned Flags = Sec.getFlags();
744 if (Flags & ELF::SHF_MERGE) {
745 if (C != 0)
746 return true;
747
748 // It looks like gold has a bug (http://sourceware.org/PR16794) and can
749 // only handle section relocations to mergeable sections if using RELA.
750 if (!hasRelocationAddend())
751 return true;
752 }
753
754 // Most TLS relocations use a got, so they need the symbol. Even those that
755 // are just an offset (@tpoff), require a symbol in gold versions before
756 // 5efeedf61e4fe720fd3e9a08e6c91c10abb66d42 (2014-09-26) which fixed
757 // http://sourceware.org/PR16773.
758 if (Flags & ELF::SHF_TLS)
759 return true;
760
761 // If the symbol is a thumb function the final relocation must set the lowest
762 // bit. With a symbol that is done by just having the symbol have that bit
763 // set, so we would lose the bit if we relocated with the section.
764 // FIXME: We could use the section but add the bit to the relocation value.
765 if (Asm.isThumbFunc(&Sym))
766 return true;
767
768 if (TargetObjectWriter->needsRelocateWithSymbol(*SD, Type))
769 return true;
770 return false;
771 }
772
773 static const MCSymbol *getWeakRef(const MCSymbolRefExpr &Ref) {
774 const MCSymbol &Sym = Ref.getSymbol();
775
776 if (Ref.getKind() == MCSymbolRefExpr::VK_WEAKREF)
777 return &Sym;
778
779 if (!Sym.isVariable())
780 return nullptr;
781
782 const MCExpr *Expr = Sym.getVariableValue();
783 const auto *Inner = dyn_cast<MCSymbolRefExpr>(Expr);
784 if (!Inner)
785 return nullptr;
786
787 if (Inner->getKind() == MCSymbolRefExpr::VK_WEAKREF)
788 return &Inner->getSymbol();
789 return nullptr;
790 }
791
792 void ELFObjectWriter::RecordRelocation(const MCAssembler &Asm,
793 const MCAsmLayout &Layout,
794 const MCFragment *Fragment,
795 const MCFixup &Fixup,
796 MCValue Target,
797 bool &IsPCRel,
798 uint64_t &FixedValue) {
799 const MCSectionData *FixupSection = Fragment->getParent();
800 uint64_t C = Target.getConstant();
801 uint64_t FixupOffset = Layout.getFragmentOffset(Fragment) + Fixup.getOffset();
802
803 if (const MCSymbolRefExpr *RefB = Target.getSymB()) {
804 assert(RefB->getKind() == MCSymbolRefExpr::VK_None &&
805 "Should not have constructed this");
806
807 // Let A, B and C being the components of Target and R be the location of
808 // the fixup. If the fixup is not pcrel, we want to compute (A - B + C).
809 // If it is pcrel, we want to compute (A - B + C - R).
810
811 // In general, ELF has no relocations for -B. It can only represent (A + C)
812 // or (A + C - R). If B = R + K and the relocation is not pcrel, we can
813 // replace B to implement it: (A - R - K + C)
814 if (IsPCRel)
815 Asm.getContext().FatalError(
816 Fixup.getLoc(),
817 "No relocation available to represent this relative expression");
818
819 const MCSymbol &SymB = RefB->getSymbol();
820
821 if (SymB.isUndefined())
822 Asm.getContext().FatalError(
823 Fixup.getLoc(),
824 Twine("symbol '") + SymB.getName() +
825 "' can not be undefined in a subtraction expression");
826
827 assert(!SymB.isAbsolute() && "Should have been folded");
828 const MCSection &SecB = SymB.getSection();
829 if (&SecB != &FixupSection->getSection())
830 Asm.getContext().FatalError(
831 Fixup.getLoc(), "Cannot represent a difference across sections");
832
833 const MCSymbolData &SymBD = Asm.getSymbolData(SymB);
834 uint64_t SymBOffset = Layout.getSymbolOffset(&SymBD);
835 uint64_t K = SymBOffset - FixupOffset;
836 IsPCRel = true;
837 C -= K;
838 }
839
840 // We either rejected the fixup or folded B into C at this point.
841 const MCSymbolRefExpr *RefA = Target.getSymA();
842 const MCSymbol *SymA = RefA ? &RefA->getSymbol() : nullptr;
843 const MCSymbolData *SymAD = SymA ? &Asm.getSymbolData(*SymA) : nullptr;
844
845 unsigned Type = GetRelocType(Target, Fixup, IsPCRel);
846 bool RelocateWithSymbol = shouldRelocateWithSymbol(Asm, RefA, SymAD, C, Type);
847 if (!RelocateWithSymbol && SymA && !SymA->isUndefined())
848 C += Layout.getSymbolOffset(SymAD);
849
850 uint64_t Addend = 0;
851 if (hasRelocationAddend()) {
852 Addend = C;
853 C = 0;
854 }
855
856 FixedValue = C;
857
858 // FIXME: What is this!?!?
