]> git.proxmox.com Git - rustc.git/blob - src/llvm/lib/Target/Hexagon/HexagonInstrInfoV4.td
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / lib / Target / Hexagon / HexagonInstrInfoV4.td
1 //=- HexagonInstrInfoV4.td - Target Desc. for Hexagon Target -*- tablegen -*-=//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file describes the Hexagon V4 instructions in TableGen format.
11 //
12 //===----------------------------------------------------------------------===//
13
14 let hasSideEffects = 0 in
15 class T_Immext<Operand ImmType>
16 : EXTENDERInst<(outs), (ins ImmType:$imm),
17 "immext(#$imm)", []> {
18 bits<32> imm;
19 let IClass = 0b0000;
20
21 let Inst{27-16} = imm{31-20};
22 let Inst{13-0} = imm{19-6};
23 }
24
25 def A4_ext : T_Immext<u26_6Imm>;
26 let isCodeGenOnly = 1 in {
27 let isBranch = 1 in
28 def A4_ext_b : T_Immext<brtarget>;
29 let isCall = 1 in
30 def A4_ext_c : T_Immext<calltarget>;
31 def A4_ext_g : T_Immext<globaladdress>;
32 }
33
34 def BITPOS32 : SDNodeXForm<imm, [{
35 // Return the bit position we will set [0-31].
36 // As an SDNode.
37 int32_t imm = N->getSExtValue();
38 return XformMskToBitPosU5Imm(imm);
39 }]>;
40
41 // Fold (add (CONST32 tglobaladdr:$addr) <offset>) into a global address.
42 def FoldGlobalAddr : ComplexPattern<i32, 1, "foldGlobalAddress", [], []>;
43
44 // Fold (add (CONST32_GP tglobaladdr:$addr) <offset>) into a global address.
45 def FoldGlobalAddrGP : ComplexPattern<i32, 1, "foldGlobalAddressGP", [], []>;
46
47 def NumUsesBelowThresCONST32 : PatFrag<(ops node:$addr),
48 (HexagonCONST32 node:$addr), [{
49 return hasNumUsesBelowThresGA(N->getOperand(0).getNode());
50 }]>;
51
52 // Hexagon V4 Architecture spec defines 8 instruction classes:
53 // LD ST ALU32 XTYPE J JR MEMOP NV CR SYSTEM(system is not implemented in the
54 // compiler)
55
56 // LD Instructions:
57 // ========================================
58 // Loads (8/16/32/64 bit)
59 // Deallocframe
60
61 // ST Instructions:
62 // ========================================
63 // Stores (8/16/32/64 bit)
64 // Allocframe
65
66 // ALU32 Instructions:
67 // ========================================
68 // Arithmetic / Logical (32 bit)
69 // Vector Halfword
70
71 // XTYPE Instructions (32/64 bit):
72 // ========================================
73 // Arithmetic, Logical, Bit Manipulation
74 // Multiply (Integer, Fractional, Complex)
75 // Permute / Vector Permute Operations
76 // Predicate Operations
77 // Shift / Shift with Add/Sub/Logical
78 // Vector Byte ALU
79 // Vector Halfword (ALU, Shift, Multiply)
80 // Vector Word (ALU, Shift)
81
82 // J Instructions:
83 // ========================================
84 // Jump/Call PC-relative
85
86 // JR Instructions:
87 // ========================================
88 // Jump/Call Register
89
90 // MEMOP Instructions:
91 // ========================================
92 // Operation on memory (8/16/32 bit)
93
94 // NV Instructions:
95 // ========================================
96 // New-value Jumps
97 // New-value Stores
98
99 // CR Instructions:
100 // ========================================
101 // Control-Register Transfers
102 // Hardware Loop Setup
103 // Predicate Logicals & Reductions
104
105 // SYSTEM Instructions (not implemented in the compiler):
106 // ========================================
107 // Prefetch
108 // Cache Maintenance
109 // Bus Operations
110
111
112 //===----------------------------------------------------------------------===//
113 // ALU32 +
114 //===----------------------------------------------------------------------===//
115
116 class T_ALU32_3op_not<string mnemonic, bits<3> MajOp, bits<3> MinOp,
117 bit OpsRev>
118 : T_ALU32_3op<mnemonic, MajOp, MinOp, OpsRev, 0> {
119 let AsmString = "$Rd = "#mnemonic#"($Rs, ~$Rt)";
120 }
121
122 let BaseOpcode = "andn_rr", CextOpcode = "andn", isCodeGenOnly = 0 in
123 def A4_andn : T_ALU32_3op_not<"and", 0b001, 0b100, 1>;
124 let BaseOpcode = "orn_rr", CextOpcode = "orn", isCodeGenOnly = 0 in
125 def A4_orn : T_ALU32_3op_not<"or", 0b001, 0b101, 1>;
126
127 let CextOpcode = "rcmp.eq", isCodeGenOnly = 0 in
128 def A4_rcmpeq : T_ALU32_3op<"cmp.eq", 0b011, 0b010, 0, 1>;
129 let CextOpcode = "!rcmp.eq", isCodeGenOnly = 0 in
130 def A4_rcmpneq : T_ALU32_3op<"!cmp.eq", 0b011, 0b011, 0, 1>;
131
132 let isCodeGenOnly = 0 in {
133 def C4_cmpneq : T_ALU32_3op_cmp<"!cmp.eq", 0b00, 1, 1>;
134 def C4_cmplte : T_ALU32_3op_cmp<"!cmp.gt", 0b10, 1, 0>;
135 def C4_cmplteu : T_ALU32_3op_cmp<"!cmp.gtu", 0b11, 1, 0>;
136 }
137
138 // Pats for instruction selection.
139
140 // A class to embed the usual comparison patfrags within a zext to i32.
141 // The seteq/setne frags use "lhs" and "rhs" as operands, so use the same
142 // names, or else the frag's "body" won't match the operands.
143 class CmpInReg<PatFrag Op>
144 : PatFrag<(ops node:$lhs, node:$rhs),(i32 (zext (i1 Op.Fragment)))>;
145
146 def: T_cmp32_rr_pat<A4_rcmpeq, CmpInReg<seteq>, i32>;
147 def: T_cmp32_rr_pat<A4_rcmpneq, CmpInReg<setne>, i32>;
148
149 class T_CMP_rrbh<string mnemonic, bits<3> MinOp, bit IsComm>
150 : SInst<(outs PredRegs:$Pd), (ins IntRegs:$Rs, IntRegs:$Rt),
151 "$Pd = "#mnemonic#"($Rs, $Rt)", [], "", S_3op_tc_2early_SLOT23>,
152 ImmRegRel {
153 let validSubTargets = HasV4SubT;
154 let InputType = "reg";
155 let CextOpcode = mnemonic;
156 let isCompare = 1;
157 let isCommutable = IsComm;
158 let hasSideEffects = 0;
159
160 bits<2> Pd;
161 bits<5> Rs;
162 bits<5> Rt;
163
164 let IClass = 0b1100;
165 let Inst{27-21} = 0b0111110;
166 let Inst{20-16} = Rs;
167 let Inst{12-8} = Rt;
168 let Inst{7-5} = MinOp;
169 let Inst{1-0} = Pd;
170 }
171
172 let isCodeGenOnly = 0 in {
173 def A4_cmpbeq : T_CMP_rrbh<"cmpb.eq", 0b110, 1>;
174 def A4_cmpbgt : T_CMP_rrbh<"cmpb.gt", 0b010, 0>;
175 def A4_cmpbgtu : T_CMP_rrbh<"cmpb.gtu", 0b111, 0>;
176 def A4_cmpheq : T_CMP_rrbh<"cmph.eq", 0b011, 1>;
177 def A4_cmphgt : T_CMP_rrbh<"cmph.gt", 0b100, 0>;
178 def A4_cmphgtu : T_CMP_rrbh<"cmph.gtu", 0b101, 0>;
179 }
180
181 class T_CMP_ribh<string mnemonic, bits<2> MajOp, bit IsHalf, bit IsComm,
182 Operand ImmType, bit IsImmExt, bit IsImmSigned, int ImmBits>
183 : ALU64Inst<(outs PredRegs:$Pd), (ins IntRegs:$Rs, ImmType:$Imm),
184 "$Pd = "#mnemonic#"($Rs, #$Imm)", [], "", ALU64_tc_2early_SLOT23>,
185 ImmRegRel {
186 let validSubTargets = HasV4SubT;
187 let InputType = "imm";
188 let CextOpcode = mnemonic;
189 let isCompare = 1;
190 let isCommutable = IsComm;
191 let hasSideEffects = 0;
192 let isExtendable = IsImmExt;
193 let opExtendable = !if (IsImmExt, 2, 0);
194 let isExtentSigned = IsImmSigned;
195 let opExtentBits = ImmBits;
196
197 bits<2> Pd;
198 bits<5> Rs;
199 bits<8> Imm;
200
201 let IClass = 0b1101;
202 let Inst{27-24} = 0b1101;
203 let Inst{22-21} = MajOp;
204 let Inst{20-16} = Rs;
205 let Inst{12-5} = Imm;
206 let Inst{4} = 0b0;
207 let Inst{3} = IsHalf;
208 let Inst{1-0} = Pd;
209 }
210
211 let isCodeGenOnly = 0 in {
212 def A4_cmpbeqi : T_CMP_ribh<"cmpb.eq", 0b00, 0, 1, u8Imm, 0, 0, 8>;
213 def A4_cmpbgti : T_CMP_ribh<"cmpb.gt", 0b01, 0, 0, s8Imm, 0, 1, 8>;
214 def A4_cmpbgtui : T_CMP_ribh<"cmpb.gtu", 0b10, 0, 0, u7Ext, 1, 0, 7>;
215 def A4_cmpheqi : T_CMP_ribh<"cmph.eq", 0b00, 1, 1, s8Ext, 1, 1, 8>;
216 def A4_cmphgti : T_CMP_ribh<"cmph.gt", 0b01, 1, 0, s8Ext, 1, 1, 8>;
217 def A4_cmphgtui : T_CMP_ribh<"cmph.gtu", 0b10, 1, 0, u7Ext, 1, 0, 7>;
218 }
219 class T_RCMP_EQ_ri<string mnemonic, bit IsNeg>
220 : ALU32_ri<(outs IntRegs:$Rd), (ins IntRegs:$Rs, s8Ext:$s8),
221 "$Rd = "#mnemonic#"($Rs, #$s8)", [], "", ALU32_2op_tc_1_SLOT0123>,
222 ImmRegRel {
223 let validSubTargets = HasV4SubT;
224 let InputType = "imm";
225 let CextOpcode = !if (IsNeg, "!rcmp.eq", "rcmp.eq");
226 let isExtendable = 1;
227 let opExtendable = 2;
228 let isExtentSigned = 1;
229 let opExtentBits = 8;
230 let hasNewValue = 1;
231
232 bits<5> Rd;
233 bits<5> Rs;
234 bits<8> s8;
235
236 let IClass = 0b0111;
237 let Inst{27-24} = 0b0011;
238 let Inst{22} = 0b1;
239 let Inst{21} = IsNeg;
240 let Inst{20-16} = Rs;
241 let Inst{13} = 0b1;
242 let Inst{12-5} = s8;
243 let Inst{4-0} = Rd;
244 }
245
246 let isCodeGenOnly = 0 in {
247 def A4_rcmpeqi : T_RCMP_EQ_ri<"cmp.eq", 0>;
248 def A4_rcmpneqi : T_RCMP_EQ_ri<"!cmp.eq", 1>;
249 }
250
251 def: Pat<(i32 (zext (i1 (seteq (i32 IntRegs:$Rs), s8ExtPred:$s8)))),
252 (A4_rcmpeqi IntRegs:$Rs, s8ExtPred:$s8)>;
253 def: Pat<(i32 (zext (i1 (setne (i32 IntRegs:$Rs), s8ExtPred:$s8)))),
254 (A4_rcmpneqi IntRegs:$Rs, s8ExtPred:$s8)>;
255
256 // Preserve the S2_tstbit_r generation
257 def: Pat<(i32 (zext (i1 (setne (i32 (and (i32 (shl 1, (i32 IntRegs:$src2))),
258 (i32 IntRegs:$src1))), 0)))),
259 (C2_muxii (S2_tstbit_r IntRegs:$src1, IntRegs:$src2), 1, 0)>;
260
261
262 //===----------------------------------------------------------------------===//
263 // ALU32 -
264 //===----------------------------------------------------------------------===//
265
266
267 //===----------------------------------------------------------------------===//
268 // ALU32/PERM +
269 //===----------------------------------------------------------------------===//
270
271 // Combine a word and an immediate into a register pair.
272 let hasSideEffects = 0, isExtentSigned = 1, isExtendable = 1,
273 opExtentBits = 8 in
274 class T_Combine1 <bits<2> MajOp, dag ins, string AsmStr>
275 : ALU32Inst <(outs DoubleRegs:$Rdd), ins, AsmStr> {
276 bits<5> Rdd;
277 bits<5> Rs;
278 bits<8> s8;
279
280 let IClass = 0b0111;
281 let Inst{27-24} = 0b0011;
282 let Inst{22-21} = MajOp;
283 let Inst{20-16} = Rs;
284 let Inst{13} = 0b1;
285 let Inst{12-5} = s8;
286 let Inst{4-0} = Rdd;
287 }
288
289 let opExtendable = 2, isCodeGenOnly = 0 in
290 def A4_combineri : T_Combine1<0b00, (ins IntRegs:$Rs, s8Ext:$s8),
291 "$Rdd = combine($Rs, #$s8)">;
292
293 let opExtendable = 1, isCodeGenOnly = 0 in
294 def A4_combineir : T_Combine1<0b01, (ins s8Ext:$s8, IntRegs:$Rs),
295 "$Rdd = combine(#$s8, $Rs)">;
296
297 def HexagonWrapperCombineRI_V4 :
298 SDNode<"HexagonISD::WrapperCombineRI_V4", SDTHexagonI64I32I32>;
299 def HexagonWrapperCombineIR_V4 :
300 SDNode<"HexagonISD::WrapperCombineIR_V4", SDTHexagonI64I32I32>;
301
302 def : Pat <(HexagonWrapperCombineRI_V4 IntRegs:$r, s8ExtPred:$i),
303 (A4_combineri IntRegs:$r, s8ExtPred:$i)>,
304 Requires<[HasV4T]>;
305
306 def : Pat <(HexagonWrapperCombineIR_V4 s8ExtPred:$i, IntRegs:$r),
307 (A4_combineir s8ExtPred:$i, IntRegs:$r)>,
308 Requires<[HasV4T]>;
309
310 // A4_combineii: Set two small immediates.
311 let hasSideEffects = 0, isExtendable = 1, opExtentBits = 6, opExtendable = 2 in
312 def A4_combineii: ALU32Inst<(outs DoubleRegs:$Rdd), (ins s8Imm:$s8, u6Ext:$U6),
313 "$Rdd = combine(#$s8, #$U6)"> {
314 bits<5> Rdd;
315 bits<8> s8;
316 bits<6> U6;
317
318 let IClass = 0b0111;
319 let Inst{27-23} = 0b11001;
320 let Inst{20-16} = U6{5-1};
321 let Inst{13} = U6{0};
322 let Inst{12-5} = s8;
323 let Inst{4-0} = Rdd;
324 }
325
326 //===----------------------------------------------------------------------===//
327 // ALU32/PERM -
328 //===----------------------------------------------------------------------===//
329
330 //===----------------------------------------------------------------------===//
331 // LD +
332 //===----------------------------------------------------------------------===//
333 //===----------------------------------------------------------------------===//
334 // Template class for load instructions with Absolute set addressing mode.
335 //===----------------------------------------------------------------------===//
336 let isExtended = 1, opExtendable = 2, hasSideEffects = 0,
337 validSubTargets = HasV4SubT, addrMode = AbsoluteSet in
338 class T_LD_abs_set<string mnemonic, RegisterClass RC>:
339 LDInst2<(outs RC:$dst1, IntRegs:$dst2),
340 (ins u0AlwaysExt:$addr),
341 "$dst1 = "#mnemonic#"($dst2=##$addr)",
342 []>,
343 Requires<[HasV4T]>;
344
345 def LDrid_abs_set_V4 : T_LD_abs_set <"memd", DoubleRegs>;
346 def LDrib_abs_set_V4 : T_LD_abs_set <"memb", IntRegs>;
347 def LDriub_abs_set_V4 : T_LD_abs_set <"memub", IntRegs>;
348 def LDrih_abs_set_V4 : T_LD_abs_set <"memh", IntRegs>;
349 def LDriw_abs_set_V4 : T_LD_abs_set <"memw", IntRegs>;
350 def LDriuh_abs_set_V4 : T_LD_abs_set <"memuh", IntRegs>;
351
352 //===----------------------------------------------------------------------===//
353 // Template classes for the non-predicated load instructions with
354 // base + register offset addressing mode
355 //===----------------------------------------------------------------------===//
356 class T_load_rr <string mnemonic, RegisterClass RC, bits<3> MajOp>:
357 LDInst<(outs RC:$dst), (ins IntRegs:$src1, IntRegs:$src2, u2Imm:$u2),
358 "$dst = "#mnemonic#"($src1 + $src2<<#$u2)",
359 [], "", V4LDST_tc_ld_SLOT01>, ImmRegShl, AddrModeRel {
360 bits<5> dst;
361 bits<5> src1;
362 bits<5> src2;
363 bits<2> u2;
364
365 let IClass = 0b0011;
366
367 let Inst{27-24} = 0b1010;
368 let Inst{23-21} = MajOp;
369 let Inst{20-16} = src1;
370 let Inst{12-8} = src2;
371 let Inst{13} = u2{1};
372 let Inst{7} = u2{0};
373 let Inst{4-0} = dst;
374 }
375
376 //===----------------------------------------------------------------------===//
377 // Template classes for the predicated load instructions with
378 // base + register offset addressing mode
379 //===----------------------------------------------------------------------===//
380 let isPredicated = 1 in
381 class T_pload_rr <string mnemonic, RegisterClass RC, bits<3> MajOp,
382 bit isNot, bit isPredNew>:
383 LDInst <(outs RC:$dst),
384 (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3, u2Imm:$u2),
385 !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
386 ") ")#"$dst = "#mnemonic#"($src2+$src3<<#$u2)",
387 [], "", V4LDST_tc_ld_SLOT01>, AddrModeRel {
388 bits<5> dst;
389 bits<2> src1;
390 bits<5> src2;
391 bits<5> src3;
392 bits<2> u2;
393
394 let isPredicatedFalse = isNot;
395 let isPredicatedNew = isPredNew;
396
397 let IClass = 0b0011;
398
399 let Inst{27-26} = 0b00;
400 let Inst{25} = isPredNew;
401 let Inst{24} = isNot;
402 let Inst{23-21} = MajOp;
403 let Inst{20-16} = src2;
404 let Inst{12-8} = src3;
405 let Inst{13} = u2{1};
406 let Inst{7} = u2{0};
407 let Inst{6-5} = src1;
408 let Inst{4-0} = dst;
409 }
410
411 //===----------------------------------------------------------------------===//
412 // multiclass for load instructions with base + register offset
413 // addressing mode
414 //===----------------------------------------------------------------------===//
415 let hasSideEffects = 0, addrMode = BaseRegOffset in
416 multiclass ld_idxd_shl <string mnemonic, string CextOp, RegisterClass RC,
417 bits<3> MajOp > {
418 let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed_shl,
419 InputType = "reg" in {
420 let isPredicable = 1 in
421 def L4_#NAME#_rr : T_load_rr <mnemonic, RC, MajOp>;
422
423 // Predicated
424 def L4_p#NAME#t_rr : T_pload_rr <mnemonic, RC, MajOp, 0, 0>;
425 def L4_p#NAME#f_rr : T_pload_rr <mnemonic, RC, MajOp, 1, 0>;
426
427 // Predicated new
428 def L4_p#NAME#tnew_rr : T_pload_rr <mnemonic, RC, MajOp, 0, 1>;
429 def L4_p#NAME#fnew_rr : T_pload_rr <mnemonic, RC, MajOp, 1, 1>;
430 }
431 }
432
433 let hasNewValue = 1, accessSize = ByteAccess, isCodeGenOnly = 0 in {
434 defm loadrb : ld_idxd_shl<"memb", "LDrib", IntRegs, 0b000>;
435 defm loadrub : ld_idxd_shl<"memub", "LDriub", IntRegs, 0b001>;
436 }
437
438 let hasNewValue = 1, accessSize = HalfWordAccess, isCodeGenOnly = 0 in {
439 defm loadrh : ld_idxd_shl<"memh", "LDrih", IntRegs, 0b010>;
440 defm loadruh : ld_idxd_shl<"memuh", "LDriuh", IntRegs, 0b011>;
441 }
442
443 let hasNewValue = 1, accessSize = WordAccess, isCodeGenOnly = 0 in
444 defm loadri : ld_idxd_shl<"memw", "LDriw", IntRegs, 0b100>;
445
446 let accessSize = DoubleWordAccess, isCodeGenOnly = 0 in
447 defm loadrd : ld_idxd_shl<"memd", "LDrid", DoubleRegs, 0b110>;
448
449 // 'def pats' for load instructions with base + register offset and non-zero
450 // immediate value. Immediate value is used to left-shift the second
451 // register operand.
452 let AddedComplexity = 40 in {
453 def : Pat <(i32 (sextloadi8 (add IntRegs:$src1,
454 (shl IntRegs:$src2, u2ImmPred:$offset)))),
455 (L4_loadrb_rr IntRegs:$src1,
456 IntRegs:$src2, u2ImmPred:$offset)>,
457 Requires<[HasV4T]>;
458
459 def : Pat <(i32 (zextloadi8 (add IntRegs:$src1,
460 (shl IntRegs:$src2, u2ImmPred:$offset)))),
461 (L4_loadrub_rr IntRegs:$src1,
462 IntRegs:$src2, u2ImmPred:$offset)>,
463 Requires<[HasV4T]>;
464
465 def : Pat <(i32 (extloadi8 (add IntRegs:$src1,
466 (shl IntRegs:$src2, u2ImmPred:$offset)))),
467 (L4_loadrub_rr IntRegs:$src1,
468 IntRegs:$src2, u2ImmPred:$offset)>,
469 Requires<[HasV4T]>;
470
471 def : Pat <(i32 (sextloadi16 (add IntRegs:$src1,
472 (shl IntRegs:$src2, u2ImmPred:$offset)))),
473 (L4_loadrh_rr IntRegs:$src1,
474 IntRegs:$src2, u2ImmPred:$offset)>,
475 Requires<[HasV4T]>;
476
477 def : Pat <(i32 (zextloadi16 (add IntRegs:$src1,
478 (shl IntRegs:$src2, u2ImmPred:$offset)))),
479 (L4_loadruh_rr IntRegs:$src1,
480 IntRegs:$src2, u2ImmPred:$offset)>,
481 Requires<[HasV4T]>;
482
483 def : Pat <(i32 (extloadi16 (add IntRegs:$src1,
484 (shl IntRegs:$src2, u2ImmPred:$offset)))),
485 (L4_loadruh_rr IntRegs:$src1,
486 IntRegs:$src2, u2ImmPred:$offset)>,
487 Requires<[HasV4T]>;
488
489 def : Pat <(i32 (load (add IntRegs:$src1,
490 (shl IntRegs:$src2, u2ImmPred:$offset)))),
491 (L4_loadri_rr IntRegs:$src1,
492 IntRegs:$src2, u2ImmPred:$offset)>,
493 Requires<[HasV4T]>;
494
495 def : Pat <(i64 (load (add IntRegs:$src1,
496 (shl IntRegs:$src2, u2ImmPred:$offset)))),
497 (L4_loadrd_rr IntRegs:$src1,
498 IntRegs:$src2, u2ImmPred:$offset)>,
499 Requires<[HasV4T]>;
500 }
501
502
503 // 'def pats' for load instruction base + register offset and
504 // zero immediate value.
