]> git.proxmox.com Git - rustc.git/blob - src/llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / lib / Target / Hexagon / HexagonInstrInfo.cpp
1 //===-- HexagonInstrInfo.cpp - Hexagon Instruction Information ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the Hexagon implementation of the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "HexagonInstrInfo.h"
15 #include "Hexagon.h"
16 #include "HexagonRegisterInfo.h"
17 #include "HexagonSubtarget.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/CodeGen/DFAPacketizer.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineMemOperand.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/PseudoSourceValue.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/raw_ostream.h"
29
30 using namespace llvm;
31
32 #define DEBUG_TYPE "hexagon-instrinfo"
33
34 #define GET_INSTRINFO_CTOR_DTOR
35 #define GET_INSTRMAP_INFO
36 #include "HexagonGenInstrInfo.inc"
37 #include "HexagonGenDFAPacketizer.inc"
38
39 ///
40 /// Constants for Hexagon instructions.
41 ///
42 const int Hexagon_MEMW_OFFSET_MAX = 4095;
43 const int Hexagon_MEMW_OFFSET_MIN = -4096;
44 const int Hexagon_MEMD_OFFSET_MAX = 8191;
45 const int Hexagon_MEMD_OFFSET_MIN = -8192;
46 const int Hexagon_MEMH_OFFSET_MAX = 2047;
47 const int Hexagon_MEMH_OFFSET_MIN = -2048;
48 const int Hexagon_MEMB_OFFSET_MAX = 1023;
49 const int Hexagon_MEMB_OFFSET_MIN = -1024;
50 const int Hexagon_ADDI_OFFSET_MAX = 32767;
51 const int Hexagon_ADDI_OFFSET_MIN = -32768;
52 const int Hexagon_MEMD_AUTOINC_MAX = 56;
53 const int Hexagon_MEMD_AUTOINC_MIN = -64;
54 const int Hexagon_MEMW_AUTOINC_MAX = 28;
55 const int Hexagon_MEMW_AUTOINC_MIN = -32;
56 const int Hexagon_MEMH_AUTOINC_MAX = 14;
57 const int Hexagon_MEMH_AUTOINC_MIN = -16;
58 const int Hexagon_MEMB_AUTOINC_MAX = 7;
59 const int Hexagon_MEMB_AUTOINC_MIN = -8;
60
61 // Pin the vtable to this file.
62 void HexagonInstrInfo::anchor() {}
63
64 HexagonInstrInfo::HexagonInstrInfo(HexagonSubtarget &ST)
65 : HexagonGenInstrInfo(Hexagon::ADJCALLSTACKDOWN, Hexagon::ADJCALLSTACKUP),
66 RI(ST), Subtarget(ST) {
67 }
68
69
70 /// isLoadFromStackSlot - If the specified machine instruction is a direct
71 /// load from a stack slot, return the virtual or physical register number of
72 /// the destination along with the FrameIndex of the loaded stack slot. If
73 /// not, return 0. This predicate must return 0 if the instruction has
74 /// any side effects other than loading from the stack slot.
75 unsigned HexagonInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
76 int &FrameIndex) const {
77
78
79 switch (MI->getOpcode()) {
80 default: break;
81 case Hexagon::L2_loadri_io:
82 case Hexagon::L2_loadrd_io:
83 case Hexagon::L2_loadrh_io:
84 case Hexagon::L2_loadrb_io:
85 case Hexagon::L2_loadrub_io:
86 if (MI->getOperand(2).isFI() &&
87 MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) {
88 FrameIndex = MI->getOperand(2).getIndex();
89 return MI->getOperand(0).getReg();
90 }
91 break;
92 }
93 return 0;
94 }
95
96
97 /// isStoreToStackSlot - If the specified machine instruction is a direct
98 /// store to a stack slot, return the virtual or physical register number of
99 /// the source reg along with the FrameIndex of the loaded stack slot. If
100 /// not, return 0. This predicate must return 0 if the instruction has
101 /// any side effects other than storing to the stack slot.
102 unsigned HexagonInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
103 int &FrameIndex) const {
104 switch (MI->getOpcode()) {
105 default: break;
106 case Hexagon::S2_storeri_io:
107 case Hexagon::S2_storerd_io:
108 case Hexagon::S2_storerh_io:
109 case Hexagon::S2_storerb_io:
110 if (MI->getOperand(2).isFI() &&
111 MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) {
112 FrameIndex = MI->getOperand(0).getIndex();
113 return MI->getOperand(2).getReg();
114 }
115 break;
116 }
117 return 0;
118 }
119
120
121 unsigned
122 HexagonInstrInfo::InsertBranch(MachineBasicBlock &MBB,MachineBasicBlock *TBB,
123 MachineBasicBlock *FBB,
124 const SmallVectorImpl<MachineOperand> &Cond,
125 DebugLoc DL) const{
126
127 int BOpc = Hexagon::J2_jump;
128 int BccOpc = Hexagon::J2_jumpt;
129
130 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
131
132 int regPos = 0;
133 // Check if ReverseBranchCondition has asked to reverse this branch
134 // If we want to reverse the branch an odd number of times, we want
135 // JMP_f.
136 if (!Cond.empty() && Cond[0].isImm() && Cond[0].getImm() == 0) {
137 BccOpc = Hexagon::J2_jumpf;
138 regPos = 1;
139 }
140
141 if (!FBB) {
142 if (Cond.empty()) {
143 // Due to a bug in TailMerging/CFG Optimization, we need to add a
144 // special case handling of a predicated jump followed by an
145 // unconditional jump. If not, Tail Merging and CFG Optimization go
146 // into an infinite loop.
147 MachineBasicBlock *NewTBB, *NewFBB;
148 SmallVector<MachineOperand, 4> Cond;
149 MachineInstr *Term = MBB.getFirstTerminator();
150 if (isPredicated(Term) && !AnalyzeBranch(MBB, NewTBB, NewFBB, Cond,
151 false)) {
152 MachineBasicBlock *NextBB =
153 std::next(MachineFunction::iterator(&MBB));
154 if (NewTBB == NextBB) {
155 ReverseBranchCondition(Cond);
156 RemoveBranch(MBB);
157 return InsertBranch(MBB, TBB, nullptr, Cond, DL);
158 }
159 }
160 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
161 } else {
162 BuildMI(&MBB, DL,
163 get(BccOpc)).addReg(Cond[regPos].getReg()).addMBB(TBB);
164 }
165 return 1;
166 }
167
168 BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[regPos].getReg()).addMBB(TBB);
169 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
170
171 return 2;
172 }
173
174
175 bool HexagonInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
176 MachineBasicBlock *&TBB,
177 MachineBasicBlock *&FBB,
178 SmallVectorImpl<MachineOperand> &Cond,
179 bool AllowModify) const {
180 TBB = nullptr;
181 FBB = nullptr;
182
183 // If the block has no terminators, it just falls into the block after it.
184 MachineBasicBlock::instr_iterator I = MBB.instr_end();
185 if (I == MBB.instr_begin())
186 return false;
187
188 // A basic block may looks like this:
189 //
190 // [ insn
191 // EH_LABEL
192 // insn
193 // insn
194 // insn
195 // EH_LABEL
196 // insn ]
197 //
198 // It has two succs but does not have a terminator
199 // Don't know how to handle it.
200 do {
201 --I;
202 if (I->isEHLabel())
203 return true;
204 } while (I != MBB.instr_begin());
205
206 I = MBB.instr_end();
207 --I;
208
209 while (I->isDebugValue()) {
210 if (I == MBB.instr_begin())
211 return false;
212 --I;
213 }
214
215 // Delete the JMP if it's equivalent to a fall-through.
216 if (AllowModify && I->getOpcode() == Hexagon::J2_jump &&
217 MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
218 DEBUG(dbgs()<< "\nErasing the jump to successor block\n";);
219 I->eraseFromParent();
220 I = MBB.instr_end();
221 if (I == MBB.instr_begin())
222 return false;
223 --I;
224 }
225 if (!isUnpredicatedTerminator(I))
226 return false;
227
228 // Get the last instruction in the block.
229 MachineInstr *LastInst = I;
230 MachineInstr *SecondLastInst = nullptr;
231 // Find one more terminator if present.
232 do {
233 if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(I)) {
234 if (!SecondLastInst)
235 SecondLastInst = I;
236 else
237 // This is a third branch.
238 return true;
239 }
240 if (I == MBB.instr_begin())
241 break;
242 --I;
243 } while(I);
244
245 int LastOpcode = LastInst->getOpcode();
246
247 bool LastOpcodeHasJMP_c = PredOpcodeHasJMP_c(LastOpcode);
248 bool LastOpcodeHasNot = PredOpcodeHasNot(LastOpcode);
249
250 // If there is only one terminator instruction, process it.
251 if (LastInst && !SecondLastInst) {
252 if (LastOpcode == Hexagon::J2_jump) {
253 TBB = LastInst->getOperand(0).getMBB();
254 return false;
255 }
256 if (LastOpcode == Hexagon::ENDLOOP0) {
257 TBB = LastInst->getOperand(0).getMBB();
258 Cond.push_back(LastInst->getOperand(0));
259 return false;
260 }
261 if (LastOpcodeHasJMP_c) {
262 TBB = LastInst->getOperand(1).getMBB();
263 if (LastOpcodeHasNot) {
264 Cond.push_back(MachineOperand::CreateImm(0));
265 }
266 Cond.push_back(LastInst->getOperand(0));
267 return false;
268 }
269 // Otherwise, don't know what this is.