859 MCSymbolRefExpr::VariantKind Modifier =
860 RefA ? RefA->getKind() : MCSymbolRefExpr::VK_None;
861 if (RelocNeedsGOT(Modifier))
862 NeedsGOT = true;
863
864 if (!RelocateWithSymbol) {
865 const MCSection *SecA =
866 (SymA && !SymA->isUndefined()) ? &SymA->getSection() : nullptr;
867 auto *ELFSec = cast_or_null<MCSectionELF>(SecA);
868 MCSymbol *SectionSymbol =
869 ELFSec ? Asm.getContext().getOrCreateSectionSymbol(*ELFSec)
870 : nullptr;
871 ELFRelocationEntry Rec(FixupOffset, SectionSymbol, Type, Addend);
872 Relocations[FixupSection].push_back(Rec);
873 return;
874 }
875
876 if (SymA) {
877 if (const MCSymbol *R = Renames.lookup(SymA))
878 SymA = R;
879
880 if (const MCSymbol *WeakRef = getWeakRef(*RefA))
881 WeakrefUsedInReloc.insert(WeakRef);
882 else
883 UsedInReloc.insert(SymA);
884 }
885 ELFRelocationEntry Rec(FixupOffset, SymA, Type, Addend);
886 Relocations[FixupSection].push_back(Rec);
887 return;
888 }
889
890
891 uint64_t
892 ELFObjectWriter::getSymbolIndexInSymbolTable(const MCAssembler &Asm,
893 const MCSymbol *S) {
894 const MCSymbolData &SD = Asm.getSymbolData(*S);
895 return SD.getIndex();
896 }
897
898 bool ELFObjectWriter::isInSymtab(const MCAsmLayout &Layout,
899 const MCSymbolData &Data, bool Used,
900 bool Renamed) {
901 const MCSymbol &Symbol = Data.getSymbol();
902 if (Symbol.isVariable()) {
903 const MCExpr *Expr = Symbol.getVariableValue();
904 if (const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Expr)) {
905 if (Ref->getKind() == MCSymbolRefExpr::VK_WEAKREF)
906 return false;
907 }
908 }
909
910 if (Used)
911 return true;
912
913 if (Renamed)
914 return false;
915
916 if (Symbol.getName() == "_GLOBAL_OFFSET_TABLE_")
917 return true;
918
919 if (Symbol.isVariable()) {
920 const MCSymbol *Base = Layout.getBaseSymbol(Symbol);
921 if (Base && Base->isUndefined())
922 return false;
923 }
924
925 bool IsGlobal = MCELF::GetBinding(Data) == ELF::STB_GLOBAL;
926 if (!Symbol.isVariable() && Symbol.isUndefined() && !IsGlobal)
927 return false;
928
929 if (Symbol.isTemporary())
930 return false;
931
932 return true;
933 }
934
935 bool ELFObjectWriter::isLocal(const MCSymbolData &Data, bool isUsedInReloc) {
936 if (Data.isExternal())
937 return false;
938
939 const MCSymbol &Symbol = Data.getSymbol();
940 if (Symbol.isDefined())
941 return true;
942
943 if (isUsedInReloc)
944 return false;
945
946 return true;
947 }
948
949 void ELFObjectWriter::ComputeIndexMap(MCAssembler &Asm,
950 SectionIndexMapTy &SectionIndexMap,
951 const RelMapTy &RelMap) {
952 unsigned Index = 1;
953 for (MCAssembler::iterator it = Asm.begin(),
954 ie = Asm.end(); it != ie; ++it) {
955 const MCSectionELF &Section =
956 static_cast<const MCSectionELF &>(it->getSection());
957 if (Section.getType() != ELF::SHT_GROUP)
958 continue;
959 SectionIndexMap[&Section] = Index++;
960 }
961
962 for (MCAssembler::iterator it = Asm.begin(),
963 ie = Asm.end(); it != ie; ++it) {
964 const MCSectionELF &Section =
965 static_cast<const MCSectionELF &>(it->getSection());
966 if (Section.getType() == ELF::SHT_GROUP ||
967 Section.getType() == ELF::SHT_REL ||
968 Section.getType() == ELF::SHT_RELA)
969 continue;
970 SectionIndexMap[&Section] = Index++;
971 const MCSectionELF *RelSection = RelMap.lookup(&Section);
972 if (RelSection)
973 SectionIndexMap[RelSection] = Index++;
974 }
975 }
976
977 void
978 ELFObjectWriter::computeSymbolTable(MCAssembler &Asm, const MCAsmLayout &Layout,
979 const SectionIndexMapTy &SectionIndexMap,
980 const RevGroupMapTy &RevGroupMap,
981 unsigned NumRegularSections) {
982 // FIXME: Is this the correct place to do this?
983 // FIXME: Why is an undefined reference to _GLOBAL_OFFSET_TABLE_ needed?
984 if (NeedsGOT) {
985 StringRef Name = "_GLOBAL_OFFSET_TABLE_";
986 MCSymbol *Sym = Asm.getContext().GetOrCreateSymbol(Name);
987 MCSymbolData &Data = Asm.getOrCreateSymbolData(*Sym);
988 Data.setExternal(true);
989 MCELF::SetBinding(Data, ELF::STB_GLOBAL);
990 }
991
992 // Add the data for the symbols.
993 for (MCSymbolData &SD : Asm.symbols()) {
994 const MCSymbol &Symbol = SD.getSymbol();
995
996 bool Used = UsedInReloc.count(&Symbol);
997 bool WeakrefUsed = WeakrefUsedInReloc.count(&Symbol);
998 bool isSignature = RevGroupMap.count(&Symbol);
999
1000 if (!isInSymtab(Layout, SD,
1001 Used || WeakrefUsed || isSignature,
1002 Renames.count(&Symbol)))
1003 continue;
1004
1005 ELFSymbolData MSD;
1006 MSD.SymbolData = &SD;
1007 const MCSymbol *BaseSymbol = Layout.getBaseSymbol(Symbol);
1008
1009 // Undefined symbols are global, but this is the first place we
1010 // are able to set it.
1011 bool Local = isLocal(SD, Used);
1012 if (!Local && MCELF::GetBinding(SD) == ELF::STB_LOCAL) {
1013 assert(BaseSymbol);
1014 MCSymbolData &BaseData = Asm.getSymbolData(*BaseSymbol);
1015 MCELF::SetBinding(SD, ELF::STB_GLOBAL);
1016 MCELF::SetBinding(BaseData, ELF::STB_GLOBAL);
1017 }
1018
1019 if (!BaseSymbol) {
1020 MSD.SectionIndex = ELF::SHN_ABS;
1021 } else if (SD.isCommon()) {
1022 assert(!Local);
1023 MSD.SectionIndex = ELF::SHN_COMMON;
1024 } else if (BaseSymbol->isUndefined()) {
1025 if (isSignature && !Used)
1026 MSD.SectionIndex = SectionIndexMap.lookup(RevGroupMap.lookup(&Symbol));
1027 else
1028 MSD.SectionIndex = ELF::SHN_UNDEF;
1029 if (!Used && WeakrefUsed)
1030 MCELF::SetBinding(SD, ELF::STB_WEAK);
1031 } else {
1032 const MCSectionELF &Section =
1033 static_cast<const MCSectionELF&>(BaseSymbol->getSection());
1034 MSD.SectionIndex = SectionIndexMap.lookup(&Section);
1035 assert(MSD.SectionIndex && "Invalid section index!");
1036 }
1037
1038 // The @@@ in symbol version is replaced with @ in undefined symbols and
1039 // @@ in defined ones.
1040 StringRef Name = Symbol.getName();
1041 SmallString<32> Buf;
1042 size_t Pos = Name.find("@@@");
1043 if (Pos != StringRef::npos) {
1044 Buf += Name.substr(0, Pos);
1045 unsigned Skip = MSD.SectionIndex == ELF::SHN_UNDEF ? 2 : 1;
1046 Buf += Name.substr(Pos + Skip);
1047 Name = Buf;
1048 }
1049
1050 // Sections have their own string table
1051 if (MCELF::GetType(SD) != ELF::STT_SECTION)
1052 MSD.Name = StrTabBuilder.add(Name);
1053
1054 if (MSD.SectionIndex == ELF::SHN_UNDEF)
1055 UndefinedSymbolData.push_back(MSD);
1056 else if (Local)
1057 LocalSymbolData.push_back(MSD);
1058 else
1059 ExternalSymbolData.push_back(MSD);
1060 }
1061
1062 for (auto i = Asm.file_names_begin(), e = Asm.file_names_end(); i != e; ++i)
1063 StrTabBuilder.add(*i);
1064
1065 StrTabBuilder.finalize(StringTableBuilder::ELF);
1066
1067 for (auto i = Asm.file_names_begin(), e = Asm.file_names_end(); i != e; ++i)
1068 FileSymbolData.push_back(StrTabBuilder.getOffset(*i));
1069
1070 for (ELFSymbolData &MSD : LocalSymbolData)
1071 MSD.StringIndex = MCELF::GetType(*MSD.SymbolData) == ELF::STT_SECTION
1072 ? 0
1073 : StrTabBuilder.getOffset(MSD.Name);
1074 for (ELFSymbolData &MSD : ExternalSymbolData)
1075 MSD.StringIndex = StrTabBuilder.getOffset(MSD.Name);
1076 for (ELFSymbolData& MSD : UndefinedSymbolData)
1077 MSD.StringIndex = StrTabBuilder.getOffset(MSD.Name);
1078
1079 // Symbols are required to be in lexicographic order.
1080 array_pod_sort(LocalSymbolData.begin(), LocalSymbolData.end());
1081 array_pod_sort(ExternalSymbolData.begin(), ExternalSymbolData.end());
1082 array_pod_sort(UndefinedSymbolData.begin(), UndefinedSymbolData.end());
1083
1084 // Set the symbol indices. Local symbols must come before all other
1085 // symbols with non-local bindings.
1086 unsigned Index = FileSymbolData.size() + 1;
1087 for (unsigned i = 0, e = LocalSymbolData.size(); i != e; ++i)
1088 LocalSymbolData[i].SymbolData->setIndex(Index++);
1089
1090 for (unsigned i = 0, e = ExternalSymbolData.size(); i != e; ++i)
1091 ExternalSymbolData[i].SymbolData->setIndex(Index++);
1092 for (unsigned i = 0, e = UndefinedSymbolData.size(); i != e; ++i)
1093 UndefinedSymbolData[i].SymbolData->setIndex(Index++);
1094 }
1095
1096 void ELFObjectWriter::CreateRelocationSections(MCAssembler &Asm,
1097 MCAsmLayout &Layout,
1098 RelMapTy &RelMap) {
1099 for (MCAssembler::const_iterator it = Asm.begin(),
1100 ie = Asm.end(); it != ie; ++it) {
1101 const MCSectionData &SD = *it;
1102 if (Relocations[&SD].empty())
1103 continue;
1104
1105 MCContext &Ctx = Asm.getContext();
1106 const MCSectionELF &Section =
1107 static_cast<const MCSectionELF&>(SD.getSection());
1108
1109 const StringRef SectionName = Section.getSectionName();
1110 std::string RelaSectionName = hasRelocationAddend() ? ".rela" : ".rel";
1111 RelaSectionName += SectionName;
1112
1113 unsigned EntrySize;
1114 if (hasRelocationAddend())
1115 EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rela) : sizeof(ELF::Elf32_Rela);
1116 else
1117 EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rel) : sizeof(ELF::Elf32_Rel);
1118
1119 unsigned Flags = 0;
1120 StringRef Group = "";
1121 if (Section.getFlags() & ELF::SHF_GROUP) {
1122 Flags = ELF::SHF_GROUP;
1123 Group = Section.getGroup()->getName();
1124 }
1125
1126 const MCSectionELF *RelaSection =
1127 Ctx.getELFSection(RelaSectionName, hasRelocationAddend() ?
1128 ELF::SHT_RELA : ELF::SHT_REL, Flags,
1129 SectionKind::getReadOnly(),
1130 EntrySize, Group);
1131 RelMap[&Section] = RelaSection;
1132 Asm.getOrCreateSectionData(*RelaSection);
1133 }
1134 }
1135
1136 static SmallVector<char, 128>
1137 getUncompressedData(MCAsmLayout &Layout,
1138 MCSectionData::FragmentListType &Fragments) {
1139 SmallVector<char, 128> UncompressedData;
1140 for (const MCFragment &F : Fragments) {
1141 const SmallVectorImpl<char> *Contents;
1142 switch (F.getKind()) {
1143 case MCFragment::FT_Data:
1144 Contents = &cast<MCDataFragment>(F).getContents();
1145 break;
1146 case MCFragment::FT_Dwarf:
1147 Contents = &cast<MCDwarfLineAddrFragment>(F).getContents();
1148 break;
1149 case MCFragment::FT_DwarfFrame:
1150 Contents = &cast<MCDwarfCallFrameFragment>(F).getContents();
1151 break;
1152 default:
1153 llvm_unreachable(
1154 "Not expecting any other fragment types in a debug_* section");
1155 }
1156 UncompressedData.append(Contents->begin(), Contents->end());
1157 }
1158 return UncompressedData;
1159 }
1160
1161 // Include the debug info compression header:
1162 // "ZLIB" followed by 8 bytes representing the uncompressed size of the section,
1163 // useful for consumers to preallocate a buffer to decompress into.
1164 static bool
1165 prependCompressionHeader(uint64_t Size,
1166 SmallVectorImpl<char> &CompressedContents) {
1167 static const StringRef Magic = "ZLIB";
1168 if (Size <= Magic.size() + sizeof(Size) + CompressedContents.size())
1169 return false;
1170 if (sys::IsLittleEndianHost)
1171 sys::swapByteOrder(Size);
1172 CompressedContents.insert(CompressedContents.begin(),
1173 Magic.size() + sizeof(Size), 0);
1174 std::copy(Magic.begin(), Magic.end(), CompressedContents.begin());
1175 std::copy(reinterpret_cast<char *>(&Size),
1176 reinterpret_cast<char *>(&Size + 1),
1177 CompressedContents.begin() + Magic.size());
1178 return true;
1179 }
1180
1181 // Return a single fragment containing the compressed contents of the whole
1182 // section. Null if the section was not compressed for any reason.
1183 static std::unique_ptr<MCDataFragment>
1184 getCompressedFragment(MCAsmLayout &Layout,
1185 MCSectionData::FragmentListType &Fragments) {
1186 std::unique_ptr<MCDataFragment> CompressedFragment(new MCDataFragment());
1187
1188 // Gather the uncompressed data from all the fragments, recording the
1189 // alignment fragment, if seen, and any fixups.
1190 SmallVector<char, 128> UncompressedData =
1191 getUncompressedData(Layout, Fragments);
1192
1193 SmallVectorImpl<char> &CompressedContents = CompressedFragment->getContents();
1194
1195 zlib::Status Success = zlib::compress(
1196 StringRef(UncompressedData.data(), UncompressedData.size()),
1197 CompressedContents);
1198 if (Success != zlib::StatusOK)
1199 return nullptr;
1200
1201 if (!prependCompressionHeader(UncompressedData.size(), CompressedContents))
1202 return nullptr;
1203
1204 return CompressedFragment;
1205 }
1206
1207 typedef DenseMap<const MCSectionData *, std::vector<MCSymbolData *>>
1208 DefiningSymbolMap;
1209
1210 static void UpdateSymbols(const MCAsmLayout &Layout,
1211 const std::vector<MCSymbolData *> &Symbols,
1212 MCFragment &NewFragment) {
1213 for (MCSymbolData *Sym : Symbols) {
1214 Sym->setOffset(Sym->getOffset() +
1215 Layout.getFragmentOffset(Sym->getFragment()));
1216 Sym->setFragment(&NewFragment);
1217 }
1218 }
1219
1220 static void CompressDebugSection(MCAssembler &Asm, MCAsmLayout &Layout,
1221 const DefiningSymbolMap &DefiningSymbols,
1222 const MCSectionELF &Section,
1223 MCSectionData &SD) {
1224 StringRef SectionName = Section.getSectionName();
1225 MCSectionData::FragmentListType &Fragments = SD.getFragmentList();
1226
1227 std::unique_ptr<MCDataFragment> CompressedFragment =
1228 getCompressedFragment(Layout, Fragments);
1229
1230 // Leave the section as-is if the fragments could not be compressed.
1231 if (!CompressedFragment)
1232 return;
1233
1234 // Update the fragment+offsets of any symbols referring to fragments in this
1235 // section to refer to the new fragment.
1236 auto I = DefiningSymbols.find(&SD);
1237 if (I != DefiningSymbols.end())
1238 UpdateSymbols(Layout, I->second, *CompressedFragment);
1239
1240 // Invalidate the layout for the whole section since it will have new and
1241 // different fragments now.
1242 Layout.invalidateFragmentsFrom(&Fragments.front());
1243 Fragments.clear();
1244
1245 // Complete the initialization of the new fragment
1246 CompressedFragment->setParent(&SD);
1247 CompressedFragment->setLayoutOrder(0);
1248 Fragments.push_back(CompressedFragment.release());
1249
1250 // Rename from .debug_* to .zdebug_*
1251 Asm.getContext().renameELFSection(&Section,
1252 (".z" + SectionName.drop_front(1)).str());
1253 }
1254
1255 void ELFObjectWriter::CompressDebugSections(MCAssembler &Asm,
1256 MCAsmLayout &Layout) {
1257 if (!Asm.getContext().getAsmInfo()->compressDebugSections())
1258 return;
1259
1260 DefiningSymbolMap DefiningSymbols;
1261
1262 for (MCSymbolData &SD : Asm.symbols())
1263 if (MCFragment *F = SD.getFragment())
1264 DefiningSymbols[F->getParent()].push_back(&SD);
1265
1266 for (MCSectionData &SD : Asm) {
1267 const MCSectionELF &Section =
1268 static_cast<const MCSectionELF &>(SD.getSection());
1269 StringRef SectionName = Section.getSectionName();
1270
1271 // Compressing debug_frame requires handling alignment fragments which is
1272 // more work (possibly generalizing MCAssembler.cpp:writeFragment to allow
1273 // for writing to arbitrary buffers) for little benefit.
1274 if (!SectionName.startswith(".debug_") || SectionName == ".debug_frame")
1275 continue;
1276
1277 CompressDebugSection(Asm, Layout, DefiningSymbols, Section, SD);
1278 }
1279 }
1280
1281 void ELFObjectWriter::WriteRelocations(MCAssembler &Asm, MCAsmLayout &Layout,
1282 const RelMapTy &RelMap) {
1283 for (MCAssembler::const_iterator it = Asm.begin(),
1284 ie = Asm.end(); it != ie; ++it) {
1285 const MCSectionData &SD = *it;
1286 const MCSectionELF &Section =
1287 static_cast<const MCSectionELF&>(SD.getSection());
1288
1289 const MCSectionELF *RelaSection = RelMap.lookup(&Section);
1290 if (!RelaSection)
1291 continue;
1292 MCSectionData &RelaSD = Asm.getOrCreateSectionData(*RelaSection);
1293 RelaSD.setAlignment(is64Bit() ? 8 : 4);
1294
1295 MCDataFragment *F = new MCDataFragment(&RelaSD);
1296 WriteRelocationsFragment(Asm, F, &*it);
1297 }
1298 }
1299
1300 void ELFObjectWriter::WriteSecHdrEntry(uint32_t Name, uint32_t Type,
1301 uint64_t Flags, uint64_t Address,
1302 uint64_t Offset, uint64_t Size,
1303 uint32_t Link, uint32_t Info,
1304 uint64_t Alignment,
1305 uint64_t EntrySize) {
1306 Write32(Name); // sh_name: index into string table
1307 Write32(Type); // sh_type
1308 WriteWord(Flags); // sh_flags
1309 WriteWord(Address); // sh_addr
1310 WriteWord(Offset); // sh_offset
1311 WriteWord(Size); // sh_size
1312 Write32(Link); // sh_link
1313 Write32(Info); // sh_info
1314 WriteWord(Alignment); // sh_addralign
1315 WriteWord(EntrySize); // sh_entsize
1316 }
1317
1318 // ELF doesn't require relocations to be in any order. We sort by the r_offset,
1319 // just to match gnu as for easier comparison. The use type is an arbitrary way
1320 // of making the sort deterministic.
1321 static int cmpRel(const ELFRelocationEntry *AP, const ELFRelocationEntry *BP) {
1322 const ELFRelocationEntry &A = *AP;
1323 const ELFRelocationEntry &B = *BP;
1324 if (A.Offset != B.Offset)
1325 return B.Offset - A.Offset;
1326 if (B.Type != A.Type)
1327 return A.Type - B.Type;
1328 llvm_unreachable("ELFRelocs might be unstable!");
1329 }
1330
1331 static void sortRelocs(const MCAssembler &Asm,
1332 std::vector<ELFRelocationEntry> &Relocs) {
1333 array_pod_sort(Relocs.begin(), Relocs.end(), cmpRel);
1334 }
1335
1336 void ELFObjectWriter::WriteRelocationsFragment(const MCAssembler &Asm,
1337 MCDataFragment *F,
1338 const MCSectionData *SD) {
1339 std::vector<ELFRelocationEntry> &Relocs = Relocations[SD];
1340
1341 sortRelocs(Asm, Relocs);
1342
1343 for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
1344 const ELFRelocationEntry &Entry = Relocs[e - i - 1];
1345 unsigned Index =
1346 Entry.Symbol ? getSymbolIndexInSymbolTable(Asm, Entry.Symbol) : 0;
1347
1348 if (is64Bit()) {
1349 write(*F, Entry.Offset);
1350 if (TargetObjectWriter->isN64()) {
1351 write(*F, uint32_t(Index));
1352
1353 write(*F, TargetObjectWriter->getRSsym(Entry.Type));
1354 write(*F, TargetObjectWriter->getRType3(Entry.Type));
1355 write(*F, TargetObjectWriter->getRType2(Entry.Type));
1356 write(*F, TargetObjectWriter->getRType(Entry.Type));
1357 } else {
1358 struct ELF::Elf64_Rela ERE64;
1359 ERE64.setSymbolAndType(Index, Entry.Type);
1360 write(*F, ERE64.r_info);
1361 }
1362 if (hasRelocationAddend())
1363 write(*F, Entry.Addend);
1364 } else {
1365 write(*F, uint32_t(Entry.Offset));
1366
1367 struct ELF::Elf32_Rela ERE32;
1368 ERE32.setSymbolAndType(Index, Entry.Type);
1369 write(*F, ERE32.r_info);
1370
1371 if (hasRelocationAddend())
1372 write(*F, uint32_t(Entry.Addend));
1373 }
1374 }
1375 }
1376
1377 void ELFObjectWriter::CreateMetadataSections(MCAssembler &Asm,
1378 MCAsmLayout &Layout,
1379 SectionIndexMapTy &SectionIndexMap,
1380 const RelMapTy &RelMap) {
1381 MCContext &Ctx = Asm.getContext();
1382 MCDataFragment *F;
1383
1384 unsigned EntrySize = is64Bit() ? ELF::SYMENTRY_SIZE64 : ELF::SYMENTRY_SIZE32;
1385
1386 // We construct .shstrtab, .symtab and .strtab in this order to match gnu as.
1387 const MCSectionELF *ShstrtabSection =
1388 Ctx.getELFSection(".shstrtab", ELF::SHT_STRTAB, 0,
1389 SectionKind::getReadOnly());
1390 MCSectionData &ShstrtabSD = Asm.getOrCreateSectionData(*ShstrtabSection);
1391 ShstrtabSD.setAlignment(1);
1392
1393 const MCSectionELF *SymtabSection =
1394 Ctx.getELFSection(".symtab", ELF::SHT_SYMTAB, 0,
1395 SectionKind::getReadOnly(),
1396 EntrySize, "");
1397 MCSectionData &SymtabSD = Asm.getOrCreateSectionData(*SymtabSection);
1398 SymtabSD.setAlignment(is64Bit() ? 8 : 4);
1399
1400 const MCSectionELF *StrtabSection;
1401 StrtabSection = Ctx.getELFSection(".strtab", ELF::SHT_STRTAB, 0,
1402 SectionKind::getReadOnly());
1403 MCSectionData &StrtabSD = Asm.getOrCreateSectionData(*StrtabSection);
1404 StrtabSD.setAlignment(1);
1405
1406 ComputeIndexMap(Asm, SectionIndexMap, RelMap);
1407
1408 ShstrtabIndex = SectionIndexMap.lookup(ShstrtabSection);
1409 SymbolTableIndex = SectionIndexMap.lookup(SymtabSection);
1410 StringTableIndex = SectionIndexMap.lookup(StrtabSection);
1411
1412 // Symbol table
1413 F = new MCDataFragment(&SymtabSD);
1414 WriteSymbolTable(F, Asm, Layout, SectionIndexMap);
1415
1416 F = new MCDataFragment(&StrtabSD);
1417 F->getContents().append(StrTabBuilder.data().begin(),
1418 StrTabBuilder.data().end());
1419
1420 F = new MCDataFragment(&ShstrtabSD);
1421
1422 // Section header string table.
1423 for (auto it = Asm.begin(), ie = Asm.end(); it != ie; ++it) {
1424 const MCSectionELF &Section =
1425 static_cast<const MCSectionELF&>(it->getSection());
1426 ShStrTabBuilder.add(Section.getSectionName());
1427 }
1428 ShStrTabBuilder.finalize(StringTableBuilder::ELF);
1429 F->getContents().append(ShStrTabBuilder.data().begin(),
1430 ShStrTabBuilder.data().end());
1431 }
1432
1433 void ELFObjectWriter::CreateIndexedSections(MCAssembler &Asm,
1434 MCAsmLayout &Layout,
1435 GroupMapTy &GroupMap,
1436 RevGroupMapTy &RevGroupMap,
1437 SectionIndexMapTy &SectionIndexMap,
1438 const RelMapTy &RelMap) {
1439 MCContext &Ctx = Asm.getContext();
1440
1441 // Build the groups
1442 for (MCAssembler::const_iterator it = Asm.begin(), ie = Asm.end();
1443 it != ie; ++it) {
1444 const MCSectionELF &Section =
1445 static_cast<const MCSectionELF&>(it->getSection());
1446 if (!(Section.getFlags() & ELF::SHF_GROUP))
1447 continue;
1448
1449 const MCSymbol *SignatureSymbol = Section.getGroup();
1450 Asm.getOrCreateSymbolData(*SignatureSymbol);
1451 const MCSectionELF *&Group = RevGroupMap[SignatureSymbol];
1452 if (!Group) {
1453 Group = Ctx.CreateELFGroupSection();
1454 MCSectionData &Data = Asm.getOrCreateSectionData(*Group);
1455 Data.setAlignment(4);
1456 MCDataFragment *F = new MCDataFragment(&Data);
1457 write(*F, uint32_t(ELF::GRP_COMDAT));
1458 }
1459 GroupMap[Group] = SignatureSymbol;
1460 }
1461
1462 ComputeIndexMap(Asm, SectionIndexMap, RelMap);
1463
1464 // Add sections to the groups
1465 for (MCAssembler::const_iterator it = Asm.begin(), ie = Asm.end();
1466 it != ie; ++it) {
1467 const MCSectionELF &Section =
1468 static_cast<const MCSectionELF&>(it->getSection());
1469 if (!(Section.getFlags() & ELF::SHF_GROUP))
1470 continue;
1471 const MCSectionELF *Group = RevGroupMap[Section.getGroup()];
1472 MCSectionData &Data = Asm.getOrCreateSectionData(*Group);
1473 // FIXME: we could use the previous fragment
1474 MCDataFragment *F = new MCDataFragment(&Data);
1475 uint32_t Index = SectionIndexMap.lookup(&Section);
1476 write(*F, Index);
1477 }
1478 }
1479
1480 void ELFObjectWriter::WriteSection(MCAssembler &Asm,
1481 const SectionIndexMapTy &SectionIndexMap,
1482 uint32_t GroupSymbolIndex,
1483 uint64_t Offset, uint64_t Size,
1484 uint64_t Alignment,
1485 const MCSectionELF &Section) {
1486 uint64_t sh_link = 0;
1487 uint64_t sh_info = 0;
1488
1489 switch(Section.getType()) {
1490 case ELF::SHT_DYNAMIC:
1491 sh_link = ShStrTabBuilder.getOffset(Section.getSectionName());
1492 sh_info = 0;
1493 break;
1494
1495 case ELF::SHT_REL:
1496 case ELF::SHT_RELA: {
1497 const MCSectionELF *SymtabSection;
1498 const MCSectionELF *InfoSection;
1499 SymtabSection = Asm.getContext().getELFSection(".symtab", ELF::SHT_SYMTAB,
1500 0,
1501 SectionKind::getReadOnly());
1502 sh_link = SectionIndexMap.lookup(SymtabSection);
1503 assert(sh_link && ".symtab not found");
1504
1505 // Remove ".rel" and ".rela" prefixes.
1506 unsigned SecNameLen = (Section.getType() == ELF::SHT_REL) ? 4 : 5;
1507 StringRef SectionName = Section.getSectionName().substr(SecNameLen);
1508 StringRef GroupName =
1509 Section.getGroup() ? Section.getGroup()->getName() : "";
1510
1511 InfoSection = Asm.getContext().getELFSection(SectionName, ELF::SHT_PROGBITS,
1512 0, SectionKind::getReadOnly(),
1513 0, GroupName);
1514 sh_info = SectionIndexMap.lookup(InfoSection);
1515 break;
1516 }
1517
1518 case ELF::SHT_SYMTAB:
1519 case ELF::SHT_DYNSYM:
1520 sh_link = StringTableIndex;
1521 sh_info = LastLocalSymbolIndex;
1522 break;
1523
1524 case ELF::SHT_SYMTAB_SHNDX:
1525 sh_link = SymbolTableIndex;
1526 break;
1527
1528 case ELF::SHT_PROGBITS:
1529 case ELF::SHT_STRTAB:
1530 case ELF::SHT_NOBITS:
1531 case ELF::SHT_NOTE:
1532 case ELF::SHT_NULL:
1533 case ELF::SHT_ARM_ATTRIBUTES:
1534 case ELF::SHT_INIT_ARRAY:
1535 case ELF::SHT_FINI_ARRAY:
1536 case ELF::SHT_PREINIT_ARRAY:
1537 case ELF::SHT_X86_64_UNWIND:
1538 case ELF::SHT_MIPS_REGINFO:
1539 case ELF::SHT_MIPS_OPTIONS:
1540 case ELF::SHT_MIPS_ABIFLAGS:
1541 // Nothing to do.
1542 break;
1543
1544 case ELF::SHT_GROUP:
1545 sh_link = SymbolTableIndex;
1546 sh_info = GroupSymbolIndex;
1547 break;
1548
1549 default:
1550 llvm_unreachable("FIXME: sh_type value not supported!");
1551 }
1552
1553 if (TargetObjectWriter->getEMachine() == ELF::EM_ARM &&
1554 Section.getType() == ELF::SHT_ARM_EXIDX) {
1555 StringRef SecName(Section.getSectionName());
1556 if (SecName == ".ARM.exidx") {
1557 sh_link = SectionIndexMap.lookup(
1558 Asm.getContext().getELFSection(".text",
1559 ELF::SHT_PROGBITS,
1560 ELF::SHF_EXECINSTR | ELF::SHF_ALLOC,
1561 SectionKind::getText()));
1562 } else if (SecName.startswith(".ARM.exidx")) {
1563 StringRef GroupName =
1564 Section.getGroup() ? Section.getGroup()->getName() : "";
1565 sh_link = SectionIndexMap.lookup(Asm.getContext().getELFSection(
1566 SecName.substr(sizeof(".ARM.exidx") - 1), ELF::SHT_PROGBITS,
1567 ELF::SHF_EXECINSTR | ELF::SHF_ALLOC, SectionKind::getText(), 0,
1568 GroupName));
1569 }
1570 }
1571
1572 WriteSecHdrEntry(ShStrTabBuilder.getOffset(Section.getSectionName()),
1573 Section.getType(),
1574 Section.getFlags(), 0, Offset, Size, sh_link, sh_info,
1575 Alignment, Section.getEntrySize());
1576 }
1577
1578 bool ELFObjectWriter::IsELFMetaDataSection(const MCSectionData &SD) {
1579 return SD.getOrdinal() == ~UINT32_C(0) &&
1580 !SD.getSection().isVirtualSection();
1581 }
1582
1583 uint64_t ELFObjectWriter::DataSectionSize(const MCSectionData &SD) {
1584 uint64_t Ret = 0;
1585 for (MCSectionData::const_iterator i = SD.begin(), e = SD.end(); i != e;
1586 ++i) {
1587 const MCFragment &F = *i;
1588 assert(F.getKind() == MCFragment::FT_Data);
1589 Ret += cast<MCDataFragment>(F).getContents().size();
1590 }
1591 return Ret;
1592 }
1593
1594 uint64_t ELFObjectWriter::GetSectionFileSize(const MCAsmLayout &Layout,
1595 const MCSectionData &SD) {
1596 if (IsELFMetaDataSection(SD))
1597 return DataSectionSize(SD);
1598 return Layout.getSectionFileSize(&SD);
1599 }
1600
1601 uint64_t ELFObjectWriter::GetSectionAddressSize(const MCAsmLayout &Layout,
1602 const MCSectionData &SD) {
1603 if (IsELFMetaDataSection(SD))
1604 return DataSectionSize(SD);
1605 return Layout.getSectionAddressSize(&SD);
1606 }
1607
1608 void ELFObjectWriter::WriteDataSectionData(MCAssembler &Asm,
1609 const MCAsmLayout &Layout,
1610 const MCSectionELF &Section) {
1611 const MCSectionData &SD = Asm.getOrCreateSectionData(Section);
1612
1613 uint64_t Padding = OffsetToAlignment(OS.tell(), SD.getAlignment());
1614 WriteZeros(Padding);
1615
1616 if (IsELFMetaDataSection(SD)) {
1617 for (MCSectionData::const_iterator i = SD.begin(), e = SD.end(); i != e;
1618 ++i) {
1619 const MCFragment &F = *i;
1620 assert(F.getKind() == MCFragment::FT_Data);
1621 WriteBytes(cast<MCDataFragment>(F).getContents());
1622 }
1623 } else {
1624 Asm.writeSectionData(&SD, Layout);
1625 }
1626 }
1627
1628 void ELFObjectWriter::WriteSectionHeader(MCAssembler &Asm,
1629 const GroupMapTy &GroupMap,
1630 const MCAsmLayout &Layout,
1631 const SectionIndexMapTy &SectionIndexMap,
1632 const SectionOffsetMapTy &SectionOffsetMap) {
1633 const unsigned NumSections = Asm.size() + 1;
1634
1635 std::vector<const MCSectionELF*> Sections;
1636 Sections.resize(NumSections - 1);
1637
1638 for (SectionIndexMapTy::const_iterator i=
1639 SectionIndexMap.begin(), e = SectionIndexMap.end(); i != e; ++i) {
1640 const std::pair<const MCSectionELF*, uint32_t> &p = *i;
1641 Sections[p.second - 1] = p.first;
1642 }
1643
1644 // Null section first.
1645 uint64_t FirstSectionSize =
1646 NumSections >= ELF::SHN_LORESERVE ? NumSections : 0;
1647 uint32_t FirstSectionLink =
1648 ShstrtabIndex >= ELF::SHN_LORESERVE ? ShstrtabIndex : 0;
1649 WriteSecHdrEntry(0, 0, 0, 0, 0, FirstSectionSize, FirstSectionLink, 0, 0, 0);
1650
1651 for (unsigned i = 0; i < NumSections - 1; ++i) {
1652 const MCSectionELF &Section = *Sections[i];
1653 const MCSectionData &SD = Asm.getOrCreateSectionData(Section);
1654 uint32_t GroupSymbolIndex;
1655 if (Section.getType() != ELF::SHT_GROUP)
1656 GroupSymbolIndex = 0;
1657 else
1658 GroupSymbolIndex = getSymbolIndexInSymbolTable(Asm,
1659 GroupMap.lookup(&Section));
1660
1661 uint64_t Size = GetSectionAddressSize(Layout, SD);
1662
1663 WriteSection(Asm, SectionIndexMap, GroupSymbolIndex,
1664 SectionOffsetMap.lookup(&Section), Size,
1665 SD.getAlignment(), Section);
1666 }
1667 }
1668
1669 void ELFObjectWriter::ComputeSectionOrder(MCAssembler &Asm,
1670 std::vector<const MCSectionELF*> &Sections) {
1671 for (MCAssembler::iterator it = Asm.begin(),
1672 ie = Asm.end(); it != ie; ++it) {
1673 const MCSectionELF &Section =
1674 static_cast<const MCSectionELF &>(it->getSection());
1675 if (Section.getType() == ELF::SHT_GROUP)
1676 Sections.push_back(&Section);
1677 }
1678
1679 for (MCAssembler::iterator it = Asm.begin(),
1680 ie = Asm.end(); it != ie; ++it) {
1681 const MCSectionELF &Section =
1682 static_cast<const MCSectionELF &>(it->getSection());
1683 if (Section.getType() != ELF::SHT_GROUP &&
1684 Section.getType() != ELF::SHT_REL &&
1685 Section.getType() != ELF::SHT_RELA)
1686 Sections.push_back(&Section);
1687 }
1688
1689 for (MCAssembler::iterator it = Asm.begin(),
1690 ie = Asm.end(); it != ie; ++it) {
1691 const MCSectionELF &Section =
1692 static_cast<const MCSectionELF &>(it->getSection());
1693 if (Section.getType() == ELF::SHT_REL ||
1694 Section.getType() == ELF::SHT_RELA)
1695 Sections.push_back(&Section);
1696 }
1697 }
1698
1699 void ELFObjectWriter::WriteObject(MCAssembler &Asm,
1700 const MCAsmLayout &Layout) {
1701 GroupMapTy GroupMap;
1702 RevGroupMapTy RevGroupMap;
1703 SectionIndexMapTy SectionIndexMap;
1704
1705 unsigned NumUserSections = Asm.size();
1706
1707 CompressDebugSections(Asm, const_cast<MCAsmLayout &>(Layout));
1708
1709 DenseMap<const MCSectionELF*, const MCSectionELF*> RelMap;
1710 CreateRelocationSections(Asm, const_cast<MCAsmLayout&>(Layout), RelMap);
1711
1712 const unsigned NumUserAndRelocSections = Asm.size();
1713 CreateIndexedSections(Asm, const_cast<MCAsmLayout&>(Layout), GroupMap,
1714 RevGroupMap, SectionIndexMap, RelMap);
1715 const unsigned AllSections = Asm.size();
1716 const unsigned NumIndexedSections = AllSections - NumUserAndRelocSections;
1717
1718 unsigned NumRegularSections = NumUserSections + NumIndexedSections;
1719
1720 // Compute symbol table information.
1721 computeSymbolTable(Asm, Layout, SectionIndexMap, RevGroupMap,
1722 NumRegularSections);
1723
1724 WriteRelocations(Asm, const_cast<MCAsmLayout&>(Layout), RelMap);
1725
1726 CreateMetadataSections(const_cast<MCAssembler&>(Asm),
1727 const_cast<MCAsmLayout&>(Layout),
1728 SectionIndexMap,
1729 RelMap);
1730
1731 uint64_t NaturalAlignment = is64Bit() ? 8 : 4;
1732 uint64_t HeaderSize = is64Bit() ? sizeof(ELF::Elf64_Ehdr) :
1733 sizeof(ELF::Elf32_Ehdr);
1734 uint64_t FileOff = HeaderSize;
1735
1736 std::vector<const MCSectionELF*> Sections;
1737 ComputeSectionOrder(Asm, Sections);
1738 unsigned NumSections = Sections.size();
1739 SectionOffsetMapTy SectionOffsetMap;
1740 for (unsigned i = 0; i < NumRegularSections + 1; ++i) {
1741 const MCSectionELF &Section = *Sections[i];
1742 const MCSectionData &SD = Asm.getOrCreateSectionData(Section);
1743
1744 FileOff = RoundUpToAlignment(FileOff, SD.getAlignment());
1745
1746 // Remember the offset into the file for this section.
1747 SectionOffsetMap[&Section] = FileOff;
1748
1749 // Get the size of the section in the output file (including padding).
1750 FileOff += GetSectionFileSize(Layout, SD);
1751 }
1752
1753 FileOff = RoundUpToAlignment(FileOff, NaturalAlignment);
1754
1755 const unsigned SectionHeaderOffset = FileOff - HeaderSize;
1756
1757 uint64_t SectionHeaderEntrySize = is64Bit() ?
1758 sizeof(ELF::Elf64_Shdr) : sizeof(ELF::Elf32_Shdr);
1759 FileOff += (NumSections + 1) * SectionHeaderEntrySize;
1760
1761 for (unsigned i = NumRegularSections + 1; i < NumSections; ++i) {
1762 const MCSectionELF &Section = *Sections[i];
1763 const MCSectionData &SD = Asm.getOrCreateSectionData(Section);
1764
1765 FileOff = RoundUpToAlignment(FileOff, SD.getAlignment());
1766
1767 // Remember the offset into the file for this section.
1768 SectionOffsetMap[&Section] = FileOff;
1769
1770 // Get the size of the section in the output file (including padding).
1771 FileOff += GetSectionFileSize(Layout, SD);
1772 }
1773
1774 // Write out the ELF header ...
1775 WriteHeader(Asm, SectionHeaderOffset, NumSections + 1);
1776
1777 // ... then the regular sections ...
1778 // + because of .shstrtab
1779 for (unsigned i = 0; i < NumRegularSections + 1; ++i)
1780 WriteDataSectionData(Asm, Layout, *Sections[i]);
1781
1782 uint64_t Padding = OffsetToAlignment(OS.tell(), NaturalAlignment);
1783 WriteZeros(Padding);
1784
1785 // ... then the section header table ...
1786 WriteSectionHeader(Asm, GroupMap, Layout, SectionIndexMap,
1787 SectionOffsetMap);
1788
1789 // ... and then the remaining sections ...
1790 for (unsigned i = NumRegularSections + 1; i < NumSections; ++i)
1791 WriteDataSectionData(Asm, Layout, *Sections[i]);
1792 }
1793
1794 bool
1795 ELFObjectWriter::IsSymbolRefDifferenceFullyResolvedImpl(const MCAssembler &Asm,
1796 const MCSymbolData &DataA,
1797 const MCFragment &FB,
1798 bool InSet,
1799 bool IsPCRel) const {
1800 if (DataA.getFlags() & ELF_STB_Weak || MCELF::GetType(DataA) == ELF::STT_GNU_IFUNC)
1801 return false;
1802 return MCObjectWriter::IsSymbolRefDifferenceFullyResolvedImpl(
1803 Asm, DataA, FB,InSet, IsPCRel);
1804 }
1805
1806 MCObjectWriter *llvm::createELFObjectWriter(MCELFObjectTargetWriter *MOTW,
1807 raw_ostream &OS,
1808 bool IsLittleEndian) {
1809 return new ELFObjectWriter(MOTW, OS, IsLittleEndian);
1810 }