505 let AddedComplexity = 10 in {
506 def : Pat <(i64 (load (add IntRegs:$src1, IntRegs:$src2))),
507 (L4_loadrd_rr IntRegs:$src1, IntRegs:$src2, 0)>,
508 Requires<[HasV4T]>;
509
510 def : Pat <(i32 (sextloadi8 (add IntRegs:$src1, IntRegs:$src2))),
511 (L4_loadrb_rr IntRegs:$src1, IntRegs:$src2, 0)>,
512 Requires<[HasV4T]>;
513
514 def : Pat <(i32 (zextloadi8 (add IntRegs:$src1, IntRegs:$src2))),
515 (L4_loadrub_rr IntRegs:$src1, IntRegs:$src2, 0)>,
516 Requires<[HasV4T]>;
517
518 def : Pat <(i32 (extloadi8 (add IntRegs:$src1, IntRegs:$src2))),
519 (L4_loadrub_rr IntRegs:$src1, IntRegs:$src2, 0)>,
520 Requires<[HasV4T]>;
521
522 def : Pat <(i32 (sextloadi16 (add IntRegs:$src1, IntRegs:$src2))),
523 (L4_loadrh_rr IntRegs:$src1, IntRegs:$src2, 0)>,
524 Requires<[HasV4T]>;
525
526 def : Pat <(i32 (zextloadi16 (add IntRegs:$src1, IntRegs:$src2))),
527 (L4_loadruh_rr IntRegs:$src1, IntRegs:$src2, 0)>,
528 Requires<[HasV4T]>;
529
530 def : Pat <(i32 (extloadi16 (add IntRegs:$src1, IntRegs:$src2))),
531 (L4_loadruh_rr IntRegs:$src1, IntRegs:$src2, 0)>,
532 Requires<[HasV4T]>;
533
534 def : Pat <(i32 (load (add IntRegs:$src1, IntRegs:$src2))),
535 (L4_loadri_rr IntRegs:$src1, IntRegs:$src2, 0)>,
536 Requires<[HasV4T]>;
537 }
538
539 // zext i1->i64
540 def : Pat <(i64 (zext (i1 PredRegs:$src1))),
541 (i64 (A4_combineir 0, (C2_muxii (i1 PredRegs:$src1), 1, 0)))>,
542 Requires<[HasV4T]>;
543
544 // zext i32->i64
545 def : Pat <(i64 (zext (i32 IntRegs:$src1))),
546 (i64 (A4_combineir 0, (i32 IntRegs:$src1)))>,
547 Requires<[HasV4T]>;
548 // zext i8->i64
549 def: Pat <(i64 (zextloadi8 ADDRriS11_0:$src1)),
550 (i64 (A4_combineir 0, (L2_loadrub_io AddrFI:$src1, 0)))>,
551 Requires<[HasV4T]>;
552
553 let AddedComplexity = 20 in
554 def: Pat <(i64 (zextloadi8 (add (i32 IntRegs:$src1),
555 s11_0ExtPred:$offset))),
556 (i64 (A4_combineir 0, (L2_loadrub_io IntRegs:$src1,
557 s11_0ExtPred:$offset)))>,
558 Requires<[HasV4T]>;
559
560 // zext i1->i64
561 def: Pat <(i64 (zextloadi1 ADDRriS11_0:$src1)),
562 (i64 (A4_combineir 0, (L2_loadrub_io AddrFI:$src1, 0)))>,
563 Requires<[HasV4T]>;
564
565 let AddedComplexity = 20 in
566 def: Pat <(i64 (zextloadi1 (add (i32 IntRegs:$src1),
567 s11_0ExtPred:$offset))),
568 (i64 (A4_combineir 0, (L2_loadrub_io IntRegs:$src1,
569 s11_0ExtPred:$offset)))>,
570 Requires<[HasV4T]>;
571
572 // zext i16->i64
573 def: Pat <(i64 (zextloadi16 ADDRriS11_1:$src1)),
574 (i64 (A4_combineir 0, (L2_loadruh_io AddrFI:$src1, 0)))>,
575 Requires<[HasV4T]>;
576
577 let AddedComplexity = 20 in
578 def: Pat <(i64 (zextloadi16 (add (i32 IntRegs:$src1),
579 s11_1ExtPred:$offset))),
580 (i64 (A4_combineir 0, (L2_loadruh_io IntRegs:$src1,
581 s11_1ExtPred:$offset)))>,
582 Requires<[HasV4T]>;
583
584 // anyext i16->i64
585 def: Pat <(i64 (extloadi16 ADDRriS11_2:$src1)),
586 (i64 (A4_combineir 0, (L2_loadrh_io AddrFI:$src1, 0)))>,
587 Requires<[HasV4T]>;
588
589 let AddedComplexity = 20 in
590 def: Pat <(i64 (extloadi16 (add (i32 IntRegs:$src1),
591 s11_1ExtPred:$offset))),
592 (i64 (A4_combineir 0, (L2_loadrh_io IntRegs:$src1,
593 s11_1ExtPred:$offset)))>,
594 Requires<[HasV4T]>;
595
596 // zext i32->i64
597 def: Pat <(i64 (zextloadi32 ADDRriS11_2:$src1)),
598 (i64 (A4_combineir 0, (L2_loadri_io AddrFI:$src1, 0)))>,
599 Requires<[HasV4T]>;
600
601 let AddedComplexity = 100 in
602 def: Pat <(i64 (zextloadi32 (i32 (add IntRegs:$src1, s11_2ExtPred:$offset)))),
603 (i64 (A4_combineir 0, (L2_loadri_io IntRegs:$src1,
604 s11_2ExtPred:$offset)))>,
605 Requires<[HasV4T]>;
606
607 // anyext i32->i64
608 def: Pat <(i64 (extloadi32 ADDRriS11_2:$src1)),
609 (i64 (A4_combineir 0, (L2_loadri_io AddrFI:$src1, 0)))>,
610 Requires<[HasV4T]>;
611
612 let AddedComplexity = 100 in
613 def: Pat <(i64 (extloadi32 (i32 (add IntRegs:$src1, s11_2ExtPred:$offset)))),
614 (i64 (A4_combineir 0, (L2_loadri_io IntRegs:$src1,
615 s11_2ExtPred:$offset)))>,
616 Requires<[HasV4T]>;
617
618
619
620 //===----------------------------------------------------------------------===//
621 // LD -
622 //===----------------------------------------------------------------------===//
623
624 //===----------------------------------------------------------------------===//
625 // ST +
626 //===----------------------------------------------------------------------===//
627 ///
628 //===----------------------------------------------------------------------===//
629 // Template class for store instructions with Absolute set addressing mode.
630 //===----------------------------------------------------------------------===//
631 let isExtended = 1, opExtendable = 2, validSubTargets = HasV4SubT,
632 addrMode = AbsoluteSet in
633 class T_ST_abs_set<string mnemonic, RegisterClass RC>:
634 STInst2<(outs IntRegs:$dst1),
635 (ins RC:$src1, u0AlwaysExt:$src2),
636 mnemonic#"($dst1=##$src2) = $src1",
637 []>,
638 Requires<[HasV4T]>;
639
640 def STrid_abs_set_V4 : T_ST_abs_set <"memd", DoubleRegs>;
641 def STrib_abs_set_V4 : T_ST_abs_set <"memb", IntRegs>;
642 def STrih_abs_set_V4 : T_ST_abs_set <"memh", IntRegs>;
643 def STriw_abs_set_V4 : T_ST_abs_set <"memw", IntRegs>;
644
645 //===----------------------------------------------------------------------===//
646 // Template classes for the non-predicated store instructions with
647 // base + register offset addressing mode
648 //===----------------------------------------------------------------------===//
649 let isPredicable = 1 in
650 class T_store_rr <string mnemonic, RegisterClass RC, bits<3> MajOp, bit isH>
651 : STInst < (outs ), (ins IntRegs:$Rs, IntRegs:$Ru, u2Imm:$u2, RC:$Rt),
652 mnemonic#"($Rs + $Ru<<#$u2) = $Rt"#!if(isH, ".h",""),
653 [],"",V4LDST_tc_st_SLOT01>, ImmRegShl, AddrModeRel {
654
655 bits<5> Rs;
656 bits<5> Ru;
657 bits<2> u2;
658 bits<5> Rt;
659
660 let IClass = 0b0011;
661
662 let Inst{27-24} = 0b1011;
663 let Inst{23-21} = MajOp;
664 let Inst{20-16} = Rs;
665 let Inst{12-8} = Ru;
666 let Inst{13} = u2{1};
667 let Inst{7} = u2{0};
668 let Inst{4-0} = Rt;
669 }
670
671 //===----------------------------------------------------------------------===//
672 // Template classes for the predicated store instructions with
673 // base + register offset addressing mode
674 //===----------------------------------------------------------------------===//
675 let isPredicated = 1 in
676 class T_pstore_rr <string mnemonic, RegisterClass RC, bits<3> MajOp,
677 bit isNot, bit isPredNew, bit isH>
678 : STInst <(outs),
679 (ins PredRegs:$Pv, IntRegs:$Rs, IntRegs:$Ru, u2Imm:$u2, RC:$Rt),
680
681 !if(isNot, "if (!$Pv", "if ($Pv")#!if(isPredNew, ".new) ",
682 ") ")#mnemonic#"($Rs+$Ru<<#$u2) = $Rt"#!if(isH, ".h",""),
683 [], "", V4LDST_tc_st_SLOT01> , AddrModeRel{
684 bits<2> Pv;
685 bits<5> Rs;
686 bits<5> Ru;
687 bits<2> u2;
688 bits<5> Rt;
689
690 let isPredicatedFalse = isNot;
691 let isPredicatedNew = isPredNew;
692
693 let IClass = 0b0011;
694
695 let Inst{27-26} = 0b01;
696 let Inst{25} = isPredNew;
697 let Inst{24} = isNot;
698 let Inst{23-21} = MajOp;
699 let Inst{20-16} = Rs;
700 let Inst{12-8} = Ru;
701 let Inst{13} = u2{1};
702 let Inst{7} = u2{0};
703 let Inst{6-5} = Pv;
704 let Inst{4-0} = Rt;
705 }
706
707 //===----------------------------------------------------------------------===//
708 // Template classes for the new-value store instructions with
709 // base + register offset addressing mode
710 //===----------------------------------------------------------------------===//
711 let isPredicable = 1, isNewValue = 1, opNewValue = 3 in
712 class T_store_new_rr <string mnemonic, bits<2> MajOp> :
713 NVInst < (outs ), (ins IntRegs:$Rs, IntRegs:$Ru, u2Imm:$u2, IntRegs:$Nt),
714 mnemonic#"($Rs + $Ru<<#$u2) = $Nt.new",
715 [],"",V4LDST_tc_st_SLOT0>, ImmRegShl, AddrModeRel {
716
717 bits<5> Rs;
718 bits<5> Ru;
719 bits<2> u2;
720 bits<3> Nt;
721
722 let IClass = 0b0011;
723
724 let Inst{27-21} = 0b1011101;
725 let Inst{20-16} = Rs;
726 let Inst{12-8} = Ru;
727 let Inst{13} = u2{1};
728 let Inst{7} = u2{0};
729 let Inst{4-3} = MajOp;
730 let Inst{2-0} = Nt;
731 }
732
733 //===----------------------------------------------------------------------===//
734 // Template classes for the predicated new-value store instructions with
735 // base + register offset addressing mode
736 //===----------------------------------------------------------------------===//
737 let isPredicated = 1, isNewValue = 1, opNewValue = 4 in
738 class T_pstore_new_rr <string mnemonic, bits<2> MajOp, bit isNot, bit isPredNew>
739 : NVInst<(outs),
740 (ins PredRegs:$Pv, IntRegs:$Rs, IntRegs:$Ru, u2Imm:$u2, IntRegs:$Nt),
741 !if(isNot, "if (!$Pv", "if ($Pv")#!if(isPredNew, ".new) ",
742 ") ")#mnemonic#"($Rs+$Ru<<#$u2) = $Nt.new",
743 [], "", V4LDST_tc_st_SLOT0>, AddrModeRel {
744 bits<2> Pv;
745 bits<5> Rs;
746 bits<5> Ru;
747 bits<2> u2;
748 bits<3> Nt;
749
750 let isPredicatedFalse = isNot;
751 let isPredicatedNew = isPredNew;
752
753 let IClass = 0b0011;
754 let Inst{27-26} = 0b01;
755 let Inst{25} = isPredNew;
756 let Inst{24} = isNot;
757 let Inst{23-21} = 0b101;
758 let Inst{20-16} = Rs;
759 let Inst{12-8} = Ru;
760 let Inst{13} = u2{1};
761 let Inst{7} = u2{0};
762 let Inst{6-5} = Pv;
763 let Inst{4-3} = MajOp;
764 let Inst{2-0} = Nt;
765 }
766
767 //===----------------------------------------------------------------------===//
768 // multiclass for store instructions with base + register offset addressing
769 // mode
770 //===----------------------------------------------------------------------===//
771 let isNVStorable = 1 in
772 multiclass ST_Idxd_shl<string mnemonic, string CextOp, RegisterClass RC,
773 bits<3> MajOp, bit isH = 0> {
774 let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed_shl in {
775 def S4_#NAME#_rr : T_store_rr <mnemonic, RC, MajOp, isH>;
776
777 // Predicated
778 def S4_p#NAME#t_rr : T_pstore_rr <mnemonic, RC, MajOp, 0, 0, isH>;
779 def S4_p#NAME#f_rr : T_pstore_rr <mnemonic, RC, MajOp, 1, 0, isH>;
780
781 // Predicated new
782 def S4_p#NAME#tnew_rr : T_pstore_rr <mnemonic, RC, MajOp, 0, 1, isH>;
783 def S4_p#NAME#fnew_rr : T_pstore_rr <mnemonic, RC, MajOp, 1, 1, isH>;
784 }
785 }
786
787 //===----------------------------------------------------------------------===//
788 // multiclass for new-value store instructions with base + register offset
789 // addressing mode.
790 //===----------------------------------------------------------------------===//
791 let mayStore = 1, isNVStore = 1 in
792 multiclass ST_Idxd_shl_nv <string mnemonic, string CextOp, RegisterClass RC,
793 bits<2> MajOp> {
794 let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed_shl in {
795 def S4_#NAME#new_rr : T_store_new_rr<mnemonic, MajOp>;
796
797 // Predicated
798 def S4_p#NAME#newt_rr : T_pstore_new_rr <mnemonic, MajOp, 0, 0>;
799 def S4_p#NAME#newf_rr : T_pstore_new_rr <mnemonic, MajOp, 1, 0>;
800
801 // Predicated new
802 def S4_p#NAME#newtnew_rr : T_pstore_new_rr <mnemonic, MajOp, 0, 1>;
803 def S4_p#NAME#newfnew_rr : T_pstore_new_rr <mnemonic, MajOp, 1, 1>;
804 }
805 }
806
807 let addrMode = BaseRegOffset, InputType = "reg", hasSideEffects = 0,
808 isCodeGenOnly = 0 in {
809 let accessSize = ByteAccess in
810 defm storerb: ST_Idxd_shl<"memb", "STrib", IntRegs, 0b000>,
811 ST_Idxd_shl_nv<"memb", "STrib", IntRegs, 0b00>;
812
813 let accessSize = HalfWordAccess in
814 defm storerh: ST_Idxd_shl<"memh", "STrih", IntRegs, 0b010>,
815 ST_Idxd_shl_nv<"memh", "STrih", IntRegs, 0b01>;
816
817 let accessSize = WordAccess in
818 defm storeri: ST_Idxd_shl<"memw", "STriw", IntRegs, 0b100>,
819 ST_Idxd_shl_nv<"memw", "STriw", IntRegs, 0b10>;
820
821 let isNVStorable = 0, accessSize = DoubleWordAccess in
822 defm storerd: ST_Idxd_shl<"memd", "STrid", DoubleRegs, 0b110>;
823
824 let isNVStorable = 0, accessSize = HalfWordAccess in
825 defm storerf: ST_Idxd_shl<"memh", "STrif", IntRegs, 0b011, 1>;
826 }
827
828 let Predicates = [HasV4T], AddedComplexity = 10 in {
829 def : Pat<(truncstorei8 (i32 IntRegs:$src4),
830 (add IntRegs:$src1, (shl IntRegs:$src2,
831 u2ImmPred:$src3))),
832 (S4_storerb_rr IntRegs:$src1, IntRegs:$src2,
833 u2ImmPred:$src3, IntRegs:$src4)>;
834
835 def : Pat<(truncstorei16 (i32 IntRegs:$src4),
836 (add IntRegs:$src1, (shl IntRegs:$src2,
837 u2ImmPred:$src3))),
838 (S4_storerh_rr IntRegs:$src1, IntRegs:$src2,
839 u2ImmPred:$src3, IntRegs:$src4)>;
840
841 def : Pat<(store (i32 IntRegs:$src4),
842 (add IntRegs:$src1, (shl IntRegs:$src2, u2ImmPred:$src3))),
843 (S4_storeri_rr IntRegs:$src1, IntRegs:$src2,
844 u2ImmPred:$src3, IntRegs:$src4)>;
845
846 def : Pat<(store (i64 DoubleRegs:$src4),
847 (add IntRegs:$src1, (shl IntRegs:$src2, u2ImmPred:$src3))),
848 (S4_storerd_rr IntRegs:$src1, IntRegs:$src2,
849 u2ImmPred:$src3, DoubleRegs:$src4)>;
850 }
851
852 let isExtended = 1, opExtendable = 2 in
853 class T_ST_LongOff <string mnemonic, PatFrag stOp, RegisterClass RC, ValueType VT> :
854 STInst<(outs),
855 (ins IntRegs:$src1, u2Imm:$src2, u0AlwaysExt:$src3, RC:$src4),
856 mnemonic#"($src1<<#$src2+##$src3) = $src4",
857 [(stOp (VT RC:$src4),
858 (add (shl (i32 IntRegs:$src1), u2ImmPred:$src2),
859 u0AlwaysExtPred:$src3))]>,
860 Requires<[HasV4T]>;
861
862 let isExtended = 1, opExtendable = 2, mayStore = 1, isNVStore = 1 in
863 class T_ST_LongOff_nv <string mnemonic> :
864 NVInst_V4<(outs),
865 (ins IntRegs:$src1, u2Imm:$src2, u0AlwaysExt:$src3, IntRegs:$src4),
866 mnemonic#"($src1<<#$src2+##$src3) = $src4.new",
867 []>,
868 Requires<[HasV4T]>;
869
870 multiclass ST_LongOff <string mnemonic, string BaseOp, PatFrag stOp> {
871 let BaseOpcode = BaseOp#"_shl" in {
872 let isNVStorable = 1 in
873 def NAME#_V4 : T_ST_LongOff<mnemonic, stOp, IntRegs, i32>;
874
875 def NAME#_nv_V4 : T_ST_LongOff_nv<mnemonic>;
876 }
877 }
878
879 let AddedComplexity = 10, validSubTargets = HasV4SubT in {
880 def STrid_shl_V4 : T_ST_LongOff<"memd", store, DoubleRegs, i64>;
881 defm STrib_shl : ST_LongOff <"memb", "STrib", truncstorei8>, NewValueRel;
882 defm STrih_shl : ST_LongOff <"memh", "Strih", truncstorei16>, NewValueRel;
883 defm STriw_shl : ST_LongOff <"memw", "STriw", store>, NewValueRel;
884 }
885
886 let AddedComplexity = 40 in
887 multiclass T_ST_LOff_Pats <InstHexagon I, RegisterClass RC, ValueType VT,
888 PatFrag stOp> {
889 def : Pat<(stOp (VT RC:$src4),
890 (add (shl IntRegs:$src1, u2ImmPred:$src2),
891 (NumUsesBelowThresCONST32 tglobaladdr:$src3))),
892 (I IntRegs:$src1, u2ImmPred:$src2, tglobaladdr:$src3, RC:$src4)>;
893
894 def : Pat<(stOp (VT RC:$src4),
895 (add IntRegs:$src1,
896 (NumUsesBelowThresCONST32 tglobaladdr:$src3))),
897 (I IntRegs:$src1, 0, tglobaladdr:$src3, RC:$src4)>;
898 }
899
900 defm : T_ST_LOff_Pats<STrid_shl_V4, DoubleRegs, i64, store>;
901 defm : T_ST_LOff_Pats<STriw_shl_V4, IntRegs, i32, store>;
902 defm : T_ST_LOff_Pats<STrib_shl_V4, IntRegs, i32, truncstorei8>;
903 defm : T_ST_LOff_Pats<STrih_shl_V4, IntRegs, i32, truncstorei16>;
904
905 // memd(Rx++#s4:3)=Rtt
906 // memd(Rx++#s4:3:circ(Mu))=Rtt
907 // memd(Rx++I:circ(Mu))=Rtt
908 // memd(Rx++Mu)=Rtt
909 // memd(Rx++Mu:brev)=Rtt
910 // memd(gp+#u16:3)=Rtt
911
912 // Store doubleword conditionally.
913 // if ([!]Pv[.new]) memd(#u6)=Rtt
914 // TODO: needs to be implemented.
915
916 //===----------------------------------------------------------------------===//
917 // Template class
918 //===----------------------------------------------------------------------===//
919 let isPredicable = 1, isExtendable = 1, isExtentSigned = 1, opExtentBits = 8,
920 opExtendable = 2 in
921 class T_StoreImm <string mnemonic, Operand OffsetOp, bits<2> MajOp >
922 : STInst <(outs ), (ins IntRegs:$Rs, OffsetOp:$offset, s8Ext:$S8),
923 mnemonic#"($Rs+#$offset)=#$S8",
924 [], "", V4LDST_tc_st_SLOT01>,
925 ImmRegRel, PredNewRel {
926 bits<5> Rs;
927 bits<8> S8;
928 bits<8> offset;
929 bits<6> offsetBits;
930
931 string OffsetOpStr = !cast<string>(OffsetOp);
932 let offsetBits = !if (!eq(OffsetOpStr, "u6_2Imm"), offset{7-2},
933 !if (!eq(OffsetOpStr, "u6_1Imm"), offset{6-1},
934 /* u6_0Imm */ offset{5-0}));
935
936 let IClass = 0b0011;
937
938 let Inst{27-25} = 0b110;
939 let Inst{22-21} = MajOp;
940 let Inst{20-16} = Rs;
941 let Inst{12-7} = offsetBits;
942 let Inst{13} = S8{7};
943 let Inst{6-0} = S8{6-0};
944 }
945
946 let isPredicated = 1, isExtendable = 1, isExtentSigned = 1, opExtentBits = 6,
947 opExtendable = 3 in
948 class T_StoreImm_pred <string mnemonic, Operand OffsetOp, bits<2> MajOp,
949 bit isPredNot, bit isPredNew >
950 : STInst <(outs ),
951 (ins PredRegs:$Pv, IntRegs:$Rs, OffsetOp:$offset, s6Ext:$S6),
952 !if(isPredNot, "if (!$Pv", "if ($Pv")#!if(isPredNew, ".new) ",
953 ") ")#mnemonic#"($Rs+#$offset)=#$S6",
954 [], "", V4LDST_tc_st_SLOT01>,
955 ImmRegRel, PredNewRel {
956 bits<2> Pv;
957 bits<5> Rs;
958 bits<6> S6;
959 bits<8> offset;
960 bits<6> offsetBits;
961
962 string OffsetOpStr = !cast<string>(OffsetOp);
963 let offsetBits = !if (!eq(OffsetOpStr, "u6_2Imm"), offset{7-2},
964 !if (!eq(OffsetOpStr, "u6_1Imm"), offset{6-1},
965 /* u6_0Imm */ offset{5-0}));
966 let isPredicatedNew = isPredNew;
967 let isPredicatedFalse = isPredNot;
968
969 let IClass = 0b0011;
970
971 let Inst{27-25} = 0b100;
972 let Inst{24} = isPredNew;
973 let Inst{23} = isPredNot;
974 let Inst{22-21} = MajOp;
975 let Inst{20-16} = Rs;
976 let Inst{13} = S6{5};
977 let Inst{12-7} = offsetBits;
978 let Inst{6-5} = Pv;
979 let Inst{4-0} = S6{4-0};
980 }
981
982
983 //===----------------------------------------------------------------------===//
984 // multiclass for store instructions with base + immediate offset
985 // addressing mode and immediate stored value.
986 // mem[bhw](Rx++#s4:3)=#s8
987 // if ([!]Pv[.new]) mem[bhw](Rx++#s4:3)=#s6
988 //===----------------------------------------------------------------------===//
989
990 multiclass ST_Imm_Pred <string mnemonic, Operand OffsetOp, bits<2> MajOp,
991 bit PredNot> {
992 def _io : T_StoreImm_pred <mnemonic, OffsetOp, MajOp, PredNot, 0>;
993 // Predicate new
994 def new_io : T_StoreImm_pred <mnemonic, OffsetOp, MajOp, PredNot, 1>;
995 }
996
997 multiclass ST_Imm <string mnemonic, string CextOp, Operand OffsetOp,
998 bits<2> MajOp> {
999 let CextOpcode = CextOp, BaseOpcode = CextOp#_imm in {
1000 def _io : T_StoreImm <mnemonic, OffsetOp, MajOp>;
1001
1002 defm t : ST_Imm_Pred <mnemonic, OffsetOp, MajOp, 0>;
1003 defm f : ST_Imm_Pred <mnemonic, OffsetOp, MajOp, 1>;
1004 }
1005 }
1006
1007 let hasSideEffects = 0, validSubTargets = HasV4SubT, addrMode = BaseImmOffset,
1008 InputType = "imm", isCodeGenOnly = 0 in {
1009 let accessSize = ByteAccess in
1010 defm S4_storeirb : ST_Imm<"memb", "STrib", u6_0Imm, 0b00>;
1011
1012 let accessSize = HalfWordAccess in
1013 defm S4_storeirh : ST_Imm<"memh", "STrih", u6_1Imm, 0b01>;
1014
1015 let accessSize = WordAccess in
1016 defm S4_storeiri : ST_Imm<"memw", "STriw", u6_2Imm, 0b10>;
1017 }
1018
1019 let Predicates = [HasV4T], AddedComplexity = 10 in {
1020 def: Pat<(truncstorei8 s8ExtPred:$src3, (add IntRegs:$src1, u6_0ImmPred:$src2)),
1021 (S4_storeirb_io IntRegs:$src1, u6_0ImmPred:$src2, s8ExtPred:$src3)>;
1022
1023 def: Pat<(truncstorei16 s8ExtPred:$src3, (add IntRegs:$src1,
1024 u6_1ImmPred:$src2)),
1025 (S4_storeirh_io IntRegs:$src1, u6_1ImmPred:$src2, s8ExtPred:$src3)>;
1026
1027 def: Pat<(store s8ExtPred:$src3, (add IntRegs:$src1, u6_2ImmPred:$src2)),
1028 (S4_storeiri_io IntRegs:$src1, u6_2ImmPred:$src2, s8ExtPred:$src3)>;
1029 }
1030
1031 let AddedComplexity = 6 in
1032 def : Pat <(truncstorei8 s8ExtPred:$src2, (i32 IntRegs:$src1)),
1033 (S4_storeirb_io IntRegs:$src1, 0, s8ExtPred:$src2)>,
1034 Requires<[HasV4T]>;
1035
1036 // memb(Rx++#s4:0:circ(Mu))=Rt
1037 // memb(Rx++I:circ(Mu))=Rt
1038 // memb(Rx++Mu)=Rt
1039 // memb(Rx++Mu:brev)=Rt
1040 // memb(gp+#u16:0)=Rt
1041
1042
1043 // Store halfword.
1044 // TODO: needs to be implemented
1045 // memh(Re=#U6)=Rt.H
1046 // memh(Rs+#s11:1)=Rt.H
1047 let AddedComplexity = 6 in
1048 def : Pat <(truncstorei16 s8ExtPred:$src2, (i32 IntRegs:$src1)),
1049 (S4_storeirh_io IntRegs:$src1, 0, s8ExtPred:$src2)>,
1050 Requires<[HasV4T]>;
1051
1052 // memh(Rs+Ru<<#u2)=Rt.H
1053 // TODO: needs to be implemented.
1054
1055 // memh(Ru<<#u2+#U6)=Rt.H
1056 // memh(Rx++#s4:1:circ(Mu))=Rt.H
1057 // memh(Rx++#s4:1:circ(Mu))=Rt
1058 // memh(Rx++I:circ(Mu))=Rt.H
1059 // memh(Rx++I:circ(Mu))=Rt
1060 // memh(Rx++Mu)=Rt.H
1061 // memh(Rx++Mu)=Rt
1062 // memh(Rx++Mu:brev)=Rt.H
1063 // memh(Rx++Mu:brev)=Rt
1064 // memh(gp+#u16:1)=Rt
1065 // if ([!]Pv[.new]) memh(#u6)=Rt.H
1066 // if ([!]Pv[.new]) memh(#u6)=Rt
1067
1068
1069 // if ([!]Pv[.new]) memh(Rs+#u6:1)=Rt.H
1070 // TODO: needs to be implemented.
1071
1072 // if ([!]Pv[.new]) memh(Rx++#s4:1)=Rt.H
1073 // TODO: Needs to be implemented.
1074
1075 // Store word.
1076 // memw(Re=#U6)=Rt
1077 // TODO: Needs to be implemented.
1078
1079 // Store predicate:
1080 let hasSideEffects = 0 in
1081 def STriw_pred_V4 : STInst2<(outs),
1082 (ins MEMri:$addr, PredRegs:$src1),
1083 "Error; should not emit",
1084 []>,
1085 Requires<[HasV4T]>;
1086
1087 let AddedComplexity = 6 in
1088 def : Pat <(store s8ExtPred:$src2, (i32 IntRegs:$src1)),
1089 (S4_storeiri_io IntRegs:$src1, 0, s8ExtPred:$src2)>,
1090 Requires<[HasV4T]>;
1091
1092 // memw(Rx++#s4:2)=Rt
1093 // memw(Rx++#s4:2:circ(Mu))=Rt
1094 // memw(Rx++I:circ(Mu))=Rt
1095 // memw(Rx++Mu)=Rt
1096 // memw(Rx++Mu:brev)=Rt
1097
1098 //===----------------------------------------------------------------------===
1099 // ST -
1100 //===----------------------------------------------------------------------===
1101
1102
1103 //===----------------------------------------------------------------------===//
1104 // NV/ST +
1105 //===----------------------------------------------------------------------===//
1106
1107 let opNewValue = 2, opExtendable = 1, isExtentSigned = 1, isPredicable = 1 in
1108 class T_store_io_nv <string mnemonic, RegisterClass RC,
1109 Operand ImmOp, bits<2>MajOp>
1110 : NVInst_V4 <(outs),
1111 (ins IntRegs:$src1, ImmOp:$src2, RC:$src3),
1112 mnemonic#"($src1+#$src2) = $src3.new",
1113 [],"",ST_tc_st_SLOT0> {
1114 bits<5> src1;
1115 bits<13> src2; // Actual address offset
1116 bits<3> src3;
1117 bits<11> offsetBits; // Represents offset encoding
1118
1119 let opExtentBits = !if (!eq(mnemonic, "memb"), 11,
1120 !if (!eq(mnemonic, "memh"), 12,
1121 !if (!eq(mnemonic, "memw"), 13, 0)));
1122
1123 let opExtentAlign = !if (!eq(mnemonic, "memb"), 0,
1124 !if (!eq(mnemonic, "memh"), 1,
1125 !if (!eq(mnemonic, "memw"), 2, 0)));
1126
1127 let offsetBits = !if (!eq(mnemonic, "memb"), src2{10-0},
1128 !if (!eq(mnemonic, "memh"), src2{11-1},
1129 !if (!eq(mnemonic, "memw"), src2{12-2}, 0)));
1130
1131 let IClass = 0b1010;
1132
1133 let Inst{27} = 0b0;
1134 let Inst{26-25} = offsetBits{10-9};
1135 let Inst{24-21} = 0b1101;
1136 let Inst{20-16} = src1;
1137 let Inst{13} = offsetBits{8};
1138 let Inst{12-11} = MajOp;
1139 let Inst{10-8} = src3;
1140 let Inst{7-0} = offsetBits{7-0};
1141 }
1142
1143 let opExtendable = 2, opNewValue = 3, isPredicated = 1 in
1144 class T_pstore_io_nv <string mnemonic, RegisterClass RC, Operand predImmOp,
1145 bits<2>MajOp, bit PredNot, bit isPredNew>
1146 : NVInst_V4 <(outs),
1147 (ins PredRegs:$src1, IntRegs:$src2, predImmOp:$src3, RC:$src4),
1148 !if(PredNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
1149 ") ")#mnemonic#"($src2+#$src3) = $src4.new",
1150 [],"",V2LDST_tc_st_SLOT0> {
1151 bits<2> src1;
1152 bits<5> src2;
1153 bits<9> src3;
1154 bits<3> src4;
1155 bits<6> offsetBits; // Represents offset encoding
1156
1157 let isPredicatedNew = isPredNew;
1158 let isPredicatedFalse = PredNot;
1159 let opExtentBits = !if (!eq(mnemonic, "memb"), 6,
1160 !if (!eq(mnemonic, "memh"), 7,
1161 !if (!eq(mnemonic, "memw"), 8, 0)));
1162
1163 let opExtentAlign = !if (!eq(mnemonic, "memb"), 0,
1164 !if (!eq(mnemonic, "memh"), 1,
1165 !if (!eq(mnemonic, "memw"), 2, 0)));
1166
1167 let offsetBits = !if (!eq(mnemonic, "memb"), src3{5-0},
1168 !if (!eq(mnemonic, "memh"), src3{6-1},
1169 !if (!eq(mnemonic, "memw"), src3{7-2}, 0)));
1170
1171 let IClass = 0b0100;
1172
1173 let Inst{27} = 0b0;
1174 let Inst{26} = PredNot;
1175 let Inst{25} = isPredNew;
1176 let Inst{24-21} = 0b0101;
1177 let Inst{20-16} = src2;
1178 let Inst{13} = offsetBits{5};
1179 let Inst{12-11} = MajOp;
1180 let Inst{10-8} = src4;
1181 let Inst{7-3} = offsetBits{4-0};
1182 let Inst{2} = 0b0;
1183 let Inst{1-0} = src1;
1184 }
1185
1186 // multiclass for new-value store instructions with base + immediate offset.
1187 //
1188 let mayStore = 1, isNVStore = 1, isNewValue = 1, hasSideEffects = 0,
1189 isExtendable = 1 in
1190 multiclass ST_Idxd_nv<string mnemonic, string CextOp, RegisterClass RC,
1191 Operand ImmOp, Operand predImmOp, bits<2> MajOp> {
1192
1193 let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed in {
1194 def S2_#NAME#new_io : T_store_io_nv <mnemonic, RC, ImmOp, MajOp>;
1195 // Predicated
1196 def S2_p#NAME#newt_io :T_pstore_io_nv <mnemonic, RC, predImmOp, MajOp, 0, 0>;
1197 def S2_p#NAME#newf_io :T_pstore_io_nv <mnemonic, RC, predImmOp, MajOp, 1, 0>;
1198 // Predicated new
1199 def S4_p#NAME#newtnew_io :T_pstore_io_nv <mnemonic, RC, predImmOp,
1200 MajOp, 0, 1>;
1201 def S4_p#NAME#newfnew_io :T_pstore_io_nv <mnemonic, RC, predImmOp,
1202 MajOp, 1, 1>;
1203 }
1204 }
1205
1206 let addrMode = BaseImmOffset, InputType = "imm", isCodeGenOnly = 0 in {
1207 let accessSize = ByteAccess in
1208 defm storerb: ST_Idxd_nv<"memb", "STrib", IntRegs, s11_0Ext,
1209 u6_0Ext, 0b00>, AddrModeRel;
1210
1211 let accessSize = HalfWordAccess, opExtentAlign = 1 in
1212 defm storerh: ST_Idxd_nv<"memh", "STrih", IntRegs, s11_1Ext,
1213 u6_1Ext, 0b01>, AddrModeRel;
1214
1215 let accessSize = WordAccess, opExtentAlign = 2 in
1216 defm storeri: ST_Idxd_nv<"memw", "STriw", IntRegs, s11_2Ext,
1217 u6_2Ext, 0b10>, AddrModeRel;
1218 }
1219
1220 //===----------------------------------------------------------------------===//
1221 // Template class for non-predicated post increment .new stores
1222 // mem[bhwd](Rx++#s4:[0123])=Nt.new
1223 //===----------------------------------------------------------------------===//
1224 let isPredicable = 1, hasSideEffects = 0, validSubTargets = HasV4SubT,
1225 addrMode = PostInc, isNVStore = 1, isNewValue = 1, opNewValue = 3 in
1226 class T_StorePI_nv <string mnemonic, Operand ImmOp, bits<2> MajOp >
1227 : NVInstPI_V4 <(outs IntRegs:$_dst_),
1228 (ins IntRegs:$src1, ImmOp:$offset, IntRegs:$src2),
1229 mnemonic#"($src1++#$offset) = $src2.new",
1230 [], "$src1 = $_dst_">,
1231 AddrModeRel {
1232 bits<5> src1;
1233 bits<3> src2;
1234 bits<7> offset;
1235 bits<4> offsetBits;
1236
1237 string ImmOpStr = !cast<string>(ImmOp);
1238 let offsetBits = !if (!eq(ImmOpStr, "s4_2Imm"), offset{5-2},
1239 !if (!eq(ImmOpStr, "s4_1Imm"), offset{4-1},
1240 /* s4_0Imm */ offset{3-0}));
1241 let IClass = 0b1010;
1242
1243 let Inst{27-21} = 0b1011101;
1244 let Inst{20-16} = src1;
1245 let Inst{13} = 0b0;
1246 let Inst{12-11} = MajOp;
1247 let Inst{10-8} = src2;
1248 let Inst{7} = 0b0;
1249 let Inst{6-3} = offsetBits;
1250 let Inst{1} = 0b0;
1251 }
1252
1253 //===----------------------------------------------------------------------===//
1254 // Template class for predicated post increment .new stores
1255 // if([!]Pv[.new]) mem[bhwd](Rx++#s4:[0123])=Nt.new
1256 //===----------------------------------------------------------------------===//
1257 let isPredicated = 1, hasSideEffects = 0, validSubTargets = HasV4SubT,
1258 addrMode = PostInc, isNVStore = 1, isNewValue = 1, opNewValue = 4 in
1259 class T_StorePI_nv_pred <string mnemonic, Operand ImmOp,
1260 bits<2> MajOp, bit isPredNot, bit isPredNew >
1261 : NVInstPI_V4 <(outs IntRegs:$_dst_),
1262 (ins PredRegs:$src1, IntRegs:$src2,
1263 ImmOp:$offset, IntRegs:$src3),
1264 !if(isPredNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
1265 ") ")#mnemonic#"($src2++#$offset) = $src3.new",
1266 [], "$src2 = $_dst_">,
1267 AddrModeRel {
1268 bits<2> src1;
1269 bits<5> src2;
1270 bits<3> src3;
1271 bits<7> offset;
1272 bits<4> offsetBits;
1273
1274 string ImmOpStr = !cast<string>(ImmOp);
1275 let offsetBits = !if (!eq(ImmOpStr, "s4_2Imm"), offset{5-2},
1276 !if (!eq(ImmOpStr, "s4_1Imm"), offset{4-1},
1277 /* s4_0Imm */ offset{3-0}));
1278 let isPredicatedNew = isPredNew;
1279 let isPredicatedFalse = isPredNot;
1280
1281 let IClass = 0b1010;
1282
1283 let Inst{27-21} = 0b1011101;
1284 let Inst{20-16} = src2;
1285 let Inst{13} = 0b1;
1286 let Inst{12-11} = MajOp;
1287 let Inst{10-8} = src3;
1288 let Inst{7} = isPredNew;
1289 let Inst{6-3} = offsetBits;
1290 let Inst{2} = isPredNot;
1291 let Inst{1-0} = src1;
1292 }
1293
1294 multiclass ST_PostInc_Pred_nv<string mnemonic, Operand ImmOp,
1295 bits<2> MajOp, bit PredNot> {
1296 def _pi : T_StorePI_nv_pred <mnemonic, ImmOp, MajOp, PredNot, 0>;
1297
1298 // Predicate new
1299 def new_pi : T_StorePI_nv_pred <mnemonic, ImmOp, MajOp, PredNot, 1>;
1300 }
1301
1302 multiclass ST_PostInc_nv<string mnemonic, string BaseOp, Operand ImmOp,
1303 bits<2> MajOp> {
1304 let BaseOpcode = "POST_"#BaseOp in {
1305 def S2_#NAME#_pi : T_StorePI_nv <mnemonic, ImmOp, MajOp>;
1306
1307 // Predicated
1308 defm S2_p#NAME#t : ST_PostInc_Pred_nv <mnemonic, ImmOp, MajOp, 0>;
1309 defm S2_p#NAME#f : ST_PostInc_Pred_nv <mnemonic, ImmOp, MajOp, 1>;
1310 }
1311 }
1312
1313 let accessSize = ByteAccess, isCodeGenOnly = 0 in
1314 defm storerbnew: ST_PostInc_nv <"memb", "STrib", s4_0Imm, 0b00>;
1315
1316 let accessSize = HalfWordAccess, isCodeGenOnly = 0 in
1317 defm storerhnew: ST_PostInc_nv <"memh", "STrih", s4_1Imm, 0b01>;
1318
1319 let accessSize = WordAccess, isCodeGenOnly = 0 in
1320 defm storerinew: ST_PostInc_nv <"memw", "STriw", s4_2Imm, 0b10>;
1321
1322 //===----------------------------------------------------------------------===//
1323 // Template class for post increment .new stores with register offset
1324 //===----------------------------------------------------------------------===//
1325 let isNewValue = 1, mayStore = 1, isNVStore = 1, opNewValue = 3 in
1326 class T_StorePI_RegNV <string mnemonic, bits<2> MajOp, MemAccessSize AccessSz>
1327 : NVInstPI_V4 <(outs IntRegs:$_dst_),
1328 (ins IntRegs:$src1, ModRegs:$src2, IntRegs:$src3),
1329 #mnemonic#"($src1++$src2) = $src3.new",
1330 [], "$src1 = $_dst_"> {
1331 bits<5> src1;
1332 bits<1> src2;
1333 bits<3> src3;
1334 let accessSize = AccessSz;
1335
1336 let IClass = 0b1010;
1337
1338 let Inst{27-21} = 0b1101101;
1339 let Inst{20-16} = src1;
1340 let Inst{13} = src2;
1341 let Inst{12-11} = MajOp;
1342 let Inst{10-8} = src3;
1343 let Inst{7} = 0b0;
1344 }
1345
1346 let isCodeGenOnly = 0 in {
1347 def S2_storerbnew_pr : T_StorePI_RegNV<"memb", 0b00, ByteAccess>;
1348 def S2_storerhnew_pr : T_StorePI_RegNV<"memh", 0b01, HalfWordAccess>;
1349 def S2_storerinew_pr : T_StorePI_RegNV<"memw", 0b10, WordAccess>;
1350 }
1351
1352 // memb(Rx++#s4:0:circ(Mu))=Nt.new
1353 // memb(Rx++I:circ(Mu))=Nt.new
1354 // memb(Rx++Mu)=Nt.new
1355 // memb(Rx++Mu:brev)=Nt.new
1356 // memh(Rx++#s4:1:circ(Mu))=Nt.new
1357 // memh(Rx++I:circ(Mu))=Nt.new
1358 // memh(Rx++Mu)=Nt.new
1359 // memh(Rx++Mu:brev)=Nt.new
1360
1361 // memw(Rx++#s4:2:circ(Mu))=Nt.new
1362 // memw(Rx++I:circ(Mu))=Nt.new
1363 // memw(Rx++Mu)=Nt.new
1364 // memw(Rx++Mu:brev)=Nt.new
1365
1366 //===----------------------------------------------------------------------===//
1367 // NV/ST -
1368 //===----------------------------------------------------------------------===//
1369
1370 //===----------------------------------------------------------------------===//
1371 // NV/J +
1372 //===----------------------------------------------------------------------===//
1373
1374 //===----------------------------------------------------------------------===//
1375 // multiclass/template class for the new-value compare jumps with the register
1376 // operands.
1377 //===----------------------------------------------------------------------===//
1378
1379 let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 11,
1380 opExtentAlign = 2 in
1381 class NVJrr_template<string mnemonic, bits<3> majOp, bit NvOpNum,
1382 bit isNegCond, bit isTak>
1383 : NVInst_V4<(outs),
1384 (ins IntRegs:$src1, IntRegs:$src2, brtarget:$offset),
1385 "if ("#!if(isNegCond, "!","")#mnemonic#
1386 "($src1"#!if(!eq(NvOpNum, 0),".new, ",", ")#
1387 "$src2"#!if(!eq(NvOpNum, 1),".new))","))")#" jump:"
1388 #!if(isTak, "t","nt")#" $offset", []> {
1389
1390 bits<5> src1;
1391 bits<5> src2;
1392 bits<3> Ns; // New-Value Operand
1393 bits<5> RegOp; // Non-New-Value Operand
1394 bits<11> offset;
1395
1396 let isTaken = isTak;
1397 let isPredicatedFalse = isNegCond;
1398 let opNewValue{0} = NvOpNum;
1399
1400 let Ns = !if(!eq(NvOpNum, 0), src1{2-0}, src2{2-0});
1401 let RegOp = !if(!eq(NvOpNum, 0), src2, src1);
1402
1403 let IClass = 0b0010;
1404 let Inst{26} = 0b0;
1405 let Inst{25-23} = majOp;
1406 let Inst{22} = isNegCond;
1407 let Inst{18-16} = Ns;
1408 let Inst{13} = isTak;
1409 let Inst{12-8} = RegOp;
1410 let Inst{21-20} = offset{10-9};
1411 let Inst{7-1} = offset{8-2};
1412 }
1413
1414
1415 multiclass NVJrr_cond<string mnemonic, bits<3> majOp, bit NvOpNum,
1416 bit isNegCond> {
1417 // Branch not taken:
1418 def _nt_V4: NVJrr_template<mnemonic, majOp, NvOpNum, isNegCond, 0>;
1419 // Branch taken:
1420 def _t_V4: NVJrr_template<mnemonic, majOp, NvOpNum, isNegCond, 1>;
1421 }
1422
1423 // NvOpNum = 0 -> First Operand is a new-value Register
1424 // NvOpNum = 1 -> Second Operand is a new-value Register
1425
1426 multiclass NVJrr_base<string mnemonic, string BaseOp, bits<3> majOp,
1427 bit NvOpNum> {
1428 let BaseOpcode = BaseOp#_NVJ in {
1429 defm _t_Jumpnv : NVJrr_cond<mnemonic, majOp, NvOpNum, 0>; // True cond
1430 defm _f_Jumpnv : NVJrr_cond<mnemonic, majOp, NvOpNum, 1>; // False cond
1431 }
1432 }
1433
1434 // if ([!]cmp.eq(Ns.new,Rt)) jump:[n]t #r9:2
1435 // if ([!]cmp.gt(Ns.new,Rt)) jump:[n]t #r9:2
1436 // if ([!]cmp.gtu(Ns.new,Rt)) jump:[n]t #r9:2
1437 // if ([!]cmp.gt(Rt,Ns.new)) jump:[n]t #r9:2
1438 // if ([!]cmp.gtu(Rt,Ns.new)) jump:[n]t #r9:2
1439
1440 let isPredicated = 1, isBranch = 1, isNewValue = 1, isTerminator = 1,
1441 Defs = [PC], hasSideEffects = 0, validSubTargets = HasV4SubT,
1442 isCodeGenOnly = 0 in {
1443 defm CMPEQrr : NVJrr_base<"cmp.eq", "CMPEQ", 0b000, 0>, PredRel;
1444 defm CMPGTrr : NVJrr_base<"cmp.gt", "CMPGT", 0b001, 0>, PredRel;
1445 defm CMPGTUrr : NVJrr_base<"cmp.gtu", "CMPGTU", 0b010, 0>, PredRel;
1446 defm CMPLTrr : NVJrr_base<"cmp.gt", "CMPLT", 0b011, 1>, PredRel;
1447 defm CMPLTUrr : NVJrr_base<"cmp.gtu", "CMPLTU", 0b100, 1>, PredRel;
1448 }
1449
1450 //===----------------------------------------------------------------------===//
1451 // multiclass/template class for the new-value compare jumps instruction
1452 // with a register and an unsigned immediate (U5) operand.
1453 //===----------------------------------------------------------------------===//
1454
1455 let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 11,
1456 opExtentAlign = 2 in
1457 class NVJri_template<string mnemonic, bits<3> majOp, bit isNegCond,
1458 bit isTak>
1459 : NVInst_V4<(outs),
1460 (ins IntRegs:$src1, u5Imm:$src2, brtarget:$offset),
1461 "if ("#!if(isNegCond, "!","")#mnemonic#"($src1.new, #$src2)) jump:"
1462 #!if(isTak, "t","nt")#" $offset", []> {
1463
1464 let isTaken = isTak;
1465 let isPredicatedFalse = isNegCond;
1466 let isTaken = isTak;
1467
1468 bits<3> src1;
1469 bits<5> src2;
1470 bits<11> offset;
1471
1472 let IClass = 0b0010;
1473 let Inst{26} = 0b1;
1474 let Inst{25-23} = majOp;
1475 let Inst{22} = isNegCond;
1476 let Inst{18-16} = src1;
1477 let Inst{13} = isTak;
1478 let Inst{12-8} = src2;
1479 let Inst{21-20} = offset{10-9};
1480 let Inst{7-1} = offset{8-2};
1481 }
1482
1483 multiclass NVJri_cond<string mnemonic, bits<3> majOp, bit isNegCond> {
1484 // Branch not taken:
1485 def _nt_V4: NVJri_template<mnemonic, majOp, isNegCond, 0>;
1486 // Branch taken:
1487 def _t_V4: NVJri_template<mnemonic, majOp, isNegCond, 1>;
1488 }
1489
1490 multiclass NVJri_base<string mnemonic, string BaseOp, bits<3> majOp> {
1491 let BaseOpcode = BaseOp#_NVJri in {
1492 defm _t_Jumpnv : NVJri_cond<mnemonic, majOp, 0>; // True Cond
1493 defm _f_Jumpnv : NVJri_cond<mnemonic, majOp, 1>; // False cond
1494 }
1495 }
1496
1497 // if ([!]cmp.eq(Ns.new,#U5)) jump:[n]t #r9:2
1498 // if ([!]cmp.gt(Ns.new,#U5)) jump:[n]t #r9:2
1499 // if ([!]cmp.gtu(Ns.new,#U5)) jump:[n]t #r9:2
1500
1501 let isPredicated = 1, isBranch = 1, isNewValue = 1, isTerminator = 1,
1502 Defs = [PC], hasSideEffects = 0, validSubTargets = HasV4SubT,
1503 isCodeGenOnly = 0 in {
1504 defm CMPEQri : NVJri_base<"cmp.eq", "CMPEQ", 0b000>, PredRel;
1505 defm CMPGTri : NVJri_base<"cmp.gt", "CMPGT", 0b001>, PredRel;
1506 defm CMPGTUri : NVJri_base<"cmp.gtu", "CMPGTU", 0b010>, PredRel;
1507 }
1508
1509 //===----------------------------------------------------------------------===//
1510 // multiclass/template class for the new-value compare jumps instruction
1511 // with a register and an hardcoded 0/-1 immediate value.
1512 //===----------------------------------------------------------------------===//
1513
1514 let isExtendable = 1, opExtendable = 1, isExtentSigned = 1, opExtentBits = 11,
1515 opExtentAlign = 2 in
1516 class NVJ_ConstImm_template<string mnemonic, bits<3> majOp, string ImmVal,
1517 bit isNegCond, bit isTak>
1518 : NVInst_V4<(outs),
1519 (ins IntRegs:$src1, brtarget:$offset),
1520 "if ("#!if(isNegCond, "!","")#mnemonic
1521 #"($src1.new, #"#ImmVal#")) jump:"
1522 #!if(isTak, "t","nt")#" $offset", []> {
1523
1524 let isTaken = isTak;
1525 let isPredicatedFalse = isNegCond;
1526 let isTaken = isTak;
1527
1528 bits<3> src1;
1529 bits<11> offset;
1530 let IClass = 0b0010;
1531 let Inst{26} = 0b1;
1532 let Inst{25-23} = majOp;
1533 let Inst{22} = isNegCond;
1534 let Inst{18-16} = src1;
1535 let Inst{13} = isTak;
1536 let Inst{21-20} = offset{10-9};
1537 let Inst{7-1} = offset{8-2};
1538 }
1539
1540 multiclass NVJ_ConstImm_cond<string mnemonic, bits<3> majOp, string ImmVal,
1541 bit isNegCond> {
1542 // Branch not taken:
1543 def _nt_V4: NVJ_ConstImm_template<mnemonic, majOp, ImmVal, isNegCond, 0>;
1544 // Branch taken:
1545 def _t_V4: NVJ_ConstImm_template<mnemonic, majOp, ImmVal, isNegCond, 1>;
1546 }
1547
1548 multiclass NVJ_ConstImm_base<string mnemonic, string BaseOp, bits<3> majOp,
1549 string ImmVal> {
1550 let BaseOpcode = BaseOp#_NVJ_ConstImm in {
1551 defm _t_Jumpnv : NVJ_ConstImm_cond<mnemonic, majOp, ImmVal, 0>; // True
1552 defm _f_Jumpnv : NVJ_ConstImm_cond<mnemonic, majOp, ImmVal, 1>; // False
1553 }
1554 }
1555
1556 // if ([!]tstbit(Ns.new,#0)) jump:[n]t #r9:2
1557 // if ([!]cmp.eq(Ns.new,#-1)) jump:[n]t #r9:2
1558 // if ([!]cmp.gt(Ns.new,#-1)) jump:[n]t #r9:2
1559
1560 let isPredicated = 1, isBranch = 1, isNewValue = 1, isTerminator=1,
1561 Defs = [PC], hasSideEffects = 0, isCodeGenOnly = 0 in {
1562 defm TSTBIT0 : NVJ_ConstImm_base<"tstbit", "TSTBIT", 0b011, "0">, PredRel;
1563 defm CMPEQn1 : NVJ_ConstImm_base<"cmp.eq", "CMPEQ", 0b100, "-1">, PredRel;
1564 defm CMPGTn1 : NVJ_ConstImm_base<"cmp.gt", "CMPGT", 0b101, "-1">, PredRel;
1565 }
1566
1567 // J4_hintjumpr: Hint indirect conditional jump.
1568 let isBranch = 1, isIndirectBranch = 1, hasSideEffects = 0, isCodeGenOnly = 0 in
1569 def J4_hintjumpr: JRInst <
1570 (outs),
1571 (ins IntRegs:$Rs),
1572 "hintjr($Rs)"> {
1573 bits<5> Rs;
1574 let IClass = 0b0101;
1575 let Inst{27-21} = 0b0010101;
1576 let Inst{20-16} = Rs;
1577 }
1578
1579 //===----------------------------------------------------------------------===//
1580 // NV/J -
1581 //===----------------------------------------------------------------------===//
1582
1583 //===----------------------------------------------------------------------===//
1584 // CR +
1585 //===----------------------------------------------------------------------===//
1586
1587 // PC-relative add
1588 let hasNewValue = 1, isExtendable = 1, opExtendable = 1,
1589 isExtentSigned = 0, opExtentBits = 6, hasSideEffects = 0,
1590 Uses = [PC], validSubTargets = HasV4SubT in
1591 def C4_addipc : CRInst <(outs IntRegs:$Rd), (ins u6Ext:$u6),
1592 "$Rd = add(pc, #$u6)", [], "", CR_tc_2_SLOT3 > {
1593 bits<5> Rd;
1594 bits<6> u6;
1595
1596 let IClass = 0b0110;
1597 let Inst{27-16} = 0b101001001001;
1598 let Inst{12-7} = u6;
1599 let Inst{4-0} = Rd;
1600 }
1601
1602
1603
1604 let hasSideEffects = 0 in
1605 class T_LOGICAL_3OP<string MnOp1, string MnOp2, bits<2> OpBits, bit IsNeg>
1606 : CRInst<(outs PredRegs:$Pd),
1607 (ins PredRegs:$Ps, PredRegs:$Pt, PredRegs:$Pu),
1608 "$Pd = " # MnOp1 # "($Ps, " # MnOp2 # "($Pt, " #
1609 !if (IsNeg,"!","") # "$Pu))",
1610 [], "", CR_tc_2early_SLOT23> {
1611 bits<2> Pd;
1612 bits<2> Ps;
1613 bits<2> Pt;
1614 bits<2> Pu;
1615
1616 let IClass = 0b0110;
1617 let Inst{27-24} = 0b1011;
1618 let Inst{23} = IsNeg;
1619 let Inst{22-21} = OpBits;
1620 let Inst{20} = 0b1;
1621 let Inst{17-16} = Ps;
1622 let Inst{13} = 0b0;
1623 let Inst{9-8} = Pt;
1624 let Inst{7-6} = Pu;
1625 let Inst{1-0} = Pd;
1626 }
1627
1628 let isCodeGenOnly = 0 in {
1629 def C4_and_and : T_LOGICAL_3OP<"and", "and", 0b00, 0>;
1630 def C4_and_or : T_LOGICAL_3OP<"and", "or", 0b01, 0>;
1631 def C4_or_and : T_LOGICAL_3OP<"or", "and", 0b10, 0>;
1632 def C4_or_or : T_LOGICAL_3OP<"or", "or", 0b11, 0>;
1633 def C4_and_andn : T_LOGICAL_3OP<"and", "and", 0b00, 1>;
1634 def C4_and_orn : T_LOGICAL_3OP<"and", "or", 0b01, 1>;
1635 def C4_or_andn : T_LOGICAL_3OP<"or", "and", 0b10, 1>;
1636 def C4_or_orn : T_LOGICAL_3OP<"or", "or", 0b11, 1>;
1637 }
1638
1639 //===----------------------------------------------------------------------===//
1640 // CR -
1641 //===----------------------------------------------------------------------===//
1642
1643 //===----------------------------------------------------------------------===//
1644 // XTYPE/ALU +
1645 //===----------------------------------------------------------------------===//
1646
1647 // Logical with-not instructions.
1648 let validSubTargets = HasV4SubT, isCodeGenOnly = 0 in {
1649 def A4_andnp : T_ALU64_logical<"and", 0b001, 1, 0, 1>;
1650 def A4_ornp : T_ALU64_logical<"or", 0b011, 1, 0, 1>;
1651 }
1652
1653 let hasNewValue = 1, hasSideEffects = 0, isCodeGenOnly = 0 in
1654 def S4_parity: ALU64Inst<(outs IntRegs:$Rd), (ins IntRegs:$Rs, IntRegs:$Rt),
1655 "$Rd = parity($Rs, $Rt)", [], "", ALU64_tc_2_SLOT23> {
1656 bits<5> Rd;
1657 bits<5> Rs;
1658 bits<5> Rt;
1659
1660 let IClass = 0b1101;
1661 let Inst{27-21} = 0b0101111;
1662 let Inst{20-16} = Rs;
1663 let Inst{12-8} = Rt;
1664 let Inst{4-0} = Rd;
1665 }
1666 // Add and accumulate.
1667 // Rd=add(Rs,add(Ru,#s6))
1668 let isExtentSigned = 1, hasNewValue = 1, isExtendable = 1, opExtentBits = 6,
1669 opExtendable = 3, isCodeGenOnly = 0 in
1670 def S4_addaddi : ALU64Inst <(outs IntRegs:$Rd),
1671 (ins IntRegs:$Rs, IntRegs:$Ru, s6Ext:$s6),
1672 "$Rd = add($Rs, add($Ru, #$s6))" ,
1673 [(set (i32 IntRegs:$Rd), (add (i32 IntRegs:$Rs),
1674 (add (i32 IntRegs:$Ru), s6_16ExtPred:$s6)))],
1675 "", ALU64_tc_2_SLOT23> {
1676 bits<5> Rd;
1677 bits<5> Rs;
1678 bits<5> Ru;
1679 bits<6> s6;
1680
1681 let IClass = 0b1101;
1682
1683 let Inst{27-23} = 0b10110;
1684 let Inst{22-21} = s6{5-4};
1685 let Inst{20-16} = Rs;
1686 let Inst{13} = s6{3};
1687 let Inst{12-8} = Rd;
1688 let Inst{7-5} = s6{2-0};
1689 let Inst{4-0} = Ru;
1690 }
1691
1692 let isExtentSigned = 1, hasSideEffects = 0, hasNewValue = 1, isExtendable = 1,
1693 opExtentBits = 6, opExtendable = 2, isCodeGenOnly = 0 in
1694 def S4_subaddi: ALU64Inst <(outs IntRegs:$Rd),
1695 (ins IntRegs:$Rs, s6Ext:$s6, IntRegs:$Ru),
1696 "$Rd = add($Rs, sub(#$s6, $Ru))",
1697 [], "", ALU64_tc_2_SLOT23> {
1698 bits<5> Rd;
1699 bits<5> Rs;
1700 bits<6> s6;
1701 bits<5> Ru;
1702
1703 let IClass = 0b1101;
1704
1705 let Inst{27-23} = 0b10111;
1706 let Inst{22-21} = s6{5-4};
1707 let Inst{20-16} = Rs;
1708 let Inst{13} = s6{3};
1709 let Inst{12-8} = Rd;
1710 let Inst{7-5} = s6{2-0};
1711 let Inst{4-0} = Ru;
1712 }
1713
1714 // Extract bitfield
1715 // Rdd=extract(Rss,#u6,#U6)
1716 // Rdd=extract(Rss,Rtt)
1717 // Rd=extract(Rs,Rtt)
1718 // Rd=extract(Rs,#u5,#U5)
1719
1720 let isCodeGenOnly = 0 in {
1721 def S4_extractp_rp : T_S3op_64 < "extract", 0b11, 0b100, 0>;
1722 def S4_extractp : T_S2op_extract <"extract", 0b1010, DoubleRegs, u6Imm>;
1723 }
1724
1725 let hasNewValue = 1, isCodeGenOnly = 0 in {
1726 def S4_extract_rp : T_S3op_extract<"extract", 0b01>;
1727 def S4_extract : T_S2op_extract <"extract", 0b1101, IntRegs, u5Imm>;
1728 }
1729
1730 let Itinerary = M_tc_3x_SLOT23, Defs = [USR_OVF], isCodeGenOnly = 0 in {
1731 def M4_mac_up_s1_sat: T_MType_acc_rr<"+= mpy", 0b011, 0b000, 0, [], 0, 1, 1>;
1732 def M4_nac_up_s1_sat: T_MType_acc_rr<"-= mpy", 0b011, 0b001, 0, [], 0, 1, 1>;
1733 }
1734
1735 // Logical xor with xor accumulation.
1736 // Rxx^=xor(Rss,Rtt)
1737 let hasSideEffects = 0, isCodeGenOnly = 0 in
1738 def M4_xor_xacc
1739 : SInst <(outs DoubleRegs:$Rxx),
1740 (ins DoubleRegs:$dst2, DoubleRegs:$Rss, DoubleRegs:$Rtt),
1741 "$Rxx ^= xor($Rss, $Rtt)",
1742 [(set (i64 DoubleRegs:$Rxx),
1743 (xor (i64 DoubleRegs:$dst2), (xor (i64 DoubleRegs:$Rss),
1744 (i64 DoubleRegs:$Rtt))))],
1745 "$dst2 = $Rxx", S_3op_tc_1_SLOT23> {
1746 bits<5> Rxx;
1747 bits<5> Rss;
1748 bits<5> Rtt;
1749
1750 let IClass = 0b1100;
1751
1752 let Inst{27-23} = 0b10101;
1753 let Inst{20-16} = Rss;
1754 let Inst{12-8} = Rtt;
1755 let Inst{4-0} = Rxx;
1756 }
1757
1758 // Split bitfield
1759 let isCodeGenOnly = 0 in
1760 def A4_bitspliti : T_S2op_2_di <"bitsplit", 0b110, 0b100>;
1761
1762 // Arithmetic/Convergent round
1763 let isCodeGenOnly = 0 in
1764 def A4_cround_ri : T_S2op_2_ii <"cround", 0b111, 0b000>;
1765
1766 let isCodeGenOnly = 0 in
1767 def A4_round_ri : T_S2op_2_ii <"round", 0b111, 0b100>;
1768
1769 let Defs = [USR_OVF], isCodeGenOnly = 0 in
1770 def A4_round_ri_sat : T_S2op_2_ii <"round", 0b111, 0b110, 1>;
1771
1772 // Logical-logical words.
1773 // Compound or-and -- Rx=or(Ru,and(Rx,#s10))
1774 let isExtentSigned = 1, hasNewValue = 1, isExtendable = 1, opExtentBits = 10,
1775 opExtendable = 3, isCodeGenOnly = 0 in
1776 def S4_or_andix:
1777 ALU64Inst<(outs IntRegs:$Rx),
1778 (ins IntRegs:$Ru, IntRegs:$_src_, s10Ext:$s10),
1779 "$Rx = or($Ru, and($_src_, #$s10))" ,
1780 [(set (i32 IntRegs:$Rx),
1781 (or (i32 IntRegs:$Ru), (and (i32 IntRegs:$_src_), s10ExtPred:$s10)))] ,
1782 "$_src_ = $Rx", ALU64_tc_2_SLOT23> {
1783 bits<5> Rx;
1784 bits<5> Ru;
1785 bits<10> s10;
1786
1787 let IClass = 0b1101;
1788
1789 let Inst{27-22} = 0b101001;
1790 let Inst{20-16} = Rx;
1791 let Inst{21} = s10{9};
1792 let Inst{13-5} = s10{8-0};
1793 let Inst{4-0} = Ru;
1794 }
1795
1796 // Miscellaneous ALU64 instructions.
1797 //
1798 let hasNewValue = 1, hasSideEffects = 0, isCodeGenOnly = 0 in
1799 def A4_modwrapu: ALU64Inst<(outs IntRegs:$Rd), (ins IntRegs:$Rs, IntRegs:$Rt),
1800 "$Rd = modwrap($Rs, $Rt)", [], "", ALU64_tc_2_SLOT23> {
1801 bits<5> Rd;
1802 bits<5> Rs;
1803 bits<5> Rt;
1804
1805 let IClass = 0b1101;
1806 let Inst{27-21} = 0b0011111;
1807 let Inst{20-16} = Rs;
1808 let Inst{12-8} = Rt;
1809 let Inst{7-5} = 0b111;
1810 let Inst{4-0} = Rd;
1811 }
1812
1813 let hasSideEffects = 0, isCodeGenOnly = 0 in
1814 def A4_bitsplit: ALU64Inst<(outs DoubleRegs:$Rd),
1815 (ins IntRegs:$Rs, IntRegs:$Rt),
1816 "$Rd = bitsplit($Rs, $Rt)", [], "", ALU64_tc_1_SLOT23> {
1817 bits<5> Rd;
1818 bits<5> Rs;
1819 bits<5> Rt;
1820
1821 let IClass = 0b1101;
1822 let Inst{27-24} = 0b0100;
1823 let Inst{21} = 0b1;
1824 let Inst{20-16} = Rs;
1825 let Inst{12-8} = Rt;
1826 let Inst{4-0} = Rd;
1827 }
1828
1829 let isCodeGenOnly = 0 in {
1830 // Rx[&|]=xor(Rs,Rt)
1831 def M4_or_xor : T_MType_acc_rr < "|= xor", 0b110, 0b001, 0>;
1832 def M4_and_xor : T_MType_acc_rr < "&= xor", 0b010, 0b010, 0>;
1833
1834 // Rx[&|^]=or(Rs,Rt)
1835 def M4_xor_or : T_MType_acc_rr < "^= or", 0b110, 0b011, 0>;
1836
1837 let CextOpcode = "ORr_ORr" in
1838 def M4_or_or : T_MType_acc_rr < "|= or", 0b110, 0b000, 0>;
1839 def M4_and_or : T_MType_acc_rr < "&= or", 0b010, 0b001, 0>;
1840
1841 // Rx[&|^]=and(Rs,Rt)
1842 def M4_xor_and : T_MType_acc_rr < "^= and", 0b110, 0b010, 0>;
1843
1844 let CextOpcode = "ORr_ANDr" in
1845 def M4_or_and : T_MType_acc_rr < "|= and", 0b010, 0b011, 0>;
1846 def M4_and_and : T_MType_acc_rr < "&= and", 0b010, 0b000, 0>;
1847
1848 // Rx[&|^]=and(Rs,~Rt)
1849 def M4_xor_andn : T_MType_acc_rr < "^= and", 0b001, 0b010, 0, [], 1>;
1850 def M4_or_andn : T_MType_acc_rr < "|= and", 0b001, 0b000, 0, [], 1>;
1851 def M4_and_andn : T_MType_acc_rr < "&= and", 0b001, 0b001, 0, [], 1>;
1852 }
1853
1854 // Compound or-or and or-and
1855 let isExtentSigned = 1, InputType = "imm", hasNewValue = 1, isExtendable = 1,
1856 opExtentBits = 10, opExtendable = 3 in
1857 class T_CompOR <string mnemonic, bits<2> MajOp, SDNode OpNode>
1858 : MInst_acc <(outs IntRegs:$Rx),
1859 (ins IntRegs:$src1, IntRegs:$Rs, s10Ext:$s10),
1860 "$Rx |= "#mnemonic#"($Rs, #$s10)",
1861 [(set (i32 IntRegs:$Rx), (or (i32 IntRegs:$src1),
1862 (OpNode (i32 IntRegs:$Rs), s10ExtPred:$s10)))],
1863 "$src1 = $Rx", ALU64_tc_2_SLOT23>, ImmRegRel {
1864 bits<5> Rx;
1865 bits<5> Rs;
1866 bits<10> s10;
1867
1868 let IClass = 0b1101;
1869
1870 let Inst{27-24} = 0b1010;
1871 let Inst{23-22} = MajOp;
1872 let Inst{20-16} = Rs;
1873 let Inst{21} = s10{9};
1874 let Inst{13-5} = s10{8-0};
1875 let Inst{4-0} = Rx;
1876 }
1877
1878 let CextOpcode = "ORr_ANDr", isCodeGenOnly = 0 in
1879 def S4_or_andi : T_CompOR <"and", 0b00, and>;
1880
1881 let CextOpcode = "ORr_ORr", isCodeGenOnly = 0 in
1882 def S4_or_ori : T_CompOR <"or", 0b10, or>;
1883
1884 // Modulo wrap
1885 // Rd=modwrap(Rs,Rt)
1886 // Round
1887 // Rd=cround(Rs,#u5)
1888 // Rd=cround(Rs,Rt)
1889 // Rd=round(Rs,#u5)[:sat]
1890 // Rd=round(Rs,Rt)[:sat]
1891 // Vector reduce add unsigned halfwords
1892 // Rd=vraddh(Rss,Rtt)
1893 // Vector add bytes
1894 // Rdd=vaddb(Rss,Rtt)
1895 // Vector conditional negate
1896 // Rdd=vcnegh(Rss,Rt)
1897 // Rxx+=vrcnegh(Rss,Rt)
1898 // Vector maximum bytes
1899 // Rdd=vmaxb(Rtt,Rss)
1900 // Vector reduce maximum halfwords
1901 // Rxx=vrmaxh(Rss,Ru)
1902 // Rxx=vrmaxuh(Rss,Ru)
1903 // Vector reduce maximum words
1904 // Rxx=vrmaxuw(Rss,Ru)
1905 // Rxx=vrmaxw(Rss,Ru)
1906 // Vector minimum bytes
1907 // Rdd=vminb(Rtt,Rss)
1908 // Vector reduce minimum halfwords
1909 // Rxx=vrminh(Rss,Ru)
1910 // Rxx=vrminuh(Rss,Ru)
1911 // Vector reduce minimum words
1912 // Rxx=vrminuw(Rss,Ru)
1913 // Rxx=vrminw(Rss,Ru)
1914 // Vector subtract bytes
1915 // Rdd=vsubb(Rss,Rtt)
1916
1917 //===----------------------------------------------------------------------===//
1918 // XTYPE/ALU -
1919 //===----------------------------------------------------------------------===//
1920
1921 //===----------------------------------------------------------------------===//
1922 // XTYPE/BIT +
1923 //===----------------------------------------------------------------------===//
1924
1925 // Bit reverse
1926 let isCodeGenOnly = 0 in
1927 def S2_brevp : T_S2op_3 <"brev", 0b11, 0b110>;
1928
1929 // Bit count
1930 let isCodeGenOnly = 0 in {
1931 def S2_ct0p : T_COUNT_LEADING_64<"ct0", 0b111, 0b010>;
1932 def S2_ct1p : T_COUNT_LEADING_64<"ct1", 0b111, 0b100>;
1933 def S4_clbpnorm : T_COUNT_LEADING_64<"normamt", 0b011, 0b000>;
1934 }
1935
1936 def: Pat<(i32 (trunc (cttz (i64 DoubleRegs:$Rss)))),
1937 (S2_ct0p (i64 DoubleRegs:$Rss))>;
1938 def: Pat<(i32 (trunc (cttz (not (i64 DoubleRegs:$Rss))))),
1939 (S2_ct1p (i64 DoubleRegs:$Rss))>;
1940
1941 let hasSideEffects = 0, hasNewValue = 1, isCodeGenOnly = 0 in
1942 def S4_clbaddi : SInst<(outs IntRegs:$Rd), (ins IntRegs:$Rs, s6Imm:$s6),
1943 "$Rd = add(clb($Rs), #$s6)", [], "", S_2op_tc_2_SLOT23> {
1944 bits<5> Rs;
1945 bits<5> Rd;
1946 bits<6> s6;
1947 let IClass = 0b1000;
1948 let Inst{27-24} = 0b1100;
1949 let Inst{23-21} = 0b001;
1950 let Inst{20-16} = Rs;
1951 let Inst{13-8} = s6;
1952 let Inst{7-5} = 0b000;
1953 let Inst{4-0} = Rd;
1954 }
1955
1956 let hasSideEffects = 0, hasNewValue = 1, isCodeGenOnly = 0 in
1957 def S4_clbpaddi : SInst<(outs IntRegs:$Rd), (ins DoubleRegs:$Rs, s6Imm:$s6),
1958 "$Rd = add(clb($Rs), #$s6)", [], "", S_2op_tc_2_SLOT23> {
1959 bits<5> Rs;
1960 bits<5> Rd;
1961 bits<6> s6;
1962 let IClass = 0b1000;
1963 let Inst{27-24} = 0b1000;
1964 let Inst{23-21} = 0b011;
1965 let Inst{20-16} = Rs;
1966 let Inst{13-8} = s6;
1967 let Inst{7-5} = 0b010;
1968 let Inst{4-0} = Rd;
1969 }
1970
1971
1972 // Bit test/set/clear
1973 let isCodeGenOnly = 0 in {
1974 def S4_ntstbit_i : T_TEST_BIT_IMM<"!tstbit", 0b001>;
1975 def S4_ntstbit_r : T_TEST_BIT_REG<"!tstbit", 1>;
1976 }
1977
1978 let AddedComplexity = 20 in { // Complexity greater than cmp reg-imm.
1979 def: Pat<(i1 (seteq (and (shl 1, u5ImmPred:$u5), (i32 IntRegs:$Rs)), 0)),
1980 (S4_ntstbit_i (i32 IntRegs:$Rs), u5ImmPred:$u5)>;
1981 def: Pat<(i1 (seteq (and (shl 1, (i32 IntRegs:$Rt)), (i32 IntRegs:$Rs)), 0)),
1982 (S4_ntstbit_r (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))>;
1983 }
1984
1985 // Add extra complexity to prefer these instructions over bitsset/bitsclr.
1986 // The reason is that tstbit/ntstbit can be folded into a compound instruction:
1987 // if ([!]tstbit(...)) jump ...
1988 let AddedComplexity = 100 in
1989 def: Pat<(i1 (setne (and (i32 IntRegs:$Rs), (i32 Set5ImmPred:$u5)), (i32 0))),
1990 (S2_tstbit_i (i32 IntRegs:$Rs), (BITPOS32 Set5ImmPred:$u5))>;
1991
1992 let AddedComplexity = 100 in
1993 def: Pat<(i1 (seteq (and (i32 IntRegs:$Rs), (i32 Set5ImmPred:$u5)), (i32 0))),
1994 (S4_ntstbit_i (i32 IntRegs:$Rs), (BITPOS32 Set5ImmPred:$u5))>;
1995
1996 let isCodeGenOnly = 0 in {
1997 def C4_nbitsset : T_TEST_BITS_REG<"!bitsset", 0b01, 1>;
1998 def C4_nbitsclr : T_TEST_BITS_REG<"!bitsclr", 0b10, 1>;
1999 def C4_nbitsclri : T_TEST_BITS_IMM<"!bitsclr", 0b10, 1>;
2000 }
2001
2002 // Do not increase complexity of these patterns. In the DAG, "cmp i8" may be
2003 // represented as a compare against "value & 0xFF", which is an exact match
2004 // for cmpb (same for cmph). The patterns below do not contain any additional
2005 // complexity that would make them preferable, and if they were actually used
2006 // instead of cmpb/cmph, they would result in a compare against register that
2007 // is loaded with the byte/half mask (i.e. 0xFF or 0xFFFF).
2008 def: Pat<(i1 (setne (and I32:$Rs, u6ImmPred:$u6), 0)),
2009 (C4_nbitsclri I32:$Rs, u6ImmPred:$u6)>;
2010 def: Pat<(i1 (setne (and I32:$Rs, I32:$Rt), 0)),
2011 (C4_nbitsclr I32:$Rs, I32:$Rt)>;
2012 def: Pat<(i1 (setne (and I32:$Rs, I32:$Rt), I32:$Rt)),
2013 (C4_nbitsset I32:$Rs, I32:$Rt)>;
2014
2015 //===----------------------------------------------------------------------===//
2016 // XTYPE/BIT -
2017 //===----------------------------------------------------------------------===//
2018
2019 //===----------------------------------------------------------------------===//
2020 // XTYPE/MPY +
2021 //===----------------------------------------------------------------------===//
2022
2023 // Rd=add(#u6,mpyi(Rs,#U6)) -- Multiply by immed and add immed.
2024
2025 let hasNewValue = 1, isExtendable = 1, opExtentBits = 6, opExtendable = 1,
2026 isCodeGenOnly = 0 in
2027 def M4_mpyri_addi : MInst<(outs IntRegs:$Rd),
2028 (ins u6Ext:$u6, IntRegs:$Rs, u6Imm:$U6),
2029 "$Rd = add(#$u6, mpyi($Rs, #$U6))" ,
2030 [(set (i32 IntRegs:$Rd),
2031 (add (mul (i32 IntRegs:$Rs), u6ImmPred:$U6),
2032 u6ExtPred:$u6))] ,"",ALU64_tc_3x_SLOT23> {
2033 bits<5> Rd;
2034 bits<6> u6;
2035 bits<5> Rs;
2036 bits<6> U6;
2037
2038 let IClass = 0b1101;
2039
2040 let Inst{27-24} = 0b1000;
2041 let Inst{23} = U6{5};
2042 let Inst{22-21} = u6{5-4};
2043 let Inst{20-16} = Rs;
2044 let Inst{13} = u6{3};
2045 let Inst{12-8} = Rd;
2046 let Inst{7-5} = u6{2-0};
2047 let Inst{4-0} = U6{4-0};
2048 }
2049
2050 // Rd=add(#u6,mpyi(Rs,Rt))
2051 let CextOpcode = "ADD_MPY", InputType = "imm", hasNewValue = 1,
2052 isExtendable = 1, opExtentBits = 6, opExtendable = 1, isCodeGenOnly = 0 in
2053 def M4_mpyrr_addi : MInst <(outs IntRegs:$Rd),
2054 (ins u6Ext:$u6, IntRegs:$Rs, IntRegs:$Rt),
2055 "$Rd = add(#$u6, mpyi($Rs, $Rt))" ,
2056 [(set (i32 IntRegs:$Rd),
2057 (add (mul (i32 IntRegs:$Rs), (i32 IntRegs:$Rt)), u6ExtPred:$u6))],
2058 "", ALU64_tc_3x_SLOT23>, ImmRegRel {
2059 bits<5> Rd;
2060 bits<6> u6;
2061 bits<5> Rs;
2062 bits<5> Rt;
2063
2064 let IClass = 0b1101;
2065
2066 let Inst{27-23} = 0b01110;
2067 let Inst{22-21} = u6{5-4};
2068 let Inst{20-16} = Rs;
2069 let Inst{13} = u6{3};
2070 let Inst{12-8} = Rt;
2071 let Inst{7-5} = u6{2-0};
2072 let Inst{4-0} = Rd;
2073 }
2074
2075 let hasNewValue = 1 in
2076 class T_AddMpy <bit MajOp, PatLeaf ImmPred, dag ins>
2077 : ALU64Inst <(outs IntRegs:$dst), ins,
2078 "$dst = add($src1, mpyi("#!if(MajOp,"$src3, #$src2))",
2079 "#$src2, $src3))"),
2080 [(set (i32 IntRegs:$dst),
2081 (add (i32 IntRegs:$src1), (mul (i32 IntRegs:$src3), ImmPred:$src2)))],
2082 "", ALU64_tc_3x_SLOT23> {
2083 bits<5> dst;
2084 bits<5> src1;
2085 bits<8> src2;
2086 bits<5> src3;
2087
2088 let IClass = 0b1101;
2089
2090 bits<6> ImmValue = !if(MajOp, src2{5-0}, src2{7-2});
2091
2092 let Inst{27-24} = 0b1111;
2093 let Inst{23} = MajOp;
2094 let Inst{22-21} = ImmValue{5-4};
2095 let Inst{20-16} = src3;
2096 let Inst{13} = ImmValue{3};
2097 let Inst{12-8} = dst;
2098 let Inst{7-5} = ImmValue{2-0};
2099 let Inst{4-0} = src1;
2100 }
2101
2102 let isCodeGenOnly = 0 in
2103 def M4_mpyri_addr_u2 : T_AddMpy<0b0, u6_2ImmPred,
2104 (ins IntRegs:$src1, u6_2Imm:$src2, IntRegs:$src3)>;
2105
2106 let isExtendable = 1, opExtentBits = 6, opExtendable = 3,
2107 CextOpcode = "ADD_MPY", InputType = "imm", isCodeGenOnly = 0 in
2108 def M4_mpyri_addr : T_AddMpy<0b1, u6ExtPred,
2109 (ins IntRegs:$src1, IntRegs:$src3, u6Ext:$src2)>, ImmRegRel;
2110
2111 // Rx=add(Ru,mpyi(Rx,Rs))
2112 let validSubTargets = HasV4SubT, CextOpcode = "ADD_MPY", InputType = "reg",
2113 hasNewValue = 1, isCodeGenOnly = 0 in
2114 def M4_mpyrr_addr: MInst_acc <(outs IntRegs:$Rx),
2115 (ins IntRegs:$Ru, IntRegs:$_src_, IntRegs:$Rs),
2116 "$Rx = add($Ru, mpyi($_src_, $Rs))",
2117 [(set (i32 IntRegs:$Rx), (add (i32 IntRegs:$Ru),
2118 (mul (i32 IntRegs:$_src_), (i32 IntRegs:$Rs))))],
2119 "$_src_ = $Rx", M_tc_3x_SLOT23>, ImmRegRel {
2120 bits<5> Rx;
2121 bits<5> Ru;
2122 bits<5> Rs;
2123
2124 let IClass = 0b1110;
2125
2126 let Inst{27-21} = 0b0011000;
2127 let Inst{12-8} = Rx;
2128 let Inst{4-0} = Ru;
2129 let Inst{20-16} = Rs;
2130 }
2131
2132 // Rd=add(##,mpyi(Rs,#U6))
2133 def : Pat <(add (mul (i32 IntRegs:$src2), u6ImmPred:$src3),
2134 (HexagonCONST32 tglobaladdr:$src1)),
2135 (i32 (M4_mpyri_addi tglobaladdr:$src1, IntRegs:$src2,
2136 u6ImmPred:$src3))>;
2137
2138 // Rd=add(##,mpyi(Rs,Rt))
2139 def : Pat <(add (mul (i32 IntRegs:$src2), (i32 IntRegs:$src3)),
2140 (HexagonCONST32 tglobaladdr:$src1)),
2141 (i32 (M4_mpyrr_addi tglobaladdr:$src1, IntRegs:$src2,
2142 IntRegs:$src3))>;
2143
2144 // Polynomial multiply words
2145 // Rdd=pmpyw(Rs,Rt)
2146 // Rxx^=pmpyw(Rs,Rt)
2147
2148 // Vector reduce multiply word by signed half (32x16)
2149 // Rdd=vrmpyweh(Rss,Rtt)[:<<1]
2150 // Rdd=vrmpywoh(Rss,Rtt)[:<<1]
2151 // Rxx+=vrmpyweh(Rss,Rtt)[:<<1]
2152 // Rxx+=vrmpywoh(Rss,Rtt)[:<<1]
2153
2154 // Multiply and use upper result
2155 // Rd=mpy(Rs,Rt.H):<<1:sat
2156 // Rd=mpy(Rs,Rt.L):<<1:sat
2157 // Rd=mpy(Rs,Rt):<<1
2158 // Rd=mpy(Rs,Rt):<<1:sat
2159 // Rd=mpysu(Rs,Rt)
2160 // Rx+=mpy(Rs,Rt):<<1:sat
2161 // Rx-=mpy(Rs,Rt):<<1:sat
2162
2163 // Vector multiply bytes
2164 // Rdd=vmpybsu(Rs,Rt)
2165 // Rdd=vmpybu(Rs,Rt)
2166 // Rxx+=vmpybsu(Rs,Rt)
2167 // Rxx+=vmpybu(Rs,Rt)
2168
2169 // Vector polynomial multiply halfwords
2170 // Rdd=vpmpyh(Rs,Rt)
2171 // Rxx^=vpmpyh(Rs,Rt)
2172
2173 //===----------------------------------------------------------------------===//
2174 // XTYPE/MPY -
2175 //===----------------------------------------------------------------------===//
2176
2177
2178 //===----------------------------------------------------------------------===//
2179 // XTYPE/SHIFT +
2180 //===----------------------------------------------------------------------===//
2181 // Shift by immediate and accumulate/logical.
2182 // Rx=add(#u8,asl(Rx,#U5)) Rx=add(#u8,lsr(Rx,#U5))
2183 // Rx=sub(#u8,asl(Rx,#U5)) Rx=sub(#u8,lsr(Rx,#U5))
2184 // Rx=and(#u8,asl(Rx,#U5)) Rx=and(#u8,lsr(Rx,#U5))
2185 // Rx=or(#u8,asl(Rx,#U5)) Rx=or(#u8,lsr(Rx,#U5))
2186 let isExtendable = 1, opExtendable = 1, isExtentSigned = 0, opExtentBits = 8,
2187 hasNewValue = 1, opNewValue = 0, validSubTargets = HasV4SubT in
2188 class T_S4_ShiftOperate<string MnOp, string MnSh, SDNode Op, SDNode Sh,
2189 bit asl_lsr, bits<2> MajOp, InstrItinClass Itin>
2190 : MInst_acc<(outs IntRegs:$Rd), (ins u8Ext:$u8, IntRegs:$Rx, u5Imm:$U5),
2191 "$Rd = "#MnOp#"(#$u8, "#MnSh#"($Rx, #$U5))",
2192 [(set (i32 IntRegs:$Rd),
2193 (Op (Sh I32:$Rx, u5ImmPred:$U5), u8ExtPred:$u8))],
2194 "$Rd = $Rx", Itin> {
2195
2196 bits<5> Rd;
2197 bits<8> u8;
2198 bits<5> Rx;
2199 bits<5> U5;
2200
2201 let IClass = 0b1101;
2202 let Inst{27-24} = 0b1110;
2203 let Inst{23-21} = u8{7-5};
2204 let Inst{20-16} = Rd;
2205 let Inst{13} = u8{4};
2206 let Inst{12-8} = U5;
2207 let Inst{7-5} = u8{3-1};
2208 let Inst{4} = asl_lsr;
2209 let Inst{3} = u8{0};
2210 let Inst{2-1} = MajOp;
2211 }
2212
2213 multiclass T_ShiftOperate<string mnemonic, SDNode Op, bits<2> MajOp,
2214 InstrItinClass Itin> {
2215 def _asl_ri : T_S4_ShiftOperate<mnemonic, "asl", Op, shl, 0, MajOp, Itin>;
2216 def _lsr_ri : T_S4_ShiftOperate<mnemonic, "lsr", Op, srl, 1, MajOp, Itin>;
2217 }
2218
2219 let AddedComplexity = 200, isCodeGenOnly = 0 in {
2220 defm S4_addi : T_ShiftOperate<"add", add, 0b10, ALU64_tc_2_SLOT23>;
2221 defm S4_andi : T_ShiftOperate<"and", and, 0b00, ALU64_tc_2_SLOT23>;
2222 }
2223
2224 let AddedComplexity = 30, isCodeGenOnly = 0 in
2225 defm S4_ori : T_ShiftOperate<"or", or, 0b01, ALU64_tc_1_SLOT23>;
2226
2227 let isCodeGenOnly = 0 in
2228 defm S4_subi : T_ShiftOperate<"sub", sub, 0b11, ALU64_tc_1_SLOT23>;
2229
2230
2231 // Rd=[cround|round](Rs,Rt)
2232 let hasNewValue = 1, Itinerary = S_3op_tc_2_SLOT23, isCodeGenOnly = 0 in {
2233 def A4_cround_rr : T_S3op_3 < "cround", IntRegs, 0b11, 0b00>;
2234 def A4_round_rr : T_S3op_3 < "round", IntRegs, 0b11, 0b10>;
2235 }
2236
2237 // Rd=round(Rs,Rt):sat
2238 let hasNewValue = 1, Defs = [USR_OVF], Itinerary = S_3op_tc_2_SLOT23,
2239 isCodeGenOnly = 0 in
2240 def A4_round_rr_sat : T_S3op_3 < "round", IntRegs, 0b11, 0b11, 1>;
2241
2242 // Rdd=[add|sub](Rss,Rtt,Px):carry
2243 let isPredicateLate = 1, hasSideEffects = 0 in
2244 class T_S3op_carry <string mnemonic, bits<3> MajOp>
2245 : SInst < (outs DoubleRegs:$Rdd, PredRegs:$Px),
2246 (ins DoubleRegs:$Rss, DoubleRegs:$Rtt, PredRegs:$Pu),
2247 "$Rdd = "#mnemonic#"($Rss, $Rtt, $Pu):carry",
2248 [], "$Px = $Pu", S_3op_tc_1_SLOT23 > {
2249 bits<5> Rdd;
2250 bits<5> Rss;
2251 bits<5> Rtt;
2252 bits<2> Pu;
2253
2254 let IClass = 0b1100;
2255
2256 let Inst{27-24} = 0b0010;
2257 let Inst{23-21} = MajOp;
2258 let Inst{20-16} = Rss;
2259 let Inst{12-8} = Rtt;
2260 let Inst{6-5} = Pu;
2261 let Inst{4-0} = Rdd;
2262 }
2263
2264 let isCodeGenOnly = 0 in {
2265 def A4_addp_c : T_S3op_carry < "add", 0b110 >;
2266 def A4_subp_c : T_S3op_carry < "sub", 0b111 >;
2267 }
2268
2269 // Shift an immediate left by register amount.
2270 let hasNewValue = 1, hasSideEffects = 0, isCodeGenOnly = 0 in
2271 def S4_lsli: SInst <(outs IntRegs:$Rd), (ins s6Imm:$s6, IntRegs:$Rt),
2272 "$Rd = lsl(#$s6, $Rt)" ,
2273 [(set (i32 IntRegs:$Rd), (shl s6ImmPred:$s6,
2274 (i32 IntRegs:$Rt)))],
2275 "", S_3op_tc_1_SLOT23> {
2276 bits<5> Rd;
2277 bits<6> s6;
2278 bits<5> Rt;
2279
2280 let IClass = 0b1100;
2281
2282 let Inst{27-22} = 0b011010;
2283 let Inst{20-16} = s6{5-1};
2284 let Inst{12-8} = Rt;
2285 let Inst{7-6} = 0b11;
2286 let Inst{4-0} = Rd;
2287 let Inst{5} = s6{0};
2288 }
2289
2290 //===----------------------------------------------------------------------===//
2291 // XTYPE/SHIFT -
2292 //===----------------------------------------------------------------------===//
2293
2294 //===----------------------------------------------------------------------===//
2295 // MEMOP: Word, Half, Byte
2296 //===----------------------------------------------------------------------===//
2297
2298 def MEMOPIMM : SDNodeXForm<imm, [{
2299 // Call the transformation function XformM5ToU5Imm to get the negative
2300 // immediate's positive counterpart.
2301 int32_t imm = N->getSExtValue();
2302 return XformM5ToU5Imm(imm);
2303 }]>;
2304
2305 def MEMOPIMM_HALF : SDNodeXForm<imm, [{
2306 // -1 .. -31 represented as 65535..65515
2307 // assigning to a short restores our desired signed value.
2308 // Call the transformation function XformM5ToU5Imm to get the negative
2309 // immediate's positive counterpart.
2310 int16_t imm = N->getSExtValue();
2311 return XformM5ToU5Imm(imm);
2312 }]>;
2313
2314 def MEMOPIMM_BYTE : SDNodeXForm<imm, [{
2315 // -1 .. -31 represented as 255..235
2316 // assigning to a char restores our desired signed value.
2317 // Call the transformation function XformM5ToU5Imm to get the negative
2318 // immediate's positive counterpart.
2319 int8_t imm = N->getSExtValue();
2320 return XformM5ToU5Imm(imm);
2321 }]>;
2322
2323 def SETMEMIMM : SDNodeXForm<imm, [{
2324 // Return the bit position we will set [0-31].
2325 // As an SDNode.
2326 int32_t imm = N->getSExtValue();
2327 return XformMskToBitPosU5Imm(imm);
2328 }]>;
2329
2330 def CLRMEMIMM : SDNodeXForm<imm, [{
2331 // Return the bit position we will clear [0-31].
2332 // As an SDNode.
2333 // we bit negate the value first
2334 int32_t imm = ~(N->getSExtValue());
2335 return XformMskToBitPosU5Imm(imm);
2336 }]>;
2337
2338 def SETMEMIMM_SHORT : SDNodeXForm<imm, [{
2339 // Return the bit position we will set [0-15].
2340 // As an SDNode.
2341 int16_t imm = N->getSExtValue();
2342 return XformMskToBitPosU4Imm(imm);
2343 }]>;
2344
2345 def CLRMEMIMM_SHORT : SDNodeXForm<imm, [{
2346 // Return the bit position we will clear [0-15].
2347 // As an SDNode.
2348 // we bit negate the value first
2349 int16_t imm = ~(N->getSExtValue());
2350 return XformMskToBitPosU4Imm(imm);
2351 }]>;
2352
2353 def SETMEMIMM_BYTE : SDNodeXForm<imm, [{
2354 // Return the bit position we will set [0-7].
2355 // As an SDNode.
2356 int8_t imm = N->getSExtValue();
2357 return XformMskToBitPosU3Imm(imm);
2358 }]>;
2359
2360 def CLRMEMIMM_BYTE : SDNodeXForm<imm, [{
2361 // Return the bit position we will clear [0-7].
2362 // As an SDNode.
2363 // we bit negate the value first
2364 int8_t imm = ~(N->getSExtValue());
2365 return XformMskToBitPosU3Imm(imm);
2366 }]>;
2367
2368 //===----------------------------------------------------------------------===//
2369 // Template class for MemOp instructions with the register value.
2370 //===----------------------------------------------------------------------===//
2371 class MemOp_rr_base <string opc, bits<2> opcBits, Operand ImmOp,
2372 string memOp, bits<2> memOpBits> :
2373 MEMInst_V4<(outs),
2374 (ins IntRegs:$base, ImmOp:$offset, IntRegs:$delta),
2375 opc#"($base+#$offset)"#memOp#"$delta",
2376 []>,
2377 Requires<[UseMEMOP]> {
2378
2379 bits<5> base;
2380 bits<5> delta;
2381 bits<32> offset;
2382 bits<6> offsetBits; // memb - u6:0 , memh - u6:1, memw - u6:2
2383
2384 let offsetBits = !if (!eq(opcBits, 0b00), offset{5-0},
2385 !if (!eq(opcBits, 0b01), offset{6-1},
2386 !if (!eq(opcBits, 0b10), offset{7-2},0)));
2387
2388 let opExtentAlign = opcBits;
2389 let IClass = 0b0011;
2390 let Inst{27-24} = 0b1110;
2391 let Inst{22-21} = opcBits;
2392 let Inst{20-16} = base;
2393 let Inst{13} = 0b0;
2394 let Inst{12-7} = offsetBits;
2395 let Inst{6-5} = memOpBits;
2396 let Inst{4-0} = delta;
2397 }
2398
2399 //===----------------------------------------------------------------------===//
2400 // Template class for MemOp instructions with the immediate value.
2401 //===----------------------------------------------------------------------===//
2402 class MemOp_ri_base <string opc, bits<2> opcBits, Operand ImmOp,
2403 string memOp, bits<2> memOpBits> :
2404 MEMInst_V4 <(outs),
2405 (ins IntRegs:$base, ImmOp:$offset, u5Imm:$delta),
2406 opc#"($base+#$offset)"#memOp#"#$delta"
2407 #!if(memOpBits{1},")", ""), // clrbit, setbit - include ')'
2408 []>,
2409 Requires<[UseMEMOP]> {
2410
2411 bits<5> base;
2412 bits<5> delta;
2413 bits<32> offset;
2414 bits<6> offsetBits; // memb - u6:0 , memh - u6:1, memw - u6:2
2415
2416 let offsetBits = !if (!eq(opcBits, 0b00), offset{5-0},
2417 !if (!eq(opcBits, 0b01), offset{6-1},
2418 !if (!eq(opcBits, 0b10), offset{7-2},0)));
2419
2420 let opExtentAlign = opcBits;
2421 let IClass = 0b0011;
2422 let Inst{27-24} = 0b1111;
2423 let Inst{22-21} = opcBits;
2424 let Inst{20-16} = base;
2425 let Inst{13} = 0b0;
2426 let Inst{12-7} = offsetBits;
2427 let Inst{6-5} = memOpBits;
2428 let Inst{4-0} = delta;
2429 }
2430
2431 // multiclass to define MemOp instructions with register operand.
2432 multiclass MemOp_rr<string opc, bits<2> opcBits, Operand ImmOp> {
2433 def L4_add#NAME : MemOp_rr_base <opc, opcBits, ImmOp, " += ", 0b00>; // add
2434 def L4_sub#NAME : MemOp_rr_base <opc, opcBits, ImmOp, " -= ", 0b01>; // sub
2435 def L4_and#NAME : MemOp_rr_base <opc, opcBits, ImmOp, " &= ", 0b10>; // and
2436 def L4_or#NAME : MemOp_rr_base <opc, opcBits, ImmOp, " |= ", 0b11>; // or
2437 }
2438
2439 // multiclass to define MemOp instructions with immediate Operand.
2440 multiclass MemOp_ri<string opc, bits<2> opcBits, Operand ImmOp> {
2441 def L4_iadd#NAME : MemOp_ri_base <opc, opcBits, ImmOp, " += ", 0b00 >;
2442 def L4_isub#NAME : MemOp_ri_base <opc, opcBits, ImmOp, " -= ", 0b01 >;
2443 def L4_iand#NAME : MemOp_ri_base<opc, opcBits, ImmOp, " = clrbit(", 0b10>;
2444 def L4_ior#NAME : MemOp_ri_base<opc, opcBits, ImmOp, " = setbit(", 0b11>;
2445 }
2446
2447 multiclass MemOp_base <string opc, bits<2> opcBits, Operand ImmOp> {
2448 defm _#NAME : MemOp_rr <opc, opcBits, ImmOp>;
2449 defm _#NAME : MemOp_ri <opc, opcBits, ImmOp>;
2450 }
2451
2452 // Define MemOp instructions.
2453 let isExtendable = 1, opExtendable = 1, isExtentSigned = 0,
2454 validSubTargets =HasV4SubT in {
2455 let opExtentBits = 6, accessSize = ByteAccess, isCodeGenOnly = 0 in
2456 defm memopb_io : MemOp_base <"memb", 0b00, u6_0Ext>;
2457
2458 let opExtentBits = 7, accessSize = HalfWordAccess, isCodeGenOnly = 0 in
2459 defm memoph_io : MemOp_base <"memh", 0b01, u6_1Ext>;
2460
2461 let opExtentBits = 8, accessSize = WordAccess, isCodeGenOnly = 0 in
2462 defm memopw_io : MemOp_base <"memw", 0b10, u6_2Ext>;
2463 }
2464
2465 //===----------------------------------------------------------------------===//
2466 // Multiclass to define 'Def Pats' for ALU operations on the memory
2467 // Here value used for the ALU operation is an immediate value.
2468 // mem[bh](Rs+#0) += #U5
2469 // mem[bh](Rs+#u6) += #U5
2470 //===----------------------------------------------------------------------===//
2471
2472 multiclass MemOpi_u5Pats <PatFrag ldOp, PatFrag stOp, PatLeaf ExtPred,
2473 InstHexagon MI, SDNode OpNode> {
2474 let AddedComplexity = 180 in
2475 def : Pat < (stOp (OpNode (ldOp IntRegs:$addr), u5ImmPred:$addend),
2476 IntRegs:$addr),
2477 (MI IntRegs:$addr, #0, u5ImmPred:$addend )>;
2478
2479 let AddedComplexity = 190 in
2480 def : Pat <(stOp (OpNode (ldOp (add IntRegs:$base, ExtPred:$offset)),
2481 u5ImmPred:$addend),
2482 (add IntRegs:$base, ExtPred:$offset)),
2483 (MI IntRegs:$base, ExtPred:$offset, u5ImmPred:$addend)>;
2484 }
2485
2486 multiclass MemOpi_u5ALUOp<PatFrag ldOp, PatFrag stOp, PatLeaf ExtPred,
2487 InstHexagon addMI, InstHexagon subMI> {
2488 defm : MemOpi_u5Pats<ldOp, stOp, ExtPred, addMI, add>;
2489 defm : MemOpi_u5Pats<ldOp, stOp, ExtPred, subMI, sub>;
2490 }
2491
2492 multiclass MemOpi_u5ExtType<PatFrag ldOpByte, PatFrag ldOpHalf > {
2493 // Half Word
2494 defm : MemOpi_u5ALUOp <ldOpHalf, truncstorei16, u6_1ExtPred,
2495 L4_iadd_memoph_io, L4_isub_memoph_io>;
2496 // Byte
2497 defm : MemOpi_u5ALUOp <ldOpByte, truncstorei8, u6ExtPred,
2498 L4_iadd_memopb_io, L4_isub_memopb_io>;
2499 }
2500
2501 let Predicates = [HasV4T, UseMEMOP] in {
2502 defm : MemOpi_u5ExtType<zextloadi8, zextloadi16>; // zero extend
2503 defm : MemOpi_u5ExtType<sextloadi8, sextloadi16>; // sign extend
2504 defm : MemOpi_u5ExtType<extloadi8, extloadi16>; // any extend
2505
2506 // Word
2507 defm : MemOpi_u5ALUOp <load, store, u6_2ExtPred, L4_iadd_memopw_io,
2508 L4_isub_memopw_io>;
2509 }
2510
2511 //===----------------------------------------------------------------------===//
2512 // multiclass to define 'Def Pats' for ALU operations on the memory.
2513 // Here value used for the ALU operation is a negative value.
2514 // mem[bh](Rs+#0) += #m5
2515 // mem[bh](Rs+#u6) += #m5
2516 //===----------------------------------------------------------------------===//
2517
2518 multiclass MemOpi_m5Pats <PatFrag ldOp, PatFrag stOp, PatLeaf extPred,
2519 PatLeaf immPred, ComplexPattern addrPred,
2520 SDNodeXForm xformFunc, InstHexagon MI> {
2521 let AddedComplexity = 190 in
2522 def : Pat <(stOp (add (ldOp IntRegs:$addr), immPred:$subend),
2523 IntRegs:$addr),
2524 (MI IntRegs:$addr, #0, (xformFunc immPred:$subend) )>;
2525
2526 let AddedComplexity = 195 in
2527 def : Pat<(stOp (add (ldOp (add IntRegs:$base, extPred:$offset)),
2528 immPred:$subend),
2529 (add IntRegs:$base, extPred:$offset)),
2530 (MI IntRegs:$base, extPred:$offset, (xformFunc immPred:$subend))>;
2531 }
2532
2533 multiclass MemOpi_m5ExtType<PatFrag ldOpByte, PatFrag ldOpHalf > {
2534 // Half Word
2535 defm : MemOpi_m5Pats <ldOpHalf, truncstorei16, u6_1ExtPred, m5HImmPred,
2536 ADDRriU6_1, MEMOPIMM_HALF, L4_isub_memoph_io>;
2537 // Byte
2538 defm : MemOpi_m5Pats <ldOpByte, truncstorei8, u6ExtPred, m5BImmPred,
2539 ADDRriU6_0, MEMOPIMM_BYTE, L4_isub_memopb_io>;
2540 }
2541
2542 let Predicates = [HasV4T, UseMEMOP] in {
2543 defm : MemOpi_m5ExtType<zextloadi8, zextloadi16>; // zero extend
2544 defm : MemOpi_m5ExtType<sextloadi8, sextloadi16>; // sign extend
2545 defm : MemOpi_m5ExtType<extloadi8, extloadi16>; // any extend
2546
2547 // Word
2548 defm : MemOpi_m5Pats <load, store, u6_2ExtPred, m5ImmPred,
2549 ADDRriU6_2, MEMOPIMM, L4_isub_memopw_io>;
2550 }
2551
2552 //===----------------------------------------------------------------------===//
2553 // Multiclass to define 'def Pats' for bit operations on the memory.
2554 // mem[bhw](Rs+#0) = [clrbit|setbit](#U5)
2555 // mem[bhw](Rs+#u6) = [clrbit|setbit](#U5)
2556 //===----------------------------------------------------------------------===//
2557
2558 multiclass MemOpi_bitPats <PatFrag ldOp, PatFrag stOp, PatLeaf immPred,
2559 PatLeaf extPred, ComplexPattern addrPred,
2560 SDNodeXForm xformFunc, InstHexagon MI, SDNode OpNode> {
2561
2562 // mem[bhw](Rs+#u6:[012]) = [clrbit|setbit](#U5)
2563 let AddedComplexity = 250 in
2564 def : Pat<(stOp (OpNode (ldOp (add IntRegs:$base, extPred:$offset)),
2565 immPred:$bitend),
2566 (add IntRegs:$base, extPred:$offset)),
2567 (MI IntRegs:$base, extPred:$offset, (xformFunc immPred:$bitend))>;
2568
2569 // mem[bhw](Rs+#0) = [clrbit|setbit](#U5)
2570 let AddedComplexity = 225 in
2571 def : Pat <(stOp (OpNode (ldOp (addrPred IntRegs:$addr, extPred:$offset)),
2572 immPred:$bitend),
2573 (addrPred (i32 IntRegs:$addr), extPred:$offset)),
2574 (MI IntRegs:$addr, extPred:$offset, (xformFunc immPred:$bitend))>;
2575 }
2576
2577 multiclass MemOpi_bitExtType<PatFrag ldOpByte, PatFrag ldOpHalf > {
2578 // Byte - clrbit
2579 defm : MemOpi_bitPats<ldOpByte, truncstorei8, Clr3ImmPred, u6ExtPred,
2580 ADDRriU6_0, CLRMEMIMM_BYTE, L4_iand_memopb_io, and>;
2581 // Byte - setbit
2582 defm : MemOpi_bitPats<ldOpByte, truncstorei8, Set3ImmPred, u6ExtPred,
2583 ADDRriU6_0, SETMEMIMM_BYTE, L4_ior_memopb_io, or>;
2584 // Half Word - clrbit
2585 defm : MemOpi_bitPats<ldOpHalf, truncstorei16, Clr4ImmPred, u6_1ExtPred,
2586 ADDRriU6_1, CLRMEMIMM_SHORT, L4_iand_memoph_io, and>;
2587 // Half Word - setbit
2588 defm : MemOpi_bitPats<ldOpHalf, truncstorei16, Set4ImmPred, u6_1ExtPred,
2589 ADDRriU6_1, SETMEMIMM_SHORT, L4_ior_memoph_io, or>;
2590 }
2591
2592 let Predicates = [HasV4T, UseMEMOP] in {
2593 // mem[bh](Rs+#0) = [clrbit|setbit](#U5)
2594 // mem[bh](Rs+#u6:[01]) = [clrbit|setbit](#U5)
2595 defm : MemOpi_bitExtType<zextloadi8, zextloadi16>; // zero extend
2596 defm : MemOpi_bitExtType<sextloadi8, sextloadi16>; // sign extend
2597 defm : MemOpi_bitExtType<extloadi8, extloadi16>; // any extend
2598
2599 // memw(Rs+#0) = [clrbit|setbit](#U5)
2600 // memw(Rs+#u6:2) = [clrbit|setbit](#U5)
2601 defm : MemOpi_bitPats<load, store, Clr5ImmPred, u6_2ExtPred, ADDRriU6_2,
2602 CLRMEMIMM, L4_iand_memopw_io, and>;
2603 defm : MemOpi_bitPats<load, store, Set5ImmPred, u6_2ExtPred, ADDRriU6_2,
2604 SETMEMIMM, L4_ior_memopw_io, or>;
2605 }
2606
2607 //===----------------------------------------------------------------------===//
2608 // Multiclass to define 'def Pats' for ALU operations on the memory
2609 // where addend is a register.
2610 // mem[bhw](Rs+#0) [+-&|]= Rt
2611 // mem[bhw](Rs+#U6:[012]) [+-&|]= Rt
2612 //===----------------------------------------------------------------------===//
2613
2614 multiclass MemOpr_Pats <PatFrag ldOp, PatFrag stOp, ComplexPattern addrPred,
2615 PatLeaf extPred, InstHexagon MI, SDNode OpNode> {
2616 let AddedComplexity = 141 in
2617 // mem[bhw](Rs+#0) [+-&|]= Rt
2618 def : Pat <(stOp (OpNode (ldOp (addrPred IntRegs:$addr, extPred:$offset)),
2619 (i32 IntRegs:$addend)),
2620 (addrPred (i32 IntRegs:$addr), extPred:$offset)),
2621 (MI IntRegs:$addr, extPred:$offset, (i32 IntRegs:$addend) )>;
2622
2623 // mem[bhw](Rs+#U6:[012]) [+-&|]= Rt
2624 let AddedComplexity = 150 in
2625 def : Pat <(stOp (OpNode (ldOp (add IntRegs:$base, extPred:$offset)),
2626 (i32 IntRegs:$orend)),
2627 (add IntRegs:$base, extPred:$offset)),
2628 (MI IntRegs:$base, extPred:$offset, (i32 IntRegs:$orend) )>;
2629 }
2630
2631 multiclass MemOPr_ALUOp<PatFrag ldOp, PatFrag stOp,
2632 ComplexPattern addrPred, PatLeaf extPred,
2633 InstHexagon addMI, InstHexagon subMI,
2634 InstHexagon andMI, InstHexagon orMI > {
2635
2636 defm : MemOpr_Pats <ldOp, stOp, addrPred, extPred, addMI, add>;
2637 defm : MemOpr_Pats <ldOp, stOp, addrPred, extPred, subMI, sub>;
2638 defm : MemOpr_Pats <ldOp, stOp, addrPred, extPred, andMI, and>;
2639 defm : MemOpr_Pats <ldOp, stOp, addrPred, extPred, orMI, or>;
2640 }
2641
2642 multiclass MemOPr_ExtType<PatFrag ldOpByte, PatFrag ldOpHalf > {
2643 // Half Word
2644 defm : MemOPr_ALUOp <ldOpHalf, truncstorei16, ADDRriU6_1, u6_1ExtPred,
2645 L4_add_memoph_io, L4_sub_memoph_io,
2646 L4_and_memoph_io, L4_or_memoph_io>;
2647 // Byte
2648 defm : MemOPr_ALUOp <ldOpByte, truncstorei8, ADDRriU6_0, u6ExtPred,
2649 L4_add_memopb_io, L4_sub_memopb_io,
2650 L4_and_memopb_io, L4_or_memopb_io>;
2651 }
2652
2653 // Define 'def Pats' for MemOps with register addend.
2654 let Predicates = [HasV4T, UseMEMOP] in {
2655 // Byte, Half Word
2656 defm : MemOPr_ExtType<zextloadi8, zextloadi16>; // zero extend
2657 defm : MemOPr_ExtType<sextloadi8, sextloadi16>; // sign extend
2658 defm : MemOPr_ExtType<extloadi8, extloadi16>; // any extend
2659 // Word
2660 defm : MemOPr_ALUOp <load, store, ADDRriU6_2, u6_2ExtPred, L4_add_memopw_io,
2661 L4_sub_memopw_io, L4_and_memopw_io, L4_or_memopw_io >;
2662 }
2663
2664 //===----------------------------------------------------------------------===//
2665 // XTYPE/PRED +
2666 //===----------------------------------------------------------------------===//
2667
2668 // Hexagon V4 only supports these flavors of byte/half compare instructions:
2669 // EQ/GT/GTU. Other flavors like GE/GEU/LT/LTU/LE/LEU are not supported by
2670 // hardware. However, compiler can still implement these patterns through
2671 // appropriate patterns combinations based on current implemented patterns.
2672 // The implemented patterns are: EQ/GT/GTU.
2673 // Missing patterns are: GE/GEU/LT/LTU/LE/LEU.
2674
2675 // Following instruction is not being extended as it results into the
2676 // incorrect code for negative numbers.
2677 // Pd=cmpb.eq(Rs,#u8)
2678
2679 let isCompare = 1, isExtendable = 1, opExtendable = 2, hasSideEffects = 0,
2680 validSubTargets = HasV4SubT in
2681 class CMP_NOT_REG_IMM<string OpName, bits<2> op, Operand ImmOp,
2682 list<dag> Pattern>
2683 : ALU32Inst <(outs PredRegs:$dst), (ins IntRegs:$src1, ImmOp:$src2),
2684 "$dst = !cmp."#OpName#"($src1, #$src2)",
2685 Pattern,
2686 "", ALU32_2op_tc_2early_SLOT0123> {
2687 bits<2> dst;
2688 bits<5> src1;
2689 bits<10> src2;
2690
2691 let IClass = 0b0111;
2692 let Inst{27-24} = 0b0101;
2693 let Inst{23-22} = op;
2694 let Inst{20-16} = src1;
2695 let Inst{21} = !if (!eq(OpName, "gtu"), 0b0, src2{9});
2696 let Inst{13-5} = src2{8-0};
2697 let Inst{4-2} = 0b100;
2698 let Inst{1-0} = dst;
2699 }
2700
2701 let opExtentBits = 10, isExtentSigned = 1 in {
2702 def C4_cmpneqi : CMP_NOT_REG_IMM <"eq", 0b00, s10Ext, [(set (i1 PredRegs:$dst),
2703 (setne (i32 IntRegs:$src1), s10ExtPred:$src2))]>;
2704
2705 def C4_cmpltei : CMP_NOT_REG_IMM <"gt", 0b01, s10Ext, [(set (i1 PredRegs:$dst),
2706 (not (setgt (i32 IntRegs:$src1), s10ExtPred:$src2)))]>;
2707
2708 }
2709 let opExtentBits = 9 in
2710 def C4_cmplteui : CMP_NOT_REG_IMM <"gtu", 0b10, u9Ext, [(set (i1 PredRegs:$dst),
2711 (not (setugt (i32 IntRegs:$src1), u9ExtPred:$src2)))]>;
2712
2713
2714
2715 // p=!cmp.eq(r1,r2)
2716 let isCompare = 1, validSubTargets = HasV4SubT in
2717 def CMPnotEQ_rr : ALU32_rr<(outs PredRegs:$dst),
2718 (ins IntRegs:$src1, IntRegs:$src2),
2719 "$dst = !cmp.eq($src1, $src2)",
2720 [(set (i1 PredRegs:$dst),
2721 (setne (i32 IntRegs:$src1), (i32 IntRegs:$src2)))]>,
2722 Requires<[HasV4T]>;
2723
2724 // p=!cmp.gt(r1,r2)
2725 let isCompare = 1, validSubTargets = HasV4SubT in
2726 def CMPnotGT_rr : ALU32_rr<(outs PredRegs:$dst),
2727 (ins IntRegs:$src1, IntRegs:$src2),
2728 "$dst = !cmp.gt($src1, $src2)",
2729 [(set (i1 PredRegs:$dst),
2730 (not (setgt (i32 IntRegs:$src1), (i32 IntRegs:$src2))))]>,
2731 Requires<[HasV4T]>;
2732
2733
2734 // p=!cmp.gtu(r1,r2)
2735 let isCompare = 1, validSubTargets = HasV4SubT in
2736 def CMPnotGTU_rr : ALU32_rr<(outs PredRegs:$dst),
2737 (ins IntRegs:$src1, IntRegs:$src2),
2738 "$dst = !cmp.gtu($src1, $src2)",
2739 [(set (i1 PredRegs:$dst),
2740 (not (setugt (i32 IntRegs:$src1), (i32 IntRegs:$src2))))]>,
2741 Requires<[HasV4T]>;
2742
2743 let isCompare = 1, validSubTargets = HasV4SubT in
2744 def CMPbEQri_V4 : MInst<(outs PredRegs:$dst),
2745 (ins IntRegs:$src1, u8Imm:$src2),
2746 "$dst = cmpb.eq($src1, #$src2)",
2747 [(set (i1 PredRegs:$dst),
2748 (seteq (and (i32 IntRegs:$src1), 255), u8ImmPred:$src2))]>,
2749 Requires<[HasV4T]>;
2750
2751 def : Pat <(brcond (i1 (setne (and (i32 IntRegs:$src1), 255), u8ImmPred:$src2)),
2752 bb:$offset),
2753 (J2_jumpf (CMPbEQri_V4 (i32 IntRegs:$src1), u8ImmPred:$src2),
2754 bb:$offset)>,
2755 Requires<[HasV4T]>;
2756
2757 // Pd=cmpb.eq(Rs,Rt)
2758 let isCompare = 1, validSubTargets = HasV4SubT in
2759 def CMPbEQrr_ubub_V4 : MInst<(outs PredRegs:$dst),
2760 (ins IntRegs:$src1, IntRegs:$src2),
2761 "$dst = cmpb.eq($src1, $src2)",
2762 [(set (i1 PredRegs:$dst),
2763 (seteq (and (xor (i32 IntRegs:$src1),
2764 (i32 IntRegs:$src2)), 255), 0))]>,
2765 Requires<[HasV4T]>;
2766
2767 // Pd=cmpb.eq(Rs,Rt)
2768 let isCompare = 1, validSubTargets = HasV4SubT in
2769 def CMPbEQrr_sbsb_V4 : MInst<(outs PredRegs:$dst),
2770 (ins IntRegs:$src1, IntRegs:$src2),
2771 "$dst = cmpb.eq($src1, $src2)",
2772 [(set (i1 PredRegs:$dst),
2773 (seteq (shl (i32 IntRegs:$src1), (i32 24)),
2774 (shl (i32 IntRegs:$src2), (i32 24))))]>,
2775 Requires<[HasV4T]>;
2776
2777 // Pd=cmpb.gt(Rs,Rt)
2778 let isCompare = 1, validSubTargets = HasV4SubT in
2779 def CMPbGTrr_V4 : MInst<(outs PredRegs:$dst),
2780 (ins IntRegs:$src1, IntRegs:$src2),
2781 "$dst = cmpb.gt($src1, $src2)",
2782 [(set (i1 PredRegs:$dst),
2783 (setgt (shl (i32 IntRegs:$src1), (i32 24)),
2784 (shl (i32 IntRegs:$src2), (i32 24))))]>,
2785 Requires<[HasV4T]>;
2786
2787 // Pd=cmpb.gtu(Rs,#u7)
2788 let isExtendable = 1, opExtendable = 2, isExtentSigned = 0, opExtentBits = 7,
2789 isCompare = 1, validSubTargets = HasV4SubT, CextOpcode = "CMPbGTU", InputType = "imm" in
2790 def CMPbGTUri_V4 : MInst<(outs PredRegs:$dst),
2791 (ins IntRegs:$src1, u7Ext:$src2),
2792 "$dst = cmpb.gtu($src1, #$src2)",
2793 [(set (i1 PredRegs:$dst), (setugt (and (i32 IntRegs:$src1), 255),
2794 u7ExtPred:$src2))]>,
2795 Requires<[HasV4T]>, ImmRegRel;
2796
2797 // SDNode for converting immediate C to C-1.
2798 def DEC_CONST_BYTE : SDNodeXForm<imm, [{
2799 // Return the byte immediate const-1 as an SDNode.
2800 int32_t imm = N->getSExtValue();
2801 return XformU7ToU7M1Imm(imm);
2802 }]>;
2803
2804 // For the sequence
2805 // zext( seteq ( and(Rs, 255), u8))
2806 // Generate
2807 // Pd=cmpb.eq(Rs, #u8)
2808 // if (Pd.new) Rd=#1
2809 // if (!Pd.new) Rd=#0
2810 def : Pat <(i32 (zext (i1 (seteq (i32 (and (i32 IntRegs:$Rs), 255)),
2811 u8ExtPred:$u8)))),
2812 (i32 (TFR_condset_ii (i1 (CMPbEQri_V4 (i32 IntRegs:$Rs),
2813 (u8ExtPred:$u8))),
2814 1, 0))>,
2815 Requires<[HasV4T]>;
2816
2817 // For the sequence
2818 // zext( setne ( and(Rs, 255), u8))
2819 // Generate
2820 // Pd=cmpb.eq(Rs, #u8)
2821 // if (Pd.new) Rd=#0
2822 // if (!Pd.new) Rd=#1
2823 def : Pat <(i32 (zext (i1 (setne (i32 (and (i32 IntRegs:$Rs), 255)),
2824 u8ExtPred:$u8)))),
2825 (i32 (TFR_condset_ii (i1 (CMPbEQri_V4 (i32 IntRegs:$Rs),
2826 (u8ExtPred:$u8))),
2827 0, 1))>,
2828 Requires<[HasV4T]>;
2829
2830 // For the sequence
2831 // zext( seteq (Rs, and(Rt, 255)))
2832 // Generate
2833 // Pd=cmpb.eq(Rs, Rt)
2834 // if (Pd.new) Rd=#1
2835 // if (!Pd.new) Rd=#0
2836 def : Pat <(i32 (zext (i1 (seteq (i32 IntRegs:$Rt),
2837 (i32 (and (i32 IntRegs:$Rs), 255)))))),
2838 (i32 (TFR_condset_ii (i1 (CMPbEQrr_ubub_V4 (i32 IntRegs:$Rs),
2839 (i32 IntRegs:$Rt))),
2840 1, 0))>,
2841 Requires<[HasV4T]>;
2842
2843 // For the sequence
2844 // zext( setne (Rs, and(Rt, 255)))
2845 // Generate
2846 // Pd=cmpb.eq(Rs, Rt)
2847 // if (Pd.new) Rd=#0
2848 // if (!Pd.new) Rd=#1
2849 def : Pat <(i32 (zext (i1 (setne (i32 IntRegs:$Rt),
2850 (i32 (and (i32 IntRegs:$Rs), 255)))))),
2851 (i32 (TFR_condset_ii (i1 (CMPbEQrr_ubub_V4 (i32 IntRegs:$Rs),
2852 (i32 IntRegs:$Rt))),
2853 0, 1))>,
2854 Requires<[HasV4T]>;
2855
2856 // For the sequence
2857 // zext( setugt ( and(Rs, 255), u8))
2858 // Generate
2859 // Pd=cmpb.gtu(Rs, #u8)
2860 // if (Pd.new) Rd=#1
2861 // if (!Pd.new) Rd=#0
2862 def : Pat <(i32 (zext (i1 (setugt (i32 (and (i32 IntRegs:$Rs), 255)),
2863 u8ExtPred:$u8)))),
2864 (i32 (TFR_condset_ii (i1 (CMPbGTUri_V4 (i32 IntRegs:$Rs),
2865 (u8ExtPred:$u8))),
2866 1, 0))>,
2867 Requires<[HasV4T]>;
2868
2869 // For the sequence
2870 // zext( setugt ( and(Rs, 254), u8))
2871 // Generate
2872 // Pd=cmpb.gtu(Rs, #u8)
2873 // if (Pd.new) Rd=#1
2874 // if (!Pd.new) Rd=#0
2875 def : Pat <(i32 (zext (i1 (setugt (i32 (and (i32 IntRegs:$Rs), 254)),
2876 u8ExtPred:$u8)))),
2877 (i32 (TFR_condset_ii (i1 (CMPbGTUri_V4 (i32 IntRegs:$Rs),
2878 (u8ExtPred:$u8))),
2879 1, 0))>,
2880 Requires<[HasV4T]>;
2881
2882 // For the sequence
2883 // zext( setult ( Rs, Rt))
2884 // Generate
2885 // Pd=cmp.ltu(Rs, Rt)
2886 // if (Pd.new) Rd=#1
2887 // if (!Pd.new) Rd=#0
2888 // cmp.ltu(Rs, Rt) -> cmp.gtu(Rt, Rs)
2889 def : Pat <(i32 (zext (i1 (setult (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))))),
2890 (i32 (TFR_condset_ii (i1 (C2_cmpgtu (i32 IntRegs:$Rt),
2891 (i32 IntRegs:$Rs))),
2892 1, 0))>,
2893 Requires<[HasV4T]>;
2894
2895 // For the sequence
2896 // zext( setlt ( Rs, Rt))
2897 // Generate
2898 // Pd=cmp.lt(Rs, Rt)
2899 // if (Pd.new) Rd=#1
2900 // if (!Pd.new) Rd=#0
2901 // cmp.lt(Rs, Rt) -> cmp.gt(Rt, Rs)
2902 def : Pat <(i32 (zext (i1 (setlt (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))))),
2903 (i32 (TFR_condset_ii (i1 (C2_cmpgt (i32 IntRegs:$Rt),
2904 (i32 IntRegs:$Rs))),
2905 1, 0))>,
2906 Requires<[HasV4T]>;
2907
2908 // For the sequence
2909 // zext( setugt ( Rs, Rt))
2910 // Generate
2911 // Pd=cmp.gtu(Rs, Rt)
2912 // if (Pd.new) Rd=#1
2913 // if (!Pd.new) Rd=#0
2914 def : Pat <(i32 (zext (i1 (setugt (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))))),
2915 (i32 (TFR_condset_ii (i1 (C2_cmpgtu (i32 IntRegs:$Rs),
2916 (i32 IntRegs:$Rt))),
2917 1, 0))>,
2918 Requires<[HasV4T]>;
2919
2920 // This pattern interefers with coremark performance, not implementing at this
2921 // time.
2922 // For the sequence
2923 // zext( setgt ( Rs, Rt))
2924 // Generate
2925 // Pd=cmp.gt(Rs, Rt)
2926 // if (Pd.new) Rd=#1
2927 // if (!Pd.new) Rd=#0
2928
2929 // For the sequence
2930 // zext( setuge ( Rs, Rt))
2931 // Generate
2932 // Pd=cmp.ltu(Rs, Rt)
2933 // if (Pd.new) Rd=#0
2934 // if (!Pd.new) Rd=#1
2935 // cmp.ltu(Rs, Rt) -> cmp.gtu(Rt, Rs)
2936 def : Pat <(i32 (zext (i1 (setuge (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))))),
2937 (i32 (TFR_condset_ii (i1 (C2_cmpgtu (i32 IntRegs:$Rt),
2938 (i32 IntRegs:$Rs))),
2939 0, 1))>,
2940 Requires<[HasV4T]>;
2941
2942 // For the sequence
2943 // zext( setge ( Rs, Rt))
2944 // Generate
2945 // Pd=cmp.lt(Rs, Rt)
2946 // if (Pd.new) Rd=#0
2947 // if (!Pd.new) Rd=#1
2948 // cmp.lt(Rs, Rt) -> cmp.gt(Rt, Rs)
2949 def : Pat <(i32 (zext (i1 (setge (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))))),
2950 (i32 (TFR_condset_ii (i1 (C2_cmpgt (i32 IntRegs:$Rt),
2951 (i32 IntRegs:$Rs))),
2952 0, 1))>,
2953 Requires<[HasV4T]>;
2954
2955 // For the sequence
2956 // zext( setule ( Rs, Rt))
2957 // Generate
2958 // Pd=cmp.gtu(Rs, Rt)
2959 // if (Pd.new) Rd=#0
2960 // if (!Pd.new) Rd=#1
2961 def : Pat <(i32 (zext (i1 (setule (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))))),
2962 (i32 (TFR_condset_ii (i1 (C2_cmpgtu (i32 IntRegs:$Rs),
2963 (i32 IntRegs:$Rt))),
2964 0, 1))>,
2965 Requires<[HasV4T]>;
2966
2967 // For the sequence
2968 // zext( setle ( Rs, Rt))
2969 // Generate
2970 // Pd=cmp.gt(Rs, Rt)
2971 // if (Pd.new) Rd=#0
2972 // if (!Pd.new) Rd=#1
2973 def : Pat <(i32 (zext (i1 (setle (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))))),
2974 (i32 (TFR_condset_ii (i1 (C2_cmpgt (i32 IntRegs:$Rs),
2975 (i32 IntRegs:$Rt))),
2976 0, 1))>,
2977 Requires<[HasV4T]>;
2978
2979 // For the sequence
2980 // zext( setult ( and(Rs, 255), u8))
2981 // Use the isdigit transformation below
2982
2983 // Generate code of the form 'mux_ii(cmpbgtu(Rdd, C-1),0,1)'
2984 // for C code of the form r = ((c>='0') & (c<='9')) ? 1 : 0;.
2985 // The isdigit transformation relies on two 'clever' aspects:
2986 // 1) The data type is unsigned which allows us to eliminate a zero test after
2987 // biasing the expression by 48. We are depending on the representation of
2988 // the unsigned types, and semantics.
2989 // 2) The front end has converted <= 9 into < 10 on entry to LLVM
2990 //
2991 // For the C code:
2992 // retval = ((c>='0') & (c<='9')) ? 1 : 0;
2993 // The code is transformed upstream of llvm into
2994 // retval = (c-48) < 10 ? 1 : 0;
2995 let AddedComplexity = 139 in
2996 def : Pat <(i32 (zext (i1 (setult (i32 (and (i32 IntRegs:$src1), 255)),
2997 u7StrictPosImmPred:$src2)))),
2998 (i32 (C2_muxii (i1 (CMPbGTUri_V4 (i32 IntRegs:$src1),
2999 (DEC_CONST_BYTE u7StrictPosImmPred:$src2))),
3000 0, 1))>,
3001 Requires<[HasV4T]>;
3002
3003 // Pd=cmpb.gtu(Rs,Rt)
3004 let isCompare = 1, validSubTargets = HasV4SubT, CextOpcode = "CMPbGTU",
3005 InputType = "reg" in
3006 def CMPbGTUrr_V4 : MInst<(outs PredRegs:$dst),
3007 (ins IntRegs:$src1, IntRegs:$src2),
3008 "$dst = cmpb.gtu($src1, $src2)",
3009 [(set (i1 PredRegs:$dst), (setugt (and (i32 IntRegs:$src1), 255),
3010 (and (i32 IntRegs:$src2), 255)))]>,
3011 Requires<[HasV4T]>, ImmRegRel;
3012
3013 // Following instruction is not being extended as it results into the incorrect
3014 // code for negative numbers.
3015
3016 // Signed half compare(.eq) ri.
3017 // Pd=cmph.eq(Rs,#s8)
3018 let isCompare = 1, validSubTargets = HasV4SubT in
3019 def CMPhEQri_V4 : MInst<(outs PredRegs:$dst),
3020 (ins IntRegs:$src1, s8Imm:$src2),
3021 "$dst = cmph.eq($src1, #$src2)",
3022 [(set (i1 PredRegs:$dst), (seteq (and (i32 IntRegs:$src1), 65535),
3023 s8ImmPred:$src2))]>,
3024 Requires<[HasV4T]>;
3025
3026 // Signed half compare(.eq) rr.
3027 // Case 1: xor + and, then compare:
3028 // r0=xor(r0,r1)
3029 // r0=and(r0,#0xffff)
3030 // p0=cmp.eq(r0,#0)
3031 // Pd=cmph.eq(Rs,Rt)
3032 let isCompare = 1, validSubTargets = HasV4SubT in
3033 def CMPhEQrr_xor_V4 : MInst<(outs PredRegs:$dst),
3034 (ins IntRegs:$src1, IntRegs:$src2),
3035 "$dst = cmph.eq($src1, $src2)",
3036 [(set (i1 PredRegs:$dst), (seteq (and (xor (i32 IntRegs:$src1),
3037 (i32 IntRegs:$src2)),
3038 65535), 0))]>,
3039 Requires<[HasV4T]>;
3040
3041 // Signed half compare(.eq) rr.
3042 // Case 2: shift left 16 bits then compare:
3043 // r0=asl(r0,16)
3044 // r1=asl(r1,16)
3045 // p0=cmp.eq(r0,r1)
3046 // Pd=cmph.eq(Rs,Rt)
3047 let isCompare = 1, validSubTargets = HasV4SubT in
3048 def CMPhEQrr_shl_V4 : MInst<(outs PredRegs:$dst),
3049 (ins IntRegs:$src1, IntRegs:$src2),
3050 "$dst = cmph.eq($src1, $src2)",
3051 [(set (i1 PredRegs:$dst),
3052 (seteq (shl (i32 IntRegs:$src1), (i32 16)),
3053 (shl (i32 IntRegs:$src2), (i32 16))))]>,
3054 Requires<[HasV4T]>;
3055
3056 /* Incorrect Pattern -- immediate should be right shifted before being
3057 used in the cmph.gt instruction.
3058 // Signed half compare(.gt) ri.
3059 // Pd=cmph.gt(Rs,#s8)
3060
3061 let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 8,
3062 isCompare = 1, validSubTargets = HasV4SubT in
3063 def CMPhGTri_V4 : MInst<(outs PredRegs:$dst),
3064 (ins IntRegs:$src1, s8Ext:$src2),
3065 "$dst = cmph.gt($src1, #$src2)",
3066 [(set (i1 PredRegs:$dst),
3067 (setgt (shl (i32 IntRegs:$src1), (i32 16)),
3068 s8ExtPred:$src2))]>,
3069 Requires<[HasV4T]>;
3070 */
3071
3072 // Signed half compare(.gt) rr.
3073 // Pd=cmph.gt(Rs,Rt)
3074 let isCompare = 1, validSubTargets = HasV4SubT in
3075 def CMPhGTrr_shl_V4 : MInst<(outs PredRegs:$dst),
3076 (ins IntRegs:$src1, IntRegs:$src2),
3077 "$dst = cmph.gt($src1, $src2)",
3078 [(set (i1 PredRegs:$dst),
3079 (setgt (shl (i32 IntRegs:$src1), (i32 16)),
3080 (shl (i32 IntRegs:$src2), (i32 16))))]>,
3081 Requires<[HasV4T]>;
3082
3083 // Unsigned half compare rr (.gtu).
3084 // Pd=cmph.gtu(Rs,Rt)
3085 let isCompare = 1, validSubTargets = HasV4SubT, CextOpcode = "CMPhGTU",
3086 InputType = "reg" in
3087 def CMPhGTUrr_V4 : MInst<(outs PredRegs:$dst),
3088 (ins IntRegs:$src1, IntRegs:$src2),
3089 "$dst = cmph.gtu($src1, $src2)",
3090 [(set (i1 PredRegs:$dst),
3091 (setugt (and (i32 IntRegs:$src1), 65535),
3092 (and (i32 IntRegs:$src2), 65535)))]>,
3093 Requires<[HasV4T]>, ImmRegRel;
3094
3095 // Unsigned half compare ri (.gtu).
3096 // Pd=cmph.gtu(Rs,#u7)
3097 let isExtendable = 1, opExtendable = 2, isExtentSigned = 0, opExtentBits = 7,
3098 isCompare = 1, validSubTargets = HasV4SubT, CextOpcode = "CMPhGTU",
3099 InputType = "imm" in
3100 def CMPhGTUri_V4 : MInst<(outs PredRegs:$dst),
3101 (ins IntRegs:$src1, u7Ext:$src2),
3102 "$dst = cmph.gtu($src1, #$src2)",
3103 [(set (i1 PredRegs:$dst), (setugt (and (i32 IntRegs:$src1), 65535),
3104 u7ExtPred:$src2))]>,
3105 Requires<[HasV4T]>, ImmRegRel;
3106
3107 let validSubTargets = HasV4SubT in
3108 def NTSTBIT_rr : SInst<(outs PredRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
3109 "$dst = !tstbit($src1, $src2)",
3110 [(set (i1 PredRegs:$dst),
3111 (seteq (and (shl 1, (i32 IntRegs:$src2)), (i32 IntRegs:$src1)), 0))]>,
3112 Requires<[HasV4T]>;
3113
3114 let validSubTargets = HasV4SubT in
3115 def NTSTBIT_ri : SInst<(outs PredRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
3116 "$dst = !tstbit($src1, $src2)",
3117 [(set (i1 PredRegs:$dst),
3118 (seteq (and (shl 1, u5ImmPred:$src2), (i32 IntRegs:$src1)), 0))]>,
3119 Requires<[HasV4T]>;
3120
3121 //===----------------------------------------------------------------------===//
3122 // XTYPE/PRED -
3123 //===----------------------------------------------------------------------===//
3124
3125 //===----------------------------------------------------------------------===//
3126 // Multiclass for DeallocReturn
3127 //===----------------------------------------------------------------------===//
3128 class L4_RETURN<string mnemonic, bit isNot, bit isPredNew, bit isTak>
3129 : LD0Inst<(outs), (ins PredRegs:$src),
3130 !if(isNot, "if (!$src", "if ($src")#
3131 !if(isPredNew, ".new) ", ") ")#mnemonic#
3132 !if(isPredNew, #!if(isTak,":t", ":nt"),""),
3133 [], "", LD_tc_3or4stall_SLOT0> {
3134
3135 bits<2> src;
3136 let BaseOpcode = "L4_RETURN";
3137 let isPredicatedFalse = isNot;
3138 let isPredicatedNew = isPredNew;
3139 let isTaken = isTak;
3140 let IClass = 0b1001;
3141
3142 let Inst{27-16} = 0b011000011110;
3143
3144 let Inst{13} = isNot;
3145 let Inst{12} = isTak;
3146 let Inst{11} = isPredNew;
3147 let Inst{10} = 0b0;
3148 let Inst{9-8} = src;
3149 let Inst{4-0} = 0b11110;
3150 }
3151
3152 // Produce all predicated forms, p, !p, p.new, !p.new, :t, :nt
3153 multiclass L4_RETURN_PRED<string mnemonic, bit PredNot> {
3154 let isPredicated = 1 in {
3155 def _#NAME# : L4_RETURN <mnemonic, PredNot, 0, 1>;
3156 def _#NAME#new_pnt : L4_RETURN <mnemonic, PredNot, 1, 0>;
3157 def _#NAME#new_pt : L4_RETURN <mnemonic, PredNot, 1, 1>;
3158 }
3159 }
3160
3161 multiclass LD_MISC_L4_RETURN<string mnemonic> {
3162 let isBarrier = 1, isPredicable = 1 in
3163 def NAME : LD0Inst <(outs), (ins), mnemonic, [], "",
3164 LD_tc_3or4stall_SLOT0> {
3165 let BaseOpcode = "L4_RETURN";
3166 let IClass = 0b1001;
3167 let Inst{27-16} = 0b011000011110;
3168 let Inst{13-10} = 0b0000;
3169 let Inst{4-0} = 0b11110;
3170 }
3171 defm t : L4_RETURN_PRED<mnemonic, 0 >;
3172 defm f : L4_RETURN_PRED<mnemonic, 1 >;
3173 }
3174
3175 let isReturn = 1, isTerminator = 1,
3176 Defs = [R29, R30, R31, PC], Uses = [R30], hasSideEffects = 0,
3177 validSubTargets = HasV4SubT, isCodeGenOnly = 0 in
3178 defm L4_return: LD_MISC_L4_RETURN <"dealloc_return">, PredNewRel;
3179
3180 // Restore registers and dealloc return function call.
3181 let isCall = 1, isBarrier = 1, isReturn = 1, isTerminator = 1,
3182 Defs = [R29, R30, R31, PC] in {
3183 let validSubTargets = HasV4SubT in
3184 def RESTORE_DEALLOC_RET_JMP_V4 : JInst<(outs),
3185 (ins calltarget:$dst),
3186 "jump $dst",
3187 []>,
3188 Requires<[HasV4T]>;
3189 }
3190
3191 // Restore registers and dealloc frame before a tail call.
3192 let isCall = 1, isBarrier = 1,
3193 Defs = [R29, R30, R31, PC] in {
3194 let validSubTargets = HasV4SubT in
3195 def RESTORE_DEALLOC_BEFORE_TAILCALL_V4 : JInst<(outs),
3196 (ins calltarget:$dst),
3197 "call $dst",
3198 []>,
3199 Requires<[HasV4T]>;
3200 }
3201
3202 // Save registers function call.
3203 let isCall = 1, isBarrier = 1,
3204 Uses = [R29, R31] in {
3205 def SAVE_REGISTERS_CALL_V4 : JInst<(outs),
3206 (ins calltarget:$dst),
3207 "call $dst // Save_calle_saved_registers",
3208 []>,
3209 Requires<[HasV4T]>;
3210 }
3211
3212 //===----------------------------------------------------------------------===//
3213 // Template class for non predicated store instructions with
3214 // GP-Relative or absolute addressing.
3215 //===----------------------------------------------------------------------===//
3216 let hasSideEffects = 0, isPredicable = 1, isNVStorable = 1 in
3217 class T_StoreAbsGP <string mnemonic, RegisterClass RC, Operand ImmOp,
3218 bits<2>MajOp, Operand AddrOp, bit isAbs, bit isHalf>
3219 : STInst<(outs), (ins AddrOp:$addr, RC:$src),
3220 mnemonic # !if(isAbs, "(##", "(#")#"$addr) = $src"#!if(isHalf, ".h",""),
3221 [], "", V2LDST_tc_st_SLOT01> {
3222 bits<19> addr;
3223 bits<5> src;
3224 bits<16> offsetBits;
3225
3226 string ImmOpStr = !cast<string>(ImmOp);
3227 let offsetBits = !if (!eq(ImmOpStr, "u16_3Imm"), addr{18-3},
3228 !if (!eq(ImmOpStr, "u16_2Imm"), addr{17-2},
3229 !if (!eq(ImmOpStr, "u16_1Imm"), addr{16-1},
3230 /* u16_0Imm */ addr{15-0})));
3231 let IClass = 0b0100;
3232 let Inst{27} = 1;
3233 let Inst{26-25} = offsetBits{15-14};
3234 let Inst{24} = 0b0;
3235 let Inst{23-22} = MajOp;
3236 let Inst{21} = isHalf;
3237 let Inst{20-16} = offsetBits{13-9};
3238 let Inst{13} = offsetBits{8};
3239 let Inst{12-8} = src;
3240 let Inst{7-0} = offsetBits{7-0};
3241 }
3242
3243 //===----------------------------------------------------------------------===//
3244 // Template class for predicated store instructions with
3245 // GP-Relative or absolute addressing.
3246 //===----------------------------------------------------------------------===//
3247 let hasSideEffects = 0, isPredicated = 1, isNVStorable = 1, opExtentBits = 6,
3248 opExtendable = 1 in
3249 class T_StoreAbs_Pred <string mnemonic, RegisterClass RC, bits<2> MajOp,
3250 bit isHalf, bit isNot, bit isNew>
3251 : STInst<(outs), (ins PredRegs:$src1, u6Ext:$absaddr, RC: $src2),
3252 !if(isNot, "if (!$src1", "if ($src1")#!if(isNew, ".new) ",
3253 ") ")#mnemonic#"(#$absaddr) = $src2"#!if(isHalf, ".h",""),
3254 [], "", ST_tc_st_SLOT01>, AddrModeRel {
3255 bits<2> src1;
3256 bits<6> absaddr;
3257 bits<5> src2;
3258
3259 let isPredicatedNew = isNew;
3260 let isPredicatedFalse = isNot;
3261
3262 let IClass = 0b1010;
3263
3264 let Inst{27-24} = 0b1111;
3265 let Inst{23-22} = MajOp;
3266 let Inst{21} = isHalf;
3267 let Inst{17-16} = absaddr{5-4};
3268 let Inst{13} = isNew;
3269 let Inst{12-8} = src2;
3270 let Inst{7} = 0b1;
3271 let Inst{6-3} = absaddr{3-0};
3272 let Inst{2} = isNot;
3273 let Inst{1-0} = src1;
3274 }
3275
3276 //===----------------------------------------------------------------------===//
3277 // Template class for predicated store instructions with absolute addressing.
3278 //===----------------------------------------------------------------------===//
3279 class T_StoreAbs <string mnemonic, RegisterClass RC, Operand ImmOp,
3280 bits<2> MajOp, bit isHalf>
3281 : T_StoreAbsGP <mnemonic, RC, ImmOp, MajOp, u0AlwaysExt, 1, isHalf>,
3282 AddrModeRel {
3283 string ImmOpStr = !cast<string>(ImmOp);
3284 let opExtentBits = !if (!eq(ImmOpStr, "u16_3Imm"), 19,
3285 !if (!eq(ImmOpStr, "u16_2Imm"), 18,
3286 !if (!eq(ImmOpStr, "u16_1Imm"), 17,
3287 /* u16_0Imm */ 16)));
3288
3289 let opExtentAlign = !if (!eq(ImmOpStr, "u16_3Imm"), 3,
3290 !if (!eq(ImmOpStr, "u16_2Imm"), 2,
3291 !if (!eq(ImmOpStr, "u16_1Imm"), 1,
3292 /* u16_0Imm */ 0)));
3293 }
3294
3295 //===----------------------------------------------------------------------===//
3296 // Multiclass for store instructions with absolute addressing.
3297 //===----------------------------------------------------------------------===//
3298 let validSubTargets = HasV4SubT, addrMode = Absolute, isExtended = 1 in
3299 multiclass ST_Abs<string mnemonic, string CextOp, RegisterClass RC,
3300 Operand ImmOp, bits<2> MajOp, bit isHalf = 0> {
3301 let CextOpcode = CextOp, BaseOpcode = CextOp#_abs in {
3302 let opExtendable = 0, isPredicable = 1 in
3303 def S2_#NAME#abs : T_StoreAbs <mnemonic, RC, ImmOp, MajOp, isHalf>;
3304
3305 // Predicated
3306 def S4_p#NAME#t_abs : T_StoreAbs_Pred<mnemonic, RC, MajOp, isHalf, 0, 0>;
3307 def S4_p#NAME#f_abs : T_StoreAbs_Pred<mnemonic, RC, MajOp, isHalf, 1, 0>;
3308
3309 // .new Predicated
3310 def S4_p#NAME#tnew_abs : T_StoreAbs_Pred<mnemonic, RC, MajOp, isHalf, 0, 1>;
3311 def S4_p#NAME#fnew_abs : T_StoreAbs_Pred<mnemonic, RC, MajOp, isHalf, 1, 1>;
3312 }
3313 }
3314
3315 //===----------------------------------------------------------------------===//
3316 // Template class for non predicated new-value store instructions with
3317 // GP-Relative or absolute addressing.
3318 //===----------------------------------------------------------------------===//
3319 let hasSideEffects = 0, isPredicable = 1, mayStore = 1, isNVStore = 1,
3320 isNewValue = 1, opNewValue = 1 in
3321 class T_StoreAbsGP_NV <string mnemonic, Operand ImmOp, bits<2>MajOp, bit isAbs>
3322 : NVInst_V4<(outs), (ins u0AlwaysExt:$addr, IntRegs:$src),
3323 mnemonic # !if(isAbs, "(##", "(#")#"$addr) = $src.new",
3324 [], "", V2LDST_tc_st_SLOT0> {
3325 bits<19> addr;
3326 bits<3> src;
3327 bits<16> offsetBits;
3328
3329 string ImmOpStr = !cast<string>(ImmOp);
3330 let offsetBits = !if (!eq(ImmOpStr, "u16_3Imm"), addr{18-3},
3331 !if (!eq(ImmOpStr, "u16_2Imm"), addr{17-2},
3332 !if (!eq(ImmOpStr, "u16_1Imm"), addr{16-1},
3333 /* u16_0Imm */ addr{15-0})));
3334 let IClass = 0b0100;
3335
3336 let Inst{27} = 1;
3337 let Inst{26-25} = offsetBits{15-14};
3338 let Inst{24-21} = 0b0101;
3339 let Inst{20-16} = offsetBits{13-9};
3340 let Inst{13} = offsetBits{8};
3341 let Inst{12-11} = MajOp;
3342 let Inst{10-8} = src;
3343 let Inst{7-0} = offsetBits{7-0};
3344 }
3345
3346 //===----------------------------------------------------------------------===//
3347 // Template class for predicated new-value store instructions with
3348 // absolute addressing.
3349 //===----------------------------------------------------------------------===//
3350 let hasSideEffects = 0, isPredicated = 1, mayStore = 1, isNVStore = 1,
3351 isNewValue = 1, opNewValue = 2, opExtentBits = 6, opExtendable = 1 in
3352 class T_StoreAbs_NV_Pred <string mnemonic, bits<2> MajOp, bit isNot, bit isNew>
3353 : NVInst_V4<(outs), (ins PredRegs:$src1, u6Ext:$absaddr, IntRegs:$src2),
3354 !if(isNot, "if (!$src1", "if ($src1")#!if(isNew, ".new) ",
3355 ") ")#mnemonic#"(#$absaddr) = $src2.new",
3356 [], "", ST_tc_st_SLOT0>, AddrModeRel {
3357 bits<2> src1;
3358 bits<6> absaddr;
3359 bits<3> src2;
3360
3361 let isPredicatedNew = isNew;
3362 let isPredicatedFalse = isNot;
3363
3364 let IClass = 0b1010;
3365
3366 let Inst{27-24} = 0b1111;
3367 let Inst{23-21} = 0b101;
3368 let Inst{17-16} = absaddr{5-4};
3369 let Inst{13} = isNew;
3370 let Inst{12-11} = MajOp;
3371 let Inst{10-8} = src2;
3372 let Inst{7} = 0b1;
3373 let Inst{6-3} = absaddr{3-0};
3374 let Inst{2} = isNot;
3375 let Inst{1-0} = src1;
3376 }
3377
3378 //===----------------------------------------------------------------------===//
3379 // Template class for non-predicated new-value store instructions with
3380 // absolute addressing.
3381 //===----------------------------------------------------------------------===//
3382 class T_StoreAbs_NV <string mnemonic, Operand ImmOp, bits<2> MajOp>
3383 : T_StoreAbsGP_NV <mnemonic, ImmOp, MajOp, 1>, AddrModeRel {
3384
3385 string ImmOpStr = !cast<string>(ImmOp);
3386 let opExtentBits = !if (!eq(ImmOpStr, "u16_3Imm"), 19,
3387 !if (!eq(ImmOpStr, "u16_2Imm"), 18,
3388 !if (!eq(ImmOpStr, "u16_1Imm"), 17,
3389 /* u16_0Imm */ 16)));
3390
3391 let opExtentAlign = !if (!eq(ImmOpStr, "u16_3Imm"), 3,
3392 !if (!eq(ImmOpStr, "u16_2Imm"), 2,
3393 !if (!eq(ImmOpStr, "u16_1Imm"), 1,
3394 /* u16_0Imm */ 0)));
3395 }
3396
3397 //===----------------------------------------------------------------------===//
3398 // Multiclass for new-value store instructions with absolute addressing.
3399 //===----------------------------------------------------------------------===//
3400 let validSubTargets = HasV4SubT, addrMode = Absolute, isExtended = 1 in
3401 multiclass ST_Abs_NV <string mnemonic, string CextOp, Operand ImmOp,
3402 bits<2> MajOp> {
3403 let CextOpcode = CextOp, BaseOpcode = CextOp#_abs in {
3404 let opExtendable = 0, isPredicable = 1 in
3405 def S2_#NAME#newabs : T_StoreAbs_NV <mnemonic, ImmOp, MajOp>;
3406
3407 // Predicated
3408 def S4_p#NAME#newt_abs : T_StoreAbs_NV_Pred <mnemonic, MajOp, 0, 0>;
3409 def S4_p#NAME#newf_abs : T_StoreAbs_NV_Pred <mnemonic, MajOp, 1, 0>;
3410
3411 // .new Predicated
3412 def S4_p#NAME#newtnew_abs : T_StoreAbs_NV_Pred <mnemonic, MajOp, 0, 1>;
3413 def S4_p#NAME#newfnew_abs : T_StoreAbs_NV_Pred <mnemonic, MajOp, 1, 1>;
3414 }
3415 }
3416
3417 //===----------------------------------------------------------------------===//
3418 // Stores with absolute addressing
3419 //===----------------------------------------------------------------------===//
3420 let accessSize = ByteAccess, isCodeGenOnly = 0 in
3421 defm storerb : ST_Abs <"memb", "STrib", IntRegs, u16_0Imm, 0b00>,
3422 ST_Abs_NV <"memb", "STrib", u16_0Imm, 0b00>;
3423
3424 let accessSize = HalfWordAccess, isCodeGenOnly = 0 in
3425 defm storerh : ST_Abs <"memh", "STrih", IntRegs, u16_1Imm, 0b01>,
3426 ST_Abs_NV <"memh", "STrih", u16_1Imm, 0b01>;
3427
3428 let accessSize = WordAccess, isCodeGenOnly = 0 in
3429 defm storeri : ST_Abs <"memw", "STriw", IntRegs, u16_2Imm, 0b10>,
3430 ST_Abs_NV <"memw", "STriw", u16_2Imm, 0b10>;
3431
3432 let isNVStorable = 0, accessSize = DoubleWordAccess, isCodeGenOnly = 0 in
3433 defm storerd : ST_Abs <"memd", "STrid", DoubleRegs, u16_3Imm, 0b11>;
3434
3435 let isNVStorable = 0, accessSize = HalfWordAccess, isCodeGenOnly = 0 in
3436 defm storerf : ST_Abs <"memh", "STrif", IntRegs, u16_1Imm, 0b01, 1>;
3437
3438 //===----------------------------------------------------------------------===//
3439 // GP-relative stores.
3440 // mem[bhwd](#global)=Rt
3441 // Once predicated, these instructions map to absolute addressing mode.
3442 // if ([!]Pv[.new]) mem[bhwd](##global)=Rt
3443 //===----------------------------------------------------------------------===//
3444
3445 let validSubTargets = HasV4SubT in
3446 class T_StoreGP <string mnemonic, string BaseOp, RegisterClass RC,
3447 Operand ImmOp, bits<2> MajOp, bit isHalf = 0>
3448 : T_StoreAbsGP <mnemonic, RC, ImmOp, MajOp, globaladdress, 0, isHalf> {
3449 // Set BaseOpcode same as absolute addressing instructions so that
3450 // non-predicated GP-Rel instructions can have relate with predicated
3451 // Absolute instruction.
3452 let BaseOpcode = BaseOp#_abs;
3453 }
3454
3455 let validSubTargets = HasV4SubT in
3456 multiclass ST_GP <string mnemonic, string BaseOp, Operand ImmOp,
3457 bits<2> MajOp, bit isHalf = 0> {
3458 // Set BaseOpcode same as absolute addressing instructions so that
3459 // non-predicated GP-Rel instructions can have relate with predicated
3460 // Absolute instruction.
3461 let BaseOpcode = BaseOp#_abs in {
3462 def NAME#gp : T_StoreAbsGP <mnemonic, IntRegs, ImmOp, MajOp,
3463 globaladdress, 0, isHalf>;
3464 // New-value store
3465 def NAME#newgp : T_StoreAbsGP_NV <mnemonic, ImmOp, MajOp, 0> ;
3466 }
3467 }
3468
3469 let accessSize = ByteAccess in
3470 defm S2_storerb : ST_GP<"memb", "STrib", u16_0Imm, 0b00>, NewValueRel;
3471
3472 let accessSize = HalfWordAccess in
3473 defm S2_storerh : ST_GP<"memh", "STrih", u16_1Imm, 0b01>, NewValueRel;
3474
3475 let accessSize = WordAccess in
3476 defm S2_storeri : ST_GP<"memw", "STriw", u16_2Imm, 0b10>, NewValueRel;
3477
3478 let isNVStorable = 0, accessSize = DoubleWordAccess in
3479 def S2_storerdgp : T_StoreGP <"memd", "STrid", DoubleRegs,
3480 u16_3Imm, 0b11>, PredNewRel;
3481
3482 let isNVStorable = 0, accessSize = HalfWordAccess in
3483 def S2_storerfgp : T_StoreGP <"memh", "STrif", IntRegs,
3484 u16_1Imm, 0b01, 1>, PredNewRel;
3485
3486 let Predicates = [HasV4T], AddedComplexity = 30 in {
3487 def : Pat<(truncstorei8 (i32 IntRegs:$src1),
3488 (HexagonCONST32 tglobaladdr:$absaddr)),
3489 (S2_storerbabs tglobaladdr: $absaddr, IntRegs: $src1)>;
3490
3491 def : Pat<(truncstorei16 (i32 IntRegs:$src1),
3492 (HexagonCONST32 tglobaladdr:$absaddr)),
3493 (S2_storerhabs tglobaladdr: $absaddr, IntRegs: $src1)>;
3494
3495 def : Pat<(store (i32 IntRegs:$src1), (HexagonCONST32 tglobaladdr:$absaddr)),
3496 (S2_storeriabs tglobaladdr: $absaddr, IntRegs: $src1)>;
3497
3498 def : Pat<(store (i64 DoubleRegs:$src1),
3499 (HexagonCONST32 tglobaladdr:$absaddr)),
3500 (S2_storerdabs tglobaladdr: $absaddr, DoubleRegs: $src1)>;
3501 }
3502
3503 // 64 bit atomic store
3504 def : Pat <(atomic_store_64 (HexagonCONST32_GP tglobaladdr:$global),
3505 (i64 DoubleRegs:$src1)),
3506 (S2_storerdgp tglobaladdr:$global, (i64 DoubleRegs:$src1))>,
3507 Requires<[HasV4T]>;
3508
3509 // Map from store(globaladdress) -> memd(#foo)
3510 let AddedComplexity = 100 in
3511 def : Pat <(store (i64 DoubleRegs:$src1),
3512 (HexagonCONST32_GP tglobaladdr:$global)),
3513 (S2_storerdgp tglobaladdr:$global, (i64 DoubleRegs:$src1))>;
3514
3515 // 8 bit atomic store
3516 def : Pat < (atomic_store_8 (HexagonCONST32_GP tglobaladdr:$global),
3517 (i32 IntRegs:$src1)),
3518 (S2_storerbgp tglobaladdr:$global, (i32 IntRegs:$src1))>;
3519
3520 // Map from store(globaladdress) -> memb(#foo)
3521 let AddedComplexity = 100 in
3522 def : Pat<(truncstorei8 (i32 IntRegs:$src1),
3523 (HexagonCONST32_GP tglobaladdr:$global)),
3524 (S2_storerbgp tglobaladdr:$global, (i32 IntRegs:$src1))>;
3525
3526 // Map from "i1 = constant<-1>; memw(CONST32(#foo)) = i1"
3527 // to "r0 = 1; memw(#foo) = r0"
3528 let AddedComplexity = 100 in
3529 def : Pat<(store (i1 -1), (HexagonCONST32_GP tglobaladdr:$global)),
3530 (S2_storerbgp tglobaladdr:$global, (A2_tfrsi 1))>;
3531
3532 def : Pat<(atomic_store_16 (HexagonCONST32_GP tglobaladdr:$global),
3533 (i32 IntRegs:$src1)),
3534 (S2_storerhgp tglobaladdr:$global, (i32 IntRegs:$src1))>;
3535
3536 // Map from store(globaladdress) -> memh(#foo)
3537 let AddedComplexity = 100 in
3538 def : Pat<(truncstorei16 (i32 IntRegs:$src1),
3539 (HexagonCONST32_GP tglobaladdr:$global)),
3540 (S2_storerhgp tglobaladdr:$global, (i32 IntRegs:$src1))>;
3541
3542 // 32 bit atomic store
3543 def : Pat<(atomic_store_32 (HexagonCONST32_GP tglobaladdr:$global),
3544 (i32 IntRegs:$src1)),
3545 (S2_storerigp tglobaladdr:$global, (i32 IntRegs:$src1))>;
3546
3547 // Map from store(globaladdress) -> memw(#foo)
3548 let AddedComplexity = 100 in
3549 def : Pat<(store (i32 IntRegs:$src1), (HexagonCONST32_GP tglobaladdr:$global)),
3550 (S2_storerigp tglobaladdr:$global, (i32 IntRegs:$src1))>;
3551
3552 //===----------------------------------------------------------------------===//
3553 // Template class for non predicated load instructions with
3554 // absolute addressing mode.
3555 //===----------------------------------------------------------------------===//
3556 let isPredicable = 1, hasSideEffects = 0, validSubTargets = HasV4SubT in
3557 class T_LoadAbsGP <string mnemonic, RegisterClass RC, Operand ImmOp,
3558 bits<3> MajOp, Operand AddrOp, bit isAbs>
3559 : LDInst <(outs RC:$dst), (ins AddrOp:$addr),
3560 "$dst = "#mnemonic# !if(isAbs, "(##", "(#")#"$addr)",
3561 [], "", V2LDST_tc_ld_SLOT01> {
3562 bits<5> dst;
3563 bits<19> addr;
3564 bits<16> offsetBits;
3565
3566 string ImmOpStr = !cast<string>(ImmOp);
3567 let offsetBits = !if (!eq(ImmOpStr, "u16_3Imm"), addr{18-3},
3568 !if (!eq(ImmOpStr, "u16_2Imm"), addr{17-2},
3569 !if (!eq(ImmOpStr, "u16_1Imm"), addr{16-1},
3570 /* u16_0Imm */ addr{15-0})));
3571
3572 let IClass = 0b0100;
3573
3574 let Inst{27} = 0b1;
3575 let Inst{26-25} = offsetBits{15-14};
3576 let Inst{24} = 0b1;
3577 let Inst{23-21} = MajOp;
3578 let Inst{20-16} = offsetBits{13-9};
3579 let Inst{13-5} = offsetBits{8-0};
3580 let Inst{4-0} = dst;
3581 }
3582
3583 class T_LoadAbs <string mnemonic, RegisterClass RC, Operand ImmOp,
3584 bits<3> MajOp>
3585 : T_LoadAbsGP <mnemonic, RC, ImmOp, MajOp, u0AlwaysExt, 1>, AddrModeRel {
3586
3587 string ImmOpStr = !cast<string>(ImmOp);
3588 let opExtentBits = !if (!eq(ImmOpStr, "u16_3Imm"), 19,
3589 !if (!eq(ImmOpStr, "u16_2Imm"), 18,
3590 !if (!eq(ImmOpStr, "u16_1Imm"), 17,
3591 /* u16_0Imm */ 16)));
3592
3593 let opExtentAlign = !if (!eq(ImmOpStr, "u16_3Imm"), 3,
3594 !if (!eq(ImmOpStr, "u16_2Imm"), 2,
3595 !if (!eq(ImmOpStr, "u16_1Imm"), 1,
3596 /* u16_0Imm */ 0)));
3597 }
3598 //===----------------------------------------------------------------------===//
3599 // Template class for predicated load instructions with
3600 // absolute addressing mode.
3601 //===----------------------------------------------------------------------===//
3602 let isPredicated = 1, hasNewValue = 1, opExtentBits = 6, opExtendable = 2 in
3603 class T_LoadAbs_Pred <string mnemonic, RegisterClass RC, bits<3> MajOp,
3604 bit isPredNot, bit isPredNew>
3605 : LDInst <(outs RC:$dst), (ins PredRegs:$src1, u6Ext:$absaddr),
3606 !if(isPredNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
3607 ") ")#"$dst = "#mnemonic#"(#$absaddr)">, AddrModeRel {
3608 bits<5> dst;
3609 bits<2> src1;
3610 bits<6> absaddr;
3611
3612 let isPredicatedNew = isPredNew;
3613 let isPredicatedFalse = isPredNot;
3614
3615 let IClass = 0b1001;
3616
3617 let Inst{27-24} = 0b1111;
3618 let Inst{23-21} = MajOp;
3619 let Inst{20-16} = absaddr{5-1};
3620 let Inst{13} = 0b1;
3621 let Inst{12} = isPredNew;
3622 let Inst{11} = isPredNot;
3623 let Inst{10-9} = src1;
3624 let Inst{8} = absaddr{0};
3625 let Inst{7} = 0b1;
3626 let Inst{4-0} = dst;
3627 }
3628
3629 //===----------------------------------------------------------------------===//
3630 // Multiclass for the load instructions with absolute addressing mode.
3631 //===----------------------------------------------------------------------===//
3632 multiclass LD_Abs_Pred<string mnemonic, RegisterClass RC, bits<3> MajOp,
3633 bit PredNot> {
3634 def _abs : T_LoadAbs_Pred <mnemonic, RC, MajOp, PredNot, 0>;
3635 // Predicate new
3636 def new_abs : T_LoadAbs_Pred <mnemonic, RC, MajOp, PredNot, 1>;
3637 }
3638
3639 let addrMode = Absolute, isExtended = 1 in
3640 multiclass LD_Abs<string mnemonic, string CextOp, RegisterClass RC,
3641 Operand ImmOp, bits<3> MajOp> {
3642 let CextOpcode = CextOp, BaseOpcode = CextOp#_abs in {
3643 let opExtendable = 1, isPredicable = 1 in
3644 def L4_#NAME#_abs: T_LoadAbs <mnemonic, RC, ImmOp, MajOp>;
3645
3646 // Predicated
3647 defm L4_p#NAME#t : LD_Abs_Pred<mnemonic, RC, MajOp, 0>;
3648 defm L4_p#NAME#f : LD_Abs_Pred<mnemonic, RC, MajOp, 1>;
3649 }
3650 }
3651
3652 let accessSize = ByteAccess, hasNewValue = 1, isCodeGenOnly = 0 in {
3653 defm loadrb : LD_Abs<"memb", "LDrib", IntRegs, u16_0Imm, 0b000>;
3654 defm loadrub : LD_Abs<"memub", "LDriub", IntRegs, u16_0Imm, 0b001>;
3655 }
3656
3657 let accessSize = HalfWordAccess, hasNewValue = 1, isCodeGenOnly = 0 in {
3658 defm loadrh : LD_Abs<"memh", "LDrih", IntRegs, u16_1Imm, 0b010>;
3659 defm loadruh : LD_Abs<"memuh", "LDriuh", IntRegs, u16_1Imm, 0b011>;
3660 }
3661
3662 let accessSize = WordAccess, hasNewValue = 1, isCodeGenOnly = 0 in
3663 defm loadri : LD_Abs<"memw", "LDriw", IntRegs, u16_2Imm, 0b100>;
3664
3665 let accessSize = DoubleWordAccess, isCodeGenOnly = 0 in
3666 defm loadrd : LD_Abs<"memd", "LDrid", DoubleRegs, u16_3Imm, 0b110>;
3667
3668 //===----------------------------------------------------------------------===//
3669 // multiclass for load instructions with GP-relative addressing mode.
3670 // Rx=mem[bhwd](##global)
3671 // Once predicated, these instructions map to absolute addressing mode.
3672 // if ([!]Pv[.new]) Rx=mem[bhwd](##global)
3673 //===----------------------------------------------------------------------===//
3674
3675 class T_LoadGP <string mnemonic, string BaseOp, RegisterClass RC, Operand ImmOp,
3676 bits<3> MajOp>
3677 : T_LoadAbsGP <mnemonic, RC, ImmOp, MajOp, globaladdress, 0>, PredNewRel {
3678 let BaseOpcode = BaseOp#_abs;
3679 }
3680
3681 let accessSize = ByteAccess, hasNewValue = 1 in {
3682 def L2_loadrbgp : T_LoadGP<"memb", "LDrib", IntRegs, u16_0Imm, 0b000>;
3683 def L2_loadrubgp : T_LoadGP<"memub", "LDriub", IntRegs, u16_0Imm, 0b001>;
3684 }
3685
3686 let accessSize = HalfWordAccess, hasNewValue = 1 in {
3687 def L2_loadrhgp : T_LoadGP<"memh", "LDrih", IntRegs, u16_1Imm, 0b010>;
3688 def L2_loadruhgp : T_LoadGP<"memuh", "LDriuh", IntRegs, u16_1Imm, 0b011>;
3689 }
3690
3691 let accessSize = WordAccess, hasNewValue = 1 in
3692 def L2_loadrigp : T_LoadGP<"memw", "LDriw", IntRegs, u16_2Imm, 0b100>;
3693
3694 let accessSize = DoubleWordAccess in
3695 def L2_loadrdgp : T_LoadGP<"memd", "LDrid", DoubleRegs, u16_3Imm, 0b110>;
3696
3697 let Predicates = [HasV4T], AddedComplexity = 30 in {
3698 def : Pat<(i32 (load (HexagonCONST32 tglobaladdr:$absaddr))),
3699 (L4_loadri_abs tglobaladdr: $absaddr)>;
3700
3701 def : Pat<(i32 (sextloadi8 (HexagonCONST32 tglobaladdr:$absaddr))),
3702 (L4_loadrb_abs tglobaladdr:$absaddr)>;
3703
3704 def : Pat<(i32 (zextloadi8 (HexagonCONST32 tglobaladdr:$absaddr))),
3705 (L4_loadrub_abs tglobaladdr:$absaddr)>;
3706
3707 def : Pat<(i32 (sextloadi16 (HexagonCONST32 tglobaladdr:$absaddr))),
3708 (L4_loadrh_abs tglobaladdr:$absaddr)>;
3709
3710 def : Pat<(i32 (zextloadi16 (HexagonCONST32 tglobaladdr:$absaddr))),
3711 (L4_loadruh_abs tglobaladdr:$absaddr)>;
3712 }
3713
3714 def : Pat <(atomic_load_64 (HexagonCONST32_GP tglobaladdr:$global)),
3715 (i64 (L2_loadrdgp tglobaladdr:$global))>;
3716
3717 def : Pat <(atomic_load_32 (HexagonCONST32_GP tglobaladdr:$global)),
3718 (i32 (L2_loadrigp tglobaladdr:$global))>;
3719
3720 def : Pat <(atomic_load_16 (HexagonCONST32_GP tglobaladdr:$global)),
3721 (i32 (L2_loadruhgp tglobaladdr:$global))>;
3722
3723 def : Pat <(atomic_load_8 (HexagonCONST32_GP tglobaladdr:$global)),
3724 (i32 (L2_loadrubgp tglobaladdr:$global))>;
3725
3726 // Map from load(globaladdress) -> memw(#foo + 0)
3727 let AddedComplexity = 100 in
3728 def : Pat <(i64 (load (HexagonCONST32_GP tglobaladdr:$global))),
3729 (i64 (L2_loadrdgp tglobaladdr:$global))>;
3730
3731 // Map from Pd = load(globaladdress) -> Rd = memb(globaladdress), Pd = Rd
3732 let AddedComplexity = 100 in
3733 def : Pat <(i1 (load (HexagonCONST32_GP tglobaladdr:$global))),
3734 (i1 (C2_tfrrp (i32 (L2_loadrbgp tglobaladdr:$global))))>;
3735
3736 // When the Interprocedural Global Variable optimizer realizes that a certain
3737 // global variable takes only two constant values, it shrinks the global to
3738 // a boolean. Catch those loads here in the following 3 patterns.
3739 let AddedComplexity = 100 in
3740 def : Pat <(i32 (extloadi1 (HexagonCONST32_GP tglobaladdr:$global))),
3741 (i32 (L2_loadrbgp tglobaladdr:$global))>;
3742
3743 let AddedComplexity = 100 in
3744 def : Pat <(i32 (sextloadi1 (HexagonCONST32_GP tglobaladdr:$global))),
3745 (i32 (L2_loadrbgp tglobaladdr:$global))>;
3746
3747 // Map from load(globaladdress) -> memb(#foo)
3748 let AddedComplexity = 100 in
3749 def : Pat <(i32 (extloadi8 (HexagonCONST32_GP tglobaladdr:$global))),
3750 (i32 (L2_loadrbgp tglobaladdr:$global))>;
3751
3752 // Map from load(globaladdress) -> memb(#foo)
3753 let AddedComplexity = 100 in
3754 def : Pat <(i32 (sextloadi8 (HexagonCONST32_GP tglobaladdr:$global))),
3755 (i32 (L2_loadrbgp tglobaladdr:$global))>;
3756
3757 let AddedComplexity = 100 in
3758 def : Pat <(i32 (zextloadi1 (HexagonCONST32_GP tglobaladdr:$global))),
3759 (i32 (L2_loadrubgp tglobaladdr:$global))>;
3760
3761 // Map from load(globaladdress) -> memub(#foo)
3762 let AddedComplexity = 100 in
3763 def : Pat <(i32 (zextloadi8 (HexagonCONST32_GP tglobaladdr:$global))),
3764 (i32 (L2_loadrubgp tglobaladdr:$global))>;
3765
3766 // Map from load(globaladdress) -> memh(#foo)
3767 let AddedComplexity = 100 in
3768 def : Pat <(i32 (extloadi16 (HexagonCONST32_GP tglobaladdr:$global))),
3769 (i32 (L2_loadrhgp tglobaladdr:$global))>;
3770
3771 // Map from load(globaladdress) -> memh(#foo)
3772 let AddedComplexity = 100 in
3773 def : Pat <(i32 (sextloadi16 (HexagonCONST32_GP tglobaladdr:$global))),
3774 (i32 (L2_loadrhgp tglobaladdr:$global))>;
3775
3776 // Map from load(globaladdress) -> memuh(#foo)
3777 let AddedComplexity = 100 in
3778 def : Pat <(i32 (zextloadi16 (HexagonCONST32_GP tglobaladdr:$global))),
3779 (i32 (L2_loadruhgp tglobaladdr:$global))>;
3780
3781 // Map from load(globaladdress) -> memw(#foo)
3782 let AddedComplexity = 100 in
3783 def : Pat <(i32 (load (HexagonCONST32_GP tglobaladdr:$global))),
3784 (i32 (L2_loadrigp tglobaladdr:$global))>;
3785
3786
3787 // Transfer global address into a register
3788 let isExtended = 1, opExtendable = 1, AddedComplexity=50, isMoveImm = 1,
3789 isAsCheapAsAMove = 1, isReMaterializable = 1, validSubTargets = HasV4SubT in
3790 def TFRI_V4 : ALU32_ri<(outs IntRegs:$dst), (ins s16Ext:$src1),
3791 "$dst = #$src1",
3792 [(set IntRegs:$dst, (HexagonCONST32 tglobaladdr:$src1))]>,
3793 Requires<[HasV4T]>;
3794
3795 // Transfer a block address into a register
3796 def : Pat<(HexagonCONST32_GP tblockaddress:$src1),
3797 (TFRI_V4 tblockaddress:$src1)>,
3798 Requires<[HasV4T]>;
3799
3800 let isExtended = 1, opExtendable = 2, AddedComplexity=50,
3801 hasSideEffects = 0, isPredicated = 1, validSubTargets = HasV4SubT in
3802 def TFRI_cPt_V4 : ALU32_ri<(outs IntRegs:$dst),
3803 (ins PredRegs:$src1, s16Ext:$src2),
3804 "if($src1) $dst = #$src2",
3805 []>,
3806 Requires<[HasV4T]>;
3807
3808 let isExtended = 1, opExtendable = 2, AddedComplexity=50, isPredicatedFalse = 1,
3809 hasSideEffects = 0, isPredicated = 1, validSubTargets = HasV4SubT in
3810 def TFRI_cNotPt_V4 : ALU32_ri<(outs IntRegs:$dst),
3811 (ins PredRegs:$src1, s16Ext:$src2),
3812 "if(!$src1) $dst = #$src2",
3813 []>,
3814 Requires<[HasV4T]>;
3815
3816 let isExtended = 1, opExtendable = 2, AddedComplexity=50,
3817 hasSideEