]> git.proxmox.com Git - rustc.git/blob - src/llvm/lib/Target/ARM/AsmParser/ARMAsmParser.cpp
Imported Upstream version 0.7
[rustc.git] / src / llvm / lib / Target / ARM / AsmParser / ARMAsmParser.cpp
1 //===-- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "llvm/MC/MCTargetAsmParser.h"
11 #include "MCTargetDesc/ARMAddressingModes.h"
12 #include "MCTargetDesc/ARMBaseInfo.h"
13 #include "MCTargetDesc/ARMMCExpr.h"
14 #include "llvm/ADT/BitVector.h"
15 #include "llvm/ADT/OwningPtr.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/StringSwitch.h"
19 #include "llvm/ADT/Twine.h"
20 #include "llvm/MC/MCAsmInfo.h"
21 #include "llvm/MC/MCAssembler.h"
22 #include "llvm/MC/MCContext.h"
23 #include "llvm/MC/MCELFStreamer.h"
24 #include "llvm/MC/MCExpr.h"
25 #include "llvm/MC/MCInst.h"
26 #include "llvm/MC/MCInstrDesc.h"
27 #include "llvm/MC/MCParser/MCAsmLexer.h"
28 #include "llvm/MC/MCParser/MCAsmParser.h"
29 #include "llvm/MC/MCParser/MCParsedAsmOperand.h"
30 #include "llvm/MC/MCRegisterInfo.h"
31 #include "llvm/MC/MCStreamer.h"
32 #include "llvm/MC/MCSubtargetInfo.h"
33 #include "llvm/Support/ELF.h"
34 #include "llvm/Support/MathExtras.h"
35 #include "llvm/Support/SourceMgr.h"
36 #include "llvm/Support/TargetRegistry.h"
37 #include "llvm/Support/raw_ostream.h"
38
39 using namespace llvm;
40
41 namespace {
42
43 class ARMOperand;
44
45 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane };
46
47 class ARMAsmParser : public MCTargetAsmParser {
48 MCSubtargetInfo &STI;
49 MCAsmParser &Parser;
50 const MCRegisterInfo *MRI;
51
52 // Map of register aliases registers via the .req directive.
53 StringMap<unsigned> RegisterReqs;
54
55 struct {
56 ARMCC::CondCodes Cond; // Condition for IT block.
57 unsigned Mask:4; // Condition mask for instructions.
58 // Starting at first 1 (from lsb).
59 // '1' condition as indicated in IT.
60 // '0' inverse of condition (else).
61 // Count of instructions in IT block is
62 // 4 - trailingzeroes(mask)
63
64 bool FirstCond; // Explicit flag for when we're parsing the
65 // First instruction in the IT block. It's
66 // implied in the mask, so needs special
67 // handling.
68
69 unsigned CurPosition; // Current position in parsing of IT
70 // block. In range [0,3]. Initialized
71 // according to count of instructions in block.
72 // ~0U if no active IT block.
73 } ITState;
74 bool inITBlock() { return ITState.CurPosition != ~0U;}
75 void forwardITPosition() {
76 if (!inITBlock()) return;
77 // Move to the next instruction in the IT block, if there is one. If not,
78 // mark the block as done.
79 unsigned TZ = CountTrailingZeros_32(ITState.Mask);
80 if (++ITState.CurPosition == 5 - TZ)
81 ITState.CurPosition = ~0U; // Done with the IT block after this.
82 }
83
84
85 MCAsmParser &getParser() const { return Parser; }
86 MCAsmLexer &getLexer() const { return Parser.getLexer(); }
87
88 bool Warning(SMLoc L, const Twine &Msg,
89 ArrayRef<SMRange> Ranges = ArrayRef<SMRange>()) {
90 return Parser.Warning(L, Msg, Ranges);
91 }
92 bool Error(SMLoc L, const Twine &Msg,
93 ArrayRef<SMRange> Ranges = ArrayRef<SMRange>()) {
94 return Parser.Error(L, Msg, Ranges);
95 }
96
97 int tryParseRegister();
98 bool tryParseRegisterWithWriteBack(SmallVectorImpl<MCParsedAsmOperand*> &);
99 int tryParseShiftRegister(SmallVectorImpl<MCParsedAsmOperand*> &);
100 bool parseRegisterList(SmallVectorImpl<MCParsedAsmOperand*> &);
101 bool parseMemory(SmallVectorImpl<MCParsedAsmOperand*> &);
102 bool parseOperand(SmallVectorImpl<MCParsedAsmOperand*> &, StringRef Mnemonic);
103 bool parsePrefix(ARMMCExpr::VariantKind &RefKind);
104 bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType,
105 unsigned &ShiftAmount);
106 bool parseDirectiveWord(unsigned Size, SMLoc L);
107 bool parseDirectiveThumb(SMLoc L);
108 bool parseDirectiveARM(SMLoc L);
109 bool parseDirectiveThumbFunc(SMLoc L);
110 bool parseDirectiveCode(SMLoc L);
111 bool parseDirectiveSyntax(SMLoc L);
112 bool parseDirectiveReq(StringRef Name, SMLoc L);
113 bool parseDirectiveUnreq(SMLoc L);
114 bool parseDirectiveArch(SMLoc L);
115 bool parseDirectiveEabiAttr(SMLoc L);
116
117 StringRef splitMnemonic(StringRef Mnemonic, unsigned &PredicationCode,
118 bool &CarrySetting, unsigned &ProcessorIMod,
119 StringRef &ITMask);
120 void getMnemonicAcceptInfo(StringRef Mnemonic, bool &CanAcceptCarrySet,
121 bool &CanAcceptPredicationCode);
122
123 bool isThumb() const {
124 // FIXME: Can tablegen auto-generate this?
125 return (STI.getFeatureBits() & ARM::ModeThumb) != 0;
126 }
127 bool isThumbOne() const {
128 return isThumb() && (STI.getFeatureBits() & ARM::FeatureThumb2) == 0;
129 }
130 bool isThumbTwo() const {
131 return isThumb() && (STI.getFeatureBits() & ARM::FeatureThumb2);
132 }
133 bool hasV6Ops() const {
134 return STI.getFeatureBits() & ARM::HasV6Ops;
135 }
136 bool hasV7Ops() const {
137 return STI.getFeatureBits() & ARM::HasV7Ops;
138 }
139 void SwitchMode() {
140 unsigned FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb));
141 setAvailableFeatures(FB);
142 }
143 bool isMClass() const {
144 return STI.getFeatureBits() & ARM::FeatureMClass;
145 }
146
147 /// @name Auto-generated Match Functions
148 /// {
149
150 #define GET_ASSEMBLER_HEADER
151 #include "ARMGenAsmMatcher.inc"
152
153 /// }
154
155 OperandMatchResultTy parseITCondCode(SmallVectorImpl<MCParsedAsmOperand*>&);
156 OperandMatchResultTy parseCoprocNumOperand(
157 SmallVectorImpl<MCParsedAsmOperand*>&);
158 OperandMatchResultTy parseCoprocRegOperand(
159 SmallVectorImpl<MCParsedAsmOperand*>&);
160 OperandMatchResultTy parseCoprocOptionOperand(
161 SmallVectorImpl<MCParsedAsmOperand*>&);
162 OperandMatchResultTy parseMemBarrierOptOperand(
163 SmallVectorImpl<MCParsedAsmOperand*>&);
164 OperandMatchResultTy parseProcIFlagsOperand(
165 SmallVectorImpl<MCParsedAsmOperand*>&);
166 OperandMatchResultTy parseMSRMaskOperand(
167 SmallVectorImpl<MCParsedAsmOperand*>&);
168 OperandMatchResultTy parsePKHImm(SmallVectorImpl<MCParsedAsmOperand*> &O,
169 StringRef Op, int Low, int High);
170 OperandMatchResultTy parsePKHLSLImm(SmallVectorImpl<MCParsedAsmOperand*> &O) {
171 return parsePKHImm(O, "lsl", 0, 31);
172 }
173 OperandMatchResultTy parsePKHASRImm(SmallVectorImpl<MCParsedAsmOperand*> &O) {
174 return parsePKHImm(O, "asr", 1, 32);
175 }
176 OperandMatchResultTy parseSetEndImm(SmallVectorImpl<MCParsedAsmOperand*>&);
177 OperandMatchResultTy parseShifterImm(SmallVectorImpl<MCParsedAsmOperand*>&);
178 OperandMatchResultTy parseRotImm(SmallVectorImpl<MCParsedAsmOperand*>&);
179 OperandMatchResultTy parseBitfield(SmallVectorImpl<MCParsedAsmOperand*>&);
180 OperandMatchResultTy parsePostIdxReg(SmallVectorImpl<MCParsedAsmOperand*>&);
181 OperandMatchResultTy parseAM3Offset(SmallVectorImpl<MCParsedAsmOperand*>&);
182 OperandMatchResultTy parseFPImm(SmallVectorImpl<MCParsedAsmOperand*>&);
183 OperandMatchResultTy parseVectorList(SmallVectorImpl<MCParsedAsmOperand*>&);
184 OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index,
185 SMLoc &EndLoc);
186
187 // Asm Match Converter Methods
188 void cvtT2LdrdPre(MCInst &Inst, const SmallVectorImpl<MCParsedAsmOperand*> &);
189 void cvtT2StrdPre(MCInst &Inst, const SmallVectorImpl<MCParsedAsmOperand*> &);
190 void cvtLdWriteBackRegT2AddrModeImm8(MCInst &Inst,
191 const SmallVectorImpl<MCParsedAsmOperand*> &);
192 void cvtStWriteBackRegT2AddrModeImm8(MCInst &Inst,
193 const SmallVectorImpl<MCParsedAsmOperand*> &);
194 void cvtLdWriteBackRegAddrMode2(MCInst &Inst,
195 const SmallVectorImpl<MCParsedAsmOperand*> &);
196 void cvtLdWriteBackRegAddrModeImm12(MCInst &Inst,
197 const SmallVectorImpl<MCParsedAsmOperand*> &);
198 void cvtStWriteBackRegAddrModeImm12(MCInst &Inst,
199 const SmallVectorImpl<MCParsedAsmOperand*> &);
200 void cvtStWriteBackRegAddrMode2(MCInst &Inst,
201 const SmallVectorImpl<MCParsedAsmOperand*> &);
202 void cvtStWriteBackRegAddrMode3(MCInst &Inst,
203 const SmallVectorImpl<MCParsedAsmOperand*> &);
204 void cvtLdExtTWriteBackImm(MCInst &Inst,
205 const SmallVectorImpl<MCParsedAsmOperand*> &);
206 void cvtLdExtTWriteBackReg(MCInst &Inst,
207 const SmallVectorImpl<MCParsedAsmOperand*> &);
208 void cvtStExtTWriteBackImm(MCInst &Inst,
209 const SmallVectorImpl<MCParsedAsmOperand*> &);
210 void cvtStExtTWriteBackReg(MCInst &Inst,
211 const SmallVectorImpl<MCParsedAsmOperand*> &);
212 void cvtLdrdPre(MCInst &Inst, const SmallVectorImpl<MCParsedAsmOperand*> &);
213 void cvtStrdPre(MCInst &Inst, const SmallVectorImpl<MCParsedAsmOperand*> &);
214 void cvtLdWriteBackRegAddrMode3(MCInst &Inst,
215 const SmallVectorImpl<MCParsedAsmOperand*> &);
216 void cvtThumbMultiply(MCInst &Inst,
217 const SmallVectorImpl<MCParsedAsmOperand*> &);
218 void cvtVLDwbFixed(MCInst &Inst,
219 const SmallVectorImpl<MCParsedAsmOperand*> &);
220 void cvtVLDwbRegister(MCInst &Inst,
221 const SmallVectorImpl<MCParsedAsmOperand*> &);
222 void cvtVSTwbFixed(MCInst &Inst,
223 const SmallVectorImpl<MCParsedAsmOperand*> &);
224 void cvtVSTwbRegister(MCInst &Inst,
225 const SmallVectorImpl<MCParsedAsmOperand*> &);
226 bool validateInstruction(MCInst &Inst,
227 const SmallVectorImpl<MCParsedAsmOperand*> &Ops);
228 bool processInstruction(MCInst &Inst,
229 const SmallVectorImpl<MCParsedAsmOperand*> &Ops);
230 bool shouldOmitCCOutOperand(StringRef Mnemonic,
231 SmallVectorImpl<MCParsedAsmOperand*> &Operands);
232
233 public:
234 enum ARMMatchResultTy {
235 Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY,
236 Match_RequiresNotITBlock,
237 Match_RequiresV6,
238 Match_RequiresThumb2,
239 #define GET_OPERAND_DIAGNOSTIC_TYPES
240 #include "ARMGenAsmMatcher.inc"
241
242 };
243
244 ARMAsmParser(MCSubtargetInfo &_STI, MCAsmParser &_Parser)
245 : MCTargetAsmParser(), STI(_STI), Parser(_Parser) {
246 MCAsmParserExtension::Initialize(_Parser);
247
248 // Cache the MCRegisterInfo.
249 MRI = &getContext().getRegisterInfo();
250
251 // Initialize the set of available features.
252 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
253
254 // Not in an ITBlock to start with.
255 ITState.CurPosition = ~0U;
256
257 // Set ELF header flags.
258 // FIXME: This should eventually end up somewhere else where more
259 // intelligent flag decisions can be made. For now we are just maintaining
260 // the statu/parseDirects quo for ARM and setting EF_ARM_EABI_VER5 as the default.
261 if (MCELFStreamer *MES = dyn_cast<MCELFStreamer>(&Parser.getStreamer()))
262 MES->getAssembler().setELFHeaderEFlags(ELF::EF_ARM_EABI_VER5);
263 }
264
265 // Implementation of the MCTargetAsmParser interface:
266 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc);
267 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
268 SMLoc NameLoc,
269 SmallVectorImpl<MCParsedAsmOperand*> &Operands);
270 bool ParseDirective(AsmToken DirectiveID);
271
272 unsigned validateTargetOperandClass(MCParsedAsmOperand *Op, unsigned Kind);
273 unsigned checkTargetMatchPredicate(MCInst &Inst);
274
275 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
276 SmallVectorImpl<MCParsedAsmOperand*> &Operands,
277 MCStreamer &Out, unsigned &ErrorInfo,
278 bool MatchingInlineAsm);
279 };
280 } // end anonymous namespace
281
282 namespace {
283
284 /// ARMOperand - Instances of this class represent a parsed ARM machine
285 /// operand.
286 class ARMOperand : public MCParsedAsmOperand {
287 enum KindTy {
288 k_CondCode,
289 k_CCOut,
290 k_ITCondMask,
291 k_CoprocNum,
292 k_CoprocReg,
293 k_CoprocOption,
294 k_Immediate,
295 k_MemBarrierOpt,
296 k_Memory,
297 k_PostIndexRegister,
298 k_MSRMask,
299 k_ProcIFlags,
300 k_VectorIndex,
301 k_Register,
302 k_RegisterList,
303 k_DPRRegisterList,
304 k_SPRRegisterList,
305 k_VectorList,
306 k_VectorListAllLanes,
307 k_VectorListIndexed,
308 k_ShiftedRegister,
309 k_ShiftedImmediate,
310 k_ShifterImmediate,
311 k_RotateImmediate,
312 k_BitfieldDescriptor,
313 k_Token
314 } Kind;
315
316 SMLoc StartLoc, EndLoc;
317 SmallVector<unsigned, 8> Registers;
318
319 struct CCOp {
320 ARMCC::CondCodes Val;
321 };
322
323 struct CopOp {
324 unsigned Val;
325 };
326
327 struct CoprocOptionOp {
328 unsigned Val;
329 };
330
331 struct ITMaskOp {
332 unsigned Mask:4;
333 };
334
335 struct MBOptOp {
336 ARM_MB::MemBOpt Val;
337 };
338
339 struct IFlagsOp {
340 ARM_PROC::IFlags Val;
341 };
342
343 struct MMaskOp {
344 unsigned Val;
345 };
346
347 struct TokOp {
348 const char *Data;
349 unsigned Length;
350 };
351
352 struct RegOp {
353 unsigned RegNum;
354 };
355
356 // A vector register list is a sequential list of 1 to 4 registers.
357 struct VectorListOp {
358 unsigned RegNum;
359 unsigned Count;
360 unsigned LaneIndex;
361 bool isDoubleSpaced;
362 };
363
364 struct VectorIndexOp {
365 unsigned Val;
366 };
367
368 struct ImmOp {
369 const MCExpr *Val;
370 };
371
372 /// Combined record for all forms of ARM address expressions.
373 struct MemoryOp {
374 unsigned BaseRegNum;
375 // Offset is in OffsetReg or OffsetImm. If both are zero, no offset
376 // was specified.
377 const MCConstantExpr *OffsetImm; // Offset immediate value
378 unsigned OffsetRegNum; // Offset register num, when OffsetImm == NULL
379 ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg
380 unsigned ShiftImm; // shift for OffsetReg.
381 unsigned Alignment; // 0 = no alignment specified
382 // n = alignment in bytes (2, 4, 8, 16, or 32)
383 unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit)
384 };
385
386 struct PostIdxRegOp {
387 unsigned RegNum;
388 bool isAdd;
389 ARM_AM::ShiftOpc ShiftTy;
390 unsigned ShiftImm;
391 };
392
393 struct ShifterImmOp {
394 bool isASR;
395 unsigned Imm;
396 };
397
398 struct RegShiftedRegOp {
399 ARM_AM::ShiftOpc ShiftTy;
400 unsigned SrcReg;
401 unsigned ShiftReg;
402 unsigned ShiftImm;
403 };
404
405 struct RegShiftedImmOp {
406 ARM_AM::ShiftOpc ShiftTy;
407 unsigned SrcReg;
408 unsigned ShiftImm;
409 };
410
411 struct RotImmOp {
412 unsigned Imm;
413 };
414
415 struct BitfieldOp {
416 unsigned LSB;
417 unsigned Width;
418 };
419
420 union {
421 struct CCOp CC;
422 struct CopOp Cop;
423 struct CoprocOptionOp CoprocOption;
424 struct MBOptOp MBOpt;
425 struct ITMaskOp ITMask;
426 struct IFlagsOp IFlags;
427 struct MMaskOp MMask;
428 struct TokOp Tok;
429 struct RegOp Reg;
430 struct VectorListOp VectorList;
431 struct VectorIndexOp VectorIndex;
432 struct ImmOp Imm;
433 struct MemoryOp Memory;
434 struct PostIdxRegOp PostIdxReg;
435 struct ShifterImmOp ShifterImm;
436 struct RegShiftedRegOp RegShiftedReg;
437 struct RegShiftedImmOp RegShiftedImm;
438 struct RotImmOp RotImm;
439 struct BitfieldOp Bitfield;
440 };
441
442 ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
443 public:
444 ARMOperand(const ARMOperand &o) : MCParsedAsmOperand() {
445 Kind = o.Kind;
446 StartLoc = o.StartLoc;
447 EndLoc = o.EndLoc;
448 switch (Kind) {
449 case k_CondCode:
450 CC = o.CC;
451 break;
452 case k_ITCondMask:
453 ITMask = o.ITMask;
454 break;
455 case k_Token:
456 Tok = o.Tok;
457 break;
458 case k_CCOut:
459 case k_Register:
460 Reg = o.Reg;
461 break;
462 case k_RegisterList:
463 case k_DPRRegisterList:
464 case k_SPRRegisterList:
465 Registers = o.Registers;
466 break;
467 case k_VectorList:
468 case k_VectorListAllLanes:
469 case k_VectorListIndexed:
470 VectorList = o.VectorList;
471 break;
472 case k_CoprocNum:
473 case k_CoprocReg:
474 Cop = o.Cop;
475 break;
476 case k_CoprocOption:
477 CoprocOption = o.CoprocOption;
478 break;
479 case k_Immediate:
480 Imm = o.Imm;
481 break;
482 case k_MemBarrierOpt:
483 MBOpt = o.MBOpt;
484 break;
485 case k_Memory:
486 Memory = o.Memory;
487 break;
488 case k_PostIndexRegister:
489 PostIdxReg = o.PostIdxReg;
490 break;
491 case k_MSRMask:
492 MMask = o.MMask;
493 break;
494 case k_ProcIFlags:
495 IFlags = o.IFlags;
496 break;
497 case k_ShifterImmediate:
498 ShifterImm = o.ShifterImm;
499 break;
500 case k_ShiftedRegister:
501 RegShiftedReg = o.RegShiftedReg;
502 break;
503 case k_ShiftedImmediate:
504 RegShiftedImm = o.RegShiftedImm;
505 break;
506 case k_RotateImmediate:
507 RotImm = o.RotImm;
508 break;
509 case k_BitfieldDescriptor:
510 Bitfield = o.Bitfield;
511 break;
512 case k_VectorIndex:
513 VectorIndex = o.VectorIndex;
514 break;
515 }
516 }
517
518 /// getStartLoc - Get the location of the first token of this operand.
519 SMLoc getStartLoc() const { return StartLoc; }
520 /// getEndLoc - Get the location of the last token of this operand.
521 SMLoc getEndLoc() const { return EndLoc; }
522 /// getLocRange - Get the range between the first and last token of this
523 /// operand.
524 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }
525
526 ARMCC::CondCodes getCondCode() const {
527 assert(Kind == k_CondCode && "Invalid access!");
528 return CC.Val;
529 }
530
531 unsigned getCoproc() const {
532 assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!");
533 return Cop.Val;
534 }
535
536 StringRef getToken() const {
537 assert(Kind == k_Token && "Invalid access!");
538 return StringRef(Tok.Data, Tok.Length);
539 }
540
541 unsigned getReg() const {
542 assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!");
543 return Reg.RegNum;
544 }
545
546 const SmallVectorImpl<unsigned> &getRegList() const {
547 assert((Kind == k_RegisterList || Kind == k_DPRRegisterList ||
548 Kind == k_SPRRegisterList) && "Invalid access!");
549 return Registers;
550 }
551
552 const MCExpr *getImm() const {
553 assert(isImm() && "Invalid access!");
554 return Imm.Val;
555 }
556
557 unsigned getVectorIndex() const {
558 assert(Kind == k_VectorIndex && "Invalid access!");
559 return VectorIndex.Val;
560 }
561
562 ARM_MB::MemBOpt getMemBarrierOpt() const {
563 assert(Kind == k_MemBarrierOpt && "Invalid access!");
564 return MBOpt.Val;
565 }
566
567 ARM_PROC::IFlags getProcIFlags() const {
568 assert(Kind == k_ProcIFlags && "Invalid access!");
569 return IFlags.Val;
570 }
571
572 unsigned getMSRMask() const {
573 assert(Kind == k_MSRMask && "Invalid access!");
574 return MMask.Val;
575 }
576
577 bool isCoprocNum() const { return Kind == k_CoprocNum; }
578 bool isCoprocReg() const { return Kind == k_CoprocReg; }
579 bool isCoprocOption() const { return Kind == k_CoprocOption; }
580 bool isCondCode() const { return Kind == k_CondCode; }
581 bool isCCOut() const { return Kind == k_CCOut; }
582 bool isITMask() const { return Kind == k_ITCondMask; }
583 bool isITCondCode() const { return Kind == k_CondCode; }
584 bool isImm() const { return Kind == k_Immediate; }
585 bool isFPImm() const {
586 if (!isImm()) return false;
587 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
588 if (!CE) return false;
589 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
590 return Val != -1;
591 }
592 bool isFBits16() const {
593 if (!isImm()) return false;
594 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
595 if (!CE) return false;
596 int64_t Value = CE->getValue();
597 return Value >= 0 && Value <= 16;
598 }
599 bool isFBits32() const {
600 if (!isImm()) return false;
601 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
602 if (!CE) return false;
603 int64_t Value = CE->getValue();
604 return Value >= 1 && Value <= 32;
605 }
606 bool isImm8s4() const {
607 if (!isImm()) return false;
608 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
609 if (!CE) return false;
610 int64_t Value = CE->getValue();
611 return ((Value & 3) == 0) && Value >= -1020 && Value <= 1020;
612 }
613 bool isImm0_1020s4() const {
614 if (!isImm()) return false;
615 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
616 if (!CE) return false;
617 int64_t Value = CE->getValue();
618 return ((Value & 3) == 0) && Value >= 0 && Value <= 1020;
619 }
620 bool isImm0_508s4() const {
621 if (!isImm()) return false;
622 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
623 if (!CE) return false;
624 int64_t Value = CE->getValue();
625 return ((Value & 3) == 0) && Value >= 0 && Value <= 508;
626 }
627 bool isImm0_508s4Neg() const {
628 if (!isImm()) return false;
629 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
630 if (!CE) return false;
631 int64_t Value = -CE->getValue();
632 // explicitly exclude zero. we want that to use the normal 0_508 version.
633 return ((Value & 3) == 0) && Value > 0 && Value <= 508;
634 }
635 bool isImm0_255() const {
636 if (!isImm()) return false;
637 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
638 if (!CE) return false;
639 int64_t Value = CE->getValue();
640 return Value >= 0 && Value < 256;
641 }
642 bool isImm0_4095() const {
643 if (!isImm()) return false;
644 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
645 if (!CE) return false;
646 int64_t Value = CE->getValue();
647 return Value >= 0 && Value < 4096;
648 }
649 bool isImm0_4095Neg() const {
650 if (!isImm()) return false;
651 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
652 if (!CE) return false;
653 int64_t Value = -CE->getValue();
654 return Value > 0 && Value < 4096;
655 }
656 bool isImm0_1() const {
657 if (!isImm()) return false;
658 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
659 if (!CE) return false;
660 int64_t Value = CE->getValue();
661 return Value >= 0 && Value < 2;
662 }
663 bool isImm0_3() const {
664 if (!isImm()) return false;
665 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
666 if (!CE) return false;
667 int64_t Value = CE->getValue();
668 return Value >= 0 && Value < 4;
669 }
670 bool isImm0_7() const {
671 if (!isImm()) return false;
672 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
673 if (!CE) return false;
674 int64_t Value = CE->getValue();
675 return Value >= 0 && Value < 8;
676 }
677 bool isImm0_15() const {
678 if (!isImm()) return false;
679 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
680 if (!CE) return false;
681 int64_t Value = CE->getValue();
682 return Value >= 0 && Value < 16;
683 }
684 bool isImm0_31() const {
685 if (!isImm()) return false;
686 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
687 if (!CE) return false;
688 int64_t Value = CE->getValue();
689 return Value >= 0 && Value < 32;
690 }
691 bool isImm0_63() const {
692 if (!isImm()) return false;
693 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
694 if (!CE) return false;
695 int64_t Value = CE->getValue();
696 return Value >= 0 && Value < 64;
697 }
698 bool isImm8() const {
699 if (!isImm()) return false;
700 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
701 if (!CE) return false;
702 int64_t Value = CE->getValue();
703 return Value == 8;
704 }
705 bool isImm16() const {
706 if (!isImm()) return false;
707 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
708 if (!CE) return false;
709 int64_t Value = CE->getValue();
710 return Value == 16;
711 }
712 bool isImm32() const {
713 if (!isImm()) return false;
714 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
715 if (!CE) return false;
716 int64_t Value = CE->getValue();
717 return Value == 32;
718 }
719 bool isShrImm8() const {
720 if (!isImm()) return false;
721 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
722 if (!CE) return false;
723 int64_t Value = CE->getValue();
724 return Value > 0 && Value <= 8;
725 }
726 bool isShrImm16() const {
727 if (!isImm()) return false;
728 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
729 if (!CE) return false;
730 int64_t Value = CE->getValue();
731 return Value > 0 && Value <= 16;
732 }
733 bool isShrImm32() const {
734 if (!isImm()) return false;
735 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
736 if (!CE) return false;
737 int64_t Value = CE->getValue();
738 return Value > 0 && Value <= 32;
739 }
740 bool isShrImm64() const {
741 if (!isImm()) return false;
742 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
743 if (!CE) return false;
744 int64_t Value = CE->getValue();
745 return Value > 0 && Value <= 64;
746 }
747 bool isImm1_7() const {
748 if (!isImm()) return false;
749 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
750 if (!CE) return false;
751 int64_t Value = CE->getValue();
752 return Value > 0 && Value < 8;
753 }
754 bool isImm1_15() const {
755 if (!isImm()) return false;
756 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
757 if (!CE) return false;
758 int64_t Value = CE->getValue();
759 return Value > 0 && Value < 16;
760 }
761 bool isImm1_31() const {
762 if (!isImm()) return false;
763 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
764 if (!CE) return false;
765 int64_t Value = CE->getValue();
766 return Value > 0 && Value < 32;
767 }
768 bool isImm1_16() const {
769 if (!isImm()) return false;
770 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
771 if (!CE) return false;
772 int64_t Value = CE->getValue();
773 return Value > 0 && Value < 17;
774 }
775 bool isImm1_32() const {
776 if (!isImm()) return false;
777 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
778 if (!CE) return false;
779 int64_t Value = CE->getValue();
780 return Value > 0 && Value < 33;
781 }
782 bool isImm0_32() const {
783 if (!isImm()) return false;
784 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
785 if (!CE) return false;
786 int64_t Value = CE->getValue();
787 return Value >= 0 && Value < 33;
788 }
789 bool isImm0_65535() const {
790 if (!isImm()) return false;
791 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
792 if (!CE) return false;
793 int64_t Value = CE->getValue();
794 return Value >= 0 && Value < 65536;
795 }
796 bool isImm0_65535Expr() const {
797 if (!isImm()) return false;
798 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
799 // If it's not a constant expression, it'll generate a fixup and be
800 // handled later.
801 if (!CE) return true;
802 int64_t Value = CE->getValue();
803 return Value >= 0 && Value < 65536;
804 }
805 bool isImm24bit() const {
806 if (!isImm()) return false;
807 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
808 if (!CE) return false;
809 int64_t Value = CE->getValue();
810 return Value >= 0 && Value <= 0xffffff;
811 }
812 bool isImmThumbSR() const {
813 if (!isImm()) return false;
814 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
815 if (!CE) return false;
816 int64_t Value = CE->getValue();
817 return Value > 0 && Value < 33;
818 }
819 bool isPKHLSLImm() const {
820 if (!isImm()) return false;
821 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
822 if (!CE) return false;
823 int64_t Value = CE->getValue();
824 return Value >= 0 && Value < 32;
825 }
826 bool isPKHASRImm() const {
827 if (!isImm()) return false;
828 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
829 if (!CE) return false;
830 int64_t Value = CE->getValue();
831 return Value > 0 && Value <= 32;
832 }
833 bool isAdrLabel() const {
834 // If we have an immediate that's not a constant, treat it as a label
835 // reference needing a fixup. If it is a constant, but it can't fit
836 // into shift immediate encoding, we reject it.
837 if (isImm() && !isa<MCConstantExpr>(getImm())) return true;
838 else return (isARMSOImm() || isARMSOImmNeg());
839 }
840 bool isARMSOImm() const {
841 if (!isImm()) return false;
842 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
843 if (!CE) return false;
844 int64_t Value = CE->getValue();
845 return ARM_AM::getSOImmVal(Value) != -1;
846 }
847 bool isARMSOImmNot() const {
848 if (!isImm()) return false;
849 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
850 if (!CE) return false;
851 int64_t Value = CE->getValue();
852 return ARM_AM::getSOImmVal(~Value) != -1;
853 }
854 bool isARMSOImmNeg() const {
855 if (!isImm()) return false;
856 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
857 if (!CE) return false;
858 int64_t Value = CE->getValue();
859 // Only use this when not representable as a plain so_imm.
860 return ARM_AM::getSOImmVal(Value) == -1 &&
861 ARM_AM::getSOImmVal(-Value) != -1;
862 }
863 bool isT2SOImm() const {
864 if (!isImm()) return false;
865 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
866 if (!CE) return false;
867 int64_t Value = CE->getValue();
868 return ARM_AM::getT2SOImmVal(Value) != -1;
869 }
870 bool isT2SOImmNot() const {
871 if (!isImm()) return false;
872 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
873 if (!CE) return false;
874 int64_t Value = CE->getValue();
875 return ARM_AM::getT2SOImmVal(~Value) != -1;
876 }
877 bool isT2SOImmNeg() const {
878 if (!isImm()) return false;
879 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
880 if (!CE) return false;
881 int64_t Value = CE->getValue();
882 // Only use this when not representable as a plain so_imm.
883 return ARM_AM::getT2SOImmVal(Value) == -1 &&
884 ARM_AM::getT2SOImmVal(-Value) != -1;
885 }
886 bool isSetEndImm() const {
887 if (!isImm()) return false;
888 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
889 if (!CE) return false;
890 int64_t Value = CE->getValue();
891 return Value == 1 || Value == 0;
892 }
893 bool isReg() const { return Kind == k_Register; }
894 bool isRegList() const { return Kind == k_RegisterList; }
895 bool isDPRRegList() const { return Kind == k_DPRRegisterList; }
896 bool isSPRRegList() const { return Kind == k_SPRRegisterList; }
897 bool isToken() const { return Kind == k_Token; }
898 bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; }
899 bool isMem() const { return Kind == k_Memory; }
900 bool isShifterImm() const { return Kind == k_ShifterImmediate; }
901 bool isRegShiftedReg() const { return Kind == k_ShiftedRegister; }
902 bool isRegShiftedImm() const { return Kind == k_ShiftedImmediate; }
903 bool isRotImm() const { return Kind == k_RotateImmediate; }
904 bool isBitfield() const { return Kind == k_BitfieldDescriptor; }
905 bool isPostIdxRegShifted() const { return Kind == k_PostIndexRegister; }
906 bool isPostIdxReg() const {
907 return Kind == k_PostIndexRegister && PostIdxReg.ShiftTy ==ARM_AM::no_shift;
908 }
909 bool isMemNoOffset(bool alignOK = false) const {
910 if (!isMem())
911 return false;
912 // No offset of any kind.
913 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == 0 &&
914 (alignOK || Memory.Alignment == 0);
915 }
916 bool isMemPCRelImm12() const {
917 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
918 return false;
919 // Base register must be PC.
920 if (Memory.BaseRegNum != ARM::PC)
921 return false;
922 // Immediate offset in range [-4095, 4095].
923 if (!Memory.OffsetImm) return true;
924 int64_t Val = Memory.OffsetImm->getValue();
925 return (Val > -4096 && Val < 4096) || (Val == INT32_MIN);
926 }
927 bool isAlignedMemory() const {
928 return isMemNoOffset(true);
929 }
930 bool isAddrMode2() const {
931 if (!isMem() || Memory.Alignment != 0) return false;
932 // Check for register offset.
933 if (Memory.OffsetRegNum) return true;
934 // Immediate offset in range [-4095, 4095].
935 if (!Memory.OffsetImm) return true;
936 int64_t Val = Memory.OffsetImm->getValue();
937 return Val > -4096 && Val < 4096;
938 }
939 bool isAM2OffsetImm() const {
940 if (!isImm()) return false;
941 // Immediate offset in range [-4095, 4095].
942 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
943 if (!CE) return false;
944 int64_t Val = CE->getValue();
945 return Val > -4096 && Val < 4096;
946 }
947 bool isAddrMode3() const {
948 // If we have an immediate that's not a constant, treat it as a label
949 // reference needing a fixup. If it is a constant, it's something else
950 // and we reject it.
951 if (isImm() && !isa<MCConstantExpr>(getImm()))
952 return true;
953 if (!isMem() || Memory.Alignment != 0) return false;
954 // No shifts are legal for AM3.
955 if (Memory.ShiftType != ARM_AM::no_shift) return false;
956 // Check for register offset.
957 if (Memory.OffsetRegNum) return true;
958 // Immediate offset in range [-255, 255].
959 if (!Memory.OffsetImm) return true;
960 int64_t Val = Memory.OffsetImm->getValue();
961 // The #-0 offset is encoded as INT32_MIN, and we have to check
962 // for this too.
963 return (Val > -256 && Val < 256) || Val == INT32_MIN;
964 }
965 bool isAM3Offset() const {
966 if (Kind != k_Immediate && Kind != k_PostIndexRegister)
967 return false;
968 if (Kind == k_PostIndexRegister)
969 return PostIdxReg.ShiftTy == ARM_AM::no_shift;
970 // Immediate offset in range [-255, 255].
971 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
972 if (!CE) return false;
973 int64_t Val = CE->getValue();
974 // Special case, #-0 is INT32_MIN.
975 return (Val > -256 && Val < 256) || Val == INT32_MIN;
976 }
977 bool isAddrMode5() const {
978 // If we have an immediate that's not a constant, treat it as a label
979 // reference needing a fixup. If it is a constant, it's something else
980 // and we reject it.
981 if (isImm() && !isa<MCConstantExpr>(getImm()))
982 return true;
983 if (!isMem() || Memory.Alignment != 0) return false;
984 // Check for register offset.
985 if (Memory.OffsetRegNum) return false;
986 // Immediate offset in range [-1020, 1020] and a multiple of 4.
987 if (!Memory.OffsetImm) return true;
988 int64_t Val = Memory.OffsetImm->getValue();
989 return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) ||
990 Val == INT32_MIN;
991 }
992 bool isMemTBB() const {
993 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
994 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
995 return false;
996 return true;
997 }
998 bool isMemTBH() const {
999 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1000 Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 ||
1001 Memory.Alignment != 0 )
1002 return false;
1003 return true;
1004 }
1005 bool isMemRegOffset() const {
1006 if (!isMem() || !Memory.OffsetRegNum || Memory.Alignment != 0)
1007 return false;
1008 return true;
1009 }
1010 bool isT2MemRegOffset() const {
1011 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1012 Memory.Alignment != 0)
1013 return false;
1014 // Only lsl #{0, 1, 2, 3} allowed.
1015 if (Memory.ShiftType == ARM_AM::no_shift)
1016 return true;
1017 if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3)
1018 return false;
1019 return true;
1020 }
1021 bool isMemThumbRR() const {
1022 // Thumb reg+reg addressing is simple. Just two registers, a base and
1023 // an offset. No shifts, negations or any other complicating factors.
1024 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1025 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
1026 return false;
1027 return isARMLowRegister(Memory.BaseRegNum) &&
1028 (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum));
1029 }
1030 bool isMemThumbRIs4() const {
1031 if (!isMem() || Memory.OffsetRegNum != 0 ||
1032 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1033 return false;
1034 // Immediate offset, multiple of 4 in range [0, 124].
1035 if (!Memory.OffsetImm) return true;
1036 int64_t Val = Memory.OffsetImm->getValue();
1037 return Val >= 0 && Val <= 124 && (Val % 4) == 0;
1038 }
1039 bool isMemThumbRIs2() const {
1040 if (!isMem() || Memory.OffsetRegNum != 0 ||
1041 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1042 return false;
1043 // Immediate offset, multiple of 4 in range [0, 62].
1044 if (!Memory.OffsetImm) return true;
1045 int64_t Val = Memory.OffsetImm->getValue();
1046 return Val >= 0 && Val <= 62 && (Val % 2) == 0;
1047 }
1048 bool isMemThumbRIs1() const {
1049 if (!isMem() || Memory.OffsetRegNum != 0 ||
1050 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1051 return false;
1052 // Immediate offset in range [0, 31].