270 return true;
271 }
272
273 int SecLastOpcode = SecondLastInst->getOpcode();
274
275 bool SecLastOpcodeHasJMP_c = PredOpcodeHasJMP_c(SecLastOpcode);
276 bool SecLastOpcodeHasNot = PredOpcodeHasNot(SecLastOpcode);
277 if (SecLastOpcodeHasJMP_c && (LastOpcode == Hexagon::J2_jump)) {
278 TBB = SecondLastInst->getOperand(1).getMBB();
279 if (SecLastOpcodeHasNot)
280 Cond.push_back(MachineOperand::CreateImm(0));
281 Cond.push_back(SecondLastInst->getOperand(0));
282 FBB = LastInst->getOperand(0).getMBB();
283 return false;
284 }
285
286 // If the block ends with two Hexagon:JMPs, handle it. The second one is not
287 // executed, so remove it.
288 if (SecLastOpcode == Hexagon::J2_jump && LastOpcode == Hexagon::J2_jump) {
289 TBB = SecondLastInst->getOperand(0).getMBB();
290 I = LastInst;
291 if (AllowModify)
292 I->eraseFromParent();
293 return false;
294 }
295
296 // If the block ends with an ENDLOOP, and JMP, handle it.
297 if (SecLastOpcode == Hexagon::ENDLOOP0 &&
298 LastOpcode == Hexagon::J2_jump) {
299 TBB = SecondLastInst->getOperand(0).getMBB();
300 Cond.push_back(SecondLastInst->getOperand(0));
301 FBB = LastInst->getOperand(0).getMBB();
302 return false;
303 }
304
305 // Otherwise, can't handle this.
306 return true;
307 }
308
309
310 unsigned HexagonInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
311 int BOpc = Hexagon::J2_jump;
312 int BccOpc = Hexagon::J2_jumpt;
313 int BccOpcNot = Hexagon::J2_jumpf;
314
315 MachineBasicBlock::iterator I = MBB.end();
316 if (I == MBB.begin()) return 0;
317 --I;
318 if (I->getOpcode() != BOpc && I->getOpcode() != BccOpc &&
319 I->getOpcode() != BccOpcNot)
320 return 0;
321
322 // Remove the branch.
323 I->eraseFromParent();
324
325 I = MBB.end();
326
327 if (I == MBB.begin()) return 1;
328 --I;
329 if (I->getOpcode() != BccOpc && I->getOpcode() != BccOpcNot)
330 return 1;
331
332 // Remove the branch.
333 I->eraseFromParent();
334 return 2;
335 }
336
337
338 /// \brief For a comparison instruction, return the source registers in
339 /// \p SrcReg and \p SrcReg2 if having two register operands, and the value it
340 /// compares against in CmpValue. Return true if the comparison instruction
341 /// can be analyzed.
342 bool HexagonInstrInfo::analyzeCompare(const MachineInstr *MI,
343 unsigned &SrcReg, unsigned &SrcReg2,
344 int &Mask, int &Value) const {
345 unsigned Opc = MI->getOpcode();
346
347 // Set mask and the first source register.
348 switch (Opc) {
349 case Hexagon::C2_cmpeqp:
350 case Hexagon::C2_cmpeqi:
351 case Hexagon::C2_cmpeq:
352 case Hexagon::C2_cmpgtp:
353 case Hexagon::C2_cmpgtup:
354 case Hexagon::C2_cmpgtui:
355 case Hexagon::C2_cmpgtu:
356 case Hexagon::C2_cmpgti:
357 case Hexagon::C2_cmpgt:
358 SrcReg = MI->getOperand(1).getReg();
359 Mask = ~0;
360 break;
361 case Hexagon::CMPbEQri_V4:
362 case Hexagon::CMPbEQrr_sbsb_V4:
363 case Hexagon::CMPbEQrr_ubub_V4:
364 case Hexagon::CMPbGTUri_V4:
365 case Hexagon::CMPbGTUrr_V4:
366 case Hexagon::CMPbGTrr_V4:
367 SrcReg = MI->getOperand(1).getReg();
368 Mask = 0xFF;
369 break;
370 case Hexagon::CMPhEQri_V4:
371 case Hexagon::CMPhEQrr_shl_V4:
372 case Hexagon::CMPhEQrr_xor_V4:
373 case Hexagon::CMPhGTUri_V4:
374 case Hexagon::CMPhGTUrr_V4:
375 case Hexagon::CMPhGTrr_shl_V4:
376 SrcReg = MI->getOperand(1).getReg();
377 Mask = 0xFFFF;
378 break;
379 }
380
381 // Set the value/second source register.
382 switch (Opc) {
383 case Hexagon::C2_cmpeqp:
384 case Hexagon::C2_cmpeq:
385 case Hexagon::C2_cmpgtp:
386 case Hexagon::C2_cmpgtup:
387 case Hexagon::C2_cmpgtu:
388 case Hexagon::C2_cmpgt:
389 case Hexagon::CMPbEQrr_sbsb_V4:
390 case Hexagon::CMPbEQrr_ubub_V4:
391 case Hexagon::CMPbGTUrr_V4:
392 case Hexagon::CMPbGTrr_V4:
393 case Hexagon::CMPhEQrr_shl_V4:
394 case Hexagon::CMPhEQrr_xor_V4:
395 case Hexagon::CMPhGTUrr_V4:
396 case Hexagon::CMPhGTrr_shl_V4:
397 SrcReg2 = MI->getOperand(2).getReg();
398 return true;
399
400 case Hexagon::C2_cmpeqi:
401 case Hexagon::C2_cmpgtui:
402 case Hexagon::C2_cmpgti:
403 case Hexagon::CMPbEQri_V4:
404 case Hexagon::CMPbGTUri_V4:
405 case Hexagon::CMPhEQri_V4:
406 case Hexagon::CMPhGTUri_V4:
407 SrcReg2 = 0;
408 Value = MI->getOperand(2).getImm();
409 return true;
410 }
411
412 return false;
413 }
414
415
416 void HexagonInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
417 MachineBasicBlock::iterator I, DebugLoc DL,
418 unsigned DestReg, unsigned SrcReg,
419 bool KillSrc) const {
420 if (Hexagon::IntRegsRegClass.contains(SrcReg, DestReg)) {
421 BuildMI(MBB, I, DL, get(Hexagon::A2_tfr), DestReg).addReg(SrcReg);
422 return;
423 }
424 if (Hexagon::DoubleRegsRegClass.contains(SrcReg, DestReg)) {
425 BuildMI(MBB, I, DL, get(Hexagon::A2_tfrp), DestReg).addReg(SrcReg);
426 return;
427 }
428 if (Hexagon::PredRegsRegClass.contains(SrcReg, DestReg)) {
429 // Map Pd = Ps to Pd = or(Ps, Ps).
430 BuildMI(MBB, I, DL, get(Hexagon::C2_or),
431 DestReg).addReg(SrcReg).addReg(SrcReg);
432 return;
433 }
434 if (Hexagon::DoubleRegsRegClass.contains(DestReg) &&
435 Hexagon::IntRegsRegClass.contains(SrcReg)) {
436 // We can have an overlap between single and double reg: r1:0 = r0.
437 if(SrcReg == RI.getSubReg(DestReg, Hexagon::subreg_loreg)) {
438 // r1:0 = r0
439 BuildMI(MBB, I, DL, get(Hexagon::A2_tfrsi), (RI.getSubReg(DestReg,
440 Hexagon::subreg_hireg))).addImm(0);
441 } else {
442 // r1:0 = r1 or no overlap.
443 BuildMI(MBB, I, DL, get(Hexagon::A2_tfr), (RI.getSubReg(DestReg,
444 Hexagon::subreg_loreg))).addReg(SrcReg);
445 BuildMI(MBB, I, DL, get(Hexagon::A2_tfrsi), (RI.getSubReg(DestReg,
446 Hexagon::subreg_hireg))).addImm(0);
447 }
448 return;
449 }
450 if (Hexagon::CtrRegsRegClass.contains(DestReg) &&
451 Hexagon::IntRegsRegClass.contains(SrcReg)) {
452 BuildMI(MBB, I, DL, get(Hexagon::A2_tfrrcr), DestReg).addReg(SrcReg);
453 return;
454 }
455 if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
456 Hexagon::IntRegsRegClass.contains(DestReg)) {
457 BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg).
458 addReg(SrcReg, getKillRegState(KillSrc));
459 return;