1053 if (!Memory.OffsetImm) return true;
1054 int64_t Val = Memory.OffsetImm->getValue();
1055 return Val >= 0 && Val <= 31;
1056 }
1057 bool isMemThumbSPI() const {
1058 if (!isMem() || Memory.OffsetRegNum != 0 ||
1059 Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0)
1060 return false;
1061 // Immediate offset, multiple of 4 in range [0, 1020].
1062 if (!Memory.OffsetImm) return true;
1063 int64_t Val = Memory.OffsetImm->getValue();
1064 return Val >= 0 && Val <= 1020 && (Val % 4) == 0;
1065 }
1066 bool isMemImm8s4Offset() const {
1067 // If we have an immediate that's not a constant, treat it as a label
1068 // reference needing a fixup. If it is a constant, it's something else
1069 // and we reject it.
1070 if (isImm() && !isa<MCConstantExpr>(getImm()))
1071 return true;
1072 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1073 return false;
1074 // Immediate offset a multiple of 4 in range [-1020, 1020].
1075 if (!Memory.OffsetImm) return true;
1076 int64_t Val = Memory.OffsetImm->getValue();
1077 // Special case, #-0 is INT32_MIN.
1078 return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || Val == INT32_MIN;
1079 }
1080 bool isMemImm0_1020s4Offset() const {
1081 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1082 return false;
1083 // Immediate offset a multiple of 4 in range [0, 1020].
1084 if (!Memory.OffsetImm) return true;
1085 int64_t Val = Memory.OffsetImm->getValue();
1086 return Val >= 0 && Val <= 1020 && (Val & 3) == 0;
1087 }
1088 bool isMemImm8Offset() const {
1089 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1090 return false;
1091 // Base reg of PC isn't allowed for these encodings.
1092 if (Memory.BaseRegNum == ARM::PC) return false;
1093 // Immediate offset in range [-255, 255].
1094 if (!Memory.OffsetImm) return true;
1095 int64_t Val = Memory.OffsetImm->getValue();
1096 return (Val == INT32_MIN) || (Val > -256 && Val < 256);
1097 }
1098 bool isMemPosImm8Offset() const {
1099 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1100 return false;
1101 // Immediate offset in range [0, 255].
1102 if (!Memory.OffsetImm) return true;
1103 int64_t Val = Memory.OffsetImm->getValue();
1104 return Val >= 0 && Val < 256;
1105 }
1106 bool isMemNegImm8Offset() const {
1107 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1108 return false;
1109 // Base reg of PC isn't allowed for these encodings.
1110 if (Memory.BaseRegNum == ARM::PC) return false;
1111 // Immediate offset in range [-255, -1].
1112 if (!Memory.OffsetImm) return false;
1113 int64_t Val = Memory.OffsetImm->getValue();
1114 return (Val == INT32_MIN) || (Val > -256 && Val < 0);
1115 }
1116 bool isMemUImm12Offset() const {
1117 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1118 return false;
1119 // Immediate offset in range [0, 4095].
1120 if (!Memory.OffsetImm) return true;
1121 int64_t Val = Memory.OffsetImm->getValue();
1122 return (Val >= 0 && Val < 4096);
1123 }
1124 bool isMemImm12Offset() const {
1125 // If we have an immediate that's not a constant, treat it as a label
1126 // reference needing a fixup. If it is a constant, it's something else
1127 // and we reject it.
1128 if (isImm() && !isa<MCConstantExpr>(getImm()))
1129 return true;
1130
1131 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1132 return false;
1133 // Immediate offset in range [-4095, 4095].
1134 if (!Memory.OffsetImm) return true;
1135 int64_t Val = Memory.OffsetImm->getValue();
1136 return (Val > -4096 && Val < 4096) || (Val == INT32_MIN);
1137 }
1138 bool isPostIdxImm8() const {
1139 if (!isImm()) return false;
1140 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1141 if (!CE) return false;
1142 int64_t Val = CE->getValue();
1143 return (Val > -256 && Val < 256) || (Val == INT32_MIN);
1144 }
1145 bool isPostIdxImm8s4() const {
1146 if (!isImm()) return false;
1147 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1148 if (!CE) return false;
1149 int64_t Val = CE->getValue();
1150 return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) ||
1151 (Val == INT32_MIN);
1152 }
1153
1154 bool isMSRMask() const { return Kind == k_MSRMask; }
1155 bool isProcIFlags() const { return Kind == k_ProcIFlags; }
1156
1157 // NEON operands.
1158 bool isSingleSpacedVectorList() const {
1159 return Kind == k_VectorList && !VectorList.isDoubleSpaced;
1160 }
1161 bool isDoubleSpacedVectorList() const {
1162 return Kind == k_VectorList && VectorList.isDoubleSpaced;
1163 }
1164 bool isVecListOneD() const {
1165 if (!isSingleSpacedVectorList()) return false;
1166 return VectorList.Count == 1;
1167 }
1168
1169 bool isVecListDPair() const {
1170 if (!isSingleSpacedVectorList()) return false;
1171 return (ARMMCRegisterClasses[ARM::DPairRegClassID]
1172 .contains(VectorList.RegNum));
1173 }
1174
1175 bool isVecListThreeD() const {
1176 if (!isSingleSpacedVectorList()) return false;
1177 return VectorList.Count == 3;
1178 }
1179
1180 bool isVecListFourD() const {
1181 if (!isSingleSpacedVectorList()) return false;
1182 return VectorList.Count == 4;
1183 }
1184
1185 bool isVecListDPairSpaced() const {
1186 if (isSingleSpacedVectorList()) return false;
1187 return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID]
1188 .contains(VectorList.RegNum));
1189 }
1190
1191 bool isVecListThreeQ() const {
1192 if (!isDoubleSpacedVectorList()) return false;
1193 return VectorList.Count == 3;
1194 }
1195
1196 bool isVecListFourQ() const {
1197 if (!isDoubleSpacedVectorList()) return false;
1198 return VectorList.Count == 4;
1199 }
1200
1201 bool isSingleSpacedVectorAllLanes() const {
1202 return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced;
1203 }
1204 bool isDoubleSpacedVectorAllLanes() const {
1205 return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced;
1206 }
1207 bool isVecListOneDAllLanes() const {
1208 if (!isSingleSpacedVectorAllLanes()) return false;
1209 return VectorList.Count == 1;
1210 }
1211
1212 bool isVecListDPairAllLanes() const {
1213 if (!isSingleSpacedVectorAllLanes()) return false;
1214 return (ARMMCRegisterClasses[ARM::DPairRegClassID]
1215 .contains(VectorList.RegNum));
1216 }
1217
1218 bool isVecListDPairSpacedAllLanes() const {
1219 if (!isDoubleSpacedVectorAllLanes()) return false;
1220 return VectorList.Count == 2;
1221 }
1222
1223 bool isVecListThreeDAllLanes() const {
1224 if (!isSingleSpacedVectorAllLanes()) return false;
1225 return VectorList.Count == 3;
1226 }
1227
1228 bool isVecListThreeQAllLanes() const {
1229 if (!isDoubleSpacedVectorAllLanes()) return false;
1230 return VectorList.Count == 3;
1231 }
1232
1233 bool isVecListFourDAllLanes() const {
1234 if (!isSingleSpacedVectorAllLanes()) return false;
1235 return VectorList.Count == 4;
1236 }
1237
1238 bool isVecListFourQAllLanes() const {
1239 if (!isDoubleSpacedVectorAllLanes()) return false;
1240 return VectorList.Count == 4;
1241 }
1242
1243 bool isSingleSpacedVectorIndexed() const {
1244 return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced;
1245 }
1246 bool isDoubleSpacedVectorIndexed() const {
1247 return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced;
1248 }
1249 bool isVecListOneDByteIndexed() const {
1250 if (!isSingleSpacedVectorIndexed()) return false;
1251 return VectorList.Count == 1 && VectorList.LaneIndex <= 7;
1252 }
1253
1254 bool isVecListOneDHWordIndexed() const {
1255 if (!isSingleSpacedVectorIndexed()) return false;
1256 return VectorList.Count == 1 && VectorList.LaneIndex <= 3;
1257 }
1258
1259 bool isVecListOneDWordIndexed() const {
1260 if (!isSingleSpacedVectorIndexed()) return false;
1261 return VectorList.Count == 1 && VectorList.LaneIndex <= 1;
1262 }
1263
1264 bool isVecListTwoDByteIndexed() const {
1265 if (!isSingleSpacedVectorIndexed()) return false;
1266 return VectorList.Count == 2 && VectorList.LaneIndex <= 7;
1267 }
1268
1269 bool isVecListTwoDHWordIndexed() const {
1270 if (!isSingleSpacedVectorIndexed()) return false;
1271 return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
1272 }
1273
1274 bool isVecListTwoQWordIndexed() const {
1275 if (!isDoubleSpacedVectorIndexed()) return false;
1276 return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
1277 }
1278
1279 bool isVecListTwoQHWordIndexed() const {
1280 if (!isDoubleSpacedVectorIndexed()) return false;
1281 return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
1282 }
1283
1284 bool isVecListTwoDWordIndexed() const {
1285 if (!isSingleSpacedVectorIndexed()) return false;
1286 return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
1287 }
1288
1289 bool isVecListThreeDByteIndexed() const {
1290 if (!isSingleSpacedVectorIndexed()) return false;
1291 return VectorList.Count == 3 && VectorList.LaneIndex <= 7;
1292 }
1293
1294 bool isVecListThreeDHWordIndexed() const {
1295 if (!isSingleSpacedVectorIndexed()) return false;
1296 return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
1297 }
1298
1299 bool isVecListThreeQWordIndexed() const {
1300 if (!isDoubleSpacedVectorIndexed()) return false;
1301 return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
1302 }
1303
1304 bool isVecListThreeQHWordIndexed() const {
1305 if (!isDoubleSpacedVectorIndexed()) return false;
1306 return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
1307 }
1308
1309 bool isVecListThreeDWordIndexed() const {
1310 if (!isSingleSpacedVectorIndexed()) return false;
1311 return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
1312 }
1313
1314 bool isVecListFourDByteIndexed() const {
1315 if (!isSingleSpacedVectorIndexed()) return false;
1316 return VectorList.Count == 4 && VectorList.LaneIndex <= 7;
1317 }
1318
1319 bool isVecListFourDHWordIndexed() const {
1320 if (!isSingleSpacedVectorIndexed()) return false;
1321 return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
1322 }
1323
1324 bool isVecListFourQWordIndexed() const {
1325 if (!isDoubleSpacedVectorIndexed()) return false;
1326 return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
1327 }
1328
1329 bool isVecListFourQHWordIndexed() const {
1330 if (!isDoubleSpacedVectorIndexed()) return false;
1331 return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
1332 }
1333
1334 bool isVecListFourDWordIndexed() const {
1335 if (!isSingleSpacedVectorIndexed()) return false;
1336 return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
1337 }
1338
1339 bool isVectorIndex8() const {
1340 if (Kind != k_VectorIndex) return false;
1341 return VectorIndex.Val < 8;
1342 }
1343 bool isVectorIndex16() const {
1344 if (Kind != k_VectorIndex) return false;
1345 return VectorIndex.Val < 4;
1346 }
1347 bool isVectorIndex32() const {
1348 if (Kind != k_VectorIndex) return false;
1349 return VectorIndex.Val < 2;
1350 }
1351
1352 bool isNEONi8splat() const {
1353 if (!isImm()) return false;
1354 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1355 // Must be a constant.
1356 if (!CE) return false;
1357 int64_t Value = CE->getValue();
1358 // i8 value splatted across 8 bytes. The immediate is just the 8 byte
1359 // value.
1360 return Value >= 0 && Value < 256;
1361 }
1362
1363 bool isNEONi16splat() const {
1364 if (!isImm()) return false;
1365 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1366 // Must be a constant.
1367 if (!CE) return false;
1368 int64_t Value = CE->getValue();
1369 // i16 value in the range [0,255] or [0x0100, 0xff00]
1370 return (Value >= 0 && Value < 256) || (Value >= 0x0100 && Value <= 0xff00);
1371 }
1372
1373 bool isNEONi32splat() const {
1374 if (!isImm()) return false;
1375 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1376 // Must be a constant.
1377 if (!CE) return false;
1378 int64_t Value = CE->getValue();
1379 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X.
1380 return (Value >= 0 && Value < 256) ||
1381 (Value >= 0x0100 && Value <= 0xff00) ||
1382 (Value >= 0x010000 && Value <= 0xff0000) ||
1383 (Value >= 0x01000000 && Value <= 0xff000000);
1384 }
1385
1386 bool isNEONi32vmov() const {
1387 if (!isImm()) return false;
1388 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1389 // Must be a constant.
1390 if (!CE) return false;
1391 int64_t Value = CE->getValue();
1392 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X,
1393 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted.
1394 return (Value >= 0 && Value < 256) ||
1395 (Value >= 0x0100 && Value <= 0xff00) ||
1396 (Value >= 0x010000 && Value <= 0xff0000) ||
1397 (Value >= 0x01000000 && Value <= 0xff000000) ||
1398 (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) ||
1399 (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff);
1400 }
1401 bool isNEONi32vmovNeg() const {
1402 if (!isImm()) return false;
1403 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1404 // Must be a constant.
1405 if (!CE) return false;
1406 int64_t Value = ~CE->getValue();
1407 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X,
1408 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted.
1409 return (Value >= 0 && Value < 256) ||
1410 (Value >= 0x0100 && Value <= 0xff00) ||
1411 (Value >= 0x010000 && Value <= 0xff0000) ||
1412 (Value >= 0x01000000 && Value <= 0xff000000) ||
1413 (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) ||
1414 (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff);
1415 }
1416
1417 bool isNEONi64splat() const {
1418 if (!isImm()) return false;
1419 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1420 // Must be a constant.
1421 if (!CE) return false;
1422 uint64_t Value = CE->getValue();
1423 // i64 value with each byte being either 0 or 0xff.
1424 for (unsigned i = 0; i < 8; ++i)
1425 if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false;
1426 return true;
1427 }
1428
1429 void addExpr(MCInst &Inst, const MCExpr *Expr) const {
1430 // Add as immediates when possible. Null MCExpr = 0.
1431 if (Expr == 0)
1432 Inst.addOperand(MCOperand::CreateImm(0));
1433 else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
1434 Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
1435 else
1436 Inst.addOperand(MCOperand::CreateExpr(Expr));
1437 }
1438
1439 void addCondCodeOperands(MCInst &Inst, unsigned N) const {
1440 assert(N == 2 && "Invalid number of operands!");
1441 Inst.addOperand(MCOperand::CreateImm(unsigned(getCondCode())));
1442 unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR;
1443 Inst.addOperand(MCOperand::CreateReg(RegNum));
1444 }
1445
1446 void addCoprocNumOperands(MCInst &Inst, unsigned N) const {
1447 assert(N == 1 && "Invalid number of operands!");
1448 Inst.addOperand(MCOperand::CreateImm(getCoproc()));
1449 }
1450
1451 void addCoprocRegOperands(MCInst &Inst, unsigned N) const {
1452 assert(N == 1 && "Invalid number of operands!");
1453 Inst.addOperand(MCOperand::CreateImm(getCoproc()));
1454 }
1455
1456 void addCoprocOptionOperands(MCInst &Inst, unsigned N) const {
1457 assert(N == 1 && "Invalid number of operands!");
1458 Inst.addOperand(MCOperand::CreateImm(CoprocOption.Val));
1459 }
1460
1461 void addITMaskOperands(MCInst &Inst, unsigned N) const {
1462 assert(N == 1 && "Invalid number of operands!");
1463 Inst.addOperand(MCOperand::CreateImm(ITMask.Mask));
1464 }
1465
1466 void addITCondCodeOperands(MCInst &Inst, unsigned N) const {
1467 assert(N == 1 && "Invalid number of operands!");
1468 Inst.addOperand(MCOperand::CreateImm(unsigned(getCondCode())));
1469 }
1470
1471 void addCCOutOperands(MCInst &Inst, unsigned N) const {
1472 assert(N == 1 && "Invalid number of operands!");
1473 Inst.addOperand(MCOperand::CreateReg(getReg()));
1474 }
1475
1476 void addRegOperands(MCInst &Inst, unsigned N) const {
1477 assert(N == 1 && "Invalid number of operands!");
1478 Inst.addOperand(MCOperand::CreateReg(getReg()));
1479 }
1480
1481 void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const {
1482 assert(N == 3 && "Invalid number of operands!");
1483 assert(isRegShiftedReg() &&
1484 "addRegShiftedRegOperands() on non RegShiftedReg!");
1485 Inst.addOperand(MCOperand::CreateReg(RegShiftedReg.SrcReg));
1486 Inst.addOperand(MCOperand::CreateReg(RegShiftedReg.ShiftReg));
1487 Inst.addOperand(MCOperand::CreateImm(
1488 ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm)));
1489 }
1490
1491 void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const {
1492 assert(N == 2 && "Invalid number of operands!");
1493 assert(isRegShiftedImm() &&
1494 "addRegShiftedImmOperands() on non RegShiftedImm!");
1495 Inst.addOperand(MCOperand::CreateReg(RegShiftedImm.SrcReg));
1496 // Shift of #32 is encoded as 0 where permitted
1497 unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm);
1498 Inst.addOperand(MCOperand::CreateImm(
1499 ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm)));
1500 }
1501
1502 void addShifterImmOperands(MCInst &Inst, unsigned N) const {
1503 assert(N == 1 && "Invalid number of operands!");
1504 Inst.addOperand(MCOperand::CreateImm((ShifterImm.isASR << 5) |
1505 ShifterImm.Imm));
1506 }
1507
1508 void addRegListOperands(MCInst &Inst, unsigned N) const {
1509 assert(N == 1 && "Invalid number of operands!");
1510 const SmallVectorImpl<unsigned> &RegList = getRegList();
1511 for (SmallVectorImpl<unsigned>::const_iterator
1512 I = RegList.begin(), E = RegList.end(); I != E; ++I)
1513 Inst.addOperand(MCOperand::CreateReg(*I));
1514 }
1515
1516 void addDPRRegListOperands(MCInst &Inst, unsigned N) const {
1517 addRegListOperands(Inst, N);
1518 }
1519
1520 void addSPRRegListOperands(MCInst &Inst, unsigned N) const {
1521 addRegListOperands(Inst, N);
1522 }
1523
1524 void addRotImmOperands(MCInst &Inst, unsigned N) const {
1525 assert(N == 1 && "Invalid number of operands!");
1526 // Encoded as val>>3. The printer handles display as 8, 16, 24.
1527 Inst.addOperand(MCOperand::CreateImm(RotImm.Imm >> 3));
1528 }
1529
1530 void addBitfieldOperands(MCInst &Inst, unsigned N) const {
1531 assert(N == 1 && "Invalid number of operands!");
1532 // Munge the lsb/width into a bitfield mask.
1533 unsigned lsb = Bitfield.LSB;
1534 unsigned width = Bitfield.Width;
1535 // Make a 32-bit mask w/ the referenced bits clear and all other bits set.
1536 uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >>
1537 (32 - (lsb + width)));
1538 Inst.addOperand(MCOperand::CreateImm(Mask));
1539 }
1540
1541 void addImmOperands(MCInst &Inst, unsigned N) const {
1542 assert(N == 1 && "Invalid number of operands!");
1543 addExpr(Inst, getImm());
1544 }
1545
1546 void addFBits16Operands(MCInst &Inst, unsigned N) const {
1547 assert(N == 1 && "Invalid number of operands!");
1548 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1549 Inst.addOperand(MCOperand::CreateImm(16 - CE->getValue()));
1550 }
1551
1552 void addFBits32Operands(MCInst &Inst, unsigned N) const {
1553 assert(N == 1 && "Invalid number of operands!");
1554 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1555 Inst.addOperand(MCOperand::CreateImm(32 - CE->getValue()));
1556 }
1557
1558 void addFPImmOperands(MCInst &Inst, unsigned N) const {
1559 assert(N == 1 && "Invalid number of operands!");
1560 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1561 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
1562 Inst.addOperand(MCOperand::CreateImm(Val));
1563 }
1564
1565 void addImm8s4Operands(MCInst &Inst, unsigned N) const {
1566 assert(N == 1 && "Invalid number of operands!");
1567 // FIXME: We really want to scale the value here, but the LDRD/STRD
1568 // instruction don't encode operands that way yet.
1569 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1570 Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
1571 }
1572
1573 void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const {
1574 assert(N == 1 && "Invalid number of operands!");
1575 // The immediate is scaled by four in the encoding and is stored
1576 // in the MCInst as such. Lop off the low two bits here.
1577 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1578 Inst.addOperand(MCOperand::CreateImm(CE->getValue() / 4));
1579 }
1580
1581 void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const {
1582 assert(N == 1 && "Invalid number of operands!");
1583 // The immediate is scaled by four in the encoding and is stored
1584 // in the MCInst as such. Lop off the low two bits here.
1585 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1586 Inst.addOperand(MCOperand::CreateImm(-(CE->getValue() / 4)));
1587 }
1588
1589 void addImm0_508s4Operands(MCInst &Inst, unsigned N) const {
1590 assert(N == 1 && "Invalid number of operands!");
1591 // The immediate is scaled by four in the encoding and is stored
1592 // in the MCInst as such. Lop off the low two bits here.
1593 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1594 Inst.addOperand(MCOperand::CreateImm(CE->getValue() / 4));
1595 }
1596
1597 void addImm1_16Operands(MCInst &Inst, unsigned N) const {
1598 assert(N == 1 && "Invalid number of operands!");
1599 // The constant encodes as the immediate-1, and we store in the instruction
1600 // the bits as encoded, so subtract off one here.
1601 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1602 Inst.addOperand(MCOperand::CreateImm(CE->getValue() - 1));
1603 }
1604
1605 void addImm1_32Operands(MCInst &Inst, unsigned N) const {
1606 assert(N == 1 && "Invalid number of operands!");
1607 // The constant encodes as the immediate-1, and we store in the instruction
1608 // the bits as encoded, so subtract off one here.
1609 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1610 Inst.addOperand(MCOperand::CreateImm(CE->getValue() - 1));
1611 }
1612
1613 void addImmThumbSROperands(MCInst &Inst, unsigned N) const {
1614 assert(N == 1 && "Invalid number of operands!");
1615 // The constant encodes as the immediate, except for 32, which encodes as
1616 // zero.
1617 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1618 unsigned Imm = CE->getValue();
1619 Inst.addOperand(MCOperand::CreateImm((Imm == 32 ? 0 : Imm)));
1620 }
1621
1622 void addPKHASRImmOperands(MCInst &Inst, unsigned N) const {
1623 assert(N == 1 && "Invalid number of operands!");
1624 // An ASR value of 32 encodes as 0, so that's how we want to add it to
1625 // the instruction as well.
1626 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1627 int Val = CE->getValue();
1628 Inst.addOperand(MCOperand::CreateImm(Val == 32 ? 0 : Val));
1629 }
1630
1631 void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const {
1632 assert(N == 1 && "Invalid number of operands!");
1633 // The operand is actually a t2_so_imm, but we have its bitwise
1634 // negation in the assembly source, so twiddle it here.
1635 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1636 Inst.addOperand(MCOperand::CreateImm(~CE->getValue()));
1637 }
1638
1639 void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const {
1640 assert(N == 1 && "Invalid number of operands!");
1641 // The operand is actually a t2_so_imm, but we have its
1642 // negation in the assembly source, so twiddle it here.
1643 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1644 Inst.addOperand(MCOperand::CreateImm(-CE->getValue()));
1645 }
1646
1647 void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const {
1648 assert(N == 1 && "Invalid number of operands!");
1649 // The operand is actually an imm0_4095, but we have its
1650 // negation in the assembly source, so twiddle it here.
1651 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1652 Inst.addOperand(MCOperand::CreateImm(-CE->getValue()));
1653 }
1654
1655 void addARMSOImmNotOperands(MCInst &Inst, unsigned N) const {
1656 assert(N == 1 && "Invalid number of operands!");
1657 // The operand is actually a so_imm, but we have its bitwise
1658 // negation in the assembly source, so twiddle it here.
1659 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1660 Inst.addOperand(MCOperand::CreateImm(~CE->getValue()));
1661 }
1662
1663 void addARMSOImmNegOperands(MCInst &Inst, unsigned N) const {
1664 assert(N == 1 && "Invalid number of operands!");
1665 // The operand is actually a so_imm, but we have its
1666 // negation in the assembly source, so twiddle it here.
1667 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1668 Inst.addOperand(MCOperand::CreateImm(-CE->getValue()));
1669 }
1670
1671 void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const {
1672 assert(N == 1 && "Invalid number of operands!");
1673 Inst.addOperand(MCOperand::CreateImm(unsigned(getMemBarrierOpt())));
1674 }
1675
1676 void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const {
1677 assert(N == 1 && "Invalid number of operands!");
1678 Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1679 }
1680
1681 void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const {
1682 assert(N == 1 && "Invalid number of operands!");
1683 int32_t Imm = Memory.OffsetImm->getValue();
1684 // FIXME: Handle #-0
1685 if (Imm == INT32_MIN) Imm = 0;
1686 Inst.addOperand(MCOperand::CreateImm(Imm));
1687 }
1688
1689 void addAdrLabelOperands(MCInst &Inst, unsigned N) const {
1690 assert(N == 1 && "Invalid number of operands!");
1691 assert(isImm() && "Not an immediate!");
1692
1693 // If we have an immediate that's not a constant, treat it as a label
1694 // reference needing a fixup.
1695 if (!isa<MCConstantExpr>(getImm())) {
1696 Inst.addOperand(MCOperand::CreateExpr(getImm()));
1697 return;
1698 }
1699
1700 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1701 int Val = CE->getValue();
1702 Inst.addOperand(MCOperand::CreateImm(Val));
1703 }
1704
1705 void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const {
1706 assert(N == 2 && "Invalid number of operands!");
1707 Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1708 Inst.addOperand(MCOperand::CreateImm(Memory.Alignment));
1709 }
1710
1711 void addAddrMode2Operands(MCInst &Inst, unsigned N) const {
1712 assert(N == 3 && "Invalid number of operands!");
1713 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
1714 if (!Memory.OffsetRegNum) {
1715 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
1716 // Special case for #-0
1717 if (Val == INT32_MIN) Val = 0;
1718 if (Val < 0) Val = -Val;
1719 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
1720 } else {
1721 // For register offset, we encode the shift type and negation flag
1722 // here.
1723 Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
1724 Memory.ShiftImm, Memory.ShiftType);
1725 }
1726 Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1727 Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
1728 Inst.addOperand(MCOperand::CreateImm(Val));
1729 }
1730
1731 void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const {
1732 assert(N == 2 && "Invalid number of operands!");
1733 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1734 assert(CE && "non-constant AM2OffsetImm operand!");
1735 int32_t Val = CE->getValue();
1736 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
1737 // Special case for #-0
1738 if (Val == INT32_MIN) Val = 0;
1739 if (Val < 0) Val = -Val;
1740 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
1741 Inst.addOperand(MCOperand::CreateReg(0));
1742 Inst.addOperand(MCOperand::CreateImm(Val));
1743 }
1744
1745 void addAddrMode3Operands(MCInst &Inst, unsigned N) const {
1746 assert(N == 3 && "Invalid number of operands!");
1747 // If we have an immediate that's not a constant, treat it as a label
1748 // reference needing a fixup. If it is a constant, it's something else
1749 // and we reject it.
1750 if (isImm()) {
1751 Inst.addOperand(MCOperand::CreateExpr(getImm()));
1752 Inst.addOperand(MCOperand::CreateReg(0));
1753 Inst.addOperand(MCOperand::CreateImm(0));
1754 return;
1755 }
1756
1757 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
1758 if (!Memory.OffsetRegNum) {
1759 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
1760 // Special case for #-0
1761 if (Val == INT32_MIN) Val = 0;
1762 if (Val < 0) Val = -Val;
1763 Val = ARM_AM::getAM3Opc(AddSub, Val);
1764 } else {
1765 // For register offset, we encode the shift type and negation flag
1766 // here.
1767 Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0);
1768 }
1769 Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1770 Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
1771 Inst.addOperand(MCOperand::CreateImm(Val));
1772 }
1773
1774 void addAM3OffsetOperands(MCInst &Inst, unsigned N) const {
1775 assert(N == 2 && "Invalid number of operands!");
1776 if (Kind == k_PostIndexRegister) {
1777 int32_t Val =
1778 ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0);
1779 Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum));
1780 Inst.addOperand(MCOperand::CreateImm(Val));
1781 return;
1782 }
1783
1784 // Constant offset.
1785 const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm());
1786 int32_t Val = CE->getValue();
1787 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
1788 // Special case for #-0
1789 if (Val == INT32_MIN) Val = 0;
1790 if (Val < 0) Val = -Val;
1791 Val = ARM_AM::getAM3Opc(AddSub, Val);
1792 Inst.addOperand(MCOperand::CreateReg(0));
1793 Inst.addOperand(MCOperand::CreateImm(Val));
1794 }
1795
1796 void addAddrMode5Operands(MCInst &Inst, unsigned N) const {
1797 assert(N == 2 && "Invalid number of operands!");
1798 // If we have an immediate that's not a constant, treat it as a label
1799 // reference needing a fixup. If it is a constant, it's something else
1800 // and we reject it.
1801 if (isImm()) {
1802 Inst.addOperand(MCOperand::CreateExpr(getImm()));
1803 Inst.addOperand(MCOperand::CreateImm(0));
1804 return;
1805 }
1806
1807 // The lower two bits are always zero and as such are not encoded.
1808 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
1809 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
1810 // Special case for #-0
1811 if (Val == INT32_MIN) Val = 0;
1812 if (Val < 0) Val = -Val;
1813 Val = ARM_AM::getAM5Opc(AddSub, Val);
1814 Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1815 Inst.addOperand(MCOperand::CreateImm(Val));
1816 }
1817
1818 void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const {
1819 assert(N == 2 && "Invalid number of operands!");
1820 // If we have an immediate that's not a constant, treat it as a label
1821 // reference needing a fixup. If it is a constant, it's something else
1822 // and we reject it.
1823 if (isImm()) {
1824 Inst.addOperand(MCOperand::CreateExpr(getImm()));
1825 Inst.addOperand(MCOperand::CreateImm(0));
1826 return;
1827 }
1828
1829 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
1830 Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1831 Inst.addOperand(MCOperand::CreateImm(Val));
1832 }
1833
1834 void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const {
1835 assert(N == 2 && "Invalid number of operands!");
1836 // The lower two bits are always zero and as such are not encoded.
1837 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
1838 Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1839 Inst.addOperand(MCOperand::CreateImm(Val));
1840 }
1841
1842 void addMemImm8OffsetOperands(MCInst &Inst, unsigned N) const {
1843 assert(N == 2 && "Invalid number of operands!");
1844 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
1845 Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1846 Inst.addOperand(MCOperand::CreateImm(Val));
1847 }
1848
1849 void addMemPosImm8OffsetOperands(MCInst &Inst, unsigned N) const {
1850 addMemImm8OffsetOperands(Inst, N);
1851 }
1852
1853 void addMemNegImm8OffsetOperands(MCInst &Inst, unsigned N) const {
1854 addMemImm8OffsetOperands(Inst, N);
1855 }
1856
1857 void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const {
1858 assert(N == 2 && "Invalid number of operands!");
1859 // If this is an immediate, it's a label reference.
1860 if (isImm()) {
1861 addExpr(Inst, getImm());
1862 Inst.addOperand(MCOperand::CreateImm(0));
1863 return;
1864 }
1865
1866 // Otherwise, it's a normal memory reg+offset.
1867 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
1868 Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1869 Inst.addOperand(MCOperand::CreateImm(Val));
1870 }
1871
1872 void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const {
1873 assert(N == 2 && "Invalid number of operands!");
1874 // If this is an immediate, it's a label reference.
1875 if (isImm()) {
1876 addExpr(Inst, getImm());
1877 Inst.addOperand(MCOperand::CreateImm(0));
1878 return;
1879 }
1880
1881 // Otherwise, it's a normal memory reg+offset.
1882 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
1883 Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1884 Inst.addOperand(MCOperand::CreateImm(Val));
1885 }
1886
1887 void addMemTBBOperands(MCInst &Inst, unsigned N) const {
1888 assert(N == 2 && "Invalid number of operands!");
1889 Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1890 Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
1891 }
1892
1893 void addMemTBHOperands(MCInst &Inst, unsigned N) const {
1894 assert(N == 2 && "Invalid number of operands!");
1895 Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1896 Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
1897 }
1898
1899 void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const {
1900 assert(N == 3 && "Invalid number of operands!");
1901 unsigned Val =
1902 ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
1903 Memory.ShiftImm, Memory.ShiftType);
1904 Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1905 Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
1906 Inst.addOperand(MCOperand::CreateImm(Val));
1907 }
1908
1909 void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const {
1910 assert(N == 3 && "Invalid number of operands!");
1911 Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1912 Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
1913 Inst.addOperand(MCOperand::CreateImm(Memory.ShiftImm));
1914 }
1915
1916 void addMemThumbRROperands(MCInst &Inst, unsigned N) const {
1917 assert(N == 2 && "Invalid number of operands!");
1918 Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1919 Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
1920 }
1921
1922 void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const {
1923 assert(N == 2 && "Invalid number of operands!");
1924 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
1925 Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1926 Inst.addOperand(MCOperand::CreateImm(Val));
1927 }
1928
1929 void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const {
1930 assert(N == 2 && "Invalid number of operands!");
1931 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0;
1932 Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1933 Inst.addOperand(MCOperand::CreateImm(Val));
1934 }
1935
1936 void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const {
1937 assert(N == 2 && "Invalid number of operands!");
1938 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0;
1939 Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1940 Inst.addOperand(MCOperand::CreateImm(Val));
1941 }
1942
1943 void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const {
1944 assert(N == 2 && "Invalid number of operands!");
1945 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
1946 Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1947 Inst.addOperand(MCOperand::CreateImm(Val));
1948 }
1949
1950 void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const {
1951 assert(N == 1 && "Invalid number of operands!");
1952 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1953 assert(CE && "non-constant post-idx-imm8 operand!");
1954 int Imm = CE->getValue();
1955 bool isAdd = Imm >= 0;
1956 if (Imm == INT32_MIN) Imm = 0;
1957 Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8;
1958 Inst.addOperand(MCOperand::CreateImm(Imm));
1959 }
1960
1961 void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const {
1962 assert(N == 1 && "Invalid number of operands!");
1963 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1964 assert(CE && "non-constant post-idx-imm8s4 operand!");
1965 int Imm = CE->getValue();
1966 bool isAdd = Imm >= 0;
1967 if (Imm == INT32_MIN) Imm = 0;
1968 // Immediate is scaled by 4.
1969 Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8;
1970 Inst.addOperand(MCOperand::CreateImm(Imm));
1971 }
1972
1973 void addPostIdxRegOperands(MCInst &Inst, unsigned N) const {
1974 assert(N == 2 && "Invalid number of operands!");
1975 Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum));
1976 Inst.addOperand(MCOperand::CreateImm(PostIdxReg.isAdd));
1977 }
1978
1979 void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const {
1980 assert(N == 2 && "Invalid number of operands!");
1981 Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum));
1982 // The sign, shift type, and shift amount are encoded in a single operand
1983 // using the AM2 encoding helpers.
1984 ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub;
1985 unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm,
1986 PostIdxReg.ShiftTy);
1987 Inst.addOperand(MCOperand::CreateImm(Imm));
1988 }
1989
1990 void addMSRMaskOperands(MCInst &Inst, unsigned N) const {
1991 assert(N == 1 && "Invalid number of operands!");
1992 Inst.addOperand(MCOperand::CreateImm(unsigned(getMSRMask())));
1993 }
1994
1995 void addProcIFlagsOperands(MCInst &Inst, unsigned N) const {
1996 assert(N == 1 && "Invalid number of operands!");
1997 Inst.addOperand(MCOperand::CreateImm(unsigned(getProcIFlags())));
1998 }
1999
2000 void addVecListOperands(MCInst &Inst, unsigned N) const {
2001 assert(N == 1 && "Invalid number of operands!");
2002 Inst.addOperand(MCOperand::CreateReg(VectorList.RegNum));
2003 }
2004
2005 void addVecListIndexedOperands(MCInst &Inst, unsigned N) const {
2006 assert(N == 2 && "Invalid number of operands!");
2007 Inst.addOperand(MCOperand::CreateReg(VectorList.RegNum));
2008 Inst.addOperand(MCOperand::CreateImm(VectorList.LaneIndex));
2009 }
2010
2011 void addVectorIndex8Operands(MCInst &Inst, unsigned N) const {
2012 assert(N == 1 && "Invalid number of operands!");
2013 Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
2014 }
2015
2016 void addVectorIndex16Operands(MCInst &Inst, unsigned N) const {
2017 assert(N == 1 && "Invalid number of operands!");
2018 Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
2019 }
2020
2021 void addVectorIndex32Operands(MCInst &Inst, unsigned N) const {
2022 assert(N == 1 && "Invalid number of operands!");
2023 Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
2024 }
2025
2026 void addNEONi8splatOperands(MCInst &Inst, unsigned N) const {
2027 assert(N == 1 && "Invalid number of operands!");
2028 // The immediate encodes the type of constant as well as the value.
2029 // Mask in that this is an i8 splat.
2030 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2031 Inst.addOperand(MCOperand::CreateImm(CE->getValue() | 0xe00));
2032 }
2033
2034 void addNEONi16splatOperands(MCInst &Inst, unsigned N) const {
2035 assert(N == 1 && "Invalid number of operands!");
2036 // The immediate encodes the type of constant as well as the value.
2037 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2038 unsigned Value = CE->getValue();
2039 if (Value >= 256)
2040 Value = (Value >> 8) | 0xa00;
2041 else
2042 Value |= 0x800;
2043 Inst.addOperand(MCOperand::CreateImm(Value));
2044 }
2045
2046 void addNEONi32splatOperands(MCInst &Inst, unsigned N) const {
2047 assert(N == 1 && "Invalid number of operands!");
2048 // The immediate encodes the type of constant as well as the value.
2049 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2050 unsigned Value = CE->getValue();
2051 if (Value >= 256 && Value <= 0xff00)
2052 Value = (Value >> 8) | 0x200;
2053 else if (Value > 0xffff && Value <= 0xff0000)
2054 Value = (Value >> 16) | 0x400;
2055 else if (Value > 0xffffff)
2056 Value = (Value >> 24) | 0x600;
2057 Inst.addOperand(MCOperand::CreateImm(Value));
2058 }
2059
2060 void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const {
2061 assert(N == 1 && "Invalid number of operands!");
2062 // The immediate encodes the type of constant as well as the value.
2063 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2064 unsigned Value = CE->getValue();
2065 if (Value >= 256 && Value <= 0xffff)
2066 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200);
2067 else if (Value > 0xffff && Value <= 0xffffff)
2068 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400);
2069 else if (Value > 0xffffff)
2070 Value = (Value >> 24) | 0x600;
2071 Inst.addOperand(MCOperand::CreateImm(Value));
2072 }
2073
2074 void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const {
2075 assert(N == 1 && "Invalid number of operands!");
2076 // The immediate encodes the type of constant as well as the value.
2077 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2078 unsigned Value = ~CE->getValue();
2079 if (Value >= 256 && Value <= 0xffff)
2080 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200);
2081 else if (Value > 0xffff && Value <= 0xffffff)
2082 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400);
2083 else if (Value > 0xffffff)
2084 Value = (Value >> 24) | 0x600;
2085 Inst.addOperand(MCOperand::CreateImm(Value));
2086 }
2087
2088 void addNEONi64splatOperands(MCInst &Inst, unsigned N) const {
2089 assert(N == 1 && "Invalid number of operands!");
2090 // The immediate encodes the type of constant as well as the value.
2091 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2092 uint64_t Value = CE->getValue();
2093 unsigned Imm = 0;
2094 for (unsigned i = 0; i < 8; ++i, Value >>= 8) {
2095 Imm |= (Value & 1) << i;
2096 }
2097 Inst.addOperand(MCOperand::CreateImm(Imm | 0x1e00));
2098 }
2099
2100 virtual void print(raw_ostream &OS) const;
2101
2102 static ARMOperand *CreateITMask(unsigned Mask, SMLoc S) {
2103 ARMOperand *Op = new ARMOperand(k_ITCondMask);
2104 Op->ITMask.Mask = Mask;
2105 Op->StartLoc = S;
2106 Op->EndLoc = S;
2107 return Op;
2108 }
2109
2110 static ARMOperand *CreateCondCode(ARMCC::CondCodes CC, SMLoc S) {
2111 ARMOperand *Op = new ARMOperand(k_CondCode);
2112 Op->CC.Val = CC;
2113 Op->StartLoc = S;
2114 Op->EndLoc = S;
2115 return Op;
2116 }
2117
2118 static ARMOperand *CreateCoprocNum(unsigned CopVal, SMLoc S) {
2119 ARMOperand *Op = new ARMOperand(k_CoprocNum);
2120 Op->Cop.Val = CopVal;
2121 Op->StartLoc = S;
2122 Op->EndLoc = S;
2123 return Op;
2124 }
2125
2126 static ARMOperand *CreateCoprocReg(unsigned CopVal, SMLoc S) {
2127 ARMOperand *Op = new ARMOperand(k_CoprocReg);
2128 Op->Cop.Val = CopVal;
2129 Op->StartLoc = S;
2130 Op->EndLoc = S;
2131 return Op;
2132 }
2133
2134 static ARMOperand *CreateCoprocOption(unsigned Val, SMLoc S, SMLoc E) {
2135 ARMOperand *Op = new ARMOperand(k_CoprocOption);
2136 Op->Cop.Val = Val;
2137 Op->StartLoc = S;
2138 Op->EndLoc = E;
2139 return Op;
2140 }
2141
2142 static ARMOperand *CreateCCOut(unsigned RegNum, SMLoc S) {
2143 ARMOperand *Op = new ARMOperand(k_CCOut);
2144 Op->Reg.RegNum = RegNum;
2145 Op->StartLoc = S;
2146 Op->EndLoc = S;
2147 return Op;
2148 }
2149
2150 static ARMOperand *CreateToken(StringRef Str, SMLoc S) {
2151 ARMOperand *Op = new ARMOperand(k_Token);
2152 Op->Tok.Data = Str.data();
2153 Op->Tok.Length = Str.size();
2154 Op->StartLoc = S;
2155 Op->EndLoc = S;
2156 return Op;
2157 }
2158
2159 static ARMOperand *CreateReg(unsigned RegNum, SMLoc S, SMLoc E) {
2160 ARMOperand *Op = new ARMOperand(k_Register);
2161 Op->Reg.RegNum = RegNum;
2162 Op->StartLoc = S;
2163 Op->EndLoc = E;
2164 return Op;
2165 }
2166
2167 static ARMOperand *CreateShiftedRegister(ARM_AM::ShiftOpc ShTy,
2168 unsigned SrcReg,
2169 unsigned ShiftReg,
2170 unsigned ShiftImm,
2171 SMLoc S, SMLoc E) {
2172 ARMOperand *Op = new ARMOperand(k_ShiftedRegister);
2173 Op->RegShiftedReg.ShiftTy = ShTy;
2174 Op->RegShiftedReg.SrcReg = SrcReg;
2175 Op->RegShiftedReg.ShiftReg = ShiftReg;
2176 Op->RegShiftedReg.ShiftImm = ShiftImm;
2177 Op->StartLoc = S;
2178 Op->EndLoc = E;
2179 return Op;
2180 }
2181
2182 static ARMOperand *CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy,
2183 unsigned SrcReg,
2184 unsigned ShiftImm,
2185 SMLoc S, SMLoc E) {
2186 ARMOperand *Op = new ARMOperand(k_ShiftedImmediate);
2187 Op->RegShiftedImm.ShiftTy = ShTy;
2188 Op->RegShiftedImm.SrcReg = SrcReg;
2189 Op->RegShiftedImm.ShiftImm = ShiftImm;
2190 Op->StartLoc = S;
2191 Op->EndLoc = E;
2192 return Op;
2193 }
2194
2195 static ARMOperand *CreateShifterImm(bool isASR, unsigned Imm,
2196 SMLoc S, SMLoc E) {
2197 ARMOperand *Op = new ARMOperand(k_ShifterImmediate);
2198 Op->ShifterImm.isASR = isASR;
2199 Op->ShifterImm.Imm = Imm;
2200 Op->StartLoc = S;
2201 Op->EndLoc = E;
2202 return Op;
2203 }
2204
2205 static ARMOperand *CreateRotImm(unsigned Imm, SMLoc S, SMLoc E) {
2206 ARMOperand *Op = new ARMOperand(k_RotateImmediate);
2207 Op->RotImm.Imm = Imm;
2208 Op->StartLoc = S;
2209 Op->EndLoc = E;
2210 return Op;
2211 }
2212
2213 static ARMOperand *CreateBitfield(unsigned LSB, unsigned Width,
2214 SMLoc S, SMLoc E) {
2215 ARMOperand *Op = new ARMOperand(k_BitfieldDescriptor);
2216 Op->Bitfield.LSB = LSB;
2217 Op->Bitfield.Width = Width;
2218 Op->StartLoc = S;
2219 Op->EndLoc = E;
2220 return Op;
2221 }
2222
2223 static ARMOperand *
2224 CreateRegList(const SmallVectorImpl<std::pair<unsigned, SMLoc> > &Regs,
2225 SMLoc StartLoc, SMLoc EndLoc) {
2226 KindTy Kind = k_RegisterList;
2227
2228 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Regs.front().first))
2229 Kind = k_DPRRegisterList;
2230 else if (ARMMCRegisterClasses[ARM::SPRRegClassID].
2231 contains(Regs.front().first))
2232 Kind = k_SPRRegisterList;
2233
2234 ARMOperand *Op = new ARMOperand(Kind);
2235 for (SmallVectorImpl<std::pair<unsigned, SMLoc> >::const_iterator
2236 I = Regs.begin(), E = Regs.end(); I != E; ++I)
2237 Op->Registers.push_back(I->first);
2238 array_pod_sort(Op->Registers.begin(), Op->Registers.end());
2239 Op->StartLoc = StartLoc;
2240 Op->EndLoc = EndLoc;
2241 return Op;
2242 }
2243
2244 static ARMOperand *CreateVectorList(unsigned RegNum, unsigned Count,
2245 bool isDoubleSpaced, SMLoc S, SMLoc E) {
2246 ARMOperand *Op = new ARMOperand(k_VectorList);
2247 Op->VectorList.RegNum = RegNum;
2248 Op->VectorList.Count = Count;
2249 Op->VectorList.isDoubleSpaced = isDoubleSpaced;
2250 Op->StartLoc = S;
2251 Op->EndLoc = E;
2252 return Op;
2253 }
2254
2255 static ARMOperand *CreateVectorListAllLanes(unsigned RegNum, unsigned Count,
2256 bool isDoubleSpaced,
2257 SMLoc S, SMLoc E) {
2258 ARMOperand *Op = new ARMOperand(k_VectorListAllLanes);
2259 Op->VectorList.RegNum = RegNum;
2260 Op->VectorList.Count = Count;
2261 Op->VectorList.isDoubleSpaced = isDoubleSpaced;
2262 Op->StartLoc = S;
2263 Op->EndLoc = E;
2264 return Op;
2265 }
2266
2267 static ARMOperand *CreateVectorListIndexed(unsigned RegNum, unsigned Count,
2268 unsigned Index,
2269 bool isDoubleSpaced,
2270 SMLoc S, SMLoc E) {
2271 ARMOperand *Op = new ARMOperand(k_VectorListIndexed);
2272 Op->VectorList.RegNum = RegNum;
2273 Op->VectorList.Count = Count;
2274 Op->VectorList.LaneIndex = Index;
2275 Op->VectorList.isDoubleSpaced = isDoubleSpaced;
2276 Op->StartLoc = S;
2277 Op->EndLoc = E;
2278 return Op;
2279 }
2280
2281 static ARMOperand *CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E,
2282 MCContext &Ctx) {
2283 ARMOperand *Op = new ARMOperand(k_VectorIndex);
2284 Op->VectorIndex.Val = Idx;
2285 Op->StartLoc = S;
2286 Op->EndLoc = E;
2287 return Op;
2288 }
2289
2290 static ARMOperand *CreateImm(const MCExpr *Val, SMLoc S, SMLoc E) {
2291 ARMOperand *Op = new ARMOperand(k_Immediate);
2292 Op->Imm.Val = Val;
2293 Op->StartLoc = S;
2294 Op->EndLoc = E;
2295 return Op;
2296 }
2297
2298 static ARMOperand *CreateMem(unsigned BaseRegNum,
2299 const MCConstantExpr *OffsetImm,
2300 unsigned OffsetRegNum,
2301 ARM_AM::ShiftOpc ShiftType,
2302 unsigned ShiftImm,
2303 unsigned Alignment,
2304 bool isNegative,
2305 SMLoc S, SMLoc E) {
2306 ARMOperand *Op = new ARMOperand(k_Memory);
2307 Op->Memory.BaseRegNum = BaseRegNum;
2308 Op->Memory.OffsetImm = OffsetImm;
2309 Op->Memory.OffsetRegNum = OffsetRegNum;
2310 Op->Memory.ShiftType = ShiftType;
2311 Op->Memory.ShiftImm = ShiftImm;
2312 Op->Memory.Alignment = Alignment;
2313 Op->Memory.isNegative = isNegative;
2314 Op->StartLoc = S;
2315 Op->EndLoc = E;
2316 return Op;
2317 }
2318
2319 static ARMOperand *CreatePostIdxReg(unsigned RegNum, bool isAdd,
2320 ARM_AM::ShiftOpc ShiftTy,
2321 unsigned ShiftImm,
2322 SMLoc S, SMLoc E) {
2323 ARMOperand *Op = new ARMOperand(k_PostIndexRegister);
2324 Op->PostIdxReg.RegNum = RegNum;
2325 Op->PostIdxReg.isAdd = isAdd;
2326 Op->PostIdxReg.ShiftTy = ShiftTy;
2327 Op->PostIdxReg.ShiftImm = ShiftImm;
2328 Op->StartLoc = S;
2329 Op->EndLoc = E;
2330 return Op;
2331 }
2332
2333 static ARMOperand *CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, SMLoc S) {
2334 ARMOperand *Op = new ARMOperand(k_MemBarrierOpt);
2335 Op->MBOpt.Val = Opt;
2336 Op->StartLoc = S;
2337 Op->EndLoc = S;
2338 return Op;
2339 }
2340
2341 static ARMOperand *CreateProcIFlags(ARM_PROC::IFlags IFlags, SMLoc S) {
2342 ARMOperand *Op = new ARMOperand(k_ProcIFlags);
2343 Op->IFlags.Val = IFlags;
2344 Op->StartLoc = S;
2345 Op->EndLoc = S;
2346 return Op;
2347 }
2348
2349 static ARMOperand *CreateMSRMask(unsigned MMask, SMLoc S) {
2350 ARMOperand *Op = new ARMOperand(k_MSRMask);
2351 Op->MMask.Val = MMask;
2352 Op->StartLoc = S;
2353 Op->EndLoc = S;
2354 return Op;
2355 }
2356 };
2357
2358 } // end anonymous namespace.
2359
2360 void ARMOperand::print(raw_ostream &OS) const {
2361 switch (Kind) {
2362 case k_CondCode:
2363 OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">";
2364 break;
2365 case k_CCOut:
2366 OS << "<ccout " << getReg() << ">";
2367 break;
2368 case k_ITCondMask: {
2369 static const char *const MaskStr[] = {
2370 "()", "(t)", "(e)", "(tt)", "(et)", "(te)", "(ee)", "(ttt)", "(ett)",
2371 "(tet)", "(eet)", "(tte)", "(ete)", "(tee)", "(eee)"
2372 };
2373 assert((ITMask.Mask & 0xf) == ITMask.Mask);
2374 OS << "<it-mask " << MaskStr[ITMask.Mask] << ">";
2375 break;
2376 }
2377 case k_CoprocNum:
2378 OS << "<coprocessor number: " << getCoproc() << ">";
2379 break;
2380 case k_CoprocReg:
2381 OS << "<coprocessor register: " << getCoproc() << ">";
2382 break;
2383 case k_CoprocOption:
2384 OS << "<coprocessor option: " << CoprocOption.Val << ">";
2385 break;
2386 case k_MSRMask:
2387 OS << "<mask: " << getMSRMask() << ">";
2388 break;
2389 case k_Immediate:
2390 getImm()->print(OS);
2391 break;
2392 case k_MemBarrierOpt:
2393 OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt()) << ">";
2394 break;
2395 case k_Memory:
2396 OS << "<memory "
2397 << " base:" << Memory.BaseRegNum;
2398 OS << ">";
2399 break;
2400 case k_PostIndexRegister:
2401 OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-")
2402 << PostIdxReg.RegNum;
2403 if (PostIdxReg.ShiftTy != ARM_AM::no_shift)
2404 OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " "
2405 << PostIdxReg.ShiftImm;
2406 OS << ">";
2407 break;
2408 case k_ProcIFlags: {
2409 OS << "<ARM_PROC::";
2410 unsigned IFlags = getProcIFlags();
2411 for (int i=2; i >= 0; --i)
2412 if (IFlags & (1 << i))
2413 OS << ARM_PROC::IFlagsToString(1 << i);
2414 OS << ">";
2415 break;
2416 }
2417 case k_Register:
2418 OS << "<register " << getReg() << ">";
2419 break;
2420 case k_ShifterImmediate:
2421 OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl")
2422 << " #" << ShifterImm.Imm << ">";
2423 break;
2424 case k_ShiftedRegister:
2425 OS << "<so_reg_reg "
2426 << RegShiftedReg.SrcReg << " "
2427 << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy)
2428 << " " << RegShiftedReg.ShiftReg << ">";
2429 break;
2430 case k_ShiftedImmediate:
2431 OS << "<so_reg_imm "
2432 << RegShiftedImm.SrcReg << " "
2433 << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy)
2434 << " #" << RegShiftedImm.ShiftImm << ">";
2435 break;
2436 case k_RotateImmediate:
2437 OS << "<ror " << " #" << (RotImm.Imm * 8) << ">";
2438 break;
2439 case k_BitfieldDescriptor:
2440 OS << "<bitfield " << "lsb: " << Bitfield.LSB
2441 << ", width: " << Bitfield.Width << ">";
2442 break;
2443 case k_RegisterList:
2444 case k_DPRRegisterList:
2445 case k_SPRRegisterList: {
2446 OS << "<register_list ";
2447
2448 const SmallVectorImpl<unsigned> &RegList = getRegList();
2449 for (SmallVectorImpl<unsigned>::const_iterator
2450 I = RegList.begin(), E = RegList.end(); I != E; ) {
2451 OS << *I;
2452 if (++I < E) OS << ", ";
2453 }
2454
2455 OS << ">";
2456 break;
2457 }
2458 case k_VectorList:
2459 OS << "<vector_list " << VectorList.Count << " * "
2460 << VectorList.RegNum << ">";
2461 break;
2462 case k_VectorListAllLanes:
2463 OS << "<vector_list(all lanes) " << VectorList.Count << " * "
2464 << VectorList.RegNum << ">";
2465 break;
2466 case k_VectorListIndexed:
2467 OS << "<vector_list(lane " << VectorList.LaneIndex << ") "
2468 << VectorList.Count << " * " << VectorList.RegNum << ">";
2469 break;
2470 case k_Token:
2471 OS << "'" << getToken() << "'";
2472 break;
2473 case k_VectorIndex:
2474 OS << "<vectorindex " << getVectorIndex() << ">";
2475 break;
2476 }
2477 }
2478
2479 /// @name Auto-generated Match Functions
2480 /// {
2481
2482 static unsigned MatchRegisterName(StringRef Name);
2483
2484 /// }
2485
2486 bool ARMAsmParser::ParseRegister(unsigned &RegNo,
2487 SMLoc &StartLoc, SMLoc &EndLoc) {
2488 StartLoc = Parser.getTok().getLoc();
2489 EndLoc = Parser.getTok().getEndLoc();
2490 RegNo = tryParseRegister();
2491
2492 return (RegNo == (unsigned)-1);
2493 }
2494
2495 /// Try to parse a register name. The token must be an Identifier when called,
2496 /// and if it is a register name the token is eaten and the register number is
2497 /// returned. Otherwise return -1.
2498 ///
2499 int ARMAsmParser::tryParseRegister() {
2500 const AsmToken &Tok = Parser.getTok();
2501 if (Tok.isNot(AsmToken::Identifier)) return -1;
2502
2503 std::string lowerCase = Tok.getString().lower();
2504 unsigned RegNum = MatchRegisterName(lowerCase);
2505 if (!RegNum) {
2506 RegNum = StringSwitch<unsigned>(lowerCase)
2507 .Case("r13", ARM::SP)
2508 .Case("r14", ARM::LR)
2509 .Case("r15", ARM::PC)
2510 .Case("ip", ARM::R12)
2511 // Additional register name aliases for 'gas' compatibility.
2512 .Case("a1", ARM::R0)
2513 .Case("a2", ARM::R1)
2514 .Case("a3", ARM::R2)
2515 .Case("a4", ARM::R3)
2516 .Case("v1", ARM::R4)
2517 .Case("v2", ARM::R5)
2518 .Case("v3", ARM::R6)
2519 .Case("v4", ARM::R7)
2520 .Case("v5", ARM::R8)
2521 .Case("v6", ARM::R9)
2522 .Case("v7", ARM::R10)
2523 .Case("v8", ARM::R11)
2524 .Case("sb", ARM::R9)
2525 .Case("sl", ARM::R10)
2526 .Case("fp", ARM::R11)
2527 .Default(0);
2528 }
2529 if (!RegNum) {
2530 // Check for aliases registered via .req. Canonicalize to lower case.
2531 // That's more consistent since register names are case insensitive, and
2532 // it's how the original entry was passed in from MC/MCParser/AsmParser.
2533 StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase);
2534 // If no match, return failure.
2535 if (Entry == RegisterReqs.end())
2536 return -1;
2537 Parser.Lex(); // Eat identifier token.
2538 return Entry->getValue();
2539 }
2540
2541 Parser.Lex(); // Eat identifier token.
2542
2543 return RegNum;
2544 }
2545
2546 // Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0.
2547 // If a recoverable error occurs, return 1. If an irrecoverable error
2548 // occurs, return -1. An irrecoverable error is one where tokens have been
2549 // consumed in the process of trying to parse the shifter (i.e., when it is
2550 // indeed a shifter operand, but malformed).
2551 int ARMAsmParser::tryParseShiftRegister(
2552 SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
2553 SMLoc S = Parser.getTok().getLoc();
2554 const AsmToken &Tok = Parser.getTok();
2555 assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
2556
2557 std::string lowerCase = Tok.getString().lower();
2558 ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase)
2559 .Case("asl", ARM_AM::lsl)
2560 .Case("lsl", ARM_AM::lsl)
2561 .Case("lsr", ARM_AM::lsr)
2562 .Case("asr", ARM_AM::asr)
2563 .Case("ror", ARM_AM::ror)
2564 .Case("rrx", ARM_AM::rrx)
2565 .Default(ARM_AM::no_shift);
2566
2567 if (ShiftTy == ARM_AM::no_shift)
2568 return 1;
2569
2570 Parser.Lex(); // Eat the operator.
2571
2572 // The source register for the shift has already been added to the
2573 // operand list, so we need to pop it off and combine it into the shifted
2574 // register operand instead.
2575 OwningPtr<ARMOperand> PrevOp((ARMOperand*)Operands.pop_back_val());
2576 if (!PrevOp->isReg())
2577 return Error(PrevOp->getStartLoc(), "shift must be of a register");
2578 int SrcReg = PrevOp->getReg();
2579
2580 SMLoc EndLoc;
2581 int64_t Imm = 0;
2582 int ShiftReg = 0;
2583 if (ShiftTy == ARM_AM::rrx) {
2584 // RRX Doesn't have an explicit shift amount. The encoder expects
2585 // the shift register to be the same as the source register. Seems odd,
2586 // but OK.
2587 ShiftReg = SrcReg;
2588 } else {
2589 // Figure out if this is shifted by a constant or a register (for non-RRX).
2590 if (Parser.getTok().is(AsmToken::Hash) ||
2591 Parser.getTok().is(AsmToken::Dollar)) {
2592 Parser.Lex(); // Eat hash.
2593 SMLoc ImmLoc = Parser.getTok().getLoc();
2594 const MCExpr *ShiftExpr = 0;
2595 if (getParser().parseExpression(ShiftExpr, EndLoc)) {
2596 Error(ImmLoc, "invalid immediate shift value");
2597 return -1;
2598 }
2599 // The expression must be evaluatable as an immediate.
2600 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr);
2601 if (!CE) {
2602 Error(ImmLoc, "invalid immediate shift value");
2603 return -1;
2604 }
2605 // Range check the immediate.
2606 // lsl, ror: 0 <= imm <= 31
2607 // lsr, asr: 0 <= imm <= 32
2608 Imm = CE->getValue();
2609 if (Imm < 0 ||
2610 ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) ||
2611 ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) {
2612 Error(ImmLoc, "immediate shift value out of range");
2613 return -1;
2614 }
2615 // shift by zero is a nop. Always send it through as lsl.
2616 // ('as' compatibility)
2617 if (Imm == 0)
2618 ShiftTy = ARM_AM::lsl;
2619 } else if (Parser.getTok().is(AsmToken::Identifier)) {
2620 SMLoc L = Parser.getTok().getLoc();
2621 EndLoc = Parser.getTok().getEndLoc();
2622 ShiftReg = tryParseRegister();
2623 if (ShiftReg == -1) {
2624 Error (L, "expected immediate or register in shift operand");
2625 return -1;
2626 }
2627 } else {
2628 Error (Parser.getTok().getLoc(),
2629 "expected immediate or register in shift operand");
2630 return -1;
2631 }
2632 }
2633
2634 if (ShiftReg && ShiftTy != ARM_AM::rrx)
2635 Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg,
2636 ShiftReg, Imm,
2637 S, EndLoc));
2638 else
2639 Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm,
2640 S, EndLoc));
2641
2642 return 0;
2643 }
2644
2645
2646 /// Try to parse a register name. The token must be an Identifier when called.
2647 /// If it's a register, an AsmOperand is created. Another AsmOperand is created
2648 /// if there is a "writeback". 'true' if it's not a register.
2649 ///
2650 /// TODO this is likely to change to allow different register types and or to
2651 /// parse for a specific register type.
2652 bool ARMAsmParser::
2653 tryParseRegisterWithWriteBack(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
2654 const AsmToken &RegTok = Parser.getTok();
2655 int RegNo = tryParseRegister();
2656 if (RegNo == -1)
2657 return true;
2658
2659 Operands.push_back(ARMOperand::CreateReg(RegNo, RegTok.getLoc(),
2660 RegTok.getEndLoc()));
2661
2662 const AsmToken &ExclaimTok = Parser.getTok();
2663 if (ExclaimTok.is(AsmToken::Exclaim)) {
2664 Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(),
2665 ExclaimTok.getLoc()));
2666 Parser.Lex(); // Eat exclaim token
2667 return false;
2668 }
2669
2670 // Also check for an index operand. This is only legal for vector registers,
2671 // but that'll get caught OK in operand matching, so we don't need to
2672 // explicitly filter everything else out here.
2673 if (Parser.getTok().is(AsmToken::LBrac)) {
2674 SMLoc SIdx = Parser.getTok().getLoc();
2675 Parser.Lex(); // Eat left bracket token.
2676
2677 const MCExpr *ImmVal;
2678 if (getParser().parseExpression(ImmVal))
2679 return true;
2680 const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
2681 if (!MCE)
2682 return TokError("immediate value expected for vector index");
2683
2684 if (Parser.getTok().isNot(AsmToken::RBrac))
2685 return Error(Parser.getTok().getLoc(), "']' expected");
2686
2687 SMLoc E = Parser.getTok().getEndLoc();
2688 Parser.Lex(); // Eat right bracket token.
2689
2690 Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(),
2691 SIdx, E,
2692 getContext()));
2693 }
2694
2695 return false;
2696 }
2697
2698 /// MatchCoprocessorOperandName - Try to parse an coprocessor related
2699 /// instruction with a symbolic operand name. Example: "p1", "p7", "c3",
2700 /// "c5", ...
2701 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) {
2702 // Use the same layout as the tablegen'erated register name matcher. Ugly,
2703 // but efficient.
2704 switch (Name.size()) {
2705 default: return -1;
2706 case 2:
2707 if (Name[0] != CoprocOp)
2708 return -1;
2709 switch (Name[1]) {
2710 default: return -1;
2711 case '0': return 0;
2712 case '1': return 1;
2713 case '2': return 2;
2714 case '3': return 3;
2715 case '4': return 4;
2716 case '5': return 5;
2717 case '6': return 6;
2718 case '7': return 7;
2719 case '8': return 8;
2720 case '9': return 9;
2721 }
2722 case 3:
2723 if (Name[0] != CoprocOp || Name[1] != '1')
2724 return -1;
2725 switch (Name[2]) {
2726 default: return -1;
2727 case '0': return 10;
2728 case '1': return 11;
2729 case '2': return 12;
2730 case '3': return 13;
2731 case '4': return 14;
2732 case '5': return 15;
2733 }
2734 }
2735 }
2736
2737 /// parseITCondCode - Try to parse a condition code for an IT instruction.
2738 ARMAsmParser::OperandMatchResultTy ARMAsmParser::
2739 parseITCondCode(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
2740 SMLoc S = Parser.getTok().getLoc();
2741 const AsmToken &Tok = Parser.getTok();
2742 if (!Tok.is(AsmToken::Identifier))
2743 return MatchOperand_NoMatch;
2744 unsigned CC = StringSwitch<unsigned>(Tok.getString().lower())
2745 .Case("eq", ARMCC::EQ)
2746 .Case("ne", ARMCC::NE)
2747 .Case("hs", ARMCC::HS)
2748 .Case("cs", ARMCC::HS)
2749 .Case("lo", ARMCC::LO)
2750 .Case("cc", ARMCC::LO)
2751 .Case("mi", ARMCC::MI)
2752 .Case("pl", ARMCC::PL)
2753 .Case("vs", ARMCC::VS)
2754 .Case("vc", ARMCC::VC)
2755 .Case("hi", ARMCC::HI)
2756 .Case("ls", ARMCC::LS)
2757 .Case("ge", ARMCC::GE)
2758 .Case("lt", ARMCC::LT)
2759 .Case("gt", ARMCC::GT)
2760 .Case("le", ARMCC::LE)
2761 .Case("al", ARMCC::AL)
2762 .Default(~0U);
2763 if (CC == ~0U)
2764 return MatchOperand_NoMatch;
2765 Parser.Lex(); // Eat the token.
2766
2767 Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S));
2768
2769 return MatchOperand_Success;
2770 }
2771
2772 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The
2773 /// token must be an Identifier when called, and if it is a coprocessor
2774 /// number, the token is eaten and the operand is added to the operand list.
2775 ARMAsmParser::OperandMatchResultTy ARMAsmParser::
2776 parseCoprocNumOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
2777 SMLoc S = Parser.getTok().getLoc();
2778 const AsmToken &Tok = Parser.getTok();
2779 if (Tok.isNot(AsmToken::Identifier))
2780 return MatchOperand_NoMatch;
2781
2782 int Num = MatchCoprocessorOperandName(Tok.getString(), 'p');
2783 if (Num == -1)
2784 return MatchOperand_NoMatch;
2785
2786 Parser.Lex(); // Eat identifier token.
2787 Operands.push_back(ARMOperand::CreateCoprocNum(Num, S));
2788 return MatchOperand_Success;
2789 }
2790
2791 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The
2792 /// token must be an Identifier when called, and if it is a coprocessor
2793 /// number, the token is eaten and the operand is added to the operand list.
2794 ARMAsmParser::OperandMatchResultTy ARMAsmParser::
2795 parseCoprocRegOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
2796 SMLoc S = Parser.getTok().getLoc();
2797 const AsmToken &Tok = Parser.getTok();
2798 if (Tok.isNot(AsmToken::Identifier))
2799 return MatchOperand_NoMatch;
2800
2801 int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c');
2802 if (Reg == -1)
2803 return MatchOperand_NoMatch;
2804
2805 Parser.Lex(); // Eat identifier token.
2806 Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S));
2807 return MatchOperand_Success;
2808 }
2809
2810 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand.
2811 /// coproc_option : '{' imm0_255 '}'
2812 ARMAsmParser::OperandMatchResultTy ARMAsmParser::
2813 parseCoprocOptionOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
2814 SMLoc S = Parser.getTok().getLoc();
2815
2816 // If this isn't a '{', this isn't a coprocessor immediate operand.
2817 if (Parser.getTok().isNot(AsmToken::LCurly))
2818 return MatchOperand_NoMatch;
2819 Parser.Lex(); // Eat the '{'
2820
2821 const MCExpr *Expr;
2822 SMLoc Loc = Parser.getTok().getLoc();
2823 if (getParser().parseExpression(Expr)) {
2824 Error(Loc, "illegal expression");
2825 return MatchOperand_ParseFail;
2826 }
2827 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
2828 if (!CE || CE->getValue() < 0 || CE->getValue() > 255) {
2829 Error(Loc, "coprocessor option must be an immediate in range [0, 255]");
2830 return MatchOperand_ParseFail;
2831 }
2832 int Val = CE->getValue();
2833
2834 // Check for and consume the closing '}'
2835 if (Parser.getTok().isNot(AsmToken::RCurly))
2836 return MatchOperand_ParseFail;
2837 SMLoc E = Parser.getTok().getEndLoc();
2838 Parser.Lex(); // Eat the '}'
2839
2840 Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E));
2841 return MatchOperand_Success;
2842 }
2843
2844 // For register list parsing, we need to map from raw GPR register numbering
2845 // to the enumeration values. The enumeration values aren't sorted by
2846 // register number due to our using "sp", "lr" and "pc" as canonical names.
2847 static unsigned getNextRegister(unsigned Reg) {
2848 // If this is a GPR, we need to do it manually, otherwise we can rely
2849 // on the sort ordering of the enumeration since the other reg-classes
2850 // are sane.
2851 if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
2852 return Reg + 1;
2853 switch(Reg) {
2854 default: llvm_unreachable("Invalid GPR number!");
2855 case ARM::R0: return ARM::R1; case ARM::R1: return ARM::R2;
2856 case ARM::R2: return ARM::R3; case ARM::R3: return ARM::R4;
2857 case ARM::R4: return ARM::R5; case ARM::R5: return ARM::R6;
2858 case ARM::R6: return ARM::R7; case ARM::R7: return ARM::R8;
2859 case ARM::R8: return ARM::R9; case ARM::R9: return ARM::R10;
2860 case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12;
2861 case ARM::R12: return ARM::SP; case ARM::SP: return ARM::LR;
2862 case ARM::LR: return ARM::PC; case ARM::PC: return ARM::R0;
2863 }
2864 }
2865
2866 // Return the low-subreg of a given Q register.
2867 static unsigned getDRegFromQReg(unsigned QReg) {
2868 switch (QReg) {
2869 default: llvm_unreachable("expected a Q register!");
2870 case ARM::Q0: return ARM::D0;
2871 case ARM::Q1: return ARM::D2;
2872 case ARM::Q2: return ARM::D4;
2873 case ARM::Q3: return ARM::D6;
2874 case ARM::Q4: return ARM::D8;
2875 case ARM::Q5: return ARM::D10;
2876 case ARM::Q6: return ARM::D12;
2877 case ARM::Q7: return ARM::D14;
2878 case ARM::Q8: return ARM::D16;
2879 case ARM::Q9: return ARM::D18;
2880 case ARM::Q10: return ARM::D20;
2881 case ARM::Q11: return ARM::D22;
2882 case ARM::Q12: return ARM::D24;
2883 case ARM::Q13: return ARM::D26;
2884 case ARM::Q14: return ARM::D28;
2885 case ARM::Q15: return ARM::D30;
2886 }
2887 }
2888
2889 /// Parse a register list.
2890 bool ARMAsmParser::
2891 parseRegisterList(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
2892 assert(Parser.getTok().is(AsmToken::LCurly) &&
2893 "Token is not a Left Curly Brace");
2894 SMLoc S = Parser.getTok().getLoc();
2895 Parser.Lex(); // Eat '{' token.
2896 SMLoc RegLoc = Parser.getTok().getLoc();
2897
2898 // Check the first register in the list to see what register class
2899 // this is a list of.
2900 int Reg = tryParseRegister();
2901 if (Reg == -1)
2902 return Error(RegLoc, "register expected");
2903
2904 // The reglist instructions have at most 16 registers, so reserve
2905 // space for that many.
2906 SmallVector<std::pair<unsigned, SMLoc>, 16> Registers;
2907
2908 // Allow Q regs and just interpret them as the two D sub-registers.
2909 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
2910 Reg = getDRegFromQReg(Reg);
2911 Registers.push_back(std::pair<unsigned, SMLoc>(Reg, RegLoc));
2912 ++Reg;
2913 }
2914 const MCRegisterClass *RC;
2915 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
2916 RC = &ARMMCRegisterClasses[ARM::GPRRegClassID];
2917 else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg))
2918 RC = &ARMMCRegisterClasses[ARM::DPRRegClassID];
2919 else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg))
2920 RC = &ARMMCRegisterClasses[ARM::SPRRegClassID];
2921 else
2922 return Error(RegLoc, "invalid register in register list");
2923
2924 // Store the register.
2925 Registers.push_back(std::pair<unsigned, SMLoc>(Reg, RegLoc));
2926
2927 // This starts immediately after the first register token in the list,
2928 // so we can see either a comma or a minus (range separator) as a legal
2929 // next token.
2930 while (Parser.getTok().is(AsmToken::Comma) ||
2931 Parser.getTok().is(AsmToken::Minus)) {
2932 if (Parser.getTok().is(AsmToken::Minus)) {
2933 Parser.Lex(); // Eat the minus.
2934 SMLoc AfterMinusLoc = Parser.getTok().getLoc();
2935 int EndReg = tryParseRegister();
2936 if (EndReg == -1)
2937 return Error(AfterMinusLoc, "register expected");
2938 // Allow Q regs and just interpret them as the two D sub-registers.
2939 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
2940 EndReg = getDRegFromQReg(EndReg) + 1;
2941 // If the register is the same as the start reg, there's nothing
2942 // more to do.
2943 if (Reg == EndReg)
2944 continue;
2945 // The register must be in the same register class as the first.
2946 if (!RC->contains(EndReg))
2947 return Error(AfterMinusLoc, "invalid register in register list");
2948 // Ranges must go from low to high.
2949 if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg))
2950 return Error(AfterMinusLoc, "bad range in register list");
2951
2952 // Add all the registers in the range to the register list.
2953 while (Reg != EndReg) {
2954 Reg = getNextRegister(Reg);
2955 Registers.push_back(std::pair<unsigned, SMLoc>(Reg, RegLoc));
2956 }
2957 continue;
2958 }
2959 Parser.Lex(); // Eat the comma.
2960 RegLoc = Parser.getTok().getLoc();
2961 int OldReg = Reg;
2962 const AsmToken RegTok = Parser.getTok();
2963 Reg = tryParseRegister();
2964 if (Reg == -1)
2965 return Error(RegLoc, "register expected");
2966 // Allow Q regs and just interpret them as the two D sub-registers.
2967 bool isQReg = false;
2968 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
2969 Reg = getDRegFromQReg(Reg);
2970 isQReg = true;
2971 }
2972 // The register must be in the same register class as the first.
2973 if (!RC->contains(Reg))
2974 return Error(RegLoc, "invalid register in register list");
2975 // List must be monotonically increasing.
2976 if (MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) {
2977 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
2978 Warning(RegLoc, "register list not in ascending order");
2979 else
2980 return Error(RegLoc, "register list not in ascending order");
2981 }
2982 if (MRI->getEncodingValue(Reg) == MRI->getEncodingValue(OldReg)) {
2983 Warning(RegLoc, "duplicated register (" + RegTok.getString() +
2984 ") in register list");
2985 continue;
2986 }
2987 // VFP register lists must also be contiguous.
2988 // It's OK to use the enumeration values directly here rather, as the
2989 // VFP register classes have the enum sorted properly.
2990 if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] &&
2991 Reg != OldReg + 1)
2992 return Error(RegLoc, "non-contiguous register range");
2993 Registers.push_back(std::pair<unsigned, SMLoc>(Reg, RegLoc));
2994 if (isQReg)
2995 Registers.push_back(std::pair<unsigned, SMLoc>(++Reg, RegLoc));
2996 }
2997
2998 if (Parser.getTok().isNot(AsmToken::RCurly))
2999 return Error(Parser.getTok().getLoc(), "'}' expected");
3000 SMLoc E = Parser.getTok().getEndLoc();
3001 Parser.Lex(); // Eat '}' token.
3002
3003 // Push the register list operand.
3004 Operands.push_back(ARMOperand::CreateRegList(Registers, S, E));
3005
3006 // The ARM system instruction variants for LDM/STM have a '^' token here.
3007 if (Parser.getTok().is(AsmToken::Caret)) {
3008 Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc()));
3009 Parser.Lex(); // Eat '^' token.
3010 }
3011
3012 return false;
3013 }
3014
3015 // Helper function to parse the lane index for vector lists.
3016 ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3017 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) {
3018 Index = 0; // Always return a defined index value.
3019 if (Parser.getTok().is(AsmToken::LBrac)) {
3020 Parser.Lex(); // Eat the '['.
3021 if (Parser.getTok().is(AsmToken::RBrac)) {
3022 // "Dn[]" is the 'all lanes' syntax.
3023 LaneKind = AllLanes;
3024 EndLoc = Parser.getTok().getEndLoc();
3025 Parser.Lex(); // Eat the ']'.
3026 return MatchOperand_Success;
3027 }
3028
3029 // There's an optional '#' token here. Normally there wouldn't be, but
3030 // inline assemble puts one in, and it's friendly to accept that.
3031 if (Parser.getTok().is(AsmToken::Hash))
3032 Parser.Lex(); // Eat the '#'
3033
3034 const MCExpr *LaneIndex;
3035 SMLoc Loc = Parser.getTok().getLoc();
3036 if (getParser().parseExpression(LaneIndex)) {
3037 Error(Loc, "illegal expression");
3038 return MatchOperand_ParseFail;
3039 }
3040 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex);
3041 if (!CE) {
3042 Error(Loc, "lane index must be empty or an integer");
3043 return MatchOperand_ParseFail;
3044 }
3045 if (Parser.getTok().isNot(AsmToken::RBrac)) {
3046 Error(Parser.getTok().getLoc(), "']' expected");
3047 return MatchOperand_ParseFail;
3048 }
3049 EndLoc = Parser.getTok().getEndLoc();
3050 Parser.Lex(); // Eat the ']'.
3051 int64_t Val = CE->getValue();
3052
3053 // FIXME: Make this range check context sensitive for .8, .16, .32.
3054 if (Val < 0 || Val > 7) {
3055 Error(Parser.getTok().getLoc(), "lane index out of range");
3056 return MatchOperand_ParseFail;
3057 }
3058 Index = Val;
3059 LaneKind = IndexedLane;
3060 return MatchOperand_Success;
3061 }
3062 LaneKind = NoLanes;
3063 return MatchOperand_Success;
3064 }
3065
3066 // parse a vector register list
3067 ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3068 parseVectorList(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3069 VectorLaneTy LaneKind;
3070 unsigned LaneIndex;
3071 SMLoc S = Parser.getTok().getLoc();
3072 // As an extension (to match gas), support a plain D register or Q register
3073 // (without encosing curly braces) as a single or double entry list,
3074 // respectively.
3075 if (Parser.getTok().is(AsmToken::Identifier)) {
3076 SMLoc E = Parser.getTok().getEndLoc();
3077 int Reg = tryParseRegister();
3078 if (Reg == -1)
3079 return MatchOperand_NoMatch;
3080 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) {
3081 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
3082 if (Res != MatchOperand_Success)
3083 return Res;
3084 switch (LaneKind) {
3085 case NoLanes:
3086 Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E));
3087 break;
3088 case AllLanes:
3089 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false,
3090 S, E));
3091 break;
3092 case IndexedLane:
3093 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1,
3094 LaneIndex,
3095 false, S, E));
3096 break;
3097 }
3098 return MatchOperand_Success;
3099 }
3100 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3101 Reg = getDRegFromQReg(Reg);
3102 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
3103 if (Res != MatchOperand_Success)
3104 return Res;
3105 switch (LaneKind) {
3106 case NoLanes:
3107 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
3108 &ARMMCRegisterClasses[ARM::DPairRegClassID]);
3109 Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E));
3110 break;
3111 case AllLanes:
3112 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
3113 &ARMMCRegisterClasses[ARM::DPairRegClassID]);
3114 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false,
3115 S, E));
3116 break;
3117 case IndexedLane:
3118 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2,
3119 LaneIndex,
3120 false, S, E));
3121 break;
3122 }
3123 return MatchOperand_Success;
3124 }
3125 Error(S, "vector register expected");
3126 return MatchOperand_ParseFail;
3127 }
3128
3129 if (Parser.getTok().isNot(AsmToken::LCurly))
3130 return MatchOperand_NoMatch;
3131
3132 Parser.Lex(); // Eat '{' token.
3133 SMLoc RegLoc = Parser.getTok().getLoc();
3134
3135 int Reg = tryParseRegister();
3136 if (Reg == -1) {
3137 Error(RegLoc, "register expected");
3138 return MatchOperand_ParseFail;
3139 }
3140 unsigned Count = 1;
3141 int Spacing = 0;
3142 unsigned FirstReg = Reg;
3143 // The list is of D registers, but we also allow Q regs and just interpret
3144 // them as the two D sub-registers.
3145 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3146 FirstReg = Reg = getDRegFromQReg(Reg);
3147 Spacing = 1; // double-spacing requires explicit D registers, otherwise
3148 // it's ambiguous with four-register single spaced.
3149 ++Reg;
3150 ++Count;
3151 }
3152
3153 SMLoc E;
3154 if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success)
3155 return MatchOperand_ParseFail;
3156
3157 while (Parser.getTok().is(AsmToken::Comma) ||
3158 Parser.getTok().is(AsmToken::Minus)) {
3159 if (Parser.getTok().is(AsmToken::Minus)) {
3160 if (!Spacing)
3161 Spacing = 1; // Register range implies a single spaced list.
3162 else if (Spacing == 2) {
3163 Error(Parser.getTok().getLoc(),
3164 "sequential registers in double spaced list");
3165 return MatchOperand_ParseFail;
3166 }
3167 Parser.Lex(); // Eat the minus.
3168 SMLoc AfterMinusLoc = Parser.getTok().getLoc();
3169 int EndReg = tryParseRegister();
3170 if (EndReg == -1) {
3171 Error(AfterMinusLoc, "register expected");
3172 return MatchOperand_ParseFail;
3173 }
3174 // Allow Q regs and just interpret them as the two D sub-registers.
3175 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
3176 EndReg = getDRegFromQReg(EndReg) + 1;
3177 // If the register is the same as the start reg, there's nothing
3178 // more to do.
3179 if (Reg == EndReg)
3180 continue;
3181 // The register must be in the same register class as the first.
3182 if (!ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg)) {
3183 Error(AfterMinusLoc, "invalid register in register list");
3184 return MatchOperand_ParseFail;
3185 }
3186 // Ranges must go from low to high.
3187 if (Reg > EndReg) {
3188 Error(AfterMinusLoc, "bad range in register list");
3189 return MatchOperand_ParseFail;
3190 }
3191 // Parse the lane specifier if present.
3192 VectorLaneTy NextLaneKind;
3193 unsigned NextLaneIndex;
3194 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
3195 MatchOperand_Success)
3196 return MatchOperand_ParseFail;
3197 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
3198 Error(AfterMinusLoc, "mismatched lane index in register list");
3199 return MatchOperand_ParseFail;
3200 }
3201
3202 // Add all the registers in the range to the register list.
3203 Count += EndReg - Reg;
3204 Reg = EndReg;
3205 continue;
3206 }
3207 Parser.Lex(); // Eat the comma.
3208 RegLoc = Parser.getTok().getLoc();
3209 int OldReg = Reg;
3210 Reg = tryParseRegister();
3211 if (Reg == -1) {
3212 Error(RegLoc, "register expected");
3213 return MatchOperand_ParseFail;
3214 }
3215 // vector register lists must be contiguous.
3216 // It's OK to use the enumeration values directly here rather, as the
3217 // VFP register classes have the enum sorted properly.
3218 //
3219 // The list is of D registers, but we also allow Q regs and just interpret
3220 // them as the two D sub-registers.
3221 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3222 if (!Spacing)
3223 Spacing = 1; // Register range implies a single spaced list.
3224 else if (Spacing == 2) {
3225 Error(RegLoc,
3226 "invalid register in double-spaced list (must be 'D' register')");
3227 return MatchOperand_ParseFail;
3228 }
3229 Reg = getDRegFromQReg(Reg);
3230 if (Reg != OldReg + 1) {
3231 Error(RegLoc, "non-contiguous register range");
3232 return MatchOperand_ParseFail;
3233 }
3234 ++Reg;
3235 Count += 2;
3236 // Parse the lane specifier if present.
3237 VectorLaneTy NextLaneKind;
3238 unsigned NextLaneIndex;
3239 SMLoc LaneLoc = Parser.getTok().getLoc();
3240 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
3241 MatchOperand_Success)
3242 return MatchOperand_ParseFail;
3243 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
3244 Error(LaneLoc, "mismatched lane index in register list");
3245 return MatchOperand_ParseFail;
3246 }
3247 continue;
3248 }
3249 // Normal D register.
3250 // Figure out the register spacing (single or double) of the list if
3251 // we don't know it already.
3252 if (!Spacing)
3253 Spacing = 1 + (Reg == OldReg + 2);
3254
3255 // Just check that it's contiguous and keep going.
3256 if (Reg != OldReg + Spacing) {
3257 Error(RegLoc, "non-contiguous register range");
3258 return MatchOperand_ParseFail;
3259 }
3260 ++Count;
3261 // Parse the lane specifier if present.
3262 VectorLaneTy NextLaneKind;
3263 unsigned NextLaneIndex;
3264 SMLoc EndLoc = Parser.getTok().getLoc();
3265 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success)
3266 return MatchOperand_ParseFail;
3267 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
3268 Error(EndLoc, "mismatched lane index in register list");
3269 return MatchOperand_ParseFail;
3270 }
3271 }
3272
3273 if (Parser.getTok().isNot(AsmToken::RCurly)) {
3274 Error(Parser.getTok().getLoc(), "'}' expected");
3275 return MatchOperand_ParseFail;
3276 }
3277 E = Parser.getTok().getEndLoc();
3278 Parser.Lex(); // Eat '}' token.
3279
3280 switch (LaneKind) {
3281 case NoLanes:
3282 // Two-register operands have been converted to the
3283 // composite register classes.
3284 if (Count == 2) {
3285 const MCRegisterClass *RC = (Spacing == 1) ?
3286 &ARMMCRegisterClasses[ARM::DPairRegClassID] :
3287 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID];
3288 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC);
3289 }
3290
3291 Operands.push_back(ARMOperand::CreateVectorList(FirstReg, Count,
3292 (Spacing == 2), S, E));
3293 break;
3294 case AllLanes:
3295 // Two-register operands have been converted to the
3296 // composite register classes.
3297 if (Count == 2) {
3298 const MCRegisterClass *RC = (Spacing == 1) ?
3299 &ARMMCRegisterClasses[ARM::DPairRegClassID] :
3300 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID];
3301 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC);
3302 }
3303 Operands.push_back(ARMOperand::CreateVectorListAllLanes(FirstReg, Count,
3304 (Spacing == 2),
3305 S, E));
3306 break;
3307 case IndexedLane:
3308 Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count,
3309 LaneIndex,
3310 (Spacing == 2),
3311 S, E));
3312 break;
3313 }
3314 return MatchOperand_Success;
3315 }
3316
3317 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options.
3318 ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3319 parseMemBarrierOptOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3320 SMLoc S = Parser.getTok().getLoc();
3321 const AsmToken &Tok = Parser.getTok();
3322 unsigned Opt;
3323
3324 if (Tok.is(AsmToken::Identifier)) {
3325 StringRef OptStr = Tok.getString();
3326
3327 Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower())
3328 .Case("sy", ARM_MB::SY)
3329 .Case("st", ARM_MB::ST)
3330 .Case("sh", ARM_MB::ISH)
3331 .Case("ish", ARM_MB::ISH)
3332 .Case("shst", ARM_MB::ISHST)
3333 .Case("ishst", ARM_MB::ISHST)
3334 .Case("nsh", ARM_MB::NSH)
3335 .Case("un", ARM_MB::NSH)
3336 .Case("nshst", ARM_MB::NSHST)
3337 .Case("unst", ARM_MB::NSHST)
3338 .Case("osh", ARM_MB::OSH)
3339 .Case("oshst", ARM_MB::OSHST)
3340 .Default(~0U);
3341
3342 if (Opt == ~0U)
3343 return MatchOperand_NoMatch;
3344
3345 Parser.Lex(); // Eat identifier token.
3346 } else if (Tok.is(AsmToken::Hash) ||
3347 Tok.is(AsmToken::Dollar) ||
3348 Tok.is(AsmToken::Integer)) {
3349 if (Parser.getTok().isNot(AsmToken::Integer))
3350 Parser.Lex(); // Eat the '#'.
3351 SMLoc Loc = Parser.getTok().getLoc();
3352
3353 const MCExpr *MemBarrierID;
3354 if (getParser().parseExpression(MemBarrierID)) {
3355 Error(Loc, "illegal expression");
3356 return MatchOperand_ParseFail;
3357 }
3358
3359 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID);
3360 if (!CE) {
3361 Error(Loc, "constant expression expected");
3362 return MatchOperand_ParseFail;
3363 }
3364
3365 int Val = CE->getValue();
3366 if (Val & ~0xf) {
3367 Error(Loc, "immediate value out of range");
3368 return MatchOperand_ParseFail;
3369 }
3370
3371 Opt = ARM_MB::RESERVED_0 + Val;
3372 } else
3373 return MatchOperand_ParseFail;
3374
3375 Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S));
3376 return MatchOperand_Success;
3377 }
3378
3379 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction.
3380 ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3381 parseProcIFlagsOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3382 SMLoc S = Parser.getTok().getLoc();
3383 const AsmToken &Tok = Parser.getTok();
3384 if (!Tok.is(AsmToken::Identifier))
3385 return MatchOperand_NoMatch;
3386 StringRef IFlagsStr = Tok.getString();
3387
3388 // An iflags string of "none" is interpreted to mean that none of the AIF
3389 // bits are set. Not a terribly useful instruction, but a valid encoding.
3390 unsigned IFlags = 0;
3391 if (IFlagsStr != "none") {
3392 for (int i = 0, e = IFlagsStr.size(); i != e; ++i) {
3393 unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1))
3394 .Case("a", ARM_PROC::A)
3395 .Case("i", ARM_PROC::I)
3396 .Case("f", ARM_PROC::F)
3397 .Default(~0U);
3398
3399 // If some specific iflag is already set, it means that some letter is
3400 // present more than once, this is not acceptable.
3401 if (Flag == ~0U || (IFlags & Flag))
3402 return MatchOperand_NoMatch;
3403
3404 IFlags |= Flag;
3405 }
3406 }
3407
3408 Parser.Lex(); // Eat identifier token.
3409 Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S));
3410 return MatchOperand_Success;
3411 }
3412
3413 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction.
3414 ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3415 parseMSRMaskOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3416 SMLoc S = Parser.getTok().getLoc();
3417 const AsmToken &Tok = Parser.getTok();
3418 if (!Tok.is(AsmToken::Identifier))
3419 return MatchOperand_NoMatch;
3420 StringRef Mask = Tok.getString();
3421
3422 if (isMClass()) {
3423 // See ARMv6-M 10.1.1
3424 std::string Name = Mask.lower();
3425 unsigned FlagsVal = StringSwitch<unsigned>(Name)
3426 // Note: in the documentation:
3427 // ARM deprecates using MSR APSR without a _<bits> qualifier as an alias
3428 // for MSR APSR_nzcvq.
3429 // but we do make it an alias here. This is so to get the "mask encoding"
3430 // bits correct on MSR APSR writes.
3431 //
3432 // FIXME: Note the 0xc00 "mask encoding" bits version of the registers
3433 // should really only be allowed when writing a special register. Note
3434 // they get dropped in the MRS instruction reading a special register as
3435 // the SYSm field is only 8 bits.
3436 //
3437 // FIXME: the _g and _nzcvqg versions are only allowed if the processor
3438 // includes the DSP extension but that is not checked.
3439 .Case("apsr", 0x800)
3440 .Case("apsr_nzcvq", 0x800)
3441 .Case("apsr_g", 0x400)
3442 .Case("apsr_nzcvqg", 0xc00)
3443 .Case("iapsr", 0x801)
3444 .Case("iapsr_nzcvq", 0x801)
3445 .Case("iapsr_g", 0x401)
3446 .Case("iapsr_nzcvqg", 0xc01)
3447 .Case("eapsr", 0x802)
3448 .Case("eapsr_nzcvq", 0x802)
3449 .Case("eapsr_g", 0x402)
3450 .Case("eapsr_nzcvqg", 0xc02)
3451 .Case("xpsr", 0x803)
3452 .Case("xpsr_nzcvq", 0x803)
3453 .Case("xpsr_g", 0x403)
3454 .Case("xpsr_nzcvqg", 0xc03)
3455 .Case("ipsr", 0x805)
3456 .Case("epsr", 0x806)
3457 .Case("iepsr", 0x807)
3458 .Case("msp", 0x808)
3459 .Case("psp", 0x809)
3460 .Case("primask", 0x810)
3461 .Case("basepri", 0x811)
3462 .Case("basepri_max", 0x812)
3463 .Case("faultmask", 0x813)
3464 .Case("control", 0x814)
3465 .Default(~0U);
3466
3467 if (FlagsVal == ~0U)
3468 return MatchOperand_NoMatch;
3469
3470 if (!hasV7Ops() && FlagsVal >= 0x811 && FlagsVal <= 0x813)
3471 // basepri, basepri_max and faultmask only valid for V7m.
3472 return MatchOperand_NoMatch;
3473
3474 Parser.Lex(); // Eat identifier token.
3475 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S));
3476 return MatchOperand_Success;
3477 }
3478
3479 // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf"
3480 size_t Start = 0, Next = Mask.find('_');
3481 StringRef Flags = "";
3482 std::string SpecReg = Mask.slice(Start, Next).lower();
3483 if (Next != StringRef::npos)
3484 Flags = Mask.slice(Next+1, Mask.size());
3485
3486 // FlagsVal contains the complete mask:
3487 // 3-0: Mask
3488 // 4: Special Reg (cpsr, apsr => 0; spsr => 1)
3489 unsigned FlagsVal = 0;
3490
3491 if (SpecReg == "apsr") {
3492 FlagsVal = StringSwitch<unsigned>(Flags)
3493 .Case("nzcvq", 0x8) // same as CPSR_f
3494 .Case("g", 0x4) // same as CPSR_s
3495 .Case("nzcvqg", 0xc) // same as CPSR_fs
3496 .Default(~0U);
3497
3498 if (FlagsVal == ~0U) {
3499 if (!Flags.empty())
3500 return MatchOperand_NoMatch;
3501 else
3502 FlagsVal = 8; // No flag
3503 }
3504 } else if (SpecReg == "cpsr" || SpecReg == "spsr") {
3505 // cpsr_all is an alias for cpsr_fc, as is plain cpsr.
3506 if (Flags == "all" || Flags == "")
3507 Flags = "fc";
3508 for (int i = 0, e = Flags.size(); i != e; ++i) {
3509 unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1))
3510 .Case("c", 1)
3511 .Case("x", 2)
3512 .Case("s", 4)
3513 .Case("f", 8)
3514 .Default(~0U);
3515
3516 // If some specific flag is already set, it means that some letter is
3517 // present more than once, this is not acceptable.
3518 if (FlagsVal == ~0U || (FlagsVal & Flag))
3519 return MatchOperand_NoMatch;
3520 FlagsVal |= Flag;
3521 }
3522 } else // No match for special register.
3523 return MatchOperand_NoMatch;
3524
3525 // Special register without flags is NOT equivalent to "fc" flags.
3526 // NOTE: This is a divergence from gas' behavior. Uncommenting the following
3527 // two lines would enable gas compatibility at the expense of breaking
3528 // round-tripping.
3529 //
3530 // if (!FlagsVal)
3531 // FlagsVal = 0x9;
3532
3533 // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1)
3534 if (SpecReg == "spsr")
3535 FlagsVal |= 16;
3536
3537 Parser.Lex(); // Eat identifier token.
3538 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S));
3539 return MatchOperand_Success;
3540 }
3541
3542 ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3543 parsePKHImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands, StringRef Op,
3544 int Low, int High) {
3545 const AsmToken &Tok = Parser.getTok();
3546 if (Tok.isNot(AsmToken::Identifier)) {
3547 Error(Parser.getTok().getLoc(), Op + " operand expected.");
3548 return MatchOperand_ParseFail;
3549 }
3550 StringRef ShiftName = Tok.getString();
3551 std::string LowerOp = Op.lower();
3552 std::string UpperOp = Op.upper();
3553 if (ShiftName != LowerOp && ShiftName != UpperOp) {
3554 Error(Parser.getTok().getLoc(), Op + " operand expected.");
3555 return MatchOperand_ParseFail;
3556 }
3557 Parser.Lex(); // Eat shift type token.
3558
3559 // There must be a '#' and a shift amount.
3560 if (Parser.getTok().isNot(AsmToken::Hash) &&
3561 Parser.getTok().isNot(AsmToken::Dollar)) {
3562 Error(Parser.getTok().getLoc(), "'#' expected");
3563 return MatchOperand_ParseFail;
3564 }
3565 Parser.Lex(); // Eat hash token.
3566
3567 const MCExpr *ShiftAmount;
3568 SMLoc Loc = Parser.getTok().getLoc();
3569 SMLoc EndLoc;
3570 if (getParser().parseExpression(ShiftAmount, EndLoc)) {
3571 Error(Loc, "illegal expression");
3572 return MatchOperand_ParseFail;
3573 }
3574 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
3575 if (!CE) {
3576 Error(Loc, "constant expression expected");
3577 return MatchOperand_ParseFail;
3578 }
3579 int Val = CE->getValue();
3580 if (Val < Low || Val > High) {
3581 Error(Loc, "immediate value out of range");
3582 return MatchOperand_ParseFail;
3583 }
3584
3585 Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc));
3586
3587 return MatchOperand_Success;
3588 }
3589
3590 ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3591 parseSetEndImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3592 const AsmToken &Tok = Parser.getTok();
3593 SMLoc S = Tok.getLoc();
3594 if (Tok.isNot(AsmToken::Identifier)) {
3595 Error(S, "'be' or 'le' operand expected");
3596 return MatchOperand_ParseFail;
3597 }
3598 int Val = StringSwitch<int>(Tok.getString())
3599 .Case("be", 1)
3600 .Case("le", 0)
3601 .Default(-1);
3602 Parser.Lex(); // Eat the token.
3603
3604 if (Val == -1) {
3605 Error(S, "'be' or 'le' operand expected");
3606 return MatchOperand_ParseFail;
3607 }
3608 Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::Create(Val,
3609 getContext()),
3610 S, Tok.getEndLoc()));
3611 return MatchOperand_Success;
3612 }
3613
3614 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT
3615 /// instructions. Legal values are:
3616 /// lsl #n 'n' in [0,31]
3617 /// asr #n 'n' in [1,32]
3618 /// n == 32 encoded as n == 0.
3619 ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3620 parseShifterImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3621 const AsmToken &Tok = Parser.getTok();
3622 SMLoc S = Tok.getLoc();
3623 if (Tok.isNot(AsmToken::Identifier)) {
3624 Error(S, "shift operator 'asr' or 'lsl' expected");
3625 return MatchOperand_ParseFail;
3626 }
3627 StringRef ShiftName = Tok.getString();
3628 bool isASR;
3629 if (ShiftName == "lsl" || ShiftName == "LSL")
3630 isASR = false;
3631 else if (ShiftName == "asr" || ShiftName == "ASR")
3632 isASR = true;
3633 else {
3634 Error(S, "shift operator 'asr' or 'lsl' expected");
3635 return MatchOperand_ParseFail;
3636 }
3637 Parser.Lex(); // Eat the operator.
3638
3639 // A '#' and a shift amount.
3640 if (Parser.getTok().isNot(AsmToken::Hash) &&
3641 Parser.getTok().isNot(AsmToken::Dollar)) {
3642 Error(Parser.getTok().getLoc(), "'#' expected");
3643 return MatchOperand_ParseFail;
3644 }
3645 Parser.Lex(); // Eat hash token.
3646 SMLoc ExLoc = Parser.getTok().getLoc();
3647
3648 const MCExpr *ShiftAmount;
3649 SMLoc EndLoc;
3650 if (getParser().parseExpression(ShiftAmount, EndLoc)) {
3651 Error(ExLoc, "malformed shift expression");
3652 return MatchOperand_ParseFail;
3653 }
3654 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
3655 if (!CE) {
3656 Error(ExLoc, "shift amount must be an immediate");
3657 return MatchOperand_ParseFail;
3658 }
3659
3660 int64_t Val = CE->getValue();
3661 if (isASR) {
3662 // Shift amount must be in [1,32]
3663 if (Val < 1 || Val > 32) {
3664 Error(ExLoc, "'asr' shift amount must be in range [1,32]");
3665 return MatchOperand_ParseFail;
3666 }
3667 // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode.
3668 if (isThumb() && Val == 32) {
3669 Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode");
3670 return MatchOperand_ParseFail;
3671 }
3672 if (Val == 32) Val = 0;
3673 } else {
3674 // Shift amount must be in [1,32]
3675 if (Val < 0 || Val > 31) {
3676 Error(ExLoc, "'lsr' shift amount must be in range [0,31]");
3677 return MatchOperand_ParseFail;
3678 }
3679 }
3680
3681 Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc));
3682
3683 return MatchOperand_Success;
3684 }
3685
3686 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family
3687 /// of instructions. Legal values are:
3688 /// ror #n 'n' in {0, 8, 16, 24}
3689 ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3690 parseRotImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3691 const AsmToken &Tok = Parser.getTok();
3692 SMLoc S = Tok.getLoc();
3693 if (Tok.isNot(AsmToken::Identifier))
3694 return MatchOperand_NoMatch;
3695 StringRef ShiftName = Tok.getString();
3696 if (ShiftName != "ror" && ShiftName != "ROR")
3697 return MatchOperand_NoMatch;
3698 Parser.Lex(); // Eat the operator.
3699
3700 // A '#' and a rotate amount.
3701 if (Parser.getTok().isNot(AsmToken::Hash) &&
3702 Parser.getTok().isNot(AsmToken::Dollar)) {
3703 Error(Parser.getTok().getLoc(), "'#' expected");
3704 return MatchOperand_ParseFail;
3705 }
3706 Parser.Lex(); // Eat hash token.
3707 SMLoc ExLoc = Parser.getTok().getLoc();
3708
3709 const MCExpr *ShiftAmount;
3710 SMLoc EndLoc;
3711 if (getParser().parseExpression(ShiftAmount, EndLoc)) {
3712 Error(ExLoc, "malformed rotate expression");
3713 return MatchOperand_ParseFail;
3714 }
3715 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
3716 if (!CE) {
3717 Error(ExLoc, "rotate amount must be an immediate");
3718 return MatchOperand_ParseFail;
3719 }
3720
3721 int64_t Val = CE->getValue();
3722 // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension)
3723 // normally, zero is represented in asm by omitting the rotate operand
3724 // entirely.
3725 if (Val != 8 && Val != 16 && Val != 24 && Val != 0) {
3726 Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24");
3727 return MatchOperand_ParseFail;
3728 }
3729
3730 Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc));
3731
3732 return MatchOperand_Success;
3733 }
3734
3735 ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3736 parseBitfield(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3737 SMLoc S = Parser.getTok().getLoc();
3738 // The bitfield descriptor is really two operands, the LSB and the width.
3739 if (Parser.getTok().isNot(AsmToken::Hash) &&
3740 Parser.getTok().isNot(AsmToken::Dollar)) {
3741 Error(Parser.getTok().getLoc(), "'#' expected");
3742 return MatchOperand_ParseFail;
3743 }
3744 Parser.Lex(); // Eat hash token.
3745
3746 const MCExpr *LSBExpr;
3747 SMLoc E = Parser.getTok().getLoc();
3748 if (getParser().parseExpression(LSBExpr)) {
3749 Error(E, "malformed immediate expression");
3750 return MatchOperand_ParseFail;
3751 }
3752 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr);
3753 if (!CE) {
3754 Error(E, "'lsb' operand must be an immediate");
3755 return MatchOperand_ParseFail;
3756 }
3757
3758 int64_t LSB = CE->getValue();
3759 // The LSB must be in the range [0,31]
3760 if (LSB < 0 || LSB > 31) {
3761 Error(E, "'lsb' operand must be in the range [0,31]");
3762 return MatchOperand_ParseFail;
3763 }
3764 E = Parser.getTok().getLoc();
3765
3766 // Expect another immediate operand.
3767 if (Parser.getTok().isNot(AsmToken::Comma)) {
3768 Error(Parser.getTok().getLoc(), "too few operands");
3769 return MatchOperand_ParseFail;
3770 }
3771 Parser.Lex(); // Eat hash token.
3772 if (Parser.getTok().isNot(AsmToken::Hash) &&
3773 Parser.getTok().isNot(AsmToken::Dollar)) {
3774 Error(Parser.getTok().getLoc(), "'#' expected");
3775 return MatchOperand_ParseFail;
3776 }
3777 Parser.Lex(); // Eat hash token.
3778
3779 const MCExpr *WidthExpr;
3780 SMLoc EndLoc;
3781 if (getParser().parseExpression(WidthExpr, EndLoc)) {
3782 Error(E, "malformed immediate expression");
3783 return MatchOperand_ParseFail;
3784 }
3785 CE = dyn_cast<MCConstantExpr>(WidthExpr);
3786 if (!CE) {
3787 Error(E, "'width' operand must be an immediate");
3788 return MatchOperand_ParseFail;
3789 }
3790
3791 int64_t Width = CE->getValue();
3792 // The LSB must be in the range [1,32-lsb]
3793 if (Width < 1 || Width > 32 - LSB) {
3794 Error(E, "'width' operand must be in the range [1,32-lsb]");
3795 return MatchOperand_ParseFail;
3796 }
3797
3798 Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc));
3799
3800 return MatchOperand_Success;
3801 }
3802
3803 ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3804 parsePostIdxReg(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3805 // Check for a post-index addressing register operand. Specifically:
3806 // postidx_reg := '+' register {, shift}
3807 // | '-' register {, shift}
3808 // | register {, shift}
3809
3810 // This method must return MatchOperand_NoMatch without consuming any tokens
3811 // in the case where there is no match, as other alternatives take other
3812 // parse methods.
3813 AsmToken Tok = Parser.getTok();
3814 SMLoc S = Tok.getLoc();
3815 bool haveEaten = false;
3816 bool isAdd = true;
3817 if (Tok.is(AsmToken::Plus)) {
3818 Parser.Lex(); // Eat the '+' token.
3819 haveEaten = true;
3820 } else if (Tok.is(AsmToken::Minus)) {
3821 Parser.Lex(); // Eat the '-' token.
3822 isAdd = false;
3823 haveEaten = true;
3824 }
3825
3826 SMLoc E = Parser.getTok().getEndLoc();
3827 int Reg = tryParseRegister();
3828 if (Reg == -1) {
3829 if (!haveEaten)
3830 return MatchOperand_NoMatch;
3831 Error(Parser.getTok().getLoc(), "register expected");
3832 return MatchOperand_ParseFail;
3833 }
3834
3835 ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift;
3836 unsigned ShiftImm = 0;
3837 if (Parser.getTok().is(AsmToken::Comma)) {
3838 Parser.Lex(); // Eat the ','.
3839 if (parseMemRegOffsetShift(ShiftTy, ShiftImm))
3840 return MatchOperand_ParseFail;
3841
3842 // FIXME: Only approximates end...may include intervening whitespace.
3843 E = Parser.getTok().getLoc();
3844 }
3845
3846 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy,
3847 ShiftImm, S, E));
3848
3849 return MatchOperand_Success;
3850 }
3851
3852 ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3853 parseAM3Offset(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3854 // Check for a post-index addressing register operand. Specifically:
3855 // am3offset := '+' register
3856 // | '-' register
3857 // | register
3858 // | # imm
3859 // | # + imm
3860 // | # - imm
3861
3862 // This method must return MatchOperand_NoMatch without consuming any tokens
3863 // in the case where there is no match, as other alternatives take other
3864 // parse methods.
3865 AsmToken Tok = Parser.getTok();
3866 SMLoc S = Tok.getLoc();
3867
3868 // Do immediates first, as we always parse those if we have a '#'.
3869 if (Parser.getTok().is(AsmToken::Hash) ||
3870 Parser.getTok().is(AsmToken::Dollar)) {
3871 Parser.Lex(); // Eat the '#'.
3872 // Explicitly look for a '-', as we need to encode negative zero
3873 // differently.
3874 bool isNegative = Parser.getTok().is(AsmToken::Minus);
3875 const MCExpr *Offset;
3876 SMLoc E;
3877 if (getParser().parseExpression(Offset, E))
3878 return MatchOperand_ParseFail;
3879 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
3880 if (!CE) {
3881 Error(S, "constant expression expected");
3882 return MatchOperand_ParseFail;
3883 }
3884 // Negative zero is encoded as the flag value INT32_MIN.
3885 int32_t Val = CE->getValue();
3886 if (isNegative && Val == 0)
3887 Val = INT32_MIN;
3888
3889 Operands.push_back(
3890 ARMOperand::CreateImm(MCConstantExpr::Create(Val, getContext()), S, E));
3891
3892 return MatchOperand_Success;
3893 }
3894
3895
3896 bool haveEaten = false;
3897 bool isAdd = true;
3898 if (Tok.is(AsmToken::Plus)) {
3899 Parser.Lex(); // Eat the '+' token.
3900 haveEaten = true;
3901 } else if (Tok.is(AsmToken::Minus)) {
3902 Parser.Lex(); // Eat the '-' token.
3903 isAdd = false;
3904 haveEaten = true;
3905 }
3906
3907 Tok = Parser.getTok();
3908 int Reg = tryParseRegister();
3909 if (Reg == -1) {
3910 if (!haveEaten)
3911 return MatchOperand_NoMatch;
3912 Error(Tok.getLoc(), "register expected");
3913 return MatchOperand_ParseFail;
3914 }
3915
3916 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift,
3917 0, S, Tok.getEndLoc()));
3918
3919 return MatchOperand_Success;
3920 }
3921
3922 /// cvtT2LdrdPre - Convert parsed operands to MCInst.
3923 /// Needed here because the Asm Gen Matcher can't handle properly tied operands
3924 /// when they refer multiple MIOperands inside a single one.
3925 void ARMAsmParser::
3926 cvtT2LdrdPre(MCInst &Inst,
3927 const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3928 // Rt, Rt2
3929 ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
3930 ((ARMOperand*)Operands[3])->addRegOperands(Inst, 1);
3931 // Create a writeback register dummy placeholder.
3932 Inst.addOperand(MCOperand::CreateReg(0));
3933 // addr
3934 ((ARMOperand*)Operands[4])->addMemImm8s4OffsetOperands(Inst, 2);
3935 // pred
3936 ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
3937 }
3938
3939 /// cvtT2StrdPre - Convert parsed operands to MCInst.
3940 /// Needed here because the Asm Gen Matcher can't handle properly tied operands
3941 /// when they refer multiple MIOperands inside a single one.
3942 void ARMAsmParser::
3943 cvtT2StrdPre(MCInst &Inst,
3944 const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3945 // Create a writeback register dummy placeholder.
3946 Inst.addOperand(MCOperand::CreateReg(0));
3947 // Rt, Rt2
3948 ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
3949 ((ARMOperand*)Operands[3])->addRegOperands(Inst, 1);
3950 // addr
3951 ((ARMOperand*)Operands[4])->addMemImm8s4OffsetOperands(Inst, 2);
3952 // pred
3953 ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
3954 }
3955
3956 /// cvtLdWriteBackRegT2AddrModeImm8 - Convert parsed operands to MCInst.
3957 /// Needed here because the Asm Gen Matcher can't handle properly tied operands
3958 /// when they refer multiple MIOperands inside a single one.
3959 void ARMAsmParser::
3960 cvtLdWriteBackRegT2AddrModeImm8(MCInst &Inst,
3961 const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3962 ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
3963
3964 // Create a writeback register dummy placeholder.
3965 Inst.addOperand(MCOperand::CreateImm(0));
3966
3967 ((ARMOperand*)Operands[3])->addMemImm8OffsetOperands(Inst, 2);
3968 ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
3969 }
3970
3971 /// cvtStWriteBackRegT2AddrModeImm8 - Convert parsed operands to MCInst.
3972 /// Needed here because the Asm Gen Matcher can't handle properly tied operands
3973 /// when they refer multiple MIOperands inside a single one.
3974 void ARMAsmParser::
3975 cvtStWriteBackRegT2AddrModeImm8(MCInst &Inst,
3976 const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3977 // Create a writeback register dummy placeholder.
3978 Inst.addOperand(MCOperand::CreateImm(0));
3979 ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
3980 ((ARMOperand*)Operands[3])->addMemImm8OffsetOperands(Inst, 2);
3981 ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
3982 }
3983
3984 /// cvtLdWriteBackRegAddrMode2 - Convert parsed operands to MCInst.
3985 /// Needed here because the Asm Gen Matcher can't handle properly tied operands
3986 /// when they refer multiple MIOperands inside a single one.
3987 void ARMAsmParser::
3988 cvtLdWriteBackRegAddrMode2(MCInst &Inst,
3989 const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3990 ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
3991
3992 // Create a writeback register dummy placeholder.
3993 Inst.addOperand(MCOperand::CreateImm(0));
3994
3995 ((ARMOperand*)Operands[3])->addAddrMode2Operands(Inst, 3);
3996 ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
3997 }
3998
3999 /// cvtLdWriteBackRegAddrModeImm12 - Convert parsed operands to MCInst.
4000 /// Needed here because the Asm Gen Matcher can't handle properly tied operands
4001 /// when they refer multiple MIOperands inside a single one.
4002 void ARMAsmParser::
4003 cvtLdWriteBackRegAddrModeImm12(MCInst &Inst,
4004 const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4005 ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
4006
4007 // Create a writeback register dummy placeholder.
4008 Inst.addOperand(MCOperand::CreateImm(0));
4009
4010 ((ARMOperand*)Operands[3])->addMemImm12OffsetOperands(Inst, 2);
4011 ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4012 }
4013
4014
4015 /// cvtStWriteBackRegAddrModeImm12 - Convert parsed operands to MCInst.
4016 /// Needed here because the Asm Gen Matcher can't handle properly tied operands
4017 /// when they refer multiple MIOperands inside a single one.
4018 void ARMAsmParser::
4019 cvtStWriteBackRegAddrModeImm12(MCInst &Inst,
4020 const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4021 // Create a writeback register dummy placeholder.
4022 Inst.addOperand(MCOperand::CreateImm(0));
4023 ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
4024 ((ARMOperand*)Operands[3])->addMemImm12OffsetOperands(Inst, 2);
4025 ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4026 }
4027
4028 /// cvtStWriteBackRegAddrMode2 - Convert parsed operands to MCInst.
4029 /// Needed here because the Asm Gen Matcher can't handle properly tied operands
4030 /// when they refer multiple MIOperands inside a single one.
4031 void ARMAsmParser::
4032 cvtStWriteBackRegAddrMode2(MCInst &Inst,
4033 const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4034 // Create a writeback register dummy placeholder.
4035 Inst.addOperand(MCOperand::CreateImm(0));
4036 ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
4037 ((ARMOperand*)Operands[3])->addAddrMode2Operands(Inst, 3);
4038 ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4039 }
4040
4041 /// cvtStWriteBackRegAddrMode3 - Convert parsed operands to MCInst.
4042 /// Needed here because the Asm Gen Matcher can't handle properly tied operands
4043 /// when they refer multiple MIOperands inside a single one.
4044 void ARMAsmParser::
4045 cvtStWriteBackRegAddrMode3(MCInst &Inst,
4046 const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4047 // Create a writeback register dummy placeholder.
4048 Inst.addOperand(MCOperand::CreateImm(0));
4049 ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
4050 ((ARMOperand*)Operands[3])->addAddrMode3Operands(Inst, 3);
4051 ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4052 }
4053
4054 /// cvtLdExtTWriteBackImm - Convert parsed operands to MCInst.
4055 /// Needed here because the Asm Gen Matcher can't handle properly tied operands
4056 /// when they refer multiple MIOperands inside a single one.
4057 void ARMAsmParser::
4058 cvtLdExtTWriteBackImm(MCInst &Inst,
4059 const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4060 // Rt
4061 ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
4062 // Create a writeback register dummy placeholder.
4063 Inst.addOperand(MCOperand::CreateImm(0));
4064 // addr
4065 ((ARMOperand*)Operands[3])->addMemNoOffsetOperands(Inst, 1);
4066 // offset
4067 ((ARMOperand*)Operands[4])->addPostIdxImm8Operands(Inst, 1);
4068 // pred
4069 ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4070 }
4071
4072 /// cvtLdExtTWriteBackReg - Convert parsed operands to MCInst.
4073 /// Needed here because the Asm Gen Matcher can't handle properly tied operands
4074 /// when they refer multiple MIOperands inside a single one.
4075 void ARMAsmParser::
4076 cvtLdExtTWriteBackReg(MCInst &Inst,
4077 const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4078 // Rt
4079 ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
4080 // Create a writeback register dummy placeholder.
4081 Inst.addOperand(MCOperand::CreateImm(0));
4082 // addr
4083 ((ARMOperand*)Operands[3])->addMemNoOffsetOperands(Inst, 1);
4084 // offset
4085 ((ARMOperand*)Operands[4])->addPostIdxRegOperands(Inst, 2);
4086 // pred
4087 ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4088 }
4089
4090 /// cvtStExtTWriteBackImm - Convert parsed operands to MCInst.
4091 /// Needed here because the Asm Gen Matcher can't handle properly tied operands
4092 /// when they refer multiple MIOperands inside a single one.
4093 void ARMAsmParser::
4094 cvtStExtTWriteBackImm(MCInst &Inst,
4095 const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4096 // Create a writeback register dummy placeholder.
4097 Inst.addOperand(MCOperand::CreateImm(0));
4098 // Rt
4099 ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
4100 // addr
4101 ((ARMOperand*)Operands[3])->addMemNoOffsetOperands(Inst, 1);
4102 // offset
4103 ((ARMOperand*)Operands[4])->addPostIdxImm8Operands(Inst, 1);
4104 // pred
4105 ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4106 }
4107
4108 /// cvtStExtTWriteBackReg - Convert parsed operands to MCInst.
4109 /// Needed here because the Asm Gen Matcher can't handle properly tied operands
4110 /// when they refer multiple MIOperands inside a single one.
4111 void ARMAsmParser::
4112 cvtStExtTWriteBackReg(MCInst &Inst,
4113 const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4114 // Create a writeback register dummy placeholder.
4115 Inst.addOperand(MCOperand::CreateImm(0));
4116 // Rt
4117 ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
4118 // addr
4119 ((ARMOperand*)Operands[3])->addMemNoOffsetOperands(Inst, 1);
4120 // offset
4121 ((ARMOperand*)Operands[4])->addPostIdxRegOperands(Inst, 2);
4122 // pred
4123 ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4124 }
4125
4126 /// cvtLdrdPre - Convert parsed operands to MCInst.
4127 /// Needed here because the Asm Gen Matcher can't handle properly tied operands
4128 /// when they refer multiple MIOperands inside a single one.
4129 void ARMAsmParser::
4130 cvtLdrdPre(MCInst &Inst,
4131 const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4132 // Rt, Rt2
4133 ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
4134 ((ARMOperand*)Operands[3])->addRegOperands(Inst, 1);
4135 // Create a writeback register dummy placeholder.
4136 Inst.addOperand(MCOperand::CreateImm(0));
4137 // addr
4138 ((ARMOperand*)Operands[4])->addAddrMode3Operands(Inst, 3);
4139 // pred
4140 ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4141 }
4142
4143 /// cvtStrdPre - Convert parsed operands to MCInst.
4144 /// Needed here because the Asm Gen Matcher can't handle properly tied operands
4145 /// when they refer multiple MIOperands inside a single one.
4146 void ARMAsmParser::
4147 cvtStrdPre(MCInst &Inst,
4148 const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4149 // Create a writeback register dummy placeholder.
4150 Inst.addOperand(MCOperand::CreateImm(0));
4151 // Rt, Rt2
4152 ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
4153 ((ARMOperand*)Operands[3])->addRegOperands(Inst, 1);
4154 // addr
4155 ((ARMOperand*)Operands[4])->addAddrMode3Operands(Inst, 3);
4156 // pred
4157 ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4158 }
4159
4160 /// cvtLdWriteBackRegAddrMode3 - Convert parsed operands to MCInst.
4161 /// Needed here because the Asm Gen Matcher can't handle properly tied operands
4162 /// when they refer multiple MIOperands inside a single one.
4163 void ARMAsmParser::
4164 cvtLdWriteBackRegAddrMode3(MCInst &Inst,
4165 const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4166 ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
4167 // Create a writeback register dummy placeholder.
4168 Inst.addOperand(MCOperand::CreateImm(0));
4169 ((ARMOperand*)Operands[3])->addAddrMode3Operands(Inst, 3);
4170 ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4171 }
4172
4173 /// cvtThumbMultiply - Convert parsed operands to MCInst.
4174 /// Needed here because the Asm Gen Matcher can't handle properly tied operands
4175 /// when they refer multiple MIOperands inside a single one.
4176 void ARMAsmParser::
4177 cvtThumbMultiply(MCInst &Inst,
4178 const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4179 ((ARMOperand*)Operands[3])->addRegOperands(Inst, 1);
4180 ((ARMOperand*)Operands[1])->addCCOutOperands(Inst, 1);
4181 // If we have a three-operand form, make sure to set Rn to be the operand
4182 // that isn't the same as Rd.
4183 unsigned RegOp = 4;
4184 if (Operands.size() == 6 &&
4185 ((ARMOperand*)Operands[4])->getReg() ==
4186 ((ARMOperand*)Operands[3])->getReg())
4187 RegOp = 5;
4188 ((ARMOperand*)Operands[RegOp])->addRegOperands(Inst, 1);
4189 Inst.addOperand(Inst.getOperand(0));
4190 ((ARMOperand*)Operands[2])->addCondCodeOperands(Inst, 2);
4191 }
4192
4193 void ARMAsmParser::
4194 cvtVLDwbFixed(MCInst &Inst,
4195 const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4196 // Vd
4197 ((ARMOperand*)Operands[3])->addVecListOperands(Inst, 1);
4198 // Create a writeback register dummy placeholder.
4199 Inst.addOperand(MCOperand::CreateImm(0));
4200 // Vn
4201 ((ARMOperand*)Operands[4])->addAlignedMemoryOperands(Inst, 2);
4202 // pred
4203 ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4204 }
4205
4206 void ARMAsmParser::
4207 cvtVLDwbRegister(MCInst &Inst,
4208 const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4209 // Vd
4210 ((ARMOperand*)Operands[3])->addVecListOperands(Inst, 1);
4211 // Create a writeback register dummy placeholder.
4212 Inst.addOperand(MCOperand::CreateImm(0));
4213 // Vn
4214 ((ARMOperand*)Operands[4])->addAlignedMemoryOperands(Inst, 2);
4215 // Vm
4216 ((ARMOperand*)Operands[5])->addRegOperands(Inst, 1);
4217 // pred
4218 ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4219 }
4220
4221 void ARMAsmParser::
4222 cvtVSTwbFixed(MCInst &Inst,
4223 const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4224 // Create a writeback register dummy placeholder.
4225 Inst.addOperand(MCOperand::CreateImm(0));
4226 // Vn
4227 ((ARMOperand*)Operands[4])->addAlignedMemoryOperands(Inst, 2);
4228 // Vt
4229 ((ARMOperand*)Operands[3])->addVecListOperands(Inst, 1);
4230 // pred
4231 ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4232 }
4233
4234 void ARMAsmParser::
4235 cvtVSTwbRegister(MCInst &Inst,
4236 const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4237 // Create a writeback register dummy placeholder.
4238 Inst.addOperand(MCOperand::CreateImm(0));
4239 // Vn
4240 ((ARMOperand*)Operands[4])->addAlignedMemoryOperands(Inst, 2);
4241 // Vm
4242 ((ARMOperand*)Operands[5])->addRegOperands(Inst, 1);
4243 // Vt
4244 ((ARMOperand*)Operands[3])->addVecListOperands(Inst, 1);
4245 // pred
4246 ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4247 }
4248
4249 /// Parse an ARM memory expression, return false if successful else return true
4250 /// or an error. The first token must be a '[' when called.
4251 bool ARMAsmParser::
4252 parseMemory(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4253 SMLoc S, E;
4254 assert(Parser.getTok().is(AsmToken::LBrac) &&
4255 "Token is not a Left Bracket");
4256 S = Parser.getTok().getLoc();
4257 Parser.Lex(); // Eat left bracket token.
4258
4259 const AsmToken &BaseRegTok = Parser.getTok();
4260 int BaseRegNum = tryParseRegister();
4261 if (BaseRegNum == -1)
4262 return Error(BaseRegTok.getLoc(), "register expected");
4263
4264 // The next token must either be a comma, a colon or a closing bracket.
4265 const AsmToken &Tok = Parser.getTok();
4266 if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) &&
4267 !Tok.is(AsmToken::RBrac))
4268 return Error(Tok.getLoc(), "malformed memory operand");
4269
4270 if (Tok.is(AsmToken::RBrac)) {
4271 E = Tok.getEndLoc();
4272 Parser.Lex(); // Eat right bracket token.
4273
4274 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, 0, 0, ARM_AM::no_shift,
4275 0, 0, false, S, E));
4276
4277 // If there's a pre-indexing writeback marker, '!', just add it as a token
4278 // operand. It's rather odd, but syntactically valid.
4279 if (Parser.getTok().is(AsmToken::Exclaim)) {
4280 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
4281 Parser.Lex(); // Eat the '!'.
4282 }
4283
4284 return false;
4285 }
4286
4287 assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) &&
4288 "Lost colon or comma in memory operand?!");
4289 if (Tok.is(AsmToken::Comma)) {
4290 Parser.Lex(); // Eat the comma.
4291 }
4292
4293 // If we have a ':', it's an alignment specifier.
4294 if (Parser.getTok().is(AsmToken::Colon)) {
4295 Parser.Lex(); // Eat the ':'.
4296 E = Parser.getTok().getLoc();
4297
4298 const MCExpr *Expr;
4299 if (getParser().parseExpression(Expr))
4300 return true;
4301
4302 // The expression has to be a constant. Memory references with relocations
4303 // don't come through here, as they use the <label> forms of the relevant
4304 // instructions.
4305 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
4306 if (!CE)
4307 return Error (E, "constant expression expected");
4308
4309 unsigned Align = 0;
4310 switch (CE->getValue()) {
4311 default:
4312 return Error(E,
4313 "alignment specifier must be 16, 32, 64, 128, or 256 bits");
4314 case 16: Align = 2; break;
4315 case 32: Align = 4; break;
4316 case 64: Align = 8; break;
4317 case 128: Align = 16; break;
4318 case 256: Align = 32; break;
4319 }
4320
4321 // Now we should have the closing ']'
4322 if (Parser.getTok().isNot(AsmToken::RBrac))
4323 return Error(Parser.getTok().getLoc(), "']' expected");
4324 E = Parser.getTok().getEndLoc();
4325 Parser.Lex(); // Eat right bracket token.
4326
4327 // Don't worry about range checking the value here. That's handled by
4328 // the is*() predicates.
4329 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, 0, 0,
4330 ARM_AM::no_shift, 0, Align,
4331 false, S, E));
4332
4333 // If there's a pre-indexing writeback marker, '!', just add it as a token
4334 // operand.
4335 if (Parser.getTok().is(AsmToken::Exclaim)) {
4336 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
4337 Parser.Lex(); // Eat the '!'.
4338 }
4339
4340 return false;
4341 }
4342
4343 // If we have a '#', it's an immediate offset, else assume it's a register
4344 // offset. Be friendly and also accept a plain integer (without a leading
4345 // hash) for gas compatibility.
4346 if (Parser.getTok().is(AsmToken::Hash) ||
4347 Parser.getTok().is(AsmToken::Dollar) ||
4348 Parser.getTok().is(AsmToken::Integer)) {
4349 if (Parser.getTok().isNot(AsmToken::Integer))
4350 Parser.Lex(); // Eat the '#'.
4351 E = Parser.getTok().getLoc();
4352
4353 bool isNegative = getParser().getTok().is(AsmToken::Minus);
4354 const MCExpr *Offset;
4355 if (getParser().parseExpression(Offset))
4356 return true;
4357
4358 // The expression has to be a constant. Memory references with relocations
4359 // don't come through here, as they use the <label> forms of the relevant
4360 // instructions.
4361 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
4362 if (!CE)
4363 return Error (E, "constant expression expected");
4364
4365 // If the constant was #-0, represent it as INT32_MIN.
4366 int32_t Val = CE->getValue();
4367 if (isNegative && Val == 0)
4368 CE = MCConstantExpr::Create(INT32_MIN, getContext());
4369
4370 // Now we should have the closing ']'
4371 if (Parser.getTok().isNot(AsmToken::RBrac))
4372 return Error(Parser.getTok().getLoc(), "']' expected");
4373 E = Parser.getTok().getEndLoc();
4374 Parser.Lex(); // Eat right bracket token.
4375
4376 // Don't worry about range checking the value here. That's handled by
4377 // the is*() predicates.
4378 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0,
4379 ARM_AM::no_shift, 0, 0,
4380 false, S, E));
4381
4382 // If there's a pre-indexing writeback marker, '!', just add it as a token
4383 // operand.
4384 if (Parser.getTok().is(AsmToken::Exclaim)) {
4385 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
4386 Parser.Lex(); // Eat the '!'.
4387 }
4388
4389 return false;
4390 }
4391
4392 // The register offset is optionally preceded by a '+' or '-'
4393 bool isNegative = false;
4394 if (Parser.getTok().is(AsmToken::Minus)) {
4395 isNegative = true;
4396 Parser.Lex(); // Eat the '-'.
4397 } else if (Parser.getTok().is(AsmToken::Plus)) {
4398 // Nothing to do.
4399 Parser.Lex(); // Eat the '+'.
4400 }
4401
4402 E = Parser.getTok().getLoc();
4403 int OffsetRegNum = tryParseRegister();
4404 if (OffsetRegNum == -1)
4405 return Error(E, "register expected");
4406
4407 // If there's a shift operator, handle it.
4408 ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift;
4409 unsigned ShiftImm = 0;
4410 if (Parser.getTok().is(AsmToken::Comma)) {
4411 Parser.Lex(); // Eat the ','.
4412 if (parseMemRegOffsetShift(ShiftType, ShiftImm))
4413 return true;
4414 }
4415
4416 // Now we should have the closing ']'
4417 if (Parser.getTok().isNot(AsmToken::RBrac))
4418 return Error(Parser.getTok().getLoc(), "']' expected");
4419 E = Parser.getTok().getEndLoc();
4420 Parser.Lex(); // Eat right bracket token.
4421
4422 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, 0, OffsetRegNum,
4423 ShiftType, ShiftImm, 0, isNegative,
4424 S, E));
4425
4426 // If there's a pre-indexing writeback marker, '!', just add it as a token
4427 // operand.
4428 if (Parser.getTok().is(AsmToken::Exclaim)) {
4429 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
4430 Parser.Lex(); // Eat the '!'.
4431 }
4432
4433 return false;
4434 }
4435
4436 /// parseMemRegOffsetShift - one of these two:
4437 /// ( lsl | lsr | asr | ror ) , # shift_amount
4438 /// rrx
4439 /// return true if it parses a shift otherwise it returns false.
4440 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St,
4441 unsigned &Amount) {
4442 SMLoc Loc = Parser.getTok().getLoc();
4443 const AsmToken &Tok = Parser.getTok();
4444 if (Tok.isNot(AsmToken::Identifier))
4445 return true;
4446 StringRef ShiftName = Tok.getString();
4447 if (ShiftName == "lsl" || ShiftName == "LSL" ||
4448 ShiftName == "asl" || ShiftName == "ASL")
4449 St = ARM_AM::lsl;
4450 else if (ShiftName == "lsr" || ShiftName == "LSR")
4451 St = ARM_AM::lsr;
4452 else if (ShiftName == "asr" || ShiftName == "ASR")
4453 St = ARM_AM::asr;
4454 else if (ShiftName == "ror" || ShiftName == "ROR")
4455 St = ARM_AM::ror;
4456 else if (ShiftName == "rrx" || ShiftName == "RRX")
4457 St = ARM_AM::rrx;
4458 else
4459 return Error(Loc, "illegal shift operator");
4460 Parser.Lex(); // Eat shift type token.
4461
4462 // rrx stands alone.
4463 Amount = 0;
4464 if (St != ARM_AM::rrx) {
4465 Loc = Parser.getTok().getLoc();
4466 // A '#' and a shift amount.
4467 const AsmToken &HashTok = Parser.getTok();
4468 if (HashTok.isNot(AsmToken::Hash) &&
4469 HashTok.isNot(AsmToken::Dollar))
4470 return Error(HashTok.getLoc(), "'#' expected");
4471 Parser.Lex(); // Eat hash token.
4472
4473 const MCExpr *Expr;
4474 if (getParser().parseExpression(Expr))
4475 return true;
4476 // Range check the immediate.
4477 // lsl, ror: 0 <= imm <= 31
4478 // lsr, asr: 0 <= imm <= 32
4479 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
4480 if (!CE)
4481 return Error(Loc, "shift amount must be an immediate");
4482 int64_t Imm = CE->getValue();
4483 if (Imm < 0 ||
4484 ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) ||
4485 ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32))
4486 return Error(Loc, "immediate shift value out of range");
4487 // If <ShiftTy> #0, turn it into a no_shift.
4488 if (Imm == 0)
4489 St = ARM_AM::lsl;
4490 // For consistency, treat lsr #32 and asr #32 as having immediate value 0.
4491 if (Imm == 32)
4492 Imm = 0;
4493 Amount = Imm;
4494 }
4495
4496 return false;
4497 }
4498
4499 /// parseFPImm - A floating point immediate expression operand.
4500 ARMAsmParser::OperandMatchResultTy ARMAsmParser::
4501 parseFPImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4502 // Anything that can accept a floating point constant as an operand
4503 // needs to go through here, as the regular parseExpression is
4504 // integer only.
4505 //
4506 // This routine still creates a generic Immediate operand, containing
4507 // a bitcast of the 64-bit floating point value. The various operands
4508 // that accept floats can check whether the value is valid for them
4509 // via the standard is*() predicates.
4510
4511 SMLoc S = Parser.getTok().getLoc();
4512
4513 if (Parser.getTok().isNot(AsmToken::Hash) &&
4514 Parser.getTok().isNot(AsmToken::Dollar))
4515 return MatchOperand_NoMatch;
4516
4517 // Disambiguate the VMOV forms that can accept an FP immediate.
4518 // vmov.f32 <sreg>, #imm
4519 // vmov.f64 <dreg>, #imm
4520 // vmov.f32 <dreg>, #imm @ vector f32x2
4521 // vmov.f32 <qreg>, #imm @ vector f32x4
4522 //
4523 // There are also the NEON VMOV instructions which expect an
4524 // integer constant. Make sure we don't try to parse an FPImm
4525 // for these:
4526 // vmov.i{8|16|32|64} <dreg|qreg>, #imm
4527 ARMOperand *TyOp = static_cast<ARMOperand*>(Operands[2]);
4528 if (!TyOp->isToken() || (TyOp->getToken() != ".f32" &&
4529 TyOp->getToken() != ".f64"))
4530 return MatchOperand_NoMatch;
4531
4532 Parser.Lex(); // Eat the '#'.
4533
4534 // Handle negation, as that still comes through as a separate token.
4535 bool isNegative = false;
4536 if (Parser.getTok().is(AsmToken::Minus)) {
4537 isNegative = true;
4538 Parser.Lex();
4539 }
4540 const AsmToken &Tok = Parser.getTok();
4541 SMLoc Loc = Tok.getLoc();
4542 if (Tok.is(AsmToken::Real)) {
4543 APFloat RealVal(APFloat::IEEEsingle, Tok.getString());
4544 uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue();
4545 // If we had a '-' in front, toggle the sign bit.
4546 IntVal ^= (uint64_t)isNegative << 31;
4547 Parser.Lex(); // Eat the token.
4548 Operands.push_back(ARMOperand::CreateImm(
4549 MCConstantExpr::Create(IntVal, getContext()),
4550 S, Parser.getTok().getLoc()));
4551 return MatchOperand_Success;
4552 }
4553 // Also handle plain integers. Instructions which allow floating point
4554 // immediates also allow a raw encoded 8-bit value.
4555 if (Tok.is(AsmToken::Integer)) {
4556 int64_t Val = Tok.getIntVal();
4557 Parser.Lex(); // Eat the token.
4558 if (Val > 255 || Val < 0) {
4559 Error(Loc, "encoded floating point value out of range");
4560 return MatchOperand_ParseFail;
4561 }
4562 double RealVal = ARM_AM::getFPImmFloat(Val);
4563 Val = APFloat(APFloat::IEEEdouble, RealVal).bitcastToAPInt().getZExtValue();
4564 Operands.push_back(ARMOperand::CreateImm(
4565 MCConstantExpr::Create(Val, getContext()), S,
4566 Parser.getTok().getLoc()));
4567 return MatchOperand_Success;
4568 }
4569
4570 Error(Loc, "invalid floating point immediate");
4571 return MatchOperand_ParseFail;
4572 }
4573
4574 /// Parse a arm instruction operand. For now this parses the operand regardless
4575 /// of the mnemonic.
4576 bool ARMAsmParser::parseOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands,
4577 StringRef Mnemonic) {
4578 SMLoc S, E;
4579
4580 // Check if the current operand has a custom associated parser, if so, try to
4581 // custom parse the operand, or fallback to the general approach.
4582 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
4583 if (ResTy == MatchOperand_Success)
4584 return false;
4585 // If there wasn't a custom match, try the generic matcher below. Otherwise,
4586 // there was a match, but an error occurred, in which case, just return that
4587 // the operand parsing failed.
4588 if (ResTy == MatchOperand_ParseFail)
4589 return true;
4590
4591 switch (getLexer().getKind()) {
4592 default:
4593 Error(Parser.getTok().getLoc(), "unexpected token in operand");
4594 return true;
4595 case AsmToken::Identifier: {
4596 if (!tryParseRegisterWithWriteBack(Operands))
4597 return false;
4598 int Res = tryParseShiftRegister(Operands);
4599 if (Res == 0) // success
4600 return false;
4601 else if (Res == -1) // irrecoverable error
4602 return true;
4603 // If this is VMRS, check for the apsr_nzcv operand.
4604 if (Mnemonic == "vmrs" &&
4605 Parser.getTok().getString().equals_lower("apsr_nzcv")) {
4606 S = Parser.getTok().getLoc();
4607 Parser.Lex();
4608 Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S));
4609 return false;
4610 }
4611
4612 // Fall though for the Identifier case that is not a register or a
4613 // special name.
4614 }
4615 case AsmToken::LParen: // parenthesized expressions like (_strcmp-4)
4616 case AsmToken::Integer: // things like 1f and 2b as a branch targets
4617 case AsmToken::String: // quoted label names.
4618 case AsmToken::Dot: { // . as a branch target
4619 // This was not a register so parse other operands that start with an
4620 // identifier (like labels) as expressions and create them as immediates.
4621 const MCExpr *IdVal;
4622 S = Parser.getTok().getLoc();
4623 if (getParser().parseExpression(IdVal))
4624 return true;
4625 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
4626 Operands.push_back(ARMOperand::CreateImm(IdVal, S, E));
4627 return false;
4628 }
4629 case AsmToken::LBrac:
4630 return parseMemory(Operands);
4631 case AsmToken::LCurly:
4632 return parseRegisterList(Operands);
4633 case AsmToken::Dollar:
4634 case AsmToken::Hash: {
4635 // #42 -> immediate.
4636 S = Parser.getTok().getLoc();
4637 Parser.Lex();
4638
4639 if (Parser.getTok().isNot(AsmToken::Colon)) {
4640 bool isNegative = Parser.getTok().is(AsmToken::Minus);
4641 const MCExpr *ImmVal;
4642 if (getParser().parseExpression(ImmVal))
4643 return true;
4644 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal);
4645 if (CE) {
4646 int32_t Val = CE->getValue();
4647 if (isNegative && Val == 0)
4648 ImmVal = MCConstantExpr::Create(INT32_MIN, getContext());
4649 }
4650 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
4651 Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E));
4652
4653 // There can be a trailing '!' on operands that we want as a separate
4654 // '!' Token operand. Handle that here. For example, the compatibilty
4655 // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'.
4656 if (Parser.getTok().is(AsmToken::Exclaim)) {
4657 Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(),
4658 Parser.getTok().getLoc()));
4659 Parser.Lex(); // Eat exclaim token
4660 }
4661 return false;
4662 }
4663 // w/ a ':' after the '#', it's just like a plain ':'.
4664 // FALLTHROUGH
4665 }
4666 case AsmToken::Colon: {
4667 // ":lower16:" and ":upper16:" expression prefixes
4668 // FIXME: Check it's an expression prefix,
4669 // e.g. (FOO - :lower16:BAR) isn't legal.
4670 ARMMCExpr::VariantKind RefKind;
4671 if (parsePrefix(RefKind))
4672 return true;
4673
4674 const MCExpr *SubExprVal;
4675 if (getParser().parseExpression(SubExprVal))
4676 return true;
4677
4678 const MCExpr *ExprVal = ARMMCExpr::Create(RefKind, SubExprVal,
4679 getContext());
4680 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
4681 Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E));
4682 return false;
4683 }
4684 }
4685 }
4686
4687 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e.
4688 // :lower16: and :upper16:.
4689 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) {
4690 RefKind = ARMMCExpr::VK_ARM_None;
4691
4692 // :lower16: and :upper16: modifiers
4693 assert(getLexer().is(AsmToken::Colon) && "expected a :");
4694 Parser.Lex(); // Eat ':'
4695
4696 if (getLexer().isNot(AsmToken::Identifier)) {
4697 Error(Parser.getTok().getLoc(), "expected prefix identifier in operand");
4698 return true;
4699 }
4700
4701 StringRef IDVal = Parser.getTok().getIdentifier();
4702 if (IDVal == "lower16") {
4703 RefKind = ARMMCExpr::VK_ARM_LO16;
4704 } else if (IDVal == "upper16") {
4705 RefKind = ARMMCExpr::VK_ARM_HI16;
4706 } else {
4707 Error(Parser.getTok().getLoc(), "unexpected prefix in operand");
4708 return true;
4709 }
4710 Parser.Lex();
4711
4712 if (getLexer().isNot(AsmToken::Colon)) {
4713 Error(Parser.getTok().getLoc(), "unexpected token after prefix");
4714 return true;
4715 }
4716 Parser.Lex(); // Eat the last ':'
4717 return false;
4718 }
4719
4720 /// \brief Given a mnemonic, split out possible predication code and carry
4721 /// setting letters to form a canonical mnemonic and flags.
4722 //
4723 // FIXME: Would be nice to autogen this.
4724 // FIXME: This is a bit of a maze of special cases.
4725 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic,
4726 unsigned &PredicationCode,
4727 bool &CarrySetting,
4728 unsigned &ProcessorIMod,
4729 StringRef &ITMask) {
4730 PredicationCode = ARMCC::AL;
4731 CarrySetting = false;
4732 ProcessorIMod = 0;
4733
4734 // Ignore some mnemonics we know aren't predicated forms.
4735 //
4736 // FIXME: Would be nice to autogen this.
4737 if ((Mnemonic == "movs" && isThumb()) ||
4738 Mnemonic == "teq" || Mnemonic == "vceq" || Mnemonic == "svc" ||
4739 Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" ||
4740 Mnemonic == "vmls" || Mnemonic == "vnmls" || Mnemonic == "vacge" ||
4741 Mnemonic == "vcge" || Mnemonic == "vclt" || Mnemonic == "vacgt" ||
4742 Mnemonic == "vcgt" || Mnemonic == "vcle" || Mnemonic == "smlal" ||
4743 Mnemonic == "umaal" || Mnemonic == "umlal" || Mnemonic == "vabal" ||
4744 Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" ||
4745 Mnemonic == "fmuls")
4746 return Mnemonic;
4747
4748 // First, split out any predication code. Ignore mnemonics we know aren't
4749 // predicated but do have a carry-set and so weren't caught above.
4750 if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" &&
4751 Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" &&
4752 Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" &&
4753 Mnemonic != "sbcs" && Mnemonic != "rscs") {
4754 unsigned CC = StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2))
4755 .Case("eq", ARMCC::EQ)
4756 .Case("ne", ARMCC::NE)
4757 .Case("hs", ARMCC::HS)
4758 .Case("cs", ARMCC::HS)
4759 .Case("lo", ARMCC::LO)
4760 .Case("cc", ARMCC::LO)
4761 .Case("mi", ARMCC::MI)
4762 .Case("pl", ARMCC::PL)
4763 .Case("vs", ARMCC::VS)
4764 .Case("vc", ARMCC::VC)
4765 .Case("hi", ARMCC::HI)
4766 .Case("ls", ARMCC::LS)
4767 .Case("ge", ARMCC::GE)
4768 .Case("lt", ARMCC::LT)
4769 .Case("gt", ARMCC::GT)
4770 .Case("le", ARMCC::LE)
4771 .Case("al", ARMCC::AL)
4772 .Default(~0U);
4773 if (CC != ~0U) {
4774 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2);
4775 PredicationCode = CC;
4776 }
4777 }
4778
4779 // Next, determine if we have a carry setting bit. We explicitly ignore all
4780 // the instructions we know end in 's'.
4781 if (Mnemonic.endswith("s") &&
4782 !(Mnemonic == "cps" || Mnemonic == "mls" ||
4783 Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" ||
4784 Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" ||
4785 Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" ||
4786 Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" ||
4787 Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" ||
4788 Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" ||
4789 Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" ||
4790 Mnemonic == "vfms" || Mnemonic == "vfnms" ||
4791 (Mnemonic == "movs" && isThumb()))) {
4792 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1);
4793 CarrySetting = true;
4794 }
4795
4796 // The "cps" instruction can have a interrupt mode operand which is glued into
4797 // the mnemonic. Check if this is the case, split it and parse the imod op
4798 if (Mnemonic.startswith("cps")) {
4799 // Split out any imod code.
4800 unsigned IMod =
4801 StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2))
4802 .Case("ie", ARM_PROC::IE)
4803 .Case("id", ARM_PROC::ID)
4804 .Default(~0U);
4805 if (IMod != ~0U) {
4806 Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2);
4807 ProcessorIMod = IMod;
4808 }
4809 }
4810
4811 // The "it" instruction has the condition mask on the end of the mnemonic.
4812 if (Mnemonic.startswith("it")) {
4813 ITMask = Mnemonic.slice(2, Mnemonic.size());
4814 Mnemonic = Mnemonic.slice(0, 2);
4815 }
4816
4817 return Mnemonic;
4818 }
4819
4820 /// \brief Given a canonical mnemonic, determine if the instruction ever allows
4821 /// inclusion of carry set or predication code operands.
4822 //
4823 // FIXME: It would be nice to autogen this.
4824 void ARMAsmParser::
4825 getMnemonicAcceptInfo(StringRef Mnemonic, bool &CanAcceptCarrySet,
4826 bool &CanAcceptPredicationCode) {
4827 if (Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
4828 Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" ||
4829 Mnemonic == "add" || Mnemonic == "adc" ||
4830 Mnemonic == "mul" || Mnemonic == "bic" || Mnemonic == "asr" ||
4831 Mnemonic == "orr" || Mnemonic == "mvn" ||
4832 Mnemonic == "rsb" || Mnemonic == "rsc" || Mnemonic == "orn" ||
4833 Mnemonic == "sbc" || Mnemonic == "eor" || Mnemonic == "neg" ||
4834 Mnemonic == "vfm" || Mnemonic == "vfnm" ||
4835 (!isThumb() && (Mnemonic == "smull" || Mnemonic == "mov" ||
4836 Mnemonic == "mla" || Mnemonic == "smlal" ||
4837 Mnemonic == "umlal" || Mnemonic == "umull"))) {
4838 CanAcceptCarrySet = true;
4839 } else
4840 CanAcceptCarrySet = false;
4841
4842 if (Mnemonic == "cbnz" || Mnemonic == "setend" || Mnemonic == "dmb" ||
4843 Mnemonic == "cps" || Mnemonic == "mcr2" || Mnemonic == "it" ||
4844 Mnemonic == "mcrr2" || Mnemonic == "cbz" || Mnemonic == "cdp2" ||
4845 Mnemonic == "trap" || Mnemonic == "mrc2" || Mnemonic == "mrrc2" ||
4846 Mnemonic == "dsb" || Mnemonic == "isb" || Mnemonic == "setend" ||
4847 (Mnemonic == "clrex" && !isThumb()) ||
4848 (Mnemonic == "nop" && isThumbOne()) ||
4849 ((Mnemonic == "pld" || Mnemonic == "pli" || Mnemonic == "pldw" ||
4850 Mnemonic == "ldc2" || Mnemonic == "ldc2l" ||
4851 Mnemonic == "stc2" || Mnemonic == "stc2l") && !isThumb()) ||
4852 ((Mnemonic.startswith("rfe") || Mnemonic.startswith("srs")) &&
4853 !isThumb()) ||
4854 Mnemonic.startswith("cps") || (Mnemonic == "movs" && isThumbOne())) {
4855 CanAcceptPredicationCode = false;
4856 } else
4857 CanAcceptPredicationCode = true;
4858
4859 if (isThumb()) {
4860 if (Mnemonic == "bkpt" || Mnemonic == "mcr" || Mnemonic == "mcrr" ||
4861 Mnemonic == "mrc" || Mnemonic == "mrrc" || Mnemonic == "cdp")
4862 CanAcceptPredicationCode = false;
4863 }
4864 }
4865
4866 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic,
4867 SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4868 // FIXME: This is all horribly hacky. We really need a better way to deal
4869 // with optional operands like this in the matcher table.
4870
4871 // The 'mov' mnemonic is special. One variant has a cc_out operand, while
4872 // another does not. Specifically, the MOVW instruction does not. So we
4873 // special case it here and remove the defaulted (non-setting) cc_out
4874 // operand if that's the instruction we're trying to match.
4875 //
4876 // We do this as post-processing of the explicit operands rather than just
4877 // conditionally adding the cc_out in the first place because we need
4878 // to check the type of the parsed immediate operand.
4879 if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() &&
4880 !static_cast<ARMOperand*>(Operands[4])->isARMSOImm() &&
4881 static_cast<ARMOperand*>(Operands[4])->isImm0_65535Expr() &&
4882 static_cast<ARMOperand*>(Operands[1])->getReg() == 0)
4883 return true;
4884
4885 // Register-register 'add' for thumb does not have a cc_out operand
4886 // when there are only two register operands.
4887 if (isThumb() && Mnemonic == "add" && Operands.size() == 5 &&
4888 static_cast<ARMOperand*>(Operands[3])->isReg() &&
4889 static_cast<ARMOperand*>(Operands[4])->isReg() &&
4890 static_cast<ARMOperand*>(Operands[1])->getReg() == 0)
4891 return true;
4892 // Register-register 'add' for thumb does not have a cc_out operand
4893 // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do
4894 // have to check the immediate range here since Thumb2 has a variant
4895 // that can handle a different range and has a cc_out operand.
4896 if (((isThumb() && Mnemonic == "add") ||
4897 (isThumbTwo() && Mnemonic == "sub")) &&
4898 Operands.size() == 6 &&
4899 static_cast<ARMOperand*>(Operands[3])->isReg() &&
4900 static_cast<ARMOperand*>(Operands[4])->isReg() &&
4901 static_cast<ARMOperand*>(Operands[4])->getReg() == ARM::SP &&
4902 static_cast<ARMOperand*>(Operands[1])->getReg() == 0 &&
4903 ((Mnemonic == "add" &&static_cast<ARMOperand*>(Operands[5])->isReg()) ||
4904 static_cast<ARMOperand*>(Operands[5])->isImm0_1020s4()))
4905 return true;
4906 // For Thumb2, add/sub immediate does not have a cc_out operand for the
4907 // imm0_4095 variant. That's the least-preferred variant when
4908 // selecting via the generic "add" mnemonic, so to know that we
4909 // should remove the cc_out operand, we have to explicitly check that
4910 // it's not one of the other variants. Ugh.
4911 if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") &&
4912 Operands.size() == 6 &&
4913 static_cast<ARMOperand*>(Operands[3])->isReg() &&
4914 static_cast<ARMOperand*>(Operands[4])->isReg() &&
4915 static_cast<ARMOperand*>(Operands[5])->isImm()) {
4916 // Nest conditions rather than one big 'if' statement for readability.
4917 //
4918 // If either register is a high reg, it's either one of the SP
4919 // variants (handled above) or a 32-bit encoding, so we just
4920 // check against T3. If the second register is the PC, this is an
4921 // alternate form of ADR, which uses encoding T4, so check for that too.
4922 if ((!isARMLowRegister(static_cast<ARMOperand*>(Operands[3])->getReg()) ||
4923 !isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg())) &&
4924 static_cast<ARMOperand*>(Operands[4])->getReg() != ARM::PC &&
4925 static_cast<ARMOperand*>(Operands[5])->isT2SOImm())
4926 return false;
4927 // If both registers are low, we're in an IT block, and the immediate is
4928 // in range, we should use encoding T1 instead, which has a cc_out.
4929 if (inITBlock() &&
4930 isARMLowRegister(static_cast<ARMOperand*>(Operands[3])->getReg()) &&
4931 isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg()) &&
4932 static_cast<ARMOperand*>(Operands[5])->isImm0_7())
4933 return false;
4934
4935 // Otherwise, we use encoding T4, which does not have a cc_out
4936 // operand.
4937 return true;
4938 }
4939
4940 // The thumb2 multiply instruction doesn't have a CCOut register, so
4941 // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to
4942 // use the 16-bit encoding or not.
4943 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 &&
4944 static_cast<ARMOperand*>(Operands[1])->getReg() == 0 &&
4945 static_cast<ARMOperand*>(Operands[3])->isReg() &&
4946 static_cast<ARMOperand*>(Operands[4])->isReg() &&
4947 static_cast<ARMOperand*>(Operands[5])->isReg() &&
4948 // If the registers aren't low regs, the destination reg isn't the
4949 // same as one of the source regs, or the cc_out operand is zero
4950 // outside of an IT block, we have to use the 32-bit encoding, so
4951 // remove the cc_out operand.
4952 (!isARMLowRegister(static_cast<ARMOperand*>(Operands[3])->getReg()) ||
4953 !isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg()) ||
4954 !isARMLowRegister(static_cast<ARMOperand*>(Operands[5])->getReg()) ||
4955 !inITBlock() ||
4956 (static_cast<ARMOperand*>(Operands[3])->getReg() !=
4957 static_cast<ARMOperand*>(Operands[5])->getReg() &&
4958 static_cast<ARMOperand*>(Operands[3])->getReg() !=
4959 static_cast<ARMOperand*>(Operands[4])->getReg())))
4960 return true;
4961
4962 // Also check the 'mul' syntax variant that doesn't specify an explicit
4963 // destination register.
4964 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 &&
4965 static_cast<ARMOperand*>(Operands[1])->getReg() == 0 &&
4966 static_cast<ARMOperand*>(Operands[3])->isReg() &&
4967 static_cast<ARMOperand*>(Operands[4])->isReg() &&
4968 // If the registers aren't low regs or the cc_out operand is zero
4969 // outside of an IT block, we have to use the 32-bit encoding, so
4970 // remove the cc_out operand.
4971 (!isARMLowRegister(static_cast<ARMOperand*>(Operands[3])->getReg()) ||
4972 !isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg()) ||
4973 !inITBlock()))
4974 return true;
4975
4976
4977
4978 // Register-register 'add/sub' for thumb does not have a cc_out operand
4979 // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also
4980 // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't
4981 // right, this will result in better diagnostics (which operand is off)
4982 // anyway.
4983 if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") &&
4984 (Operands.size() == 5 || Operands.size() == 6) &&
4985 static_cast<ARMOperand*>(Operands[3])->isReg() &&
4986 static_cast<ARMOperand*>(Operands[3])->getReg() == ARM::SP &&
4987 static_cast<ARMOperand*>(Operands[1])->getReg() == 0 &&
4988 (static_cast<ARMOperand*>(Operands[4])->isImm() ||
4989 (Operands.size() == 6 &&
4990 static_cast<ARMOperand*>(Operands[5])->isImm())))
4991 return true;
4992
4993 return false;
4994 }
4995
4996 static bool isDataTypeToken(StringRef Tok) {
4997 return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" ||
4998 Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" ||
4999 Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" ||
5000 Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" ||
5001 Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" ||
5002 Tok == ".f" || Tok == ".d";
5003 }
5004
5005 // FIXME: This bit should probably be handled via an explicit match class
5006 // in the .td files that matches the suffix instead of having it be
5007 // a literal string token the way it is now.
5008 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) {
5009 return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm");
5010 }
5011
5012 static void applyMnemonicAliases(StringRef &Mnemonic, unsigned Features);
5013 /// Parse an arm instruction mnemonic followed by its operands.
5014 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
5015 SMLoc NameLoc,
5016 SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
5017 // Apply mnemonic aliases before doing anything else, as the destination
5018 // mnemnonic may include suffices and we want to handle them normally.
5019 // The generic tblgen'erated code does this later, at the start of
5020 // MatchInstructionImpl(), but that's too late for aliases that include
5021 // any sort of suffix.
5022 unsigned AvailableFeatures = getAvailableFeatures();
5023 applyMnemonicAliases(Name, AvailableFeatures);
5024
5025 // First check for the ARM-specific .req directive.
5026 if (Parser.getTok().is(AsmToken::Identifier) &&
5027 Parser.getTok().getIdentifier() == ".req") {
5028 parseDirectiveReq(Name, NameLoc);
5029 // We always return 'error' for this, as we're done with this
5030 // statement and don't need to match the 'instruction."
5031 return true;
5032 }
5033
5034 // Create the leading tokens for the mnemonic, split by '.' characters.
5035 size_t Start = 0, Next = Name.find('.');
5036 StringRef Mnemonic = Name.slice(Start, Next);
5037
5038 // Split out the predication code and carry setting flag from the mnemonic.
5039 unsigned PredicationCode;
5040 unsigned ProcessorIMod;
5041 bool CarrySetting;
5042 StringRef ITMask;
5043 Mnemonic = splitMnemonic(Mnemonic, PredicationCode, CarrySetting,
5044 ProcessorIMod, ITMask);
5045
5046 // In Thumb1, only the branch (B) instruction can be predicated.
5047 if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") {
5048 Parser.eatToEndOfStatement();
5049 return Error(NameLoc, "conditional execution not supported in Thumb1");
5050 }
5051
5052 Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc));
5053
5054 // Handle the IT instruction ITMask. Convert it to a bitmask. This
5055 // is the mask as it will be for the IT encoding if the conditional
5056 // encoding has a '1' as it's bit0 (i.e. 't' ==> '1'). In the case
5057 // where the conditional bit0 is zero, the instruction post-processing
5058 // will adjust the mask accordingly.
5059 if (Mnemonic == "it") {
5060 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + 2);
5061 if (ITMask.size() > 3) {
5062 Parser.eatToEndOfStatement();
5063 return Error(Loc, "too many conditions on IT instruction");
5064 }
5065 unsigned Mask = 8;
5066 for (unsigned i = ITMask.size(); i != 0; --i) {
5067 char pos = ITMask[i - 1];
5068 if (pos != 't' && pos != 'e') {
5069 Parser.eatToEndOfStatement();
5070 return Error(Loc, "illegal IT block condition mask '" + ITMask + "'");
5071 }
5072 Mask >>= 1;
5073 if (ITMask[i - 1] == 't')
5074 Mask |= 8;
5075 }
5076 Operands.push_back(ARMOperand::CreateITMask(Mask, Loc));
5077 }
5078
5079 // FIXME: This is all a pretty gross hack. We should automatically handle
5080 // optional operands like this via tblgen.
5081
5082 // Next, add the CCOut and ConditionCode operands, if needed.
5083 //
5084 // For mnemonics which can ever incorporate a carry setting bit or predication
5085 // code, our matching model involves us always generating CCOut and
5086 // ConditionCode operands to match the mnemonic "as written" and then we let
5087 // the matcher deal with finding the right instruction or generating an
5088 // appropriate error.
5089 bool CanAcceptCarrySet, CanAcceptPredicationCode;
5090 getMnemonicAcceptInfo(Mnemonic, CanAcceptCarrySet, CanAcceptPredicationCode);
5091
5092 // If we had a carry-set on an instruction that can't do that, issue an
5093 // error.
5094 if (!CanAcceptCarrySet && CarrySetting) {
5095 Parser.eatToEndOfStatement();
5096 return Error(NameLoc, "instruction '" + Mnemonic +
5097 "' can not set flags, but 's' suffix specified");
5098 }
5099 // If we had a predication code on an instruction that can't do that, issue an
5100 // error.
5101 if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) {
5102 Parser.eatToEndOfStatement();
5103 return Error(NameLoc, "instruction '" + Mnemonic +
5104 "' is not predicable, but condition code specified");
5105 }
5106
5107 // Add the carry setting operand, if necessary.
5108 if (CanAcceptCarrySet) {
5109 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size());
5110 Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0,
5111 Loc));
5112 }
5113
5114 // Add the predication code operand, if necessary.
5115 if (CanAcceptPredicationCode) {
5116 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() +
5117 CarrySetting);
5118 Operands.push_back(ARMOperand::CreateCondCode(
5119 ARMCC::CondCodes(PredicationCode), Loc));
5120 }
5121
5122 // Add the processor imod operand, if necessary.
5123 if (ProcessorIMod) {
5124 Operands.push_back(ARMOperand::CreateImm(
5125 MCConstantExpr::Create(ProcessorIMod, getContext()),
5126 NameLoc, NameLoc));
5127 }
5128
5129 // Add the remaining tokens in the mnemonic.
5130 while (Next != StringRef::npos) {
5131 Start = Next;
5132 Next = Name.find('.', Start + 1);
5133 StringRef ExtraToken = Name.slice(Start, Next);
5134
5135 // Some NEON instructions have an optional datatype suffix that is
5136 // completely ignored. Check for that.
5137 if (isDataTypeToken(ExtraToken) &&
5138 doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken))
5139 continue;
5140
5141 if (ExtraToken != ".n") {
5142 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
5143 Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc));
5144 }
5145 }
5146
5147 // Read the remaining operands.
5148 if (getLexer().isNot(AsmToken::EndOfStatement)) {
5149 // Read the first operand.
5150 if (parseOperand(Operands, Mnemonic)) {
5151 Parser.eatToEndOfStatement();
5152 return true;
5153 }
5154
5155 while (getLexer().is(AsmToken::Comma)) {
5156 Parser.Lex(); // Eat the comma.
5157
5158 // Parse and remember the operand.
5159 if (parseOperand(Operands, Mnemonic)) {
5160 Parser.eatToEndOfStatement();
5161 return true;
5162 }
5163 }
5164 }
5165
5166 if (getLexer().isNot(AsmToken::EndOfStatement)) {
5167 SMLoc Loc = getLexer().getLoc();
5168 Parser.eatToEndOfStatement();
5169 return Error(Loc, "unexpected token in argument list");
5170 }
5171
5172 Parser.Lex(); // Consume the EndOfStatement
5173
5174 // Some instructions, mostly Thumb, have forms for the same mnemonic that
5175 // do and don't have a cc_out optional-def operand. With some spot-checks
5176 // of the operand list, we can figure out which variant we're trying to
5177 // parse and adjust accordingly before actually matching. We shouldn't ever
5178 // try to remove a cc_out operand that was explicitly set on the the
5179 // mnemonic, of course (CarrySetting == true). Reason number #317 the
5180 // table driven matcher doesn't fit well with the ARM instruction set.
5181 if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands)) {
5182 ARMOperand *Op = static_cast<ARMOperand*>(Operands[1]);
5183 Operands.erase(Operands.begin() + 1);
5184 delete Op;
5185 }
5186
5187 // ARM mode 'blx' need special handling, as the register operand version
5188 // is predicable, but the label operand version is not. So, we can't rely
5189 // on the Mnemonic based checking to correctly figure out when to put
5190 // a k_CondCode operand in the list. If we're trying to match the label
5191 // version, remove the k_CondCode operand here.
5192 if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 &&
5193 static_cast<ARMOperand*>(Operands[2])->isImm()) {
5194 ARMOperand *Op = static_cast<ARMOperand*>(Operands[1]);
5195 Operands.erase(Operands.begin() + 1);
5196 delete Op;
5197 }
5198
5199 // Adjust operands of ldrexd/strexd to MCK_GPRPair.
5200 // ldrexd/strexd require even/odd GPR pair. To enforce this constraint,
5201 // a single GPRPair reg operand is used in the .td file to replace the two
5202 // GPRs. However, when parsing from asm, the two GRPs cannot be automatically
5203 // expressed as a GPRPair, so we have to manually merge them.
5204 // FIXME: We would really like to be able to tablegen'erate this.
5205 if (!isThumb() && Operands.size() > 4 &&
5206 (Mnemonic == "ldrexd" || Mnemonic == "strexd")) {
5207 bool isLoad = (Mnemonic == "ldrexd");
5208 unsigned Idx = isLoad ? 2 : 3;
5209 ARMOperand* Op1 = static_cast<ARMOperand*>(Operands[Idx]);
5210 ARMOperand* Op2 = static_cast<ARMOperand*>(Operands[Idx+1]);
5211
5212 const MCRegisterClass& MRC = MRI->getRegClass(ARM::GPRRegClassID);
5213 // Adjust only if Op1 and Op2 are GPRs.
5214 if (Op1->isReg() && Op2->isReg() && MRC.contains(Op1->getReg()) &&
5215 MRC.contains(Op2->getReg())) {
5216 unsigned Reg1 = Op1->getReg();
5217 unsigned Reg2 = Op2->getReg();
5218 unsigned Rt = MRI->getEncodingValue(Reg1);
5219 unsigned Rt2 = MRI->getEncodingValue(Reg2);
5220
5221 // Rt2 must be Rt + 1 and Rt must be even.
5222 if (Rt + 1 != Rt2 || (Rt & 1)) {
5223 Error(Op2->getStartLoc(), isLoad ?
5224 "destination operands must be sequential" :
5225 "source operands must be sequential");
5226 return true;
5227 }
5228 unsigned NewReg = MRI->getMatchingSuperReg(Reg1, ARM::gsub_0,
5229 &(MRI->getRegClass(ARM::GPRPairRegClassID)));
5230 Operands.erase(Operands.begin() + Idx, Operands.begin() + Idx + 2);
5231 Operands.insert(Operands.begin() + Idx, ARMOperand::CreateReg(
5232 NewReg, Op1->getStartLoc(), Op2->getEndLoc()));
5233 delete Op1;
5234 delete Op2;
5235 }
5236 }
5237
5238 return false;
5239 }
5240
5241 // Validate context-sensitive operand constraints.
5242
5243 // return 'true' if register list contains non-low GPR registers,
5244 // 'false' otherwise. If Reg is in the register list or is HiReg, set
5245 // 'containsReg' to true.
5246 static bool checkLowRegisterList(MCInst Inst, unsigned OpNo, unsigned Reg,
5247 unsigned HiReg, bool &containsReg) {
5248 containsReg = false;
5249 for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) {
5250 unsigned OpReg = Inst.getOperand(i).getReg();
5251 if (OpReg == Reg)
5252 containsReg = true;
5253 // Anything other than a low register isn't legal here.
5254 if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg))
5255 return true;
5256 }
5257 return false;
5258 }
5259
5260 // Check if the specified regisgter is in the register list of the inst,
5261 // starting at the indicated operand number.
5262 static bool listContainsReg(MCInst &Inst, unsigned OpNo, unsigned Reg) {
5263 for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) {
5264 unsigned OpReg = Inst.getOperand(i).getReg();
5265 if (OpReg == Reg)
5266 return true;
5267 }
5268 return false;
5269 }
5270
5271 // FIXME: We would really prefer to have MCInstrInfo (the wrapper around
5272 // the ARMInsts array) instead. Getting that here requires awkward
5273 // API changes, though. Better way?
5274 namespace llvm {
5275 extern const MCInstrDesc ARMInsts[];
5276 }
5277 static const MCInstrDesc &getInstDesc(unsigned Opcode) {
5278 return ARMInsts[Opcode];
5279 }
5280
5281 // FIXME: We would really like to be able to tablegen'erate this.
5282 bool ARMAsmParser::
5283 validateInstruction(MCInst &Inst,
5284 const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
5285 const MCInstrDesc &MCID = getInstDesc(Inst.getOpcode());
5286 SMLoc Loc = Operands[0]->getStartLoc();
5287 // Check the IT block state first.
5288 // NOTE: BKPT instruction has the interesting property of being
5289 // allowed in IT blocks, but not being predicable. It just always
5290 // executes.
5291 if (inITBlock() && Inst.getOpcode() != ARM::tBKPT &&
5292 Inst.getOpcode() != ARM::BKPT) {
5293 unsigned bit = 1;
5294 if (ITState.FirstCond)
5295 ITState.FirstCond = false;
5296 else
5297 bit = (ITState.Mask >> (5 - ITState.CurPosition)) & 1;
5298 // The instruction must be predicable.
5299 if (!MCID.isPredicable())
5300 return Error(Loc, "instructions in IT block must be predicable");
5301 unsigned Cond = Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm();
5302 unsigned ITCond = bit ? ITState.Cond :
5303 ARMCC::getOppositeCondition(ITState.Cond);
5304 if (Cond != ITCond) {
5305 // Find the condition code Operand to get its SMLoc information.
5306 SMLoc CondLoc;
5307 for (unsigned i = 1; i < Operands.size(); ++i)
5308 if (static_cast<ARMOperand*>(Operands[i])->isCondCode())
5309 CondLoc = Operands[i]->getStartLoc();
5310 return Error(CondLoc, "incorrect condition in IT block; got '" +
5311 StringRef(ARMCondCodeToString(ARMCC::CondCodes(Cond))) +
5312 "', but expected '" +
5313 ARMCondCodeToString(ARMCC::CondCodes(ITCond)) + "'");
5314 }
5315 // Check for non-'al' condition codes outside of the IT block.
5316 } else if (isThumbTwo() && MCID.isPredicable() &&
5317 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() !=
5318 ARMCC::AL && Inst.getOpcode() != ARM::tB &&
5319 Inst.getOpcode() != ARM::t2B)
5320 return Error(Loc, "predicated instructions must be in IT block");
5321
5322 switch (Inst.getOpcode()) {
5323 case ARM::LDRD:
5324 case ARM::LDRD_PRE:
5325 case ARM::LDRD_POST: {
5326 // Rt2 must be Rt + 1.
5327 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg());
5328 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg());
5329 if (Rt2 != Rt + 1)
5330 return Error(Operands[3]->getStartLoc(),
5331 "destination operands must be sequential");
5332 return false;
5333 }
5334 case ARM::STRD: {
5335 // Rt2 must be Rt + 1.
5336 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg());
5337 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg());
5338 if (Rt2 != Rt + 1)
5339 return Error(Operands[3]->getStartLoc(),
5340 "source operands must be sequential");
5341 return false;
5342 }
5343 case ARM::STRD_PRE:
5344 case ARM::STRD_POST: {
5345 // Rt2 must be Rt + 1.
5346 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg());
5347 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(2).getReg());
5348 if (Rt2 != Rt + 1)
5349 return Error(Operands[3]->getStartLoc(),
5350 "source operands must be sequential");
5351 return false;
5352 }
5353 case ARM::SBFX:
5354 case ARM::UBFX: {
5355 // width must be in range [1, 32-lsb]
5356 unsigned lsb = Inst.getOperand(2).getImm();
5357 unsigned widthm1 = Inst.getOperand(3).getImm();
5358 if (widthm1 >= 32 - lsb)
5359 return Error(Operands[5]->getStartLoc(),
5360 "bitfield width must be in range [1,32-lsb]");
5361 return false;
5362 }
5363 case ARM::tLDMIA: {
5364 // If we're parsing Thumb2, the .w variant is available and handles
5365 // most cases that are normally illegal for a Thumb1 LDM
5366 // instruction. We'll make the transformation in processInstruction()
5367 // if necessary.
5368 //
5369 // Thumb LDM instructions are writeback iff the base register is not
5370 // in the register list.
5371 unsigned Rn = Inst.getOperand(0).getReg();
5372 bool hasWritebackToken =
5373 (static_cast<ARMOperand*>(Operands[3])->isToken() &&
5374 static_cast<ARMOperand*>(Operands[3])->getToken() == "!");
5375 bool listContainsBase;
5376 if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) && !isThumbTwo())
5377 return Error(Operands[3 + hasWritebackToken]->getStartLoc(),
5378 "registers must be in range r0-r7");
5379 // If we should have writeback, then there should be a '!' token.
5380 if (!listContainsBase && !hasWritebackToken && !isThumbTwo())
5381 return Error(Operands[2]->getStartLoc(),
5382 "writeback operator '!' expected");
5383 // If we should not have writeback, there must not be a '!'. This is
5384 // true even for the 32-bit wide encodings.
5385 if (listContainsBase && hasWritebackToken)
5386 return Error(Operands[3]->getStartLoc(),
5387 "writeback operator '!' not allowed when base register "
5388 "in register list");
5389
5390 break;
5391 }
5392 case ARM::t2LDMIA_UPD: {
5393 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg()))
5394 return Error(Operands[4]->getStartLoc(),
5395 "writeback operator '!' not allowed when base register "
5396 "in register list");
5397 break;
5398 }
5399 case ARM::tMUL: {
5400 // The second source operand must be the same register as the destination
5401 // operand.
5402 //
5403 // In this case, we must directly check the parsed operands because the
5404 // cvtThumbMultiply() function is written in such a way that it guarantees
5405 // this first statement is always true for the new Inst. Essentially, the
5406 // destination is unconditionally copied into the second source operand
5407 // without checking to see if it matches what we actually parsed.
5408 if (Operands.size() == 6 &&
5409 (((ARMOperand*)Operands[3])->getReg() !=
5410 ((ARMOperand*)Operands[5])->getReg()) &&
5411 (((ARMOperand*)Operands[3])->getReg() !=
5412 ((ARMOperand*)Operands[4])->getReg())) {
5413 return Error(Operands[3]->getStartLoc(),
5414 "destination register must match source register");
5415 }
5416 break;
5417 }
5418 // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2,
5419 // so only issue a diagnostic for thumb1. The instructions will be
5420 // switched to the t2 encodings in processInstruction() if necessary.
5421 case ARM::tPOP: {
5422 bool listContainsBase;
5423 if (checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase) &&
5424 !isThumbTwo())
5425 return Error(Operands[2]->getStartLoc(),
5426 "registers must be in range r0-r7 or pc");
5427 break;
5428 }
5429 case ARM::tPUSH: {
5430 bool listContainsBase;
5431 if (checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase) &&
5432 !isThumbTwo())
5433 return Error(Operands[2]->getStartLoc(),
5434 "registers must be in range r0-r7 or lr");
5435 break;
5436 }
5437 case ARM::tSTMIA_UPD: {
5438 bool listContainsBase;
5439 if (checkLowRegisterList(Inst, 4, 0, 0, listContainsBase) && !isThumbTwo())
5440 return Error(Operands[4]->getStartLoc(),
5441 "registers must be in range r0-r7");
5442 break;
5443 }
5444 case ARM::tADDrSP: {
5445 // If the non-SP source operand and the destination operand are not the
5446 // same, we need thumb2 (for the wide encoding), or we have an error.
5447 if (!isThumbTwo() &&
5448 Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
5449 return Error(Operands[4]->getStartLoc(),
5450 "source register must be the same as destination");
5451 }
5452 break;
5453 }
5454 }
5455
5456 return false;
5457 }
5458
5459 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) {
5460 switch(Opc) {
5461 default: llvm_unreachable("unexpected opcode!");
5462 // VST1LN
5463 case ARM::VST1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD;
5464 case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
5465 case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
5466 case ARM::VST1LNdWB_register_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD;
5467 case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
5468 case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
5469 case ARM::VST1LNdAsm_8: Spacing = 1; return ARM::VST1LNd8;
5470 case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16;
5471 case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32;
5472
5473 // VST2LN
5474 case ARM::VST2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD;
5475 case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
5476 case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
5477 case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
5478 case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
5479
5480 case ARM::VST2LNdWB_register_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD;
5481 case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
5482 case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
5483 case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
5484 case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
5485
5486 case ARM::VST2LNdAsm_8: Spacing = 1; return ARM::VST2LNd8;
5487 case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16;
5488 case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32;
5489 case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16;
5490 case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32;
5491
5492 // VST3LN
5493 case ARM::VST3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD;
5494 case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
5495 case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
5496 case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD;
5497 case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
5498 case ARM::VST3LNdWB_register_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD;
5499 case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
5500 case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
5501 case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD;
5502 case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
5503 case ARM::VST3LNdAsm_8: Spacing = 1; return ARM::VST3LNd8;
5504 case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16;
5505 case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32;
5506 case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16;
5507 case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32;
5508
5509 // VST3
5510 case ARM::VST3dWB_fixed_Asm_8: Spacing = 1; return ARM::VST3d8_UPD;
5511 case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
5512 case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
5513 case ARM::VST3qWB_fixed_Asm_8: Spacing = 2; return ARM::VST3q8_UPD;
5514 case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
5515 case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
5516 case ARM::VST3dWB_register_Asm_8: Spacing = 1; return ARM::VST3d8_UPD;
5517 case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
5518 case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
5519 case ARM::VST3qWB_register_Asm_8: Spacing = 2; return ARM::VST3q8_UPD;
5520 case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
5521 case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
5522 case ARM::VST3dAsm_8: Spacing = 1; return ARM::VST3d8;
5523 case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16;
5524 case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32;
5525 case ARM::VST3qAsm_8: Spacing = 2; return ARM::VST3q8;
5526 case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16;
5527 case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32;
5528
5529 // VST4LN
5530 case ARM::VST4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD;
5531 case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
5532 case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
5533 case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD;
5534 case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
5535 case ARM::VST4LNdWB_register_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD;
5536 case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
5537 case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
5538 case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD;
5539 case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
5540 case ARM::VST4LNdAsm_8: Spacing = 1; return ARM::VST4LNd8;
5541 case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16;
5542 case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32;
5543 case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16;
5544 case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32;
5545
5546 // VST4
5547 case ARM::VST4dWB_fixed_Asm_8: Spacing = 1; return ARM::VST4d8_UPD;
5548 case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
5549 case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
5550 case ARM::VST4qWB_fixed_Asm_8: Spacing = 2; return ARM::VST4q8_UPD;
5551 case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
5552 case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
5553 case ARM::VST4dWB_register_Asm_8: Spacing = 1; return ARM::VST4d8_UPD;
5554 case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
5555 case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
5556 case ARM::VST4qWB_register_Asm_8: Spacing = 2; return ARM::VST4q8_UPD;
5557 case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
5558 case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
5559 case ARM::VST4dAsm_8: Spacing = 1; return ARM::VST4d8;
5560 case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16;
5561 case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32;
5562 case ARM::VST4qAsm_8: Spacing = 2; return ARM::VST4q8;
5563 case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16;
5564 case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32;
5565 }
5566 }
5567
5568 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) {
5569 switch(Opc) {
5570 default: llvm_unreachable("unexpected opcode!");
5571 // VLD1LN
5572 case ARM::VLD1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD;
5573 case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
5574 case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
5575 case ARM::VLD1LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD;
5576 case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
5577 case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
5578 case ARM::VLD1LNdAsm_8: Spacing = 1; return ARM::VLD1LNd8;
5579 case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16;
5580 case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32;
5581
5582 // VLD2LN
5583 case ARM::VLD2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD;
5584 case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
5585 case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
5586 case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD;
5587 case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
5588 case ARM::VLD2LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD;
5589 case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
5590 case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
5591 case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD;
5592 case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
5593 case ARM::VLD2LNdAsm_8: Spacing = 1; return ARM::VLD2LNd8;
5594 case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16;
5595 case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32;
5596 case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16;
5597 case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32;
5598
5599 // VLD3DUP
5600 case ARM::VLD3DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD;
5601 case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
5602 case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
5603 case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD;
5604 case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPq16_UPD;
5605 case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
5606 case ARM::VLD3DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD;
5607 case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
5608 case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
5609 case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD;
5610 case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD;
5611 case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
5612 case ARM::VLD3DUPdAsm_8: Spacing = 1; return ARM::VLD3DUPd8;
5613 case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16;
5614 case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32;
5615 case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8;
5616 case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16;
5617 case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32;
5618
5619 // VLD3LN
5620 case ARM::VLD3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD;
5621 case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
5622 case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
5623 case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD;
5624 case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
5625 case ARM::VLD3LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD;
5626 case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
5627 case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
5628 case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD;
5629 case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
5630 case ARM::VLD3LNdAsm_8: Spacing = 1; return ARM::VLD3LNd8;
5631 case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16;
5632 case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32;
5633 case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16;
5634 case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32;
5635
5636 // VLD3
5637 case ARM::VLD3dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD;
5638 case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
5639 case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
5640 case ARM::VLD3qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD;
5641 case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
5642 case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
5643 case ARM::VLD3dWB_register_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD;
5644 case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
5645 case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
5646 case ARM::VLD3qWB_register_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD;
5647 case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
5648 case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
5649 case ARM::VLD3dAsm_8: Spacing = 1; return ARM::VLD3d8;
5650 case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16;
5651 case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32;
5652 case ARM::VLD3qAsm_8: Spacing = 2; return ARM::VLD3q8;
5653 case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16;
5654 case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32;
5655
5656 // VLD4LN
5657 case ARM::VLD4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD;
5658 case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
5659 case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
5660 case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNq16_UPD;
5661 case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
5662 case ARM::VLD4LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD;
5663 case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
5664 case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
5665 case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD;
5666 case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
5667 case ARM::VLD4LNdAsm_8: Spacing = 1; return ARM::VLD4LNd8;
5668 case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16;
5669 case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32;
5670 case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16;
5671 case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32;
5672
5673 // VLD4DUP
5674 case ARM::VLD4DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD;
5675 case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
5676 case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
5677 case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD;
5678 case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD;
5679 case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
5680 case ARM::VLD4DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD;
5681 case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
5682 case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
5683 case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD;
5684 case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD;
5685 case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
5686 case ARM::VLD4DUPdAsm_8: Spacing = 1; return ARM::VLD4DUPd8;
5687 case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16;
5688 case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32;
5689 case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8;
5690 case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16;
5691 case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32;
5692
5693 // VLD4
5694 case ARM::VLD4dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD;
5695 case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
5696 case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
5697 case ARM::VLD4qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD;
5698 case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
5699 case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
5700 case ARM::VLD4dWB_register_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD;
5701 case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
5702 case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
5703 case ARM::VLD4qWB_register_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD;
5704 case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
5705 case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
5706 case ARM::VLD4dAsm_8: Spacing = 1; return ARM::VLD4d8;
5707 case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16;
5708 case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32;
5709 case ARM::VLD4qAsm_8: Spacing = 2; return ARM::VLD4q8;
5710 case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16;
5711 case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32;
5712 }
5713 }
5714
5715 bool ARMAsmParser::
5716 processInstruction(MCInst &Inst,
5717 const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
5718 switch (Inst.getOpcode()) {
5719 // Alias for alternate form of 'ADR Rd, #imm' instruction.
5720 case ARM::ADDri: {
5721 if (Inst.getOperand(1).getReg() != ARM::PC ||
5722 Inst.getOperand(5).getReg() != 0)
5723 return false;
5724 MCInst TmpInst;
5725 TmpInst.setOpcode(ARM::ADR);
5726 TmpInst.addOperand(Inst.getOperand(0));
5727 TmpInst.addOperand(Inst.getOperand(2));
5728 TmpInst.addOperand(Inst.getOperand(3));
5729 TmpInst.addOperand(Inst.getOperand(4));
5730 Inst = TmpInst;
5731 return true;
5732 }
5733 // Aliases for alternate PC+imm syntax of LDR instructions.
5734 case ARM::t2LDRpcrel:
5735 // Select the narrow version if the immediate will fit.
5736 if (Inst.getOperand(1).getImm() > 0 &&
5737 Inst.getOperand(1).getImm() <= 0xff)
5738 Inst.setOpcode(ARM::tLDRpci);
5739 else
5740 Inst.setOpcode(ARM::t2LDRpci);
5741 return true;
5742 case ARM::t2LDRBpcrel:
5743 Inst.setOpcode(ARM::t2LDRBpci);
5744 return true;
5745 case ARM::t2LDRHpcrel:
5746 Inst.setOpcode(ARM::t2LDRHpci);
5747 return true;
5748 case ARM::t2LDRSBpcrel:
5749 Inst.setOpcode(ARM::t2LDRSBpci);
5750 return true;
5751 case ARM::t2LDRSHpcrel:
5752 Inst.setOpcode(ARM::t2LDRSHpci);
5753 return true;
5754 // Handle NEON VST complex aliases.
5755 case ARM::VST1LNdWB_register_Asm_8:
5756 case ARM::VST1LNdWB_register_Asm_16:
5757 case ARM::VST1LNdWB_register_Asm_32: {
5758 MCInst TmpInst;
5759 // Shuffle the operands around so the lane index operand is in the
5760 // right place.
5761 unsigned Spacing;
5762 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5763 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5764 TmpInst.addOperand(Inst.getOperand(2)); // Rn
5765 TmpInst.addOperand(Inst.getOperand(3)); // alignment
5766 TmpInst.addOperand(Inst.getOperand(4)); // Rm
5767 TmpInst.addOperand(Inst.getOperand(0)); // Vd
5768 TmpInst.addOperand(Inst.getOperand(1)); // lane
5769 TmpInst.addOperand(Inst.getOperand(5)); // CondCode
5770 TmpInst.addOperand(Inst.getOperand(6));
5771 Inst = TmpInst;
5772 return true;
5773 }
5774
5775 case ARM::VST2LNdWB_register_Asm_8:
5776 case ARM::VST2LNdWB_register_Asm_16:
5777 case ARM::VST2LNdWB_register_Asm_32:
5778 case ARM::VST2LNqWB_register_Asm_16:
5779 case ARM::VST2LNqWB_register_Asm_32: {
5780 MCInst TmpInst;
5781 // Shuffle the operands around so the lane index operand is in the
5782 // right place.
5783 unsigned Spacing;
5784 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5785 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5786 TmpInst.addOperand(Inst.getOperand(2)); // Rn
5787 TmpInst.addOperand(Inst.getOperand(3)); // alignment
5788 TmpInst.addOperand(Inst.getOperand(4)); // Rm
5789 TmpInst.addOperand(Inst.getOperand(0)); // Vd
5790 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5791 Spacing));
5792 TmpInst.addOperand(Inst.getOperand(1)); // lane
5793 TmpInst.addOperand(Inst.getOperand(5)); // CondCode
5794 TmpInst.addOperand(Inst.getOperand(6));
5795 Inst = TmpInst;
5796 return true;
5797 }
5798
5799 case ARM::VST3LNdWB_register_Asm_8:
5800 case ARM::VST3LNdWB_register_Asm_16:
5801 case ARM::VST3LNdWB_register_Asm_32:
5802 case ARM::VST3LNqWB_register_Asm_16:
5803 case ARM::VST3LNqWB_register_Asm_32: {
5804 MCInst TmpInst;
5805 // Shuffle the operands around so the lane index operand is in the
5806 // right place.
5807 unsigned Spacing;
5808 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5809 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5810 TmpInst.addOperand(Inst.getOperand(2)); // Rn
5811 TmpInst.addOperand(Inst.getOperand(3)); // alignment
5812 TmpInst.addOperand(Inst.getOperand(4)); // Rm
5813 TmpInst.addOperand(Inst.getOperand(0)); // Vd
5814 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5815 Spacing));
5816 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5817 Spacing * 2));
5818 TmpInst.addOperand(Inst.getOperand(1)); // lane
5819 TmpInst.addOperand(Inst.getOperand(5)); // CondCode
5820 TmpInst.addOperand(Inst.getOperand(6));
5821 Inst = TmpInst;
5822 return true;
5823 }
5824
5825 case ARM::VST4LNdWB_register_Asm_8:
5826 case ARM::VST4LNdWB_register_Asm_16:
5827 case ARM::VST4LNdWB_register_Asm_32:
5828 case ARM::VST4LNqWB_register_Asm_16:
5829 case ARM::VST4LNqWB_register_Asm_32: {
5830 MCInst TmpInst;
5831 // Shuffle the operands around so the lane index operand is in the
5832 // right place.
5833 unsigned Spacing;
5834 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5835 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5836 TmpInst.addOperand(Inst.getOperand(2)); // Rn
5837 TmpInst.addOperand(Inst.getOperand(3)); // alignment
5838 TmpInst.addOperand(Inst.getOperand(4)); // Rm
5839 TmpInst.addOperand(Inst.getOperand(0)); // Vd
5840 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5841 Spacing));
5842 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5843 Spacing * 2));
5844 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5845 Spacing * 3));
5846 TmpInst.addOperand(Inst.getOperand(1)); // lane
5847 TmpInst.addOperand(Inst.getOperand(5)); // CondCode
5848 TmpInst.addOperand(Inst.getOperand(6));
5849 Inst = TmpInst;
5850 return true;
5851 }
5852
5853 case ARM::VST1LNdWB_fixed_Asm_8:
5854 case ARM::VST1LNdWB_fixed_Asm_16:
5855 case ARM::VST1LNdWB_fixed_Asm_32: {
5856 MCInst TmpInst;
5857 // Shuffle the operands around so the lane index operand is in the
5858 // right place.
5859 unsigned Spacing;
5860 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5861 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5862 TmpInst.addOperand(Inst.getOperand(2)); // Rn
5863 TmpInst.addOperand(Inst.getOperand(3)); // alignment
5864 TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
5865 TmpInst.addOperand(Inst.getOperand(0)); // Vd
5866 TmpInst.addOperand(Inst.getOperand(1)); // lane
5867 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
5868 TmpInst.addOperand(Inst.getOperand(5));
5869 Inst = TmpInst;
5870 return true;
5871 }
5872
5873 case ARM::VST2LNdWB_fixed_Asm_8:
5874 case ARM::VST2LNdWB_fixed_Asm_16:
5875 case ARM::VST2LNdWB_fixed_Asm_32:
5876 case ARM::VST2LNqWB_fixed_Asm_16:
5877 case ARM::VST2LNqWB_fixed_Asm_32: {
5878 MCInst TmpInst;
5879 // Shuffle the operands around so the lane index operand is in the
5880 // right place.
5881 unsigned Spacing;
5882 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5883 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5884 TmpInst.addOperand(Inst.getOperand(2)); // Rn
5885 TmpInst.addOperand(Inst.getOperand(3)); // alignment
5886 TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
5887 TmpInst.addOperand(Inst.getOperand(0)); // Vd
5888 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5889 Spacing));
5890 TmpInst.addOperand(Inst.getOperand(1)); // lane
5891 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
5892 TmpInst.addOperand(Inst.getOperand(5));
5893 Inst = TmpInst;
5894 return true;
5895 }
5896
5897 case ARM::VST3LNdWB_fixed_Asm_8:
5898 case ARM::VST3LNdWB_fixed_Asm_16:
5899 case ARM::VST3LNdWB_fixed_Asm_32:
5900 case ARM::VST3LNqWB_fixed_Asm_16:
5901 case ARM::VST3LNqWB_fixed_Asm_32: {
5902 MCInst TmpInst;
5903 // Shuffle the operands around so the lane index operand is in the
5904 // right place.
5905 unsigned Spacing;
5906 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5907 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5908 TmpInst.addOperand(Inst.getOperand(2)); // Rn
5909 TmpInst.addOperand(Inst.getOperand(3)); // alignment
5910 TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
5911 TmpInst.addOperand(Inst.getOperand(0)); // Vd
5912 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5913 Spacing));
5914 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5915 Spacing * 2));
5916 TmpInst.addOperand(Inst.getOperand(1)); // lane
5917 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
5918 TmpInst.addOperand(Inst.getOperand(5));
5919 Inst = TmpInst;
5920 return true;
5921 }
5922
5923 case ARM::VST4LNdWB_fixed_Asm_8:
5924 case ARM::VST4LNdWB_fixed_Asm_16:
5925 case ARM::VST4LNdWB_fixed_Asm_32:
5926 case ARM::VST4LNqWB_fixed_Asm_16:
5927 case ARM::VST4LNqWB_fixed_Asm_32: {
5928 MCInst TmpInst;
5929 // Shuffle the operands around so the lane index operand is in the
5930 // right place.
5931 unsigned Spacing;
5932 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5933 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5934 TmpInst.addOperand(Inst.getOperand(2)); // Rn
5935 TmpInst.addOperand(Inst.getOperand(3)); // alignment
5936 TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
5937 TmpInst.addOperand(Inst.getOperand(0)); // Vd
5938 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5939 Spacing));
5940 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5941 Spacing * 2));
5942 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5943 Spacing * 3));
5944 TmpInst.addOperand(Inst.getOperand(1)); // lane
5945 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
5946 TmpInst.addOperand(Inst.getOperand(5));
5947 Inst = TmpInst;
5948 return true;
5949 }
5950
5951 case ARM::VST1LNdAsm_8:
5952 case ARM::VST1LNdAsm_16:
5953 case ARM::VST1LNdAsm_32: {
5954 MCInst TmpInst;
5955 // Shuffle the operands around so the lane index operand is in the
5956 // right place.
5957 unsigned Spacing;
5958 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5959 TmpInst.addOperand(Inst.getOperand(2)); // Rn
5960 TmpInst.addOperand(Inst.getOperand(3)); // alignment
5961 TmpInst.addOperand(Inst.getOperand(0)); // Vd
5962 TmpInst.addOperand(Inst.getOperand(1)); // lane
5963 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
5964 TmpInst.addOperand(Inst.getOperand(5));
5965 Inst = TmpInst;
5966 return true;
5967 }
5968
5969 case ARM::VST2LNdAsm_8:
5970 case ARM::VST2LNdAsm_16:
5971 case ARM::VST2LNdAsm_32:
5972 case ARM::VST2LNqAsm_16:
5973 case ARM::VST2LNqAsm_32: {
5974 MCInst TmpInst;
5975 // Shuffle the operands around so the lane index operand is in the
5976 // right place.
5977 unsigned Spacing;
5978 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5979 TmpInst.addOperand(Inst.getOperand(2)); // Rn
5980 TmpInst.addOperand(Inst.getOperand(3)); // alignment
5981 TmpInst.addOperand(Inst.getOperand(0)); // Vd
5982 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5983 Spacing));
5984 TmpInst.addOperand(Inst.getOperand(1)); // lane
5985 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
5986 TmpInst.addOperand(Inst.getOperand(5));
5987 Inst = TmpInst;
5988 return true;
5989 }
5990
5991 case ARM::VST3LNdAsm_8:
5992 case ARM::VST3LNdAsm_16:
5993 case ARM::VST3LNdAsm_32:
5994 case ARM::VST3LNqAsm_16:
5995 case ARM::VST3LNqAsm_32: {
5996 MCInst TmpInst;
5997 // Shuffle the operands around so the lane index operand is in the
5998 // right place.
5999 unsigned Spacing;
6000 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6001 TmpInst.addOperand(Inst.getOperand(2)); // Rn
6002 TmpInst.addOperand(Inst.getOperand(3)); // alignment
6003 TmpInst.addOperand(Inst.getOperand(0)); // Vd
6004 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6005 Spacing));
6006 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6007 Spacing * 2));
6008 TmpInst.addOperand(Inst.getOperand(1)); // lane
6009 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6010 TmpInst.addOperand(Inst.getOperand(5));
6011 Inst = TmpInst;
6012 return true;
6013 }
6014
6015 case ARM::VST4LNdAsm_8:
6016 case ARM::VST4LNdAsm_16:
6017 case ARM::VST4LNdAsm_32:
6018 case ARM::VST4LNqAsm_16:
6019 case ARM::VST4LNqAsm_32: {
6020 MCInst TmpInst;
6021 // Shuffle the operands around so the lane index operand is in the
6022 // right place.
6023 unsigned Spacing;
6024 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6025 TmpInst.addOperand(Inst.getOperand(2)); // Rn
6026 TmpInst.addOperand(Inst.getOperand(3)); // alignment
6027 TmpInst.addOperand(Inst.getOperand(0)); // Vd
6028 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6029 Spacing));
6030 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6031 Spacing * 2));
6032 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6033 Spacing * 3));
6034 TmpInst.addOperand(Inst.getOperand(1)); // lane
6035 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6036 TmpInst.addOperand(Inst.getOperand(5));
6037 Inst = TmpInst;
6038 return true;
6039 }
6040
6041 // Handle NEON VLD complex aliases.
6042 case ARM::VLD1LNdWB_register_Asm_8:
6043 case ARM::VLD1LNdWB_register_Asm_16:
6044 case ARM::VLD1LNdWB_register_Asm_32: {
6045 MCInst TmpInst;
6046 // Shuffle the operands around so the lane index operand is in the
6047 // right place.
6048 unsigned Spacing;
6049 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6050 TmpInst.addOperand(Inst.getOperand(0)); // Vd
6051 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6052 TmpInst.addOperand(Inst.getOperand(2)); // Rn
6053 TmpInst.addOperand(Inst.getOperand(3)); // alignment
6054 TmpInst.addOperand(Inst.getOperand(4)); // Rm
6055 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6056 TmpInst.addOperand(Inst.getOperand(1)); // lane
6057 TmpInst.addOperand(Inst.getOperand(5)); // CondCode
6058 TmpInst.addOperand(Inst.getOperand(6));
6059 Inst = TmpInst;
6060 return true;
6061 }
6062
6063 case ARM::VLD2LNdWB_register_Asm_8:
6064 case ARM::VLD2LNdWB_register_Asm_16:
6065 case ARM::VLD2LNdWB_register_Asm_32:
6066 case ARM::VLD2LNqWB_register_Asm_16:
6067 case ARM::VLD2LNqWB_register_Asm_32: {
6068 MCInst TmpInst;
6069 // Shuffle the operands around so the lane index operand is in the
6070 // right place.
6071 unsigned Spacing;
6072 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6073 TmpInst.addOperand(Inst.getOperand(0)); // Vd
6074 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6075 Spacing));
6076 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6077 TmpInst.addOperand(Inst.getOperand(2)); // Rn
6078 TmpInst.addOperand(Inst.getOperand(3)); // alignment
6079 TmpInst.addOperand(Inst.getOperand(4)); // Rm
6080 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6081 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6082 Spacing));
6083 TmpInst.addOperand(Inst.getOperand(1)); // lane
6084 TmpInst.addOperand(Inst.getOperand(5)); // CondCode
6085 TmpInst.addOperand(Inst.getOperand(6));
6086 Inst = TmpInst;
6087 return true;
6088 }
6089
6090 case ARM::VLD3LNdWB_register_Asm_8:
6091 case ARM::VLD3LNdWB_register_Asm_16:
6092 case ARM::VLD3LNdWB_register_Asm_32:
6093 case ARM::VLD3LNqWB_register_Asm_16:
6094 case ARM::VLD3LNqWB_register_Asm_32: {
6095 MCInst TmpInst;
6096 // Shuffle the operands around so the lane index operand is in the
6097 // right place.
6098 unsigned Spacing;
6099 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6100 TmpInst.addOperand(Inst.getOperand(0)); // Vd
6101 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6102 Spacing));
6103 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6104 Spacing * 2));
6105 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6106 TmpInst.addOperand(Inst.getOperand(2)); // Rn
6107 TmpInst.addOperand(Inst.getOperand(3)); // alignment
6108 TmpInst.addOperand(Inst.getOperand(4)); // Rm
6109 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6110 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6111 Spacing));
6112 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6113 Spacing * 2));
6114 TmpInst.addOperand(Inst.getOperand(1)); // lane
6115 TmpInst.addOperand(Inst.getOperand(5)); // CondCode
6116 TmpInst.addOperand(Inst.getOperand(6));
6117 Inst = TmpInst;
6118 return true;
6119 }
6120
6121 case ARM::VLD4LNdWB_register_Asm_8:
6122 case ARM::VLD4LNdWB_register_Asm_16:
6123 case ARM::VLD4LNdWB_register_Asm_32:
6124 case ARM::VLD4LNqWB_register_Asm_16:
6125 case ARM::VLD4LNqWB_register_Asm_32: {
6126 MCInst TmpInst;
6127 // Shuffle the operands around so the lane index operand is in the
6128 // right place.
6129 unsigned Spacing;
6130 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6131 TmpInst.addOperand(Inst.getOperand(0)); // Vd
6132 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6133 Spacing));
6134 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6135 Spacing * 2));
6136 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6137 Spacing * 3));
6138 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6139 TmpInst.addOperand(Inst.getOperand(2)); // Rn
6140 TmpInst.addOperand(Inst.getOperand(3)); // alignment
6141 TmpInst.addOperand(Inst.getOperand(4)); // Rm
6142 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6143 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6144 Spacing));
6145 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6146 Spacing * 2));
6147 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6148 Spacing * 3));
6149 TmpInst.addOperand(Inst.getOperand(1)); // lane
6150 TmpInst.addOperand(Inst.getOperand(5)); // CondCode
6151 TmpInst.addOperand(Inst.getOperand(6));
6152 Inst = TmpInst;
6153 return true;
6154 }
6155
6156 case ARM::VLD1LNdWB_fixed_Asm_8:
6157 case ARM::VLD1LNdWB_fixed_Asm_16:
6158 case ARM::VLD1LNdWB_fixed_Asm_32: {
6159 MCInst TmpInst;
6160 // Shuffle the operands around so the lane index operand is in the
6161 // right place.
6162 unsigned Spacing;
6163 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6164 TmpInst.addOperand(Inst.getOperand(0)); // Vd
6165 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6166 TmpInst.addOperand(Inst.getOperand(2)); // Rn
6167 TmpInst.addOperand(Inst.getOperand(3)); // alignment
6168 TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6169 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6170 TmpInst.addOperand(Inst.getOperand(1)); // lane
6171 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6172 TmpInst.addOperand(Inst.getOperand(5));
6173 Inst = TmpInst;
6174 return true;
6175 }
6176
6177 case ARM::VLD2LNdWB_fixed_Asm_8:
6178 case ARM::VLD2LNdWB_fixed_Asm_16:
6179 case ARM::VLD2LNdWB_fixed_Asm_32:
6180 case ARM::VLD2LNqWB_fixed_Asm_16:
6181 case ARM::VLD2LNqWB_fixed_Asm_32: {
6182 MCInst TmpInst;
6183 // Shuffle the operands around so the lane index operand is in the
6184 // right place.
6185 unsigned Spacing;
6186 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6187 TmpInst.addOperand(Inst.getOperand(0)); // Vd
6188 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6189 Spacing));
6190 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6191 TmpInst.addOperand(Inst.getOperand(2)); // Rn
6192 TmpInst.addOperand(Inst.getOperand(3)); // alignment
6193 TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6194 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6195 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6196 Spacing));
6197 TmpInst.addOperand(Inst.getOperand(1)); // lane
6198 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6199 TmpInst.addOperand(Inst.getOperand(5));
6200 Inst = TmpInst;
6201 return true;
6202 }
6203
6204 case ARM::VLD3LNdWB_fixed_Asm_8:
6205 case ARM::VLD3LNdWB_fixed_Asm_16:
6206 case ARM::VLD3LNdWB_fixed_Asm_32:
6207 case ARM::VLD3LNqWB_fixed_Asm_16:
6208 case ARM::VLD3LNqWB_fixed_Asm_32: {
6209 MCInst TmpInst;
6210 // Shuffle the operands around so the lane index operand is in the
6211 // right place.
6212 unsigned Spacing;
6213 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6214 TmpInst.addOperand(Inst.getOperand(0)); // Vd
6215 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6216 Spacing));
6217 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6218 Spacing * 2));
6219 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6220 TmpInst.addOperand(Inst.getOperand(2)); // Rn
6221 TmpInst.addOperand(Inst.getOperand(3)); // alignment
6222 TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6223 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6224 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6225 Spacing));
6226 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6227 Spacing * 2));
6228 TmpInst.addOperand(Inst.getOperand(1)); // lane
6229 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6230 TmpInst.addOperand(Inst.getOperand(5));
6231 Inst = TmpInst;
6232 return true;
6233 }
6234
6235 case ARM::VLD4LNdWB_fixed_Asm_8:
6236 case ARM::VLD4LNdWB_fixed_Asm_16:
6237 case ARM::VLD4LNdWB_fixed_Asm_32:
6238 case ARM::VLD4LNqWB_fixed_Asm_16:
6239 case ARM::VLD4LNqWB_fixed_Asm_32: {
6240 MCInst TmpInst;
6241 // Shuffle the operands around so the lane index operand is in the
6242 // right place.
6243 unsigned Spacing;
6244 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6245 TmpInst.addOperand(Inst.getOperand(0)); // Vd
6246 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6247 Spacing));
6248 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6249 Spacing * 2));
6250 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6251 Spacing * 3));
6252 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6253 TmpInst.addOperand(Inst.getOperand(2)); // Rn
6254 TmpInst.addOperand(Inst.getOperand(3)); // alignment
6255 TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6256 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6257 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6258 Spacing));
6259 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6260 Spacing * 2));
6261 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6262 Spacing * 3));
6263 TmpInst.addOperand(Inst.getOperand(1)); // lane
6264 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6265 TmpInst.addOperand(Inst.getOperand(5));
6266 Inst = TmpInst;
6267 return true;
6268 }
6269
6270 case ARM::VLD1LNdAsm_8:
6271 case ARM::VLD1LNdAsm_16:
6272 case ARM::VLD1LNdAsm_32: {
6273 MCInst TmpInst;
6274 // Shuffle the operands around so the lane index operand is in the
6275 // right place.
6276 unsigned Spacing;
6277 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6278 TmpInst.addOperand(Inst.getOperand(0)); // Vd
6279 TmpInst.addOperand(Inst.getOperand(2)); // Rn
6280 TmpInst.addOperand(Inst.getOperand(3)); // alignment
6281 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6282 TmpInst.addOperand(Inst.getOperand(1)); // lane
6283 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6284 TmpInst.addOperand(Inst.getOperand(5));
6285 Inst = TmpInst;
6286 return true;
6287 }
6288
6289 case ARM::VLD2LNdAsm_8:
6290 case ARM::VLD2LNdAsm_16:
6291 case ARM::VLD2LNdAsm_32:
6292 case ARM::VLD2LNqAsm_16:
6293 case ARM::VLD2LNqAsm_32: {
6294 MCInst TmpInst;
6295 // Shuffle the operands around so the lane index operand is in the
6296 // right place.
6297 unsigned Spacing;
6298 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6299 TmpInst.addOperand(Inst.getOperand(0)); // Vd
6300 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6301 Spacing));
6302 TmpInst.addOperand(Inst.getOperand(2)); // Rn
6303 TmpInst.addOperand(Inst.getOperand(3)); // alignment
6304 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6305 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6306 Spacing));
6307 TmpInst.addOperand(Inst.getOperand(1)); // lane
6308 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6309 TmpInst.addOperand(Inst.getOperand(5));
6310 Inst = TmpInst;
6311 return true;
6312 }
6313
6314 case ARM::VLD3LNdAsm_8:
6315 case ARM::VLD3LNdAsm_16:
6316 case ARM::VLD3LNdAsm_32:
6317 case ARM::VLD3LNqAsm_16:
6318 case ARM::VLD3LNqAsm_32: {
6319 MCInst TmpInst;
6320 // Shuffle the operands around so the lane index operand is in the
6321 // right place.
6322 unsigned Spacing;
6323 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6324 TmpInst.addOperand(Inst.getOperand(0)); // Vd
6325 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6326 Spacing));
6327 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6328 Spacing * 2));
6329 TmpInst.addOperand(Inst.getOperand(2)); // Rn
6330 TmpInst.addOperand(Inst.getOperand(3)); // alignment
6331 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6332 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6333 Spacing));
6334 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6335 Spacing * 2));
6336 TmpInst.addOperand(Inst.getOperand(1)); // lane
6337 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6338 TmpInst.addOperand(Inst.getOperand(5));
6339 Inst = TmpInst;
6340 return true;
6341 }
6342
6343 case ARM::VLD4LNdAsm_8:
6344 case ARM::VLD4LNdAsm_16:
6345 case ARM::VLD4LNdAsm_32:
6346 case ARM::VLD4LNqAsm_16:
6347 case ARM::VLD4LNqAsm_32: {
6348 MCInst TmpInst;
6349 // Shuffle the operands around so the lane index operand is in the
6350 // right place.
6351 unsigned Spacing;
6352 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6353 TmpInst.addOperand(Inst.getOperand(0)); // Vd
6354 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6355 Spacing));
6356 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6357 Spacing * 2));
6358 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6359 Spacing * 3));
6360 TmpInst.addOperand(Inst.getOperand(2)); // Rn
6361 TmpInst.addOperand(Inst.getOperand(3)); // alignment
6362 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6363 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6364 Spacing));
6365 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6366 Spacing * 2));
6367 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6368 Spacing * 3));
6369 TmpInst.addOperand(Inst.getOperand(1)); // lane
6370 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6371 TmpInst.addOperand(Inst.getOperand(5));
6372 Inst = TmpInst;
6373 return true;
6374 }
6375
6376 // VLD3DUP single 3-element structure to all lanes instructions.
6377 case ARM::VLD3DUPdAsm_8:
6378 case ARM::VLD3DUPdAsm_16:
6379 case ARM::VLD3DUPdAsm_32:
6380 case ARM::VLD3DUPqAsm_8:
6381 case ARM::VLD3DUPqAsm_16:
6382 case ARM::VLD3DUPqAsm_32: {
6383 MCInst TmpInst;
6384 unsigned Spacing;
6385 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6386 TmpInst.addOperand(Inst.getOperand(0)); // Vd
6387 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6388 Spacing));
6389 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6390 Spacing * 2));
6391 TmpInst.addOperand(Inst.getOperand(1)); // Rn
6392 TmpInst.addOperand(Inst.getOperand(2)); // alignment
6393 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6394 TmpInst.addOperand(Inst.getOperand(4));
6395 Inst = TmpInst;
6396 return true;
6397 }
6398
6399 case ARM::VLD3DUPdWB_fixed_Asm_8:
6400 case ARM::VLD3DUPdWB_fixed_Asm_16:
6401 case ARM::VLD3DUPdWB_fixed_Asm_32:
6402 case ARM::VLD3DUPqWB_fixed_Asm_8:
6403 case ARM::VLD3DUPqWB_fixed_Asm_16:
6404 case ARM::VLD3DUPqWB_fixed_Asm_32: {
6405 MCInst TmpInst;
6406 unsigned Spacing;
6407 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6408 TmpInst.addOperand(Inst.getOperand(0)); // Vd
6409 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6410 Spacing));
6411 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6412 Spacing * 2));
6413 TmpInst.addOperand(Inst.getOperand(1)); // Rn
6414 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6415 TmpInst.addOperand(Inst.getOperand(2)); // alignment
6416 TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6417 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6418 TmpInst.addOperand(Inst.getOperand(4));
6419 Inst = TmpInst;
6420 return true;
6421 }
6422
6423 case ARM::VLD3DUPdWB_register_Asm_8:
6424 case ARM::VLD3DUPdWB_register_Asm_16:
6425 case ARM::VLD3DUPdWB_register_Asm_32:
6426 case ARM::VLD3DUPqWB_register_Asm_8:
6427 case ARM::VLD3DUPqWB_register_Asm_16:
6428 case ARM::VLD3DUPqWB_register_Asm_32: {
6429 MCInst TmpInst;
6430 unsigned Spacing;
6431 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6432 TmpInst.addOperand(Inst.getOperand(0)); // Vd
6433 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6434 Spacing));
6435 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6436 Spacing * 2));
6437 TmpInst.addOperand(Inst.getOperand(1)); // Rn
6438 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6439 TmpInst.addOperand(Inst.getOperand(2)); // alignment
6440 TmpInst.addOperand(Inst.getOperand(3)); // Rm
6441 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6442 TmpInst.addOperand(Inst.getOperand(5));
6443 Inst = TmpInst;
6444 return true;
6445 }
6446
6447 // VLD3 multiple 3-element structure instructions.
6448 case ARM::VLD3dAsm_8:
6449 case ARM::VLD3dAsm_16:
6450 case ARM::VLD3dAsm_32:
6451 case ARM::VLD3qAsm_8:
6452 case ARM::VLD3qAsm_16:
6453 case ARM::VLD3qAsm_32: {
6454 MCInst TmpInst;
6455 unsigned Spacing;
6456 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6457 TmpInst.addOperand(Inst.getOperand(0)); // Vd
6458 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6459 Spacing));
6460 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6461 Spacing * 2));
6462 TmpInst.addOperand(Inst.getOperand(1)); // Rn
6463 TmpInst.addOperand(Inst.getOperand(2)); // alignment
6464 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6465 TmpInst.addOperand(Inst.getOperand(4));
6466 Inst = TmpInst;
6467 return true;
6468 }
6469
6470 case ARM::VLD3dWB_fixed_Asm_8:
6471 case ARM::VLD3dWB_fixed_Asm_16:
6472 case ARM::VLD3dWB_fixed_Asm_32:
6473 case ARM::VLD3qWB_fixed_Asm_8:
6474 case ARM::VLD3qWB_fixed_Asm_16:
6475 case ARM::VLD3qWB_fixed_Asm_32: {
6476 MCInst TmpInst;
6477 unsigned Spacing;
6478 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6479 TmpInst.addOperand(Inst.getOperand(0)); // Vd
6480 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6481 Spacing));
6482 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6483 Spacing * 2));
6484 TmpInst.addOperand(Inst.getOperand(1)); // Rn
6485 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6486 TmpInst.addOperand(Inst.getOperand(2)); // alignment
6487 TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6488 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6489 TmpInst.addOperand(Inst.getOperand(4));
6490 Inst = TmpInst;
6491 return true;
6492 }
6493
6494 case ARM::VLD3dWB_register_Asm_8:
6495 case ARM::VLD3dWB_register_Asm_16:
6496 case ARM::VLD3dWB_register_Asm_32:
6497 case ARM::VLD3qWB_register_Asm_8:
6498 case ARM::VLD3qWB_register_Asm_16:
6499 case ARM::VLD3qWB_register_Asm_32: {
6500 MCInst TmpInst;
6501 unsigned Spacing;
6502 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6503 TmpInst.addOperand(Inst.getOperand(0)); // Vd
6504 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6505 Spacing));
6506 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6507 Spacing * 2));
6508 TmpInst.addOperand(Inst.getOperand(1)); // Rn
6509 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6510 TmpInst.addOperand(Inst.getOperand(2)); // alignment
6511 TmpInst.addOperand(Inst.getOperand(3)); // Rm
6512 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6513 TmpInst.addOperand(Inst.getOperand(5));
6514 Inst = TmpInst;
6515 return true;
6516 }
6517
6518 // VLD4DUP single 3-element structure to all lanes instructions.
6519 case ARM::VLD4DUPdAsm_8:
6520 case ARM::VLD4DUPdAsm_16:
6521 case ARM::VLD4DUPdAsm_32:
6522 case ARM::VLD4DUPqAsm_8:
6523 case ARM::VLD4DUPqAsm_16:
6524 case ARM::VLD4DUPqAsm_32: {
6525 MCInst TmpInst;
6526 unsigned Spacing;
6527 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6528 TmpInst.addOperand(Inst.getOperand(0)); // Vd
6529 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6530 Spacing));
6531 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6532 Spacing * 2));
6533 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6534 Spacing * 3));
6535 TmpInst.addOperand(Inst.getOperand(1)); // Rn
6536 TmpInst.addOperand(Inst.getOperand(2)); // alignment
6537 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6538 TmpInst.addOperand(Inst.getOperand(4));
6539 Inst = TmpInst;
6540 return true;
6541 }
6542
6543 case ARM::VLD4DUPdWB_fixed_Asm_8:
6544 case ARM::VLD4DUPdWB_fixed_Asm_16:
6545 case ARM::VLD4DUPdWB_fixed_Asm_32:
6546 case ARM::VLD4DUPqWB_fixed_Asm_8:
6547 case ARM::VLD4DUPqWB_fixed_Asm_16:
6548 case ARM::VLD4DUPqWB_fixed_Asm_32: {
6549 MCInst TmpInst;
6550 unsigned Spacing;
6551 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6552 TmpInst.addOperand(Inst.getOperand(0)); // Vd
6553 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6554 Spacing));
6555 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6556 Spacing * 2));
6557 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6558 Spacing * 3));
6559 TmpInst.addOperand(Inst.getOperand(1)); // Rn
6560 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6561 TmpInst.addOperand(Inst.getOperand(2)); // alignment
6562 TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6563 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6564 TmpInst.addOperand(Inst.getOperand(4));
6565 Inst = TmpInst;
6566 return true;
6567 }
6568
6569 case ARM::VLD4DUPdWB_register_Asm_8:
6570 case ARM::VLD4DUPdWB_register_Asm_16:
6571 case ARM::VLD4DUPdWB_register_Asm_32:
6572 case ARM::VLD4DUPqWB_register_Asm_8:
6573 case ARM::VLD4DUPqWB_register_Asm_16:
6574 case ARM::VLD4DUPqWB_register_Asm_32: {
6575 MCInst TmpInst;
6576 unsigned Spacing;
6577 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6578 TmpInst.addOperand(Inst.getOperand(0)); // Vd
6579 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6580 Spacing));
6581 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6582 Spacing * 2));
6583 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6584 Spacing * 3));
6585 TmpInst.addOperand(Inst.getOperand(1)); // Rn
6586 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6587 TmpInst.addOperand(Inst.getOperand(2)); // alignment
6588 TmpInst.addOperand(Inst.getOperand(3)); // Rm
6589 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6590 TmpInst.addOperand(Inst.getOperand(5));
6591 Inst = TmpInst;
6592 return true;
6593 }
6594
6595 // VLD4 multiple 4-element structure instructions.
6596 case ARM::VLD4dAsm_8:
6597 case ARM::VLD4dAsm_16:
6598 case ARM::VLD4dAsm_32:
6599 case ARM::VLD4qAsm_8:
6600 case ARM::VLD4qAsm_16:
6601 case ARM::VLD4qAsm_32: {
6602 MCInst TmpInst;
6603 unsigned Spacing;
6604 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6605 TmpInst.addOperand(Inst.getOperand(0)); // Vd
6606 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6607 Spacing));
6608 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6609 Spacing * 2));
6610 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6611 Spacing * 3));
6612 TmpInst.addOperand(Inst.getOperand(1)); // Rn
6613 TmpInst.addOperand(Inst.getOperand(2)); // alignment
6614 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6615 TmpInst.addOperand(Inst.getOperand(4));
6616 Inst = TmpInst;
6617 return true;
6618 }
6619
6620 case ARM::VLD4dWB_fixed_Asm_8:
6621 case ARM::VLD4dWB_fixed_Asm_16:
6622 case ARM::VLD4dWB_fixed_Asm_32:
6623 case ARM::VLD4qWB_fixed_Asm_8:
6624 case ARM::VLD4qWB_fixed_Asm_16:
6625 case ARM::VLD4qWB_fixed_Asm_32: {
6626 MCInst TmpInst;
6627 unsigned Spacing;
6628 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6629 TmpInst.addOperand(Inst.getOperand(0)); // Vd
6630 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6631 Spacing));
6632 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6633 Spacing * 2));
6634 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6635 Spacing * 3));
6636 TmpInst.addOperand(Inst.getOperand(1)); // Rn
6637 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6638 TmpInst.addOperand(Inst.getOperand(2)); // alignment
6639 TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6640 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6641 TmpInst.addOperand(Inst.getOperand(4));
6642 Inst = TmpInst;
6643 return true;
6644 }
6645
6646 case ARM::VLD4dWB_register_Asm_8:
6647 case ARM::VLD4dWB_register_Asm_16:
6648 case ARM::VLD4dWB_register_Asm_32:
6649 case ARM::VLD4qWB_register_Asm_8:
6650 case ARM::VLD4qWB_register_Asm_16:
6651 case ARM::VLD4qWB_register_Asm_32: {
6652 MCInst TmpInst;
6653 unsigned Spacing;
6654 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6655 TmpInst.addOperand(Inst.getOperand(0)); // Vd
6656 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6657 Spacing));
6658 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6659 Spacing * 2));
6660 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6661 Spacing * 3));
6662 TmpInst.addOperand(Inst.getOperand(1)); // Rn
6663 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6664 TmpInst.addOperand(Inst.getOperand(2)); // alignment
6665 TmpInst.addOperand(Inst.getOperand(3)); // Rm
6666 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6667 TmpInst.addOperand(Inst.getOperand(5));
6668 Inst = TmpInst;
6669 return true;
6670 }
6671
6672 // VST3 multiple 3-element structure instructions.
6673 case ARM::VST3dAsm_8:
6674 case ARM::VST3dAsm_16:
6675 case ARM::VST3dAsm_32:
6676 case ARM::VST3qAsm_8:
6677 case ARM::VST3qAsm_16:
6678 case ARM::VST3qAsm_32: {
6679 MCInst TmpInst;
6680 unsigned Spacing;
6681 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6682 TmpInst.addOperand(Inst.getOperand(1)); // Rn
6683 TmpInst.addOperand(Inst.getOperand(2)); // alignment
6684 TmpInst.addOperand(Inst.getOperand(0)); // Vd
6685 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6686 Spacing));
6687 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6688 Spacing * 2));
6689 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6690 TmpInst.addOperand(Inst.getOperand(4));
6691 Inst = TmpInst;
6692 return true;
6693 }
6694
6695 case ARM::VST3dWB_fixed_Asm_8:
6696 case ARM::VST3dWB_fixed_Asm_16:
6697 case ARM::VST3dWB_fixed_Asm_32:
6698 case ARM::VST3qWB_fixed_Asm_8:
6699 case ARM::VST3qWB_fixed_Asm_16:
6700 case ARM::VST3qWB_fixed_Asm_32: {
6701 MCInst TmpInst;
6702 unsigned Spacing;
6703 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6704 TmpInst.addOperand(Inst.getOperand(1)); // Rn
6705 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6706 TmpInst.addOperand(Inst.getOperand(2)); // alignment
6707 TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6708 TmpInst.addOperand(Inst.getOperand(0)); // Vd
6709 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6710 Spacing));
6711 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6712 Spacing * 2));
6713 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6714 TmpInst.addOperand(Inst.getOperand(4));
6715 Inst = TmpInst;
6716 return true;
6717 }
6718
6719 case ARM::VST3dWB_register_Asm_8:
6720 case ARM::VST3dWB_register_Asm_16:
6721 case ARM::VST3dWB_register_Asm_32:
6722 case ARM::VST3qWB_register_Asm_8:
6723 case ARM::VST3qWB_register_Asm_16:
6724 case ARM::VST3qWB_register_Asm_32: {
6725 MCInst TmpInst;
6726 unsigned Spacing;
6727 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6728 TmpInst.addOperand(Inst.getOperand(1)); // Rn
6729 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6730 TmpInst.addOperand(Inst.getOperand(2)); // alignment
6731 TmpInst.addOperand(Inst.getOperand(3)); // Rm
6732 TmpInst.addOperand(Inst.getOperand(0)); // Vd
6733 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6734 Spacing));
6735 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6736 Spacing * 2));
6737 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6738 TmpInst.addOperand(Inst.getOperand(5));
6739 Inst = TmpInst;
6740 return true;
6741 }
6742
6743 // VST4 multiple 3-element structure instructions.
6744 case ARM::VST4dAsm_8:
6745 case ARM::VST4dAsm_16:
6746 case ARM::VST4dAsm_32:
6747 case ARM::VST4qAsm_8:
6748 case ARM::VST4qAsm_16:
6749 case ARM::VST4qAsm_32: {
6750 MCInst TmpInst;
6751 unsigned Spacing;
6752 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6753 TmpInst.addOperand(Inst.getOperand(1)); // Rn
6754 TmpInst.addOperand(Inst.getOperand(2)); // alignment
6755 TmpInst.addOperand(Inst.getOperand(0)); // Vd
6756 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6757 Spacing));
6758 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6759 Spacing * 2));
6760 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6761 Spacing * 3));
6762 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6763 TmpInst.addOperand(Inst.getOperand(4));
6764 Inst = TmpInst;
6765 return true;
6766 }
6767
6768 case ARM::VST4dWB_fixed_Asm_8:
6769 case ARM::VST4dWB_fixed_Asm_16:
6770 case ARM::VST4dWB_fixed_Asm_32:
6771 case ARM::VST4qWB_fixed_Asm_8:
6772 case ARM::VST4qWB_fixed_Asm_16:
6773 case ARM::VST4qWB_fixed_Asm_32: {
6774 MCInst TmpInst;
6775 unsigned Spacing;
6776 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6777 TmpInst.addOperand(Inst.getOperand(1)); // Rn
6778 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6779 TmpInst.addOperand(Inst.getOperand(2)); // alignment
6780 TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6781 TmpInst.addOperand(Inst.getOperand(0)); // Vd
6782 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6783 Spacing));
6784 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6785 Spacing * 2));
6786 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6787 Spacing * 3));
6788 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6789 TmpInst.addOperand(Inst.getOperand(4));
6790 Inst = TmpInst;
6791 return true;
6792 }
6793
6794 case ARM::VST4dWB_register_Asm_8:
6795 case ARM::VST4dWB_register_Asm_16:
6796 case ARM::VST4dWB_register_Asm_32:
6797 case ARM::VST4qWB_register_Asm_8:
6798 case ARM::VST4qWB_register_Asm_16:
6799 case ARM::VST4qWB_register_Asm_32: {
6800 MCInst TmpInst;
6801 unsigned Spacing;
6802 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6803 TmpInst.addOperand(Inst.getOperand(1)); // Rn
6804 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6805 TmpInst.addOperand(Inst.getOperand(2)); // alignment
6806 TmpInst.addOperand(Inst.getOperand(3)); // Rm
6807 TmpInst.addOperand(Inst.getOperand(0)); // Vd
6808 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6809 Spacing));
6810 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6811 Spacing * 2));
6812 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6813 Spacing * 3));
6814 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6815 TmpInst.addOperand(Inst.getOperand(5));
6816 Inst = TmpInst;
6817 return true;
6818 }
6819
6820 // Handle encoding choice for the shift-immediate instructions.
6821 case ARM::t2LSLri:
6822 case ARM::t2LSRri:
6823 case ARM::t2ASRri: {
6824 if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
6825 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
6826 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
6827 !(static_cast<ARMOperand*>(Operands[3])->isToken() &&
6828 static_cast<ARMOperand*>(Operands[3])->getToken() == ".w")) {
6829 unsigned NewOpc;
6830 switch (Inst.getOpcode()) {
6831 default: llvm_unreachable("unexpected opcode");
6832 case ARM::t2LSLri: NewOpc = ARM::tLSLri; break;
6833 case ARM::t2LSRri: NewOpc = ARM::tLSRri; break;
6834 case ARM::t2ASRri: NewOpc = ARM::tASRri; break;
6835 }
6836 // The Thumb1 operands aren't in the same order. Awesome, eh?
6837 MCInst TmpInst;
6838 TmpInst.setOpcode(NewOpc);
6839 TmpInst.addOperand(Inst.getOperand(0));
6840 TmpInst.addOperand(Inst.getOperand(5));
6841 TmpInst.addOperand(Inst.getOperand(1));
6842 TmpInst.addOperand(Inst.getOperand(2));
6843 TmpInst.addOperand(Inst.getOperand(3));
6844 TmpInst.addOperand(Inst.getOperand(4));
6845 Inst = TmpInst;
6846 return true;
6847 }
6848 return false;
6849 }
6850
6851 // Handle the Thumb2 mode MOV complex aliases.
6852 case ARM::t2MOVsr:
6853 case ARM::t2MOVSsr: {
6854 // Which instruction to expand to depends on the CCOut operand and
6855 // whether we're in an IT block if the register operands are low
6856 // registers.
6857 bool isNarrow = false;
6858 if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
6859 isARMLowRegister(Inst.getOperand(1).getReg()) &&
6860 isARMLowRegister(Inst.getOperand(2).getReg()) &&
6861 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
6862 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr))
6863 isNarrow = true;
6864 MCInst TmpInst;
6865 unsigned newOpc;
6866 switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) {
6867 default: llvm_unreachable("unexpected opcode!");
6868 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break;
6869 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break;
6870 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break;
6871 case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR : ARM::t2RORrr; break;
6872 }
6873 TmpInst.setOpcode(newOpc);
6874 TmpInst.addOperand(Inst.getOperand(0)); // Rd
6875 if (isNarrow)
6876 TmpInst.addOperand(MCOperand::CreateReg(
6877 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
6878 TmpInst.addOperand(Inst.getOperand(1)); // Rn
6879 TmpInst.addOperand(Inst.getOperand(2)); // Rm
6880 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6881 TmpInst.addOperand(Inst.getOperand(5));
6882 if (!isNarrow)
6883 TmpInst.addOperand(MCOperand::CreateReg(
6884 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
6885 Inst = TmpInst;
6886 return true;
6887 }
6888 case ARM::t2MOVsi:
6889 case ARM::t2MOVSsi: {
6890 // Which instruction to expand to depends on the CCOut operand and
6891 // whether we're in an IT block if the register operands are low
6892 // registers.
6893 bool isNarrow = false;
6894 if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
6895 isARMLowRegister(Inst.getOperand(1).getReg()) &&
6896 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi))
6897 isNarrow = true;
6898 MCInst TmpInst;
6899 unsigned newOpc;
6900 switch(ARM_AM::getSORegShOp(Inst.getOperand(2).getImm())) {
6901 default: llvm_unreachable("unexpected opcode!");
6902 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break;
6903 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break;
6904 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break;
6905 case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break;
6906 case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break;
6907 }
6908 unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm());
6909 if (Amount == 32) Amount = 0;
6910 TmpInst.setOpcode(newOpc);
6911 TmpInst.addOperand(Inst.getOperand(0)); // Rd
6912 if (isNarrow)
6913 TmpInst.addOperand(MCOperand::CreateReg(
6914 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
6915 TmpInst.addOperand(Inst.getOperand(1)); // Rn
6916 if (newOpc != ARM::t2RRX)
6917 TmpInst.addOperand(MCOperand::CreateImm(Amount));
6918 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6919 TmpInst.addOperand(Inst.getOperand(4));
6920 if (!isNarrow)
6921 TmpInst.addOperand(MCOperand::CreateReg(
6922 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
6923 Inst = TmpInst;
6924 return true;
6925 }
6926 // Handle the ARM mode MOV complex aliases.
6927 case ARM::ASRr:
6928 case ARM::LSRr:
6929 case ARM::LSLr:
6930 case ARM::RORr: {
6931 ARM_AM::ShiftOpc ShiftTy;
6932 switch(Inst.getOpcode()) {
6933 default: llvm_unreachable("unexpected opcode!");
6934 case ARM::ASRr: ShiftTy = ARM_AM::asr; break;
6935 case ARM::LSRr: ShiftTy = ARM_AM::lsr; break;
6936 case ARM::LSLr: ShiftTy = ARM_AM::lsl; break;
6937 case ARM::RORr: ShiftTy = ARM_AM::ror; break;
6938 }
6939 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0);
6940 MCInst TmpInst;
6941 TmpInst.setOpcode(ARM::MOVsr);
6942 TmpInst.addOperand(Inst.getOperand(0)); // Rd
6943 TmpInst.addOperand(Inst.getOperand(1)); // Rn
6944 TmpInst.addOperand(Inst.getOperand(2)); // Rm
6945 TmpInst.addOperand(MCOperand::CreateImm(Shifter)); // Shift value and ty
6946 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6947 TmpInst.addOperand(Inst.getOperand(4));
6948 TmpInst.addOperand(Inst.getOperand(5)); // cc_out
6949 Inst = TmpInst;
6950 return true;
6951 }
6952 case ARM::ASRi:
6953 case ARM::LSRi:
6954 case ARM::LSLi:
6955 case ARM::RORi: {
6956 ARM_AM::ShiftOpc ShiftTy;
6957 switch(Inst.getOpcode()) {
6958 default: llvm_unreachable("unexpected opcode!");
6959 case ARM::ASRi: ShiftTy = ARM_AM::asr; break;
6960 case ARM::LSRi: ShiftTy = ARM_AM::lsr; break;
6961 case ARM::LSLi: ShiftTy = ARM_AM::lsl; break;
6962 case ARM::RORi: ShiftTy = ARM_AM::ror; break;
6963 }
6964 // A shift by zero is a plain MOVr, not a MOVsi.
6965 unsigned Amt = Inst.getOperand(2).getImm();
6966 unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi;
6967 // A shift by 32 should be encoded as 0 when permitted
6968 if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr))
6969 Amt = 0;
6970 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt);
6971 MCInst TmpInst;
6972 TmpInst.setOpcode(Opc);
6973 TmpInst.addOperand(Inst.getOperand(0)); // Rd
6974 TmpInst.addOperand(Inst.getOperand(1)); // Rn
6975 if (Opc == ARM::MOVsi)
6976 TmpInst.addOperand(MCOperand::CreateImm(Shifter)); // Shift value and ty
6977 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6978 TmpInst.addOperand(Inst.getOperand(4));
6979 TmpInst.addOperand(Inst.getOperand(5)); // cc_out
6980 Inst = TmpInst;
6981 return true;
6982 }
6983 case ARM::RRXi: {
6984 unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0);
6985 MCInst TmpInst;
6986 TmpInst.setOpcode(ARM::MOVsi);
6987 TmpInst.addOperand(Inst.getOperand(0)); // Rd
6988 TmpInst.addOperand(Inst.getOperand(1)); // Rn
6989 TmpInst.addOperand(MCOperand::CreateImm(Shifter)); // Shift value and ty
6990 TmpInst.addOperand(Inst.getOperand(2)); // CondCode
6991 TmpInst.addOperand(Inst.getOperand(3));
6992 TmpInst.addOperand(Inst.getOperand(4)); // cc_out
6993 Inst = TmpInst;
6994 return true;
6995 }
6996 case ARM::t2LDMIA_UPD: {
6997 // If this is a load of a single register, then we should use
6998 // a post-indexed LDR instruction instead, per the ARM ARM.
6999 if (Inst.getNumOperands() != 5)
7000 return false;
7001 MCInst TmpInst;
7002 TmpInst.setOpcode(ARM::t2LDR_POST);
7003 TmpInst.addOperand(Inst.getOperand(4)); // Rt
7004 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
7005 TmpInst.addOperand(Inst.getOperand(1)); // Rn
7006 TmpInst.addOperand(MCOperand::CreateImm(4));
7007 TmpInst.addOperand(Inst.getOperand(2)); // CondCode
7008 TmpInst.addOperand(Inst.getOperand(3));
7009 Inst = TmpInst;
7010 return true;
7011 }
7012 case ARM::t2STMDB_UPD: {
7013 // If this is a store of a single register, then we should use
7014 // a pre-indexed STR instruction instead, per the ARM ARM.
7015 if (Inst.getNumOperands() != 5)
7016 return false;
7017 MCInst TmpInst;
7018 TmpInst.setOpcode(ARM::t2STR_PRE);
7019 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
7020 TmpInst.addOperand(Inst.getOperand(4)); // Rt
7021 TmpInst.addOperand(Inst.getOperand(1)); // Rn
7022 TmpInst.addOperand(MCOperand::CreateImm(-4));
7023 TmpInst.addOperand(Inst.getOperand(2)); // CondCode
7024 TmpInst.addOperand(Inst.getOperand(3));
7025 Inst = TmpInst;
7026 return true;
7027 }
7028 case ARM::LDMIA_UPD:
7029 // If this is a load of a single register via a 'pop', then we should use
7030 // a post-indexed LDR instruction instead, per the ARM ARM.
7031 if (static_cast<ARMOperand*>(Operands[0])->getToken() == "pop" &&
7032 Inst.getNumOperands() == 5) {
7033 MCInst TmpInst;
7034 TmpInst.setOpcode(ARM::LDR_POST_IMM);
7035 TmpInst.addOperand(Inst.getOperand(4)); // Rt
7036 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
7037 TmpInst.addOperand(Inst.getOperand(1)); // Rn
7038 TmpInst.addOperand(MCOperand::CreateReg(0)); // am2offset
7039 TmpInst.addOperand(MCOperand::CreateImm(4));
7040 TmpInst.addOperand(Inst.getOperand(2)); // CondCode
7041 TmpInst.addOperand(Inst.getOperand(3));
7042 Inst = TmpInst;
7043 return true;
7044 }
7045 break;
7046 case ARM::STMDB_UPD:
7047 // If this is a store of a single register via a 'push', then we should use
7048 // a pre-indexed STR instruction instead, per the ARM ARM.
7049 if (static_cast<ARMOperand*>(Operands[0])->getToken() == "push" &&
7050 Inst.getNumOperands() == 5) {
7051 MCInst TmpInst;
7052 TmpInst.setOpcode(ARM::STR_PRE_IMM);
7053 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
7054 TmpInst.addOperand(Inst.getOperand(4)); // Rt
7055 TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12
7056 TmpInst.addOperand(MCOperand::CreateImm(-4));
7057 TmpInst.addOperand(Inst.getOperand(2)); // CondCode
7058 TmpInst.addOperand(Inst.getOperand(3));
7059 Inst = TmpInst;
7060 }
7061 break;
7062 case ARM::t2ADDri12:
7063 // If the immediate fits for encoding T3 (t2ADDri) and the generic "add"
7064 // mnemonic was used (not "addw"), encoding T3 is preferred.
7065 if (static_cast<ARMOperand*>(Operands[0])->getToken() != "add" ||
7066 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
7067 break;
7068 Inst.setOpcode(ARM::t2ADDri);
7069 Inst.addOperand(MCOperand::CreateReg(0)); // cc_out
7070 break;
7071 case ARM::t2SUBri12:
7072 // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub"
7073 // mnemonic was used (not "subw"), encoding T3 is preferred.
7074 if (static_cast<ARMOperand*>(Operands[0])->getToken() != "sub" ||
7075 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
7076 break;
7077 Inst.setOpcode(ARM::t2SUBri);
7078 Inst.addOperand(MCOperand::CreateReg(0)); // cc_out
7079 break;
7080 case ARM::tADDi8:
7081 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
7082 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
7083 // to encoding T2 if <Rd> is specified and encoding T2 is preferred
7084 // to encoding T1 if <Rd> is omitted."
7085 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
7086 Inst.setOpcode(ARM::tADDi3);
7087 return true;
7088 }
7089 break;
7090 case ARM::tSUBi8:
7091 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
7092 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
7093 // to encoding T2 if <Rd> is specified and encoding T2 is preferred
7094 // to encoding T1 if <Rd> is omitted."
7095 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
7096 Inst.setOpcode(ARM::tSUBi3);
7097 return true;
7098 }
7099 break;
7100 case ARM::t2ADDri:
7101 case ARM::t2SUBri: {
7102 // If the destination and first source operand are the same, and
7103 // the flags are compatible with the current IT status, use encoding T2
7104 // instead of T3. For compatibility with the system 'as'. Make sure the
7105 // wide encoding wasn't explicit.
7106 if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() ||
7107 !isARMLowRegister(Inst.getOperand(0).getReg()) ||
7108 (unsigned)Inst.getOperand(2).getImm() > 255 ||
7109 ((!inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR) ||
7110 (inITBlock() && Inst.getOperand(5).getReg() != 0)) ||
7111 (static_cast<ARMOperand*>(Operands[3])->isToken() &&
7112 static_cast<ARMOperand*>(Operands[3])->getToken() == ".w"))
7113 break;
7114 MCInst TmpInst;
7115 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ?
7116 ARM::tADDi8 : ARM::tSUBi8);
7117 TmpInst.addOperand(Inst.getOperand(0));
7118 TmpInst.addOperand(Inst.getOperand(5));
7119 TmpInst.addOperand(Inst.getOperand(0));
7120 TmpInst.addOperand(Inst.getOperand(2));
7121 TmpInst.addOperand(Inst.getOperand(3));
7122 TmpInst.addOperand(Inst.getOperand(4));
7123 Inst = TmpInst;
7124 return true;
7125 }
7126 case ARM::t2ADDrr: {
7127 // If the destination and first source operand are the same, and
7128 // there's no setting of the flags, use encoding T2 instead of T3.
7129 // Note that this is only for ADD, not SUB. This mirrors the system
7130 // 'as' behaviour. Make sure the wide encoding wasn't explicit.
7131 if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() ||
7132 Inst.getOperand(5).getReg() != 0 ||
7133 (static_cast<ARMOperand*>(Operands[3])->isToken() &&
7134 static_cast<ARMOperand*>(Operands[3])->getToken() == ".w"))
7135 break;
7136 MCInst TmpInst;
7137 TmpInst.setOpcode(ARM::tADDhirr);
7138 TmpInst.addOperand(Inst.getOperand(0));
7139 TmpInst.addOperand(Inst.getOperand(0));
7140 TmpInst.addOperand(Inst.getOperand(2));
7141 TmpInst.addOperand(Inst.getOperand(3));
7142 TmpInst.addOperand(Inst.getOperand(4));
7143 Inst = TmpInst;
7144 return true;
7145 }
7146 case ARM::tADDrSP: {
7147 // If the non-SP source operand and the destination operand are not the
7148 // same, we need to use the 32-bit encoding if it's available.
7149 if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
7150 Inst.setOpcode(ARM::t2ADDrr);
7151 Inst.addOperand(MCOperand::CreateReg(0)); // cc_out
7152 return true;
7153 }
7154 break;
7155 }
7156 case ARM::tB:
7157 // A Thumb conditional branch outside of an IT block is a tBcc.
7158 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) {
7159 Inst.setOpcode(ARM::tBcc);
7160 return true;
7161 }
7162 break;
7163 case ARM::t2B:
7164 // A Thumb2 conditional branch outside of an IT block is a t2Bcc.
7165 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){
7166 Inst.setOpcode(ARM::t2Bcc);
7167 return true;
7168 }
7169 break;
7170 case ARM::t2Bcc:
7171 // If the conditional is AL or we're in an IT block, we really want t2B.
7172 if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) {
7173 Inst.setOpcode(ARM::t2B);
7174 return true;
7175 }
7176 break;
7177 case ARM::tBcc:
7178 // If the conditional is AL, we really want tB.
7179 if (Inst.getOperand(1).getImm() == ARMCC::AL) {
7180 Inst.setOpcode(ARM::tB);
7181 return true;
7182 }
7183 break;
7184 case ARM::tLDMIA: {
7185 // If the register list contains any high registers, or if the writeback
7186 // doesn't match what tLDMIA can do, we need to use the 32-bit encoding
7187 // instead if we're in Thumb2. Otherwise, this should have generated
7188 // an error in validateInstruction().
7189 unsigned Rn = Inst.getOperand(0).getReg();
7190 bool hasWritebackToken =
7191 (static_cast<ARMOperand*>(Operands[3])->isToken() &&
7192 static_cast<ARMOperand*>(Operands[3])->getToken() == "!");
7193 bool listContainsBase;
7194 if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) ||
7195 (!listContainsBase && !hasWritebackToken) ||
7196 (listContainsBase && hasWritebackToken)) {
7197 // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
7198 assert (isThumbTwo());
7199 Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA);
7200 // If we're switching to the updating version, we need to insert
7201 // the writeback tied operand.
7202 if (hasWritebackToken)
7203 Inst.insert(Inst.begin(),
7204 MCOperand::CreateReg(Inst.getOperand(0).getReg()));
7205 return true;
7206 }
7207 break;
7208 }
7209 case ARM::tSTMIA_UPD: {
7210 // If the register list contains any high registers, we need to use
7211 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
7212 // should have generated an error in validateInstruction().
7213 unsigned Rn = Inst.getOperand(0).getReg();
7214 bool listContainsBase;
7215 if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) {
7216 // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
7217 assert (isThumbTwo());
7218 Inst.setOpcode(ARM::t2STMIA_UPD);
7219 return true;
7220 }
7221 break;
7222 }
7223 case ARM::tPOP: {
7224 bool listContainsBase;
7225 // If the register list contains any high registers, we need to use
7226 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
7227 // should have generated an error in validateInstruction().
7228 if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase))
7229 return false;
7230 assert (isThumbTwo());
7231 Inst.setOpcode(ARM::t2LDMIA_UPD);
7232 // Add the base register and writeback operands.
7233 Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
7234 Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
7235 return true;
7236 }
7237 case ARM::tPUSH: {
7238 bool listContainsBase;
7239 if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase))
7240 return false;
7241 assert (isThumbTwo());
7242 Inst.setOpcode(ARM::t2STMDB_UPD);
7243 // Add the base register and writeback operands.
7244 Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
7245 Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
7246 return true;
7247 }
7248 case ARM::t2MOVi: {
7249 // If we can use the 16-bit encoding and the user didn't explicitly
7250 // request the 32-bit variant, transform it here.
7251 if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
7252 (unsigned)Inst.getOperand(1).getImm() <= 255 &&
7253 ((!inITBlock() && Inst.getOperand(2).getImm() == ARMCC::AL &&
7254 Inst.getOperand(4).getReg() == ARM::CPSR) ||
7255 (inITBlock() && Inst.getOperand(4).getReg() == 0)) &&
7256 (!static_cast<ARMOperand*>(Operands[2])->isToken() ||
7257 static_cast<ARMOperand*>(Operands[2])->getToken() != ".w")) {
7258 // The operands aren't in the same order for tMOVi8...
7259 MCInst TmpInst;
7260 TmpInst.setOpcode(ARM::tMOVi8);
7261 TmpInst.addOperand(Inst.getOperand(0));
7262 TmpInst.addOperand(Inst.getOperand(4));
7263 TmpInst.addOperand(Inst.getOperand(1));
7264 TmpInst.addOperand(Inst.getOperand(2));
7265 TmpInst.addOperand(Inst.getOperand(3));
7266 Inst = TmpInst;
7267 return true;
7268 }
7269 break;
7270 }
7271 case ARM::t2MOVr: {
7272 // If we can use the 16-bit encoding and the user didn't explicitly
7273 // request the 32-bit variant, transform it here.
7274 if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
7275 isARMLowRegister(Inst.getOperand(1).getReg()) &&
7276 Inst.getOperand(2).getImm() == ARMCC::AL &&
7277 Inst.getOperand(4).getReg() == ARM::CPSR &&
7278 (!static_cast<ARMOperand*>(Operands[2])->isToken() ||
7279 static_cast<ARMOperand*>(Operands[2])->getToken() != ".w")) {
7280 // The operands aren't the same for tMOV[S]r... (no cc_out)
7281 MCInst TmpInst;
7282 TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr);
7283 TmpInst.addOperand(Inst.getOperand(0));
7284 TmpInst.addOperand(Inst.getOperand(1));
7285 TmpInst.addOperand(Inst.getOperand(2));
7286 TmpInst.addOperand(Inst.getOperand(3));
7287 Inst = TmpInst;
7288 return true;
7289 }
7290 break;
7291 }
7292 case ARM::t2SXTH:
7293 case ARM::t2SXTB:
7294 case ARM::t2UXTH:
7295 case ARM::t2UXTB: {
7296 // If we can use the 16-bit encoding and the user didn't explicitly
7297 // request the 32-bit variant, transform it here.
7298 if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
7299 isARMLowRegister(Inst.getOperand(1).getReg()) &&
7300 Inst.getOperand(2).getImm() == 0 &&
7301 (!static_cast<ARMOperand*>(Operands[2])->isToken() ||
7302 static_cast<ARMOperand*>(Operands[2])->getToken() != ".w")) {
7303 unsigned NewOpc;
7304 switch (Inst.getOpcode()) {
7305 default: llvm_unreachable("Illegal opcode!");
7306 case ARM::t2SXTH: NewOpc = ARM::tSXTH; break;
7307 case ARM::t2SXTB: NewOpc = ARM::tSXTB; break;
7308 case ARM::t2UXTH: NewOpc = ARM::tUXTH; break;
7309 case ARM::t2UXTB: NewOpc = ARM::tUXTB; break;
7310 }
7311 // The operands aren't the same for thumb1 (no rotate operand).
7312 MCInst TmpInst;
7313 TmpInst.setOpcode(NewOpc);
7314 TmpInst.addOperand(Inst.getOperand(0));
7315 TmpInst.addOperand(Inst.getOperand(1));
7316 TmpInst.addOperand(Inst.getOperand(3));
7317 TmpInst.addOperand(Inst.getOperand(4));
7318 Inst = TmpInst;
7319 return true;
7320 }
7321 break;
7322 }
7323 case ARM::MOVsi: {
7324 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm());
7325 // rrx shifts and asr/lsr of #32 is encoded as 0
7326 if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr)
7327 return false;
7328 if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) {
7329 // Shifting by zero is accepted as a vanilla 'MOVr'
7330 MCInst TmpInst;
7331 TmpInst.setOpcode(ARM::MOVr);
7332 TmpInst.addOperand(Inst.getOperand(0));
7333 TmpInst.addOperand(Inst.getOperand(1));
7334 TmpInst.addOperand(Inst.getOperand(3));
7335 TmpInst.addOperand(Inst.getOperand(4));
7336 TmpInst.addOperand(Inst.getOperand(5));
7337 Inst = TmpInst;
7338 return true;
7339 }
7340 return false;
7341 }
7342 case ARM::ANDrsi:
7343 case ARM::ORRrsi:
7344 case ARM::EORrsi:
7345 case ARM::BICrsi:
7346 case ARM::SUBrsi:
7347 case ARM::ADDrsi: {
7348 unsigned newOpc;
7349 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm());
7350 if (SOpc == ARM_AM::rrx) return false;
7351 switch (Inst.getOpcode()) {
7352 default: llvm_unreachable("unexpected opcode!");
7353 case ARM::ANDrsi: newOpc = ARM::ANDrr; break;
7354 case ARM::ORRrsi: newOpc = ARM::ORRrr; break;
7355 case ARM::EORrsi: newOpc = ARM::EORrr; break;
7356 case ARM::BICrsi: newOpc = ARM::BICrr; break;
7357 case ARM::SUBrsi: newOpc = ARM::SUBrr; break;
7358 case ARM::ADDrsi: newOpc = ARM::ADDrr; break;
7359 }
7360 // If the shift is by zero, use the non-shifted instruction definition.
7361 // The exception is for right shifts, where 0 == 32
7362 if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 &&
7363 !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) {
7364 MCInst TmpInst;
7365 TmpInst.setOpcode(newOpc);
7366 TmpInst.addOperand(Inst.getOperand(0));
7367 TmpInst.addOperand(Inst.getOperand(1));
7368 TmpInst.addOperand(Inst.getOperand(2));
7369 TmpInst.addOperand(Inst.getOperand(4));
7370 TmpInst.addOperand(Inst.getOperand(5));
7371 TmpInst.addOperand(Inst.getOperand(6));
7372 Inst = TmpInst;
7373 return true;
7374 }
7375 return false;
7376 }
7377 case ARM::ITasm:
7378 case ARM::t2IT: {
7379 // The mask bits for all but the first condition are represented as
7380 // the low bit of the condition code value implies 't'. We currently
7381 // always have 1 implies 't', so XOR toggle the bits if the low bit
7382 // of the condition code is zero.
7383 MCOperand &MO = Inst.getOperand(1);
7384 unsigned Mask = MO.getImm();
7385 unsigned OrigMask = Mask;
7386 unsigned TZ = CountTrailingZeros_32(Mask);
7387 if ((Inst.getOperand(0).getImm() & 1) == 0) {
7388 assert(Mask && TZ <= 3 && "illegal IT mask value!");
7389 for (unsigned i = 3; i != TZ; --i)
7390 Mask ^= 1 << i;
7391 }
7392 MO.setImm(Mask);
7393
7394 // Set up the IT block state according to the IT instruction we just
7395 // matched.
7396 assert(!inITBlock() && "nested IT blocks?!");
7397 ITState.Cond = ARMCC::CondCodes(Inst.getOperand(0).getImm());
7398 ITState.Mask = OrigMask; // Use the original mask, not the updated one.
7399 ITState.CurPosition = 0;
7400 ITState.FirstCond = true;
7401 break;
7402 }
7403 case ARM::t2LSLrr:
7404 case ARM::t2LSRrr:
7405 case ARM::t2ASRrr:
7406 case ARM::t2SBCrr:
7407 case ARM::t2RORrr:
7408 case ARM::t2BICrr:
7409 {
7410 // Assemblers should use the narrow encodings of these instructions when permissible.
7411 if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
7412 isARMLowRegister(Inst.getOperand(2).getReg())) &&
7413 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
7414 ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) ||
7415 (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) &&
7416 (!static_cast<ARMOperand*>(Operands[3])->isToken() ||
7417 !static_cast<ARMOperand*>(Operands[3])->getToken().equals_lower(".w"))) {
7418 unsigned NewOpc;
7419 switch (Inst.getOpcode()) {
7420 default: llvm_unreachable("unexpected opcode");
7421 case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break;
7422 case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break;
7423 case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break;
7424 case ARM::t2SBCrr: NewOpc = ARM::tSBC; break;
7425 case ARM::t2RORrr: NewOpc = ARM::tROR; break;
7426 case ARM::t2BICrr: NewOpc = ARM::tBIC; break;
7427 }
7428 MCInst TmpInst;
7429 TmpInst.setOpcode(NewOpc);
7430 TmpInst.addOperand(Inst.getOperand(0));
7431 TmpInst.addOperand(Inst.getOperand(5));
7432 TmpInst.addOperand(Inst.getOperand(1));
7433 TmpInst.addOperand(Inst.getOperand(2));
7434 TmpInst.addOperand(Inst.getOperand(3));
7435 TmpInst.addOperand(Inst.getOperand(4));
7436 Inst = TmpInst;
7437 return true;
7438 }
7439 return false;
7440 }
7441 case ARM::t2ANDrr:
7442 case ARM::t2EORrr:
7443 case ARM::t2ADCrr:
7444 case ARM::t2ORRrr:
7445 {
7446 // Assemblers should use the narrow encodings of these instructions when permissible.
7447 // These instructions are special in that they are commutable, so shorter encodings
7448 // are available more often.
7449 if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
7450 isARMLowRegister(Inst.getOperand(2).getReg())) &&
7451 (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() ||
7452 Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) &&
7453 ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) ||
7454 (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) &&
7455 (!static_cast<ARMOperand*>(Operands[3])->isToken() ||
7456 !static_cast<ARMOperand*>(Operands[3])->getToken().equals_lower(".w"))) {
7457 unsigned NewOpc;
7458 switch (Inst.getOpcode()) {
7459 default: llvm_unreachable("unexpected opcode");
7460 case ARM::t2ADCrr: NewOpc = ARM::tADC; break;
7461 case ARM::t2ANDrr: NewOpc = ARM::tAND; break;
7462 case ARM::t2EORrr: NewOpc = ARM::tEOR; break;
7463 case ARM::t2ORRrr: NewOpc = ARM::tORR; break;
7464 }
7465 MCInst TmpInst;
7466 TmpInst.setOpcode(NewOpc);
7467 TmpInst.addOperand(Inst.getOperand(0));
7468 TmpInst.addOperand(Inst.getOperand(5));
7469 if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) {
7470 TmpInst.addOperand(Inst.getOperand(1));
7471 TmpInst.addOperand(Inst.getOperand(2));
7472 } else {
7473 TmpInst.addOperand(Inst.getOperand(2));
7474 TmpInst.addOperand(Inst.getOperand(1));
7475 }
7476 TmpInst.addOperand(Inst.getOperand(3));
7477 TmpInst.addOperand(Inst.getOperand(4));
7478 Inst = TmpInst;
7479 return true;
7480 }
7481 return false;
7482 }
7483 }
7484 return false;
7485 }
7486
7487 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) {
7488 // 16-bit thumb arithmetic instructions either require or preclude the 'S'
7489 // suffix depending on whether they're in an IT block or not.
7490 unsigned Opc = Inst.getOpcode();
7491 const MCInstrDesc &MCID = getInstDesc(Opc);
7492 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) {
7493 assert(MCID.hasOptionalDef() &&
7494 "optionally flag setting instruction missing optional def operand");
7495 assert(MCID.NumOperands == Inst.getNumOperands() &&
7496 "operand count mismatch!");
7497 // Find the optional-def operand (cc_out).
7498 unsigned OpNo;
7499 for (OpNo = 0;
7500 !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands;
7501 ++OpNo)
7502 ;
7503 // If we're parsing Thumb1, reject it completely.
7504 if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR)
7505 return Match_MnemonicFail;
7506 // If we're parsing Thumb2, which form is legal depends on whether we're
7507 // in an IT block.
7508 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR &&
7509 !inITBlock())
7510 return Match_RequiresITBlock;
7511 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR &&
7512 inITBlock())
7513 return Match_RequiresNotITBlock;
7514 }
7515 // Some high-register supporting Thumb1 encodings only allow both registers
7516 // to be from r0-r7 when in Thumb2.
7517 else if (Opc == ARM::tADDhirr && isThumbOne() &&
7518 isARMLowRegister(Inst.getOperand(1).getReg()) &&
7519 isARMLowRegister(Inst.getOperand(2).getReg()))
7520 return Match_RequiresThumb2;
7521 // Others only require ARMv6 or later.
7522 else if (Opc == ARM::tMOVr && isThumbOne() && !hasV6Ops() &&
7523 isARMLowRegister(Inst.getOperand(0).getReg()) &&
7524 isARMLowRegister(Inst.getOperand(1).getReg()))
7525 return Match_RequiresV6;
7526 return Match_Success;
7527 }
7528
7529 static const char *getSubtargetFeatureName(unsigned Val);
7530 bool ARMAsmParser::
7531 MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
7532 SmallVectorImpl<MCParsedAsmOperand*> &Operands,
7533 MCStreamer &Out, unsigned &ErrorInfo,
7534 bool MatchingInlineAsm) {
7535 MCInst Inst;
7536 unsigned MatchResult;
7537
7538 MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo,
7539 MatchingInlineAsm);
7540 switch (MatchResult) {
7541 default: break;
7542 case Match_Success:
7543 // Context sensitive operand constraints aren't handled by the matcher,
7544 // so check them here.
7545 if (validateInstruction(Inst, Operands)) {
7546 // Still progress the IT block, otherwise one wrong condition causes
7547 // nasty cascading errors.
7548 forwardITPosition();
7549 return true;
7550 }
7551
7552 // Some instructions need post-processing to, for example, tweak which
7553 // encoding is selected. Loop on it while changes happen so the
7554 // individual transformations can chain off each other. E.g.,
7555 // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8)
7556 while (processInstruction(Inst, Operands))
7557 ;
7558
7559 // Only move forward at the very end so that everything in validate
7560 // and process gets a consistent answer about whether we're in an IT
7561 // block.
7562 forwardITPosition();
7563
7564 // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and
7565 // doesn't actually encode.
7566 if (Inst.getOpcode() == ARM::ITasm)
7567 return false;
7568
7569 Inst.setLoc(IDLoc);
7570 Out.EmitInstruction(Inst);
7571 return false;
7572 case Match_MissingFeature: {
7573 assert(ErrorInfo && "Unknown missing feature!");
7574 // Special case the error message for the very common case where only
7575 // a single subtarget feature is missing (Thumb vs. ARM, e.g.).
7576 std::string Msg = "instruction requires:";
7577 unsigned Mask = 1;
7578 for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) {
7579 if (ErrorInfo & Mask) {
7580 Msg += " ";
7581 Msg += getSubtargetFeatureName(ErrorInfo & Mask);
7582 }
7583 Mask <<= 1;
7584 }
7585 return Error(IDLoc, Msg);
7586 }
7587 case Match_InvalidOperand: {
7588 SMLoc ErrorLoc = IDLoc;
7589 if (ErrorInfo != ~0U) {
7590 if (ErrorInfo >= Operands.size())
7591 return Error(IDLoc, "too few operands for instruction");
7592
7593 ErrorLoc = ((ARMOperand*)Operands[ErrorInfo])->getStartLoc();
7594 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
7595 }
7596
7597 return Error(ErrorLoc, "invalid operand for instruction");
7598 }
7599 case Match_MnemonicFail:
7600 return Error(IDLoc, "invalid instruction",
7601 ((ARMOperand*)Operands[0])->getLocRange());
7602 case Match_RequiresNotITBlock:
7603 return Error(IDLoc, "flag setting instruction only valid outside IT block");
7604 case Match_RequiresITBlock:
7605 return Error(IDLoc, "instruction only valid inside IT block");
7606 case Match_RequiresV6:
7607 return Error(IDLoc, "instruction variant requires ARMv6 or later");
7608 case Match_RequiresThumb2:
7609 return Error(IDLoc, "instruction variant requires Thumb2");
7610 case Match_ImmRange0_15: {
7611 SMLoc ErrorLoc = ((ARMOperand*)Operands[ErrorInfo])->getStartLoc();
7612 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
7613 return Error(ErrorLoc, "immediate operand must be in the range [0,15]");
7614 }
7615 }
7616
7617 llvm_unreachable("Implement any new match types added!");
7618 }
7619
7620 /// parseDirective parses the arm specific directives
7621 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) {
7622 StringRef IDVal = DirectiveID.getIdentifier();
7623 if (IDVal == ".word")
7624 return parseDirectiveWord(4, DirectiveID.getLoc());
7625 else if (IDVal == ".thumb")
7626 return parseDirectiveThumb(DirectiveID.getLoc());
7627 else if (IDVal == ".arm")
7628 return parseDirectiveARM(DirectiveID.getLoc());
7629 else if (IDVal == ".thumb_func")
7630 return parseDirectiveThumbFunc(DirectiveID.getLoc());
7631 else if (IDVal == ".code")
7632 return parseDirectiveCode(DirectiveID.getLoc());
7633 else if (IDVal == ".syntax")
7634 return parseDirectiveSyntax(DirectiveID.getLoc());
7635 else if (IDVal == ".unreq")
7636 return parseDirectiveUnreq(DirectiveID.getLoc());
7637 else if (IDVal == ".arch")
7638 return parseDirectiveArch(DirectiveID.getLoc());
7639 else if (IDVal == ".eabi_attribute")
7640 return parseDirectiveEabiAttr(DirectiveID.getLoc());
7641 return true;
7642 }
7643
7644 /// parseDirectiveWord
7645 /// ::= .word [ expression (, expression)* ]
7646 bool ARMAsmParser::parseDirectiveWord(unsigned Size, SMLoc L) {
7647 if (getLexer().isNot(AsmToken::EndOfStatement)) {
7648 for (;;) {
7649 const MCExpr *Value;
7650 if (getParser().parseExpression(Value))
7651 return true;
7652
7653 getParser().getStreamer().EmitValue(Value, Size);
7654
7655 if (getLexer().is(AsmToken::EndOfStatement))
7656 break;
7657
7658 // FIXME: Improve diagnostic.
7659 if (getLexer().isNot(AsmToken::Comma))
7660 return Error(L, "unexpected token in directive");
7661 Parser.Lex();
7662 }
7663 }
7664
7665 Parser.Lex();
7666 return false;
7667 }
7668
7669 /// parseDirectiveThumb
7670 /// ::= .thumb
7671 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) {
7672 if (getLexer().isNot(AsmToken::EndOfStatement))
7673 return Error(L, "unexpected token in directive");
7674 Parser.Lex();
7675
7676 if (!isThumb())
7677 SwitchMode();
7678 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
7679 return false;
7680 }
7681
7682 /// parseDirectiveARM
7683 /// ::= .arm
7684 bool ARMAsmParser::parseDirectiveARM(SMLoc L) {
7685 if (getLexer().isNot(AsmToken::EndOfStatement))
7686 return Error(L, "unexpected token in directive");
7687 Parser.Lex();
7688
7689 if (isThumb())
7690 SwitchMode();
7691 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
7692 return false;
7693 }
7694
7695 /// parseDirectiveThumbFunc
7696 /// ::= .thumbfunc symbol_name
7697 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) {
7698 const MCAsmInfo &MAI = getParser().getStreamer().getContext().getAsmInfo();
7699 bool isMachO = MAI.hasSubsectionsViaSymbols();
7700 StringRef Name;
7701 bool needFuncName = true;
7702
7703 // Darwin asm has (optionally) function name after .thumb_func direction
7704 // ELF doesn't
7705 if (isMachO) {
7706 const AsmToken &Tok = Parser.getTok();
7707 if (Tok.isNot(AsmToken::EndOfStatement)) {
7708 if (Tok.isNot(AsmToken::Identifier) && Tok.isNot(AsmToken::String))
7709 return Error(L, "unexpected token in .thumb_func directive");
7710 Name = Tok.getIdentifier();
7711 Parser.Lex(); // Consume the identifier token.
7712 needFuncName = false;
7713 }
7714 }
7715
7716 if (getLexer().isNot(AsmToken::EndOfStatement))
7717 return Error(L, "unexpected token in directive");
7718
7719 // Eat the end of statement and any blank lines that follow.
7720 while (getLexer().is(AsmToken::EndOfStatement))
7721 Parser.Lex();
7722
7723 // FIXME: assuming function name will be the line following .thumb_func
7724 // We really should be checking the next symbol definition even if there's
7725 // stuff in between.
7726 if (needFuncName) {
7727 Name = Parser.getTok().getIdentifier();
7728 }
7729
7730 // Mark symbol as a thumb symbol.
7731 MCSymbol *Func = getParser().getContext().GetOrCreateSymbol(Name);
7732 getParser().getStreamer().EmitThumbFunc(Func);
7733 return false;
7734 }
7735
7736 /// parseDirectiveSyntax
7737 /// ::= .syntax unified | divided
7738 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) {
7739 const AsmToken &Tok = Parser.getTok();
7740 if (Tok.isNot(AsmToken::Identifier))
7741 return Error(L, "unexpected token in .syntax directive");
7742 StringRef Mode = Tok.getString();
7743 if (Mode == "unified" || Mode == "UNIFIED")
7744 Parser.Lex();
7745 else if (Mode == "divided" || Mode == "DIVIDED")
7746 return Error(L, "'.syntax divided' arm asssembly not supported");
7747 else
7748 return Error(L, "unrecognized syntax mode in .syntax directive");
7749
7750 if (getLexer().isNot(AsmToken::EndOfStatement))
7751 return Error(Parser.getTok().getLoc(), "unexpected token in directive");
7752 Parser.Lex();
7753
7754 // TODO tell the MC streamer the mode
7755 // getParser().getStreamer().Emit???();
7756 return false;
7757 }
7758
7759 /// parseDirectiveCode
7760 /// ::= .code 16 | 32
7761 bool ARMAsmParser::parseDirectiveCode(SMLoc L) {
7762 const AsmToken &Tok = Parser.getTok();
7763 if (Tok.isNot(AsmToken::Integer))
7764 return Error(L, "unexpected token in .code directive");
7765 int64_t Val = Parser.getTok().getIntVal();
7766 if (Val == 16)
7767 Parser.Lex();
7768 else if (Val == 32)
7769 Parser.Lex();
7770 else
7771 return Error(L, "invalid operand to .code directive");
7772
7773 if (getLexer().isNot(AsmToken::EndOfStatement))
7774 return Error(Parser.getTok().getLoc(), "unexpected token in directive");
7775 Parser.Lex();
7776
7777 if (Val == 16) {
7778 if (!isThumb())
7779 SwitchMode();
7780 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
7781 } else {
7782 if (isThumb())
7783 SwitchMode();
7784 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
7785 }
7786
7787 return false;
7788 }
7789
7790 /// parseDirectiveReq
7791 /// ::= name .req registername
7792 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) {
7793 Parser.Lex(); // Eat the '.req' token.
7794 unsigned Reg;
7795 SMLoc SRegLoc, ERegLoc;
7796 if (ParseRegister(Reg, SRegLoc, ERegLoc)) {
7797 Parser.eatToEndOfStatement();
7798 return Error(SRegLoc, "register name expected");
7799 }
7800
7801 // Shouldn't be anything else.
7802 if (Parser.getTok().isNot(AsmToken::EndOfStatement)) {
7803 Parser.eatToEndOfStatement();
7804 return Error(Parser.getTok().getLoc(),
7805 "unexpected input in .req directive.");
7806 }
7807
7808 Parser.Lex(); // Consume the EndOfStatement
7809
7810 if (RegisterReqs.GetOrCreateValue(Name, Reg).getValue() != Reg)
7811 return Error(SRegLoc, "redefinition of '" + Name +
7812 "' does not match original.");
7813
7814 return false;
7815 }
7816
7817 /// parseDirectiveUneq
7818 /// ::= .unreq registername
7819 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) {
7820 if (Parser.getTok().isNot(AsmToken::Identifier)) {
7821 Parser.eatToEndOfStatement();
7822 return Error(L, "unexpected input in .unreq directive.");
7823 }
7824 RegisterReqs.erase(Parser.getTok().getIdentifier());
7825 Parser.Lex(); // Eat the identifier.
7826 return false;
7827 }
7828
7829 /// parseDirectiveArch
7830 /// ::= .arch token
7831 bool ARMAsmParser::parseDirectiveArch(SMLoc L) {
7832 return true;
7833 }
7834
7835 /// parseDirectiveEabiAttr
7836 /// ::= .eabi_attribute int, int
7837 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) {
7838 return true;
7839 }
7840
7841 /// Force static initialization.
7842 extern "C" void LLVMInitializeARMAsmParser() {
7843 RegisterMCAsmParser<ARMAsmParser> X(TheARMTarget);
7844 RegisterMCAsmParser<ARMAsmParser> Y(TheThumbTarget);
7845 }
7846
7847 #define GET_REGISTER_MATCHER
7848 #define GET_SUBTARGET_FEATURE_NAME
7849 #define GET_MATCHER_IMPLEMENTATION
7850 #include "ARMGenAsmMatcher.inc"
7851
7852 // Define this matcher function after the auto-generated include so we
7853 // have the match class enum definitions.
7854 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand *AsmOp,
7855 unsigned Kind) {
7856 ARMOperand *Op = static_cast<ARMOperand*>(AsmOp);
7857 // If the kind is a token for a literal immediate, check if our asm
7858 // operand matches. This is for InstAliases which have a fixed-value
7859 // immediate in the syntax.
7860 if (Kind == MCK__35_0 && Op->isImm()) {
7861 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op->getImm());
7862 if (!CE)
7863 return Match_InvalidOperand;
7864 if (CE->getValue() == 0)
7865 return Match_Success;
7866 }
7867 return Match_InvalidOperand;
7868 }