460 }
461 if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
462 Hexagon::PredRegsRegClass.contains(DestReg)) {
463 BuildMI(MBB, I, DL, get(Hexagon::C2_tfrrp), DestReg).
464 addReg(SrcReg, getKillRegState(KillSrc));
465 return;
466 }
467
468 llvm_unreachable("Unimplemented");
469 }
470
471
472 void HexagonInstrInfo::
473 storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
474 unsigned SrcReg, bool isKill, int FI,
475 const TargetRegisterClass *RC,
476 const TargetRegisterInfo *TRI) const {
477
478 DebugLoc DL = MBB.findDebugLoc(I);
479 MachineFunction &MF = *MBB.getParent();
480 MachineFrameInfo &MFI = *MF.getFrameInfo();
481 unsigned Align = MFI.getObjectAlignment(FI);
482
483 MachineMemOperand *MMO =
484 MF.getMachineMemOperand(
485 MachinePointerInfo(PseudoSourceValue::getFixedStack(FI)),
486 MachineMemOperand::MOStore,
487 MFI.getObjectSize(FI),
488 Align);
489
490 if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) {
491 BuildMI(MBB, I, DL, get(Hexagon::S2_storeri_io))
492 .addFrameIndex(FI).addImm(0)
493 .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
494 } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) {
495 BuildMI(MBB, I, DL, get(Hexagon::S2_storerd_io))
496 .addFrameIndex(FI).addImm(0)
497 .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
498 } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) {
499 BuildMI(MBB, I, DL, get(Hexagon::STriw_pred))
500 .addFrameIndex(FI).addImm(0)
501 .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
502 } else {
503 llvm_unreachable("Unimplemented");
504 }
505 }
506
507
508 void HexagonInstrInfo::storeRegToAddr(
509 MachineFunction &MF, unsigned SrcReg,
510 bool isKill,
511 SmallVectorImpl<MachineOperand> &Addr,
512 const TargetRegisterClass *RC,
513 SmallVectorImpl<MachineInstr*> &NewMIs) const
514 {
515 llvm_unreachable("Unimplemented");
516 }
517
518
519 void HexagonInstrInfo::
520 loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
521 unsigned DestReg, int FI,
522 const TargetRegisterClass *RC,
523 const TargetRegisterInfo *TRI) const {
524 DebugLoc DL = MBB.findDebugLoc(I);
525 MachineFunction &MF = *MBB.getParent();
526 MachineFrameInfo &MFI = *MF.getFrameInfo();
527 unsigned Align = MFI.getObjectAlignment(FI);
528
529 MachineMemOperand *MMO =
530 MF.getMachineMemOperand(
531 MachinePointerInfo(PseudoSourceValue::getFixedStack(FI)),
532 MachineMemOperand::MOLoad,
533 MFI.getObjectSize(FI),
534 Align);
535 if (RC == &Hexagon::IntRegsRegClass) {
536 BuildMI(MBB, I, DL, get(Hexagon::L2_loadri_io), DestReg)
537 .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
538 } else if (RC == &Hexagon::DoubleRegsRegClass) {
539 BuildMI(MBB, I, DL, get(Hexagon::L2_loadrd_io), DestReg)
540 .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
541 } else if (RC == &Hexagon::PredRegsRegClass) {
542 BuildMI(MBB, I, DL, get(Hexagon::LDriw_pred), DestReg)
543 .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
544 } else {
545 llvm_unreachable("Can't store this register to stack slot");
546 }
547 }
548
549
550 void HexagonInstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
551 SmallVectorImpl<MachineOperand> &Addr,
552 const TargetRegisterClass *RC,
553 SmallVectorImpl<MachineInstr*> &NewMIs) const {
554 llvm_unreachable("Unimplemented");
555 }
556
557
558 MachineInstr *HexagonInstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
559 MachineInstr* MI,
560 const SmallVectorImpl<unsigned> &Ops,
561 int FI) const {
562 // Hexagon_TODO: Implement.
563 return nullptr;
564 }
565
566 unsigned HexagonInstrInfo::createVR(MachineFunction* MF, MVT VT) const {
567
568 MachineRegisterInfo &RegInfo = MF->getRegInfo();
569 const TargetRegisterClass *TRC;
570 if (VT == MVT::i1) {
571 TRC = &Hexagon::PredRegsRegClass;
572 } else if (VT == MVT::i32 || VT == MVT::f32) {
573 TRC = &Hexagon::IntRegsRegClass;
574 } else if (VT == MVT::i64 || VT == MVT::f64) {
575 TRC = &Hexagon::DoubleRegsRegClass;
576 } else {
577 llvm_unreachable("Cannot handle this register class");
578 }
579
580 unsigned NewReg = RegInfo.createVirtualRegister(TRC);
581 return NewReg;
582 }
583
584 bool HexagonInstrInfo::isExtendable(const MachineInstr *MI) const {
585 // Constant extenders are allowed only for V4 and above.
586 if (!Subtarget.hasV4TOps())
587 return false;
588
589 const MCInstrDesc &MID = MI->getDesc();
590 const uint64_t F = MID.TSFlags;
591 if ((F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask)
592 return true;
593
594 // TODO: This is largely obsolete now. Will need to be removed
595 // in consecutive patches.
596 switch(MI->getOpcode()) {
597 // TFR_FI Remains a special case.
598 case Hexagon::TFR_FI:
599 return true;
600 default:
601 return false;
602 }
603 return false;
604 }
605
606 // This returns true in two cases:
607 // - The OP code itself indicates that this is an extended instruction.
608 // - One of MOs has been marked with HMOTF_ConstExtended flag.
609 bool HexagonInstrInfo::isExtended(const MachineInstr *MI) const {
610 // First check if this is permanently extended op code.
611 const uint64_t F = MI->getDesc().TSFlags;
612 if ((F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask)
613 return true;
614 // Use MO operand flags to determine if one of MI's operands
615 // has HMOTF_ConstExtended flag set.
616 for (MachineInstr::const_mop_iterator I = MI->operands_begin(),
617 E = MI->operands_end(); I != E; ++I) {
618 if (I->getTargetFlags() && HexagonII::HMOTF_ConstExtended)
619 return true;
620 }
621 return false;
622 }
623
624 bool HexagonInstrInfo::isBranch (const MachineInstr *MI) const {
625 return MI->getDesc().isBranch();
626 }
627
628 bool HexagonInstrInfo::isNewValueInst(const MachineInstr *MI) const {
629 if (isNewValueJump(MI))
630 return true;
631
632 if (isNewValueStore(MI))
633 return true;
634
635 return false;
636 }
637
638 bool HexagonInstrInfo::isSaveCalleeSavedRegsCall(const MachineInstr *MI) const {
639 return MI->getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4;
640 }
641
642 bool HexagonInstrInfo::isPredicable(MachineInstr *MI) const {
643 bool isPred = MI->getDesc().isPredicable();
644
645 if (!isPred)
646 return false;
647
648 const int Opc = MI->getOpcode();
649
650 switch(Opc) {
651 case Hexagon::A2_tfrsi:
652 return isInt<12>(MI->getOperand(1).getImm());
653
654 case Hexagon::S2_storerd_io:
655 return isShiftedUInt<6,3>(MI->getOperand(1).getImm());
656
657 case Hexagon::S2_storeri_io:
658 case Hexagon::S2_storerinew_io:
659 return isShiftedUInt<6,2>(MI->getOperand(1).getImm());
660
661 case Hexagon::S2_storerh_io:
662 case Hexagon::S2_storerhnew_io:
663 return isShiftedUInt<6,1>(MI->getOperand(1).getImm());
664
665 case Hexagon::S2_storerb_io:
666 case Hexagon::S2_storerbnew_io:
667 return isUInt<6>(MI->getOperand(1).getImm());
668
669 case Hexagon::L2_loadrd_io:
670 return isShiftedUInt<6,3>(MI->getOperand(2).getImm());
671
672 case Hexagon::L2_loadri_io:
673 return isShiftedUInt<6,2>(MI->getOperand(2).getImm());
674
675 case Hexagon::L2_loadrh_io:
676 case Hexagon::L2_loadruh_io:
677 return isShiftedUInt<6,1>(MI->getOperand(2).getImm());
678
679 case Hexagon::L2_loadrb_io:
680 case Hexagon::L2_loadrub_io:
681 return isUInt<6>(MI->getOperand(2).getImm());
682
683 case Hexagon::L2_loadrd_pi:
684 return isShiftedInt<4,3>(MI->getOperand(3).getImm());
685
686 case Hexagon::L2_loadri_pi:
687 return isShiftedInt<4,2>(MI->getOperand(3).getImm());
688
689 case Hexagon::L2_loadrh_pi:
690 case Hexagon::L2_loadruh_pi:
691 return isShiftedInt<4,1>(MI->getOperand(3).getImm());
692
693 case Hexagon::L2_loadrb_pi:
694 case Hexagon::L2_loadrub_pi:
695 return isInt<4>(MI->getOperand(3).getImm());
696
697 case Hexagon::S4_storeirb_io:
698 case Hexagon::S4_storeirh_io:
699 case Hexagon::S4_storeiri_io:
700 return (isUInt<6>(MI->getOperand(1).getImm()) &&
701 isInt<6>(MI->getOperand(2).getImm()));
702
703 case Hexagon::ADD_ri:
704 return isInt<8>(MI->getOperand(2).getImm());
705
706 case Hexagon::A2_aslh:
707 case Hexagon::A2_asrh:
708 case Hexagon::A2_sxtb:
709 case Hexagon::A2_sxth:
710 case Hexagon::A2_zxtb:
711 case Hexagon::A2_zxth:
712 return Subtarget.hasV4TOps();
713 }
714
715 return true;
716 }
717
718 // This function performs the following inversiones:
719 //
720 // cPt ---> cNotPt
721 // cNotPt ---> cPt
722 //
723 unsigned HexagonInstrInfo::getInvertedPredicatedOpcode(const int Opc) const {
724 int InvPredOpcode;
725 InvPredOpcode = isPredicatedTrue(Opc) ? Hexagon::getFalsePredOpcode(Opc)
726 : Hexagon::getTruePredOpcode(Opc);
727 if (InvPredOpcode >= 0) // Valid instruction with the inverted predicate.
728 return InvPredOpcode;
729
730 switch(Opc) {
731 default: llvm_unreachable("Unexpected predicated instruction");
732 case Hexagon::C2_ccombinewt:
733 return Hexagon::C2_ccombinewf;
734 case Hexagon::C2_ccombinewf:
735 return Hexagon::C2_ccombinewt;
736
737 // Dealloc_return.
738 case Hexagon::L4_return_t:
739 return Hexagon::L4_return_f;
740 case Hexagon::L4_return_f:
741 return Hexagon::L4_return_t;
742 }
743 }
744
745 // New Value Store instructions.
746 bool HexagonInstrInfo::isNewValueStore(const MachineInstr *MI) const {
747 const uint64_t F = MI->getDesc().TSFlags;
748
749 return ((F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask);
750 }
751
752 bool HexagonInstrInfo::isNewValueStore(unsigned Opcode) const {
753 const uint64_t F = get(Opcode).TSFlags;
754
755 return ((F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask);
756 }
757
758 int HexagonInstrInfo::
759 getMatchingCondBranchOpcode(int Opc, bool invertPredicate) const {
760 enum Hexagon::PredSense inPredSense;
761 inPredSense = invertPredicate ? Hexagon::PredSense_false :
762 Hexagon::PredSense_true;
763 int CondOpcode = Hexagon::getPredOpcode(Opc, inPredSense);
764 if (CondOpcode >= 0) // Valid Conditional opcode/instruction
765 return CondOpcode;
766
767 // This switch case will be removed once all the instructions have been
768 // modified to use relation maps.
769 switch(Opc) {
770 case Hexagon::TFRI_f:
771 return !invertPredicate ? Hexagon::TFRI_cPt_f :
772 Hexagon::TFRI_cNotPt_f;
773 case Hexagon::A2_combinew:
774 return !invertPredicate ? Hexagon::C2_ccombinewt :
775 Hexagon::C2_ccombinewf;
776
777 // Word.
778 case Hexagon::STriw_f:
779 return !invertPredicate ? Hexagon::S2_pstorerit_io:
780 Hexagon::S2_pstorerif_io;
781 case Hexagon::STriw_indexed_f:
782 return !invertPredicate ? Hexagon::S2_pstorerit_io:
783 Hexagon::S2_pstorerif_io;
784
785 // DEALLOC_RETURN.
786 case Hexagon::L4_return:
787 return !invertPredicate ? Hexagon::L4_return_t:
788 Hexagon::L4_return_f;
789 }
790 llvm_unreachable("Unexpected predicable instruction");
791 }
792
793
794 bool HexagonInstrInfo::
795 PredicateInstruction(MachineInstr *MI,
796 const SmallVectorImpl<MachineOperand> &Cond) const {
797 int Opc = MI->getOpcode();
798 assert (isPredicable(MI) && "Expected predicable instruction");
799 bool invertJump = (!Cond.empty() && Cond[0].isImm() &&
800 (Cond[0].getImm() == 0));
801
802 // This will change MI's opcode to its predicate version.
803 // However, its operand list is still the old one, i.e. the
804 // non-predicate one.
805 MI->setDesc(get(getMatchingCondBranchOpcode(Opc, invertJump)));
806
807 int oper = -1;
808 unsigned int GAIdx = 0;
809
810 // Indicates whether the current MI has a GlobalAddress operand
811 bool hasGAOpnd = false;
812 std::vector<MachineOperand> tmpOpnds;
813
814 // Indicates whether we need to shift operands to right.
815 bool needShift = true;
816
817 // The predicate is ALWAYS the FIRST input operand !!!
818 if (MI->getNumOperands() == 0) {
819 // The non-predicate version of MI does not take any operands,
820 // i.e. no outs and no ins. In this condition, the predicate
821 // operand will be directly placed at Operands[0]. No operand
822 // shift is needed.
823 // Example: BARRIER
824 needShift = false;
825 oper = -1;
826 }
827 else if ( MI->getOperand(MI->getNumOperands()-1).isReg()
828 && MI->getOperand(MI->getNumOperands()-1).isDef()
829 && !MI->getOperand(MI->getNumOperands()-1).isImplicit()) {
830 // The non-predicate version of MI does not have any input operands.
831 // In this condition, we extend the length of Operands[] by one and
832 // copy the original last operand to the newly allocated slot.
833 // At this moment, it is just a place holder. Later, we will put
834 // predicate operand directly into it. No operand shift is needed.
835 // Example: r0=BARRIER (this is a faked insn used here for illustration)
836 MI->addOperand(MI->getOperand(MI->getNumOperands()-1));
837 needShift = false;
838 oper = MI->getNumOperands() - 2;
839 }
840 else {
841 // We need to right shift all input operands by one. Duplicate the
842 // last operand into the newly allocated slot.
843 MI->addOperand(MI->getOperand(MI->getNumOperands()-1));
844 }
845
846 if (needShift)
847 {
848 // Operands[ MI->getNumOperands() - 2 ] has been copied into
849 // Operands[ MI->getNumOperands() - 1 ], so we start from
850 // Operands[ MI->getNumOperands() - 3 ].
851 // oper is a signed int.
852 // It is ok if "MI->getNumOperands()-3" is -3, -2, or -1.
853 for (oper = MI->getNumOperands() - 3; oper >= 0; --oper)
854 {
855 MachineOperand &MO = MI->getOperand(oper);
856
857 // Opnd[0] Opnd[1] Opnd[2] Opnd[3] Opnd[4] Opnd[5] Opnd[6] Opnd[7]
858 // <Def0> <Def1> <Use0> <Use1> <ImpDef0> <ImpDef1> <ImpUse0> <ImpUse1>
859 // /\~
860 // /||\~
861 // ||
862 // Predicate Operand here
863 if (MO.isReg() && !MO.isUse() && !MO.isImplicit()) {
864 break;
865 }
866 if (MO.isReg()) {
867 MI->getOperand(oper+1).ChangeToRegister(MO.getReg(), MO.isDef(),
868 MO.isImplicit(), MO.isKill(),
869 MO.isDead(), MO.isUndef(),
870 MO.isDebug());
871 }
872 else if (MO.isImm()) {
873 MI->getOperand(oper+1).ChangeToImmediate(MO.getImm());
874 }
875 else if (MO.isGlobal()) {
876 // MI can not have more than one GlobalAddress operand.
877 assert(hasGAOpnd == false && "MI can only have one GlobalAddress opnd");
878
879 // There is no member function called "ChangeToGlobalAddress" in the
880 // MachineOperand class (not like "ChangeToRegister" and
881 // "ChangeToImmediate"). So we have to remove them from Operands[] list
882 // first, and then add them back after we have inserted the predicate
883 // operand. tmpOpnds[] is to remember these operands before we remove
884 // them.
885 tmpOpnds.push_back(MO);
886
887 // Operands[oper] is a GlobalAddress operand;
888 // Operands[oper+1] has been copied into Operands[oper+2];
889 hasGAOpnd = true;
890 GAIdx = oper;
891 continue;
892 }
893 else {
894 llvm_unreachable("Unexpected operand type");
895 }
896 }
897 }
898
899 int regPos = invertJump ? 1 : 0;
900 MachineOperand PredMO = Cond[regPos];
901
902 // [oper] now points to the last explicit Def. Predicate operand must be
903 // located at [oper+1]. See diagram above.
904 // This assumes that the predicate is always the first operand,
905 // i.e. Operands[0+numResults], in the set of inputs
906 // It is better to have an assert here to check this. But I don't know how
907 // to write this assert because findFirstPredOperandIdx() would return -1
908 if (oper < -1) oper = -1;
909
910 MI->getOperand(oper+1).ChangeToRegister(PredMO.getReg(), PredMO.isDef(),
911 PredMO.isImplicit(), false,
912 PredMO.isDead(), PredMO.isUndef(),
913 PredMO.isDebug());
914
915 MachineRegisterInfo &RegInfo = MI->getParent()->getParent()->getRegInfo();
916 RegInfo.clearKillFlags(PredMO.getReg());
917
918 if (hasGAOpnd)
919 {
920 unsigned int i;
921
922 // Operands[GAIdx] is the original GlobalAddress operand, which is
923 // already copied into tmpOpnds[0].
924 // Operands[GAIdx] now stores a copy of Operands[GAIdx-1]
925 // Operands[GAIdx+1] has already been copied into Operands[GAIdx+2],
926 // so we start from [GAIdx+2]
927 for (i = GAIdx + 2; i < MI->getNumOperands(); ++i)
928 tmpOpnds.push_back(MI->getOperand(i));
929
930 // Remove all operands in range [ (GAIdx+1) ... (MI->getNumOperands()-1) ]
931 // It is very important that we always remove from the end of Operands[]
932 // MI->getNumOperands() is at least 2 if program goes to here.
933 for (i = MI->getNumOperands() - 1; i > GAIdx; --i)
934 MI->RemoveOperand(i);
935
936 for (i = 0; i < tmpOpnds.size(); ++i)
937 MI->addOperand(tmpOpnds[i]);
938 }
939
940 return true;
941 }
942
943
944 bool
945 HexagonInstrInfo::
946 isProfitableToIfCvt(MachineBasicBlock &MBB,
947 unsigned NumCycles,
948 unsigned ExtraPredCycles,
949 const BranchProbability &Probability) const {
950 return true;
951 }
952
953
954 bool
955 HexagonInstrInfo::
956 isProfitableToIfCvt(MachineBasicBlock &TMBB,
957 unsigned NumTCycles,
958 unsigned ExtraTCycles,
959 MachineBasicBlock &FMBB,
960 unsigned NumFCycles,
961 unsigned ExtraFCycles,
962 const BranchProbability &Probability) const {
963 return true;
964 }
965
966 // Returns true if an instruction is predicated irrespective of the predicate
967 // sense. For example, all of the following will return true.
968 // if (p0) R1 = add(R2, R3)
969 // if (!p0) R1 = add(R2, R3)
970 // if (p0.new) R1 = add(R2, R3)
971 // if (!p0.new) R1 = add(R2, R3)
972 bool HexagonInstrInfo::isPredicated(const MachineInstr *MI) const {
973 const uint64_t F = MI->getDesc().TSFlags;
974
975 return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
976 }
977
978 bool HexagonInstrInfo::isPredicated(unsigned Opcode) const {
979 const uint64_t F = get(Opcode).TSFlags;
980
981 return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
982 }
983
984 bool HexagonInstrInfo::isPredicatedTrue(const MachineInstr *MI) const {
985 const uint64_t F = MI->getDesc().TSFlags;
986
987 assert(isPredicated(MI));
988 return (!((F >> HexagonII::PredicatedFalsePos) &
989 HexagonII::PredicatedFalseMask));
990 }
991
992 bool HexagonInstrInfo::isPredicatedTrue(unsigned Opcode) const {
993 const uint64_t F = get(Opcode).TSFlags;
994
995 // Make sure that the instruction is predicated.
996 assert((F>> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
997 return (!((F >> HexagonII::PredicatedFalsePos) &
998 HexagonII::PredicatedFalseMask));
999 }
1000
1001 bool HexagonInstrInfo::isPredicatedNew(const MachineInstr *MI) const {
1002 const uint64_t F = MI->getDesc().TSFlags;
1003
1004 assert(isPredicated(MI));
1005 return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask);
1006 }
1007
1008 bool HexagonInstrInfo::isPredicatedNew(unsigned Opcode) const {
1009 const uint64_t F = get(Opcode).TSFlags;
1010
1011 assert(isPredicated(Opcode));
1012 return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask);
1013 }
1014
1015 // Returns true, if a ST insn can be promoted to a new-value store.
1016 bool HexagonInstrInfo::mayBeNewStore(const MachineInstr *MI) const {
1017 const HexagonRegisterInfo& QRI = getRegisterInfo();
1018 const uint64_t F = MI->getDesc().TSFlags;
1019
1020 return ((F >> HexagonII::mayNVStorePos) &
1021 HexagonII::mayNVStoreMask &
1022 QRI.Subtarget.hasV4TOps());
1023 }
1024
1025 bool
1026 HexagonInstrInfo::DefinesPredicate(MachineInstr *MI,
1027 std::vector<MachineOperand> &Pred) const {
1028 for (unsigned oper = 0; oper < MI->getNumOperands(); ++oper) {
1029 MachineOperand MO = MI->getOperand(oper);
1030 if (MO.isReg() && MO.isDef()) {
1031 const TargetRegisterClass* RC = RI.getMinimalPhysRegClass(MO.getReg());
1032 if (RC == &Hexagon::PredRegsRegClass) {
1033 Pred.push_back(MO);
1034 return true;
1035 }
1036 }
1037 }
1038 return false;
1039 }
1040
1041
1042 bool
1043 HexagonInstrInfo::
1044 SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
1045 const SmallVectorImpl<MachineOperand> &Pred2) const {
1046 // TODO: Fix this
1047 return false;
1048 }
1049
1050
1051 //
1052 // We indicate that we want to reverse the branch by
1053 // inserting a 0 at the beginning of the Cond vector.
1054 //
1055 bool HexagonInstrInfo::
1056 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1057 if (!Cond.empty() && Cond[0].isImm() && Cond[0].getImm() == 0) {
1058 Cond.erase(Cond.begin());
1059 } else {
1060 Cond.insert(Cond.begin(), MachineOperand::CreateImm(0));
1061 }
1062 return false;
1063 }
1064
1065
1066 bool HexagonInstrInfo::
1067 isProfitableToDupForIfCvt(MachineBasicBlock &MBB,unsigned NumInstrs,
1068 const BranchProbability &Probability) const {
1069 return (NumInstrs <= 4);
1070 }
1071
1072 bool HexagonInstrInfo::isDeallocRet(const MachineInstr *MI) const {
1073 switch (MI->getOpcode()) {
1074 default: return false;
1075 case Hexagon::L4_return:
1076 case Hexagon::L4_return_t:
1077 case Hexagon::L4_return_f:
1078 case Hexagon::L4_return_tnew_pnt:
1079 case Hexagon::L4_return_fnew_pnt:
1080 case Hexagon::L4_return_tnew_pt:
1081 case Hexagon::L4_return_fnew_pt:
1082 return true;
1083 }
1084 }
1085
1086
1087 bool HexagonInstrInfo::
1088 isValidOffset(const int Opcode, const int Offset) const {
1089 // This function is to check whether the "Offset" is in the correct range of
1090 // the given "Opcode". If "Offset" is not in the correct range, "ADD_ri" is
1091 // inserted to calculate the final address. Due to this reason, the function
1092 // assumes that the "Offset" has correct alignment.
1093 // We used to assert if the offset was not properly aligned, however,
1094 // there are cases where a misaligned pointer recast can cause this
1095 // problem, and we need to allow for it. The front end warns of such
1096 // misaligns with respect to load size.
1097
1098 switch(Opcode) {
1099
1100 case Hexagon::L2_loadri_io:
1101 case Hexagon::LDriw_f:
1102 case Hexagon::S2_storeri_io:
1103 case Hexagon::STriw_f:
1104 return (Offset >= Hexagon_MEMW_OFFSET_MIN) &&
1105 (Offset <= Hexagon_MEMW_OFFSET_MAX);
1106
1107 case Hexagon::L2_loadrd_io:
1108 case Hexagon::LDrid_f:
1109 case Hexagon::S2_storerd_io:
1110 case Hexagon::STrid_f:
1111 return (Offset >= Hexagon_MEMD_OFFSET_MIN) &&
1112 (Offset <= Hexagon_MEMD_OFFSET_MAX);
1113
1114 case Hexagon::L2_loadrh_io:
1115 case Hexagon::L2_loadruh_io:
1116 case Hexagon::S2_storerh_io:
1117 return (Offset >= Hexagon_MEMH_OFFSET_MIN) &&
1118 (Offset <= Hexagon_MEMH_OFFSET_MAX);
1119
1120 case Hexagon::L2_loadrb_io:
1121 case Hexagon::S2_storerb_io:
1122 case Hexagon::L2_loadrub_io:
1123 return (Offset >= Hexagon_MEMB_OFFSET_MIN) &&
1124 (Offset <= Hexagon_MEMB_OFFSET_MAX);
1125
1126 case Hexagon::ADD_ri:
1127 case Hexagon::TFR_FI:
1128 return (Offset >= Hexagon_ADDI_OFFSET_MIN) &&
1129 (Offset <= Hexagon_ADDI_OFFSET_MAX);
1130
1131 case Hexagon::L4_iadd_memopw_io:
1132 case Hexagon::L4_isub_memopw_io:
1133 case Hexagon::L4_add_memopw_io:
1134 case Hexagon::L4_sub_memopw_io:
1135 case Hexagon::L4_and_memopw_io:
1136 case Hexagon::L4_or_memopw_io:
1137 return (0 <= Offset && Offset <= 255);
1138
1139 case Hexagon::L4_iadd_memoph_io:
1140 case Hexagon::L4_isub_memoph_io:
1141 case Hexagon::L4_add_memoph_io:
1142 case Hexagon::L4_sub_memoph_io:
1143 case Hexagon::L4_and_memoph_io:
1144 case Hexagon::L4_or_memoph_io:
1145 return (0 <= Offset && Offset <= 127);
1146
1147 case Hexagon::L4_iadd_memopb_io:
1148 case Hexagon::L4_isub_memopb_io:
1149 case Hexagon::L4_add_memopb_io:
1150 case Hexagon::L4_sub_memopb_io:
1151 case Hexagon::L4_and_memopb_io:
1152 case Hexagon::L4_or_memopb_io:
1153 return (0 <= Offset && Offset <= 63);
1154
1155 // LDri_pred and STriw_pred are pseudo operations, so it has to take offset of
1156 // any size. Later pass knows how to handle it.
1157 case Hexagon::STriw_pred:
1158 case Hexagon::LDriw_pred:
1159 return true;
1160
1161 case Hexagon::J2_loop0i:
1162 return isUInt<10>(Offset);
1163
1164 // INLINEASM is very special.
1165 case Hexagon::INLINEASM:
1166 return true;
1167 }
1168
1169 llvm_unreachable("No offset range is defined for this opcode. "
1170 "Please define it in the above switch statement!");
1171 }
1172
1173
1174 //
1175 // Check if the Offset is a valid auto-inc imm by Load/Store Type.
1176 //
1177 bool HexagonInstrInfo::
1178 isValidAutoIncImm(const EVT VT, const int Offset) const {
1179
1180 if (VT == MVT::i64) {
1181 return (Offset >= Hexagon_MEMD_AUTOINC_MIN &&
1182 Offset <= Hexagon_MEMD_AUTOINC_MAX &&
1183 (Offset & 0x7) == 0);
1184 }
1185 if (VT == MVT::i32) {
1186 return (Offset >= Hexagon_MEMW_AUTOINC_MIN &&
1187 Offset <= Hexagon_MEMW_AUTOINC_MAX &&
1188 (Offset & 0x3) == 0);
1189 }
1190 if (VT == MVT::i16) {
1191 return (Offset >= Hexagon_MEMH_AUTOINC_MIN &&
1192 Offset <= Hexagon_MEMH_AUTOINC_MAX &&
1193 (Offset & 0x1) == 0);
1194 }
1195 if (VT == MVT::i8) {
1196 return (Offset >= Hexagon_MEMB_AUTOINC_MIN &&
1197 Offset <= Hexagon_MEMB_AUTOINC_MAX);
1198 }
1199 llvm_unreachable("Not an auto-inc opc!");
1200 }
1201
1202
1203 bool HexagonInstrInfo::
1204 isMemOp(const MachineInstr *MI) const {
1205 // return MI->getDesc().mayLoad() && MI->getDesc().mayStore();
1206
1207 switch (MI->getOpcode())
1208 {
1209 default: return false;
1210 case Hexagon::L4_iadd_memopw_io:
1211 case Hexagon::L4_isub_memopw_io:
1212 case Hexagon::L4_add_memopw_io:
1213 case Hexagon::L4_sub_memopw_io:
1214 case Hexagon::L4_and_memopw_io:
1215 case Hexagon::L4_or_memopw_io:
1216 case Hexagon::L4_iadd_memoph_io:
1217 case Hexagon::L4_isub_memoph_io:
1218 case Hexagon::L4_add_memoph_io:
1219 case Hexagon::L4_sub_memoph_io:
1220 case Hexagon::L4_and_memoph_io:
1221 case Hexagon::L4_or_memoph_io:
1222 case Hexagon::L4_iadd_memopb_io:
1223 case Hexagon::L4_isub_memopb_io:
1224 case Hexagon::L4_add_memopb_io:
1225 case Hexagon::L4_sub_memopb_io:
1226 case Hexagon::L4_and_memopb_io:
1227 case Hexagon::L4_or_memopb_io:
1228 case Hexagon::L4_ior_memopb_io:
1229 case Hexagon::L4_ior_memoph_io:
1230 case Hexagon::L4_ior_memopw_io:
1231 case Hexagon::L4_iand_memopb_io:
1232 case Hexagon::L4_iand_memoph_io:
1233 case Hexagon::L4_iand_memopw_io:
1234 return true;
1235 }
1236 return false;
1237 }
1238
1239
1240 bool HexagonInstrInfo::
1241 isSpillPredRegOp(const MachineInstr *MI) const {
1242 switch (MI->getOpcode()) {
1243 default: return false;
1244 case Hexagon::STriw_pred :
1245 case Hexagon::LDriw_pred :
1246 return true;
1247 }
1248 }
1249
1250 bool HexagonInstrInfo::isNewValueJumpCandidate(const MachineInstr *MI) const {
1251 switch (MI->getOpcode()) {
1252 default: return false;
1253 case Hexagon::C2_cmpeq:
1254 case Hexagon::C2_cmpeqi:
1255 case Hexagon::C2_cmpgt:
1256 case Hexagon::C2_cmpgti:
1257 case Hexagon::C2_cmpgtu:
1258 case Hexagon::C2_cmpgtui:
1259 return true;
1260 }
1261 }
1262
1263 bool HexagonInstrInfo::
1264 isConditionalTransfer (const MachineInstr *MI) const {
1265 switch (MI->getOpcode()) {
1266 default: return false;
1267 case Hexagon::A2_tfrt:
1268 case Hexagon::A2_tfrf:
1269 case Hexagon::C2_cmoveit:
1270 case Hexagon::C2_cmoveif:
1271 case Hexagon::A2_tfrtnew:
1272 case Hexagon::A2_tfrfnew:
1273 case Hexagon::C2_cmovenewit:
1274 case Hexagon::C2_cmovenewif:
1275 return true;
1276 }
1277 }
1278
1279 bool HexagonInstrInfo::isConditionalALU32 (const MachineInstr* MI) const {
1280 switch (MI->getOpcode())
1281 {
1282 default: return false;
1283 case Hexagon::A2_paddf:
1284 case Hexagon::A2_paddfnew:
1285 case Hexagon::A2_paddt:
1286 case Hexagon::A2_paddtnew:
1287 case Hexagon::A2_pandf:
1288 case Hexagon::A2_pandfnew:
1289 case Hexagon::A2_pandt:
1290 case Hexagon::A2_pandtnew:
1291 case Hexagon::A4_paslhf:
1292 case Hexagon::A4_paslhfnew:
1293 case Hexagon::A4_paslht:
1294 case Hexagon::A4_paslhtnew:
1295 case Hexagon::A4_pasrhf:
1296 case Hexagon::A4_pasrhfnew:
1297 case Hexagon::A4_pasrht:
1298 case Hexagon::A4_pasrhtnew:
1299 case Hexagon::A2_porf:
1300 case Hexagon::A2_porfnew:
1301 case Hexagon::A2_port:
1302 case Hexagon::A2_portnew:
1303 case Hexagon::A2_psubf:
1304 case Hexagon::A2_psubfnew:
1305 case Hexagon::A2_psubt:
1306 case Hexagon::A2_psubtnew:
1307 case Hexagon::A2_pxorf:
1308 case Hexagon::A2_pxorfnew:
1309 case Hexagon::A2_pxort:
1310 case Hexagon::A2_pxortnew:
1311 case Hexagon::A4_psxthf:
1312 case Hexagon::A4_psxthfnew:
1313 case Hexagon::A4_psxtht:
1314 case Hexagon::A4_psxthtnew:
1315 case Hexagon::A4_psxtbf:
1316 case Hexagon::A4_psxtbfnew:
1317 case Hexagon::A4_psxtbt:
1318 case Hexagon::A4_psxtbtnew:
1319 case Hexagon::A4_pzxtbf:
1320 case Hexagon::A4_pzxtbfnew:
1321 case Hexagon::A4_pzxtbt:
1322 case Hexagon::A4_pzxtbtnew:
1323 case Hexagon::A4_pzxthf:
1324 case Hexagon::A4_pzxthfnew:
1325 case Hexagon::A4_pzxtht:
1326 case Hexagon::A4_pzxthtnew:
1327 case Hexagon::ADD_ri_cPt:
1328 case Hexagon::ADD_ri_cNotPt:
1329 case Hexagon::C2_ccombinewt:
1330 case Hexagon::C2_ccombinewf:
1331 return true;
1332 }
1333 }
1334
1335 bool HexagonInstrInfo::
1336 isConditionalLoad (const MachineInstr* MI) const {
1337 const HexagonRegisterInfo& QRI = getRegisterInfo();
1338 switch (MI->getOpcode())
1339 {
1340 default: return false;
1341 case Hexagon::L2_ploadrdt_io :
1342 case Hexagon::L2_ploadrdf_io:
1343 case Hexagon::L2_ploadrit_io:
1344 case Hexagon::L2_ploadrif_io:
1345 case Hexagon::L2_ploadrht_io:
1346 case Hexagon::L2_ploadrhf_io:
1347 case Hexagon::L2_ploadrbt_io:
1348 case Hexagon::L2_ploadrbf_io:
1349 case Hexagon::L2_ploadruht_io:
1350 case Hexagon::L2_ploadruhf_io:
1351 case Hexagon::L2_ploadrubt_io:
1352 case Hexagon::L2_ploadrubf_io:
1353 return true;
1354 case Hexagon::L2_ploadrdt_pi:
1355 case Hexagon::L2_ploadrdf_pi:
1356 case Hexagon::L2_ploadrit_pi:
1357 case Hexagon::L2_ploadrif_pi:
1358 case Hexagon::L2_ploadrht_pi:
1359 case Hexagon::L2_ploadrhf_pi:
1360 case Hexagon::L2_ploadrbt_pi:
1361 case Hexagon::L2_ploadrbf_pi:
1362 case Hexagon::L2_ploadruht_pi:
1363 case Hexagon::L2_ploadruhf_pi:
1364 case Hexagon::L2_ploadrubt_pi:
1365 case Hexagon::L2_ploadrubf_pi:
1366 return QRI.Subtarget.hasV4TOps();
1367 case Hexagon::L4_ploadrdt_rr:
1368 case Hexagon::L4_ploadrdf_rr:
1369 case Hexagon::L4_ploadrbt_rr:
1370 case Hexagon::L4_ploadrbf_rr:
1371 case Hexagon::L4_ploadrubt_rr:
1372 case Hexagon::L4_ploadrubf_rr:
1373 case Hexagon::L4_ploadrht_rr:
1374 case Hexagon::L4_ploadrhf_rr:
1375 case Hexagon::L4_ploadruht_rr:
1376 case Hexagon::L4_ploadruhf_rr:
1377 case Hexagon::L4_ploadrit_rr:
1378 case Hexagon::L4_ploadrif_rr:
1379 return QRI.Subtarget.hasV4TOps();
1380 }
1381 }
1382
1383 // Returns true if an instruction is a conditional store.
1384 //
1385 // Note: It doesn't include conditional new-value stores as they can't be
1386 // converted to .new predicate.
1387 //
1388 // p.new NV store [ if(p0.new)memw(R0+#0)=R2.new ]
1389 // ^ ^
1390 // / \ (not OK. it will cause new-value store to be
1391 // / X conditional on p0.new while R2 producer is
1392 // / \ on p0)
1393 // / \.
1394 // p.new store p.old NV store
1395 // [if(p0.new)memw(R0+#0)=R2] [if(p0)memw(R0+#0)=R2.new]
1396 // ^ ^
1397 // \ /
1398 // \ /
1399 // \ /
1400 // p.old store
1401 // [if (p0)memw(R0+#0)=R2]
1402 //
1403 // The above diagram shows the steps involoved in the conversion of a predicated
1404 // store instruction to its .new predicated new-value form.
1405 //
1406 // The following set of instructions further explains the scenario where
1407 // conditional new-value store becomes invalid when promoted to .new predicate
1408 // form.
1409 //
1410 // { 1) if (p0) r0 = add(r1, r2)
1411 // 2) p0 = cmp.eq(r3, #0) }
1412 //
1413 // 3) if (p0) memb(r1+#0) = r0 --> this instruction can't be grouped with
1414 // the first two instructions because in instr 1, r0 is conditional on old value
1415 // of p0 but its use in instr 3 is conditional on p0 modified by instr 2 which
1416 // is not valid for new-value stores.
1417 bool HexagonInstrInfo::
1418 isConditionalStore (const MachineInstr* MI) const {
1419 const HexagonRegisterInfo& QRI = getRegisterInfo();
1420 switch (MI->getOpcode())
1421 {
1422 default: return false;
1423 case Hexagon::S4_storeirbt_io:
1424 case Hexagon::S4_storeirbf_io:
1425 case Hexagon::S4_pstorerbt_rr:
1426 case Hexagon::S4_pstorerbf_rr:
1427 case Hexagon::S2_pstorerbt_io:
1428 case Hexagon::S2_pstorerbf_io:
1429 case Hexagon::S2_pstorerbt_pi:
1430 case Hexagon::S2_pstorerbf_pi:
1431 case Hexagon::S2_pstorerdt_io:
1432 case Hexagon::S2_pstorerdf_io:
1433 case Hexagon::S4_pstorerdt_rr:
1434 case Hexagon::S4_pstorerdf_rr:
1435 case Hexagon::S2_pstorerdt_pi:
1436 case Hexagon::S2_pstorerdf_pi:
1437 case Hexagon::S2_pstorerht_io:
1438 case Hexagon::S2_pstorerhf_io:
1439 case Hexagon::S4_storeirht_io:
1440 case Hexagon::S4_storeirhf_io:
1441 case Hexagon::S4_pstorerht_rr:
1442 case Hexagon::S4_pstorerhf_rr:
1443 case Hexagon::S2_pstorerht_pi:
1444 case Hexagon::S2_pstorerhf_pi:
1445 case Hexagon::S2_pstorerit_io:
1446 case Hexagon::S2_pstorerif_io:
1447 case Hexagon::S4_storeirit_io:
1448 case Hexagon::S4_storeirif_io:
1449 case Hexagon::S4_pstorerit_rr:
1450 case Hexagon::S4_pstorerif_rr:
1451 case Hexagon::S2_pstorerit_pi:
1452 case Hexagon::S2_pstorerif_pi:
1453 return QRI.Subtarget.hasV4TOps();
1454
1455 // V4 global address store before promoting to dot new.
1456 case Hexagon::S4_pstorerdt_abs:
1457 case Hexagon::S4_pstorerdf_abs:
1458 case Hexagon::S4_pstorerbt_abs:
1459 case Hexagon::S4_pstorerbf_abs:
1460 case Hexagon::S4_pstorerht_abs:
1461 case Hexagon::S4_pstorerhf_abs:
1462 case Hexagon::S4_pstorerit_abs:
1463 case Hexagon::S4_pstorerif_abs:
1464 return QRI.Subtarget.hasV4TOps();
1465
1466 // Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded
1467 // from the "Conditional Store" list. Because a predicated new value store
1468 // would NOT be promoted to a double dot new store. See diagram below:
1469 // This function returns yes for those stores that are predicated but not
1470 // yet promoted to predicate dot new instructions.
1471 //
1472 // +---------------------+
1473 // /-----| if (p0) memw(..)=r0 |---------\~
1474 // || +---------------------+ ||
1475 // promote || /\ /\ || promote
1476 // || /||\ /||\ ||
1477 // \||/ demote || \||/
1478 // \/ || || \/
1479 // +-------------------------+ || +-------------------------+
1480 // | if (p0.new) memw(..)=r0 | || | if (p0) memw(..)=r0.new |
1481 // +-------------------------+ || +-------------------------+
1482 // || || ||
1483 // || demote \||/
1484 // promote || \/ NOT possible
1485 // || || /\~
1486 // \||/ || /||\~
1487 // \/ || ||
1488 // +-----------------------------+
1489 // | if (p0.new) memw(..)=r0.new |
1490 // +-----------------------------+
1491 // Double Dot New Store
1492 //
1493 }
1494 }
1495
1496
1497 bool HexagonInstrInfo::isNewValueJump(const MachineInstr *MI) const {
1498 if (isNewValue(MI) && isBranch(MI))
1499 return true;
1500 return false;
1501 }
1502
1503 bool HexagonInstrInfo::isPostIncrement (const MachineInstr* MI) const {
1504 return (getAddrMode(MI) == HexagonII::PostInc);
1505 }
1506
1507 bool HexagonInstrInfo::isNewValue(const MachineInstr* MI) const {
1508 const uint64_t F = MI->getDesc().TSFlags;
1509 return ((F >> HexagonII::NewValuePos) & HexagonII::NewValueMask);
1510 }
1511
1512 // Returns true, if any one of the operands is a dot new
1513 // insn, whether it is predicated dot new or register dot new.
1514 bool HexagonInstrInfo::isDotNewInst (const MachineInstr* MI) const {
1515 return (isNewValueInst(MI) ||
1516 (isPredicated(MI) && isPredicatedNew(MI)));
1517 }
1518
1519 // Returns the most basic instruction for the .new predicated instructions and
1520 // new-value stores.
1521 // For example, all of the following instructions will be converted back to the
1522 // same instruction:
1523 // 1) if (p0.new) memw(R0+#0) = R1.new --->
1524 // 2) if (p0) memw(R0+#0)= R1.new -------> if (p0) memw(R0+#0) = R1
1525 // 3) if (p0.new) memw(R0+#0) = R1 --->
1526 //
1527
1528 int HexagonInstrInfo::GetDotOldOp(const int opc) const {
1529 int NewOp = opc;
1530 if (isPredicated(NewOp) && isPredicatedNew(NewOp)) { // Get predicate old form
1531 NewOp = Hexagon::getPredOldOpcode(NewOp);
1532 assert(NewOp >= 0 &&
1533 "Couldn't change predicate new instruction to its old form.");
1534 }
1535
1536 if (isNewValueStore(NewOp)) { // Convert into non-new-value format
1537 NewOp = Hexagon::getNonNVStore(NewOp);
1538 assert(NewOp >= 0 && "Couldn't change new-value store to its old form.");
1539 }
1540 return NewOp;
1541 }
1542
1543 // Return the new value instruction for a given store.
1544 int HexagonInstrInfo::GetDotNewOp(const MachineInstr* MI) const {
1545 int NVOpcode = Hexagon::getNewValueOpcode(MI->getOpcode());
1546 if (NVOpcode >= 0) // Valid new-value store instruction.
1547 return NVOpcode;
1548
1549 switch (MI->getOpcode()) {
1550 default: llvm_unreachable("Unknown .new type");
1551 // store new value byte
1552 case Hexagon::STrib_shl_V4:
1553 return Hexagon::STrib_shl_nv_V4;
1554
1555 case Hexagon::STrih_shl_V4:
1556 return Hexagon::STrih_shl_nv_V4;
1557
1558 case Hexagon::STriw_f:
1559 return Hexagon::S2_storerinew_io;
1560
1561 case Hexagon::STriw_indexed_f:
1562 return Hexagon::S4_storerinew_rr;
1563
1564 case Hexagon::STriw_shl_V4:
1565 return Hexagon::STriw_shl_nv_V4;
1566
1567 }
1568 return 0;
1569 }
1570
1571 // Return .new predicate version for an instruction.
1572 int HexagonInstrInfo::GetDotNewPredOp(MachineInstr *MI,
1573 const MachineBranchProbabilityInfo
1574 *MBPI) const {
1575
1576 int NewOpcode = Hexagon::getPredNewOpcode(MI->getOpcode());
1577 if (NewOpcode >= 0) // Valid predicate new instruction
1578 return NewOpcode;
1579
1580 switch (MI->getOpcode()) {
1581 default: llvm_unreachable("Unknown .new type");
1582 // Condtional Jumps
1583 case Hexagon::J2_jumpt:
1584 case Hexagon::J2_jumpf:
1585 return getDotNewPredJumpOp(MI, MBPI);
1586
1587 case Hexagon::J2_jumprt:
1588 return Hexagon::J2_jumptnewpt;
1589
1590 case Hexagon::J2_jumprf:
1591 return Hexagon::J2_jumprfnewpt;
1592
1593 case Hexagon::JMPrett:
1594 return Hexagon::J2_jumprtnewpt;
1595
1596 case Hexagon::JMPretf:
1597 return Hexagon::J2_jumprfnewpt;
1598
1599
1600 // Conditional combine
1601 case Hexagon::C2_ccombinewt:
1602 return Hexagon::C2_ccombinewnewt;
1603 case Hexagon::C2_ccombinewf:
1604 return Hexagon::C2_ccombinewnewf;
1605 }
1606 }
1607
1608
1609 unsigned HexagonInstrInfo::getAddrMode(const MachineInstr* MI) const {
1610 const uint64_t F = MI->getDesc().TSFlags;
1611
1612 return((F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask);
1613 }
1614
1615 /// immediateExtend - Changes the instruction in place to one using an immediate
1616 /// extender.
1617 void HexagonInstrInfo::immediateExtend(MachineInstr *MI) const {
1618 assert((isExtendable(MI)||isConstExtended(MI)) &&
1619 "Instruction must be extendable");
1620 // Find which operand is extendable.
1621 short ExtOpNum = getCExtOpNum(MI);
1622 MachineOperand &MO = MI->getOperand(ExtOpNum);
1623 // This needs to be something we understand.
1624 assert((MO.isMBB() || MO.isImm()) &&
1625 "Branch with unknown extendable field type");
1626 // Mark given operand as extended.
1627 MO.addTargetFlag(HexagonII::HMOTF_ConstExtended);
1628 }
1629
1630 DFAPacketizer *HexagonInstrInfo::CreateTargetScheduleState(
1631 const TargetSubtargetInfo &STI) const {
1632 const InstrItineraryData *II = STI.getInstrItineraryData();
1633 return static_cast<const HexagonSubtarget &>(STI).createDFAPacketizer(II);
1634 }
1635
1636 bool HexagonInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
1637 const MachineBasicBlock *MBB,
1638 const MachineFunction &MF) const {
1639 // Debug info is never a scheduling boundary. It's necessary to be explicit
1640 // due to the special treatment of IT instructions below, otherwise a
1641 // dbg_value followed by an IT will result in the IT instruction being
1642 // considered a scheduling hazard, which is wrong. It should be the actual
1643 // instruction preceding the dbg_value instruction(s), just like it is
1644 // when debug info is not present.
1645 if (MI->isDebugValue())
1646 return false;
1647
1648 // Terminators and labels can't be scheduled around.
1649 if (MI->getDesc().isTerminator() || MI->isPosition() || MI->isInlineAsm())
1650 return true;
1651
1652 return false;
1653 }
1654
1655 bool HexagonInstrInfo::isConstExtended(MachineInstr *MI) const {
1656
1657 // Constant extenders are allowed only for V4 and above.
1658 if (!Subtarget.hasV4TOps())
1659 return false;
1660
1661 const uint64_t F = MI->getDesc().TSFlags;
1662 unsigned isExtended = (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask;
1663 if (isExtended) // Instruction must be extended.
1664 return true;
1665
1666 unsigned isExtendable = (F >> HexagonII::ExtendablePos)
1667 & HexagonII::ExtendableMask;
1668 if (!isExtendable)
1669 return false;
1670
1671 short ExtOpNum = getCExtOpNum(MI);
1672 const MachineOperand &MO = MI->getOperand(ExtOpNum);
1673 // Use MO operand flags to determine if MO
1674 // has the HMOTF_ConstExtended flag set.
1675 if (MO.getTargetFlags() && HexagonII::HMOTF_ConstExtended)
1676 return true;
1677 // If this is a Machine BB address we are talking about, and it is
1678 // not marked as extended, say so.
1679 if (MO.isMBB())
1680 return false;
1681
1682 // We could be using an instruction with an extendable immediate and shoehorn
1683 // a global address into it. If it is a global address it will be constant
1684 // extended. We do this for COMBINE.
1685 // We currently only handle isGlobal() because it is the only kind of
1686 // object we are going to end up with here for now.
1687 // In the future we probably should add isSymbol(), etc.
1688 if (MO.isGlobal() || MO.isSymbol())
1689 return true;
1690
1691 // If the extendable operand is not 'Immediate' type, the instruction should
1692 // have 'isExtended' flag set.
1693 assert(MO.isImm() && "Extendable operand must be Immediate type");
1694
1695 int MinValue = getMinValue(MI);
1696 int MaxValue = getMaxValue(MI);
1697 int ImmValue = MO.getImm();
1698
1699 return (ImmValue < MinValue || ImmValue > MaxValue);
1700 }
1701
1702 // Returns the opcode to use when converting MI, which is a conditional jump,
1703 // into a conditional instruction which uses the .new value of the predicate.
1704 // We also use branch probabilities to add a hint to the jump.
1705 int
1706 HexagonInstrInfo::getDotNewPredJumpOp(MachineInstr *MI,
1707 const
1708 MachineBranchProbabilityInfo *MBPI) const {
1709
1710 // We assume that block can have at most two successors.
1711 bool taken = false;
1712 MachineBasicBlock *Src = MI->getParent();
1713 MachineOperand *BrTarget = &MI->getOperand(1);
1714 MachineBasicBlock *Dst = BrTarget->getMBB();
1715
1716 const BranchProbability Prediction = MBPI->getEdgeProbability(Src, Dst);
1717 if (Prediction >= BranchProbability(1,2))
1718 taken = true;
1719
1720 switch (MI->getOpcode()) {
1721 case Hexagon::J2_jumpt:
1722 return taken ? Hexagon::J2_jumptnewpt : Hexagon::J2_jumptnew;
1723 case Hexagon::J2_jumpf:
1724 return taken ? Hexagon::J2_jumpfnewpt : Hexagon::J2_jumpfnew;
1725
1726 default:
1727 llvm_unreachable("Unexpected jump instruction.");
1728 }
1729 }
1730 // Returns true if a particular operand is extendable for an instruction.
1731 bool HexagonInstrInfo::isOperandExtended(const MachineInstr *MI,
1732 unsigned short OperandNum) const {
1733 // Constant extenders are allowed only for V4 and above.
1734 if (!Subtarget.hasV4TOps())
1735 return false;
1736
1737 const uint64_t F = MI->getDesc().TSFlags;
1738
1739 return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask)
1740 == OperandNum;
1741 }
1742
1743 // Returns Operand Index for the constant extended instruction.
1744 unsigned short HexagonInstrInfo::getCExtOpNum(const MachineInstr *MI) const {
1745 const uint64_t F = MI->getDesc().TSFlags;
1746 return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask);
1747 }
1748
1749 // Returns the min value that doesn't need to be extended.
1750 int HexagonInstrInfo::getMinValue(const MachineInstr *MI) const {
1751 const uint64_t F = MI->getDesc().TSFlags;
1752 unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
1753 & HexagonII::ExtentSignedMask;
1754 unsigned bits = (F >> HexagonII::ExtentBitsPos)
1755 & HexagonII::ExtentBitsMask;
1756
1757 if (isSigned) // if value is signed
1758 return -1U << (bits - 1);
1759 else
1760 return 0;
1761 }
1762
1763 // Returns the max value that doesn't need to be extended.
1764 int HexagonInstrInfo::getMaxValue(const MachineInstr *MI) const {
1765 const uint64_t F = MI->getDesc().TSFlags;
1766 unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
1767 & HexagonII::ExtentSignedMask;
1768 unsigned bits = (F >> HexagonII::ExtentBitsPos)
1769 & HexagonII::ExtentBitsMask;
1770
1771 if (isSigned) // if value is signed
1772 return ~(-1U << (bits - 1));
1773 else
1774 return ~(-1U << bits);
1775 }
1776
1777 // Returns true if an instruction can be converted into a non-extended
1778 // equivalent instruction.
1779 bool HexagonInstrInfo::NonExtEquivalentExists (const MachineInstr *MI) const {
1780
1781 short NonExtOpcode;
1782 // Check if the instruction has a register form that uses register in place
1783 // of the extended operand, if so return that as the non-extended form.
1784 if (Hexagon::getRegForm(MI->getOpcode()) >= 0)
1785 return true;
1786
1787 if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) {
1788 // Check addressing mode and retrieve non-ext equivalent instruction.
1789
1790 switch (getAddrMode(MI)) {
1791 case HexagonII::Absolute :
1792 // Load/store with absolute addressing mode can be converted into
1793 // base+offset mode.
1794 NonExtOpcode = Hexagon::getBasedWithImmOffset(MI->getOpcode());
1795 break;
1796 case HexagonII::BaseImmOffset :
1797 // Load/store with base+offset addressing mode can be converted into
1798 // base+register offset addressing mode. However left shift operand should
1799 // be set to 0.
1800 NonExtOpcode = Hexagon::getBaseWithRegOffset(MI->getOpcode());
1801 break;
1802 default:
1803 return false;
1804 }
1805 if (NonExtOpcode < 0)
1806 return false;
1807 return true;
1808 }
1809 return false;
1810 }
1811
1812 // Returns opcode of the non-extended equivalent instruction.
1813 short HexagonInstrInfo::getNonExtOpcode (const MachineInstr *MI) const {
1814
1815 // Check if the instruction has a register form that uses register in place
1816 // of the extended operand, if so return that as the non-extended form.
1817 short NonExtOpcode = Hexagon::getRegForm(MI->getOpcode());
1818 if (NonExtOpcode >= 0)
1819 return NonExtOpcode;
1820
1821 if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) {
1822 // Check addressing mode and retrieve non-ext equivalent instruction.
1823 switch (getAddrMode(MI)) {
1824 case HexagonII::Absolute :
1825 return Hexagon::getBasedWithImmOffset(MI->getOpcode());
1826 case HexagonII::BaseImmOffset :
1827 return Hexagon::getBaseWithRegOffset(MI->getOpcode());
1828 default:
1829 return -1;
1830 }
1831 }
1832 return -1;
1833 }
1834
1835 bool HexagonInstrInfo::PredOpcodeHasJMP_c(Opcode_t Opcode) const {
1836 return (Opcode == Hexagon::J2_jumpt) ||
1837 (Opcode == Hexagon::J2_jumpf) ||
1838 (Opcode == Hexagon::J2_jumptnewpt) ||
1839 (Opcode == Hexagon::J2_jumpfnewpt) ||
1840 (Opcode == Hexagon::J2_jumpt) ||
1841 (Opcode == Hexagon::J2_jumpf);
1842 }
1843
1844 bool HexagonInstrInfo::PredOpcodeHasNot(Opcode_t Opcode) const {
1845 return (Opcode == Hexagon::J2_jumpf) ||
1846 (Opcode == Hexagon::J2_jumpfnewpt) ||
1847 (Opcode == Hexagon::J2_jumpfnew);
1848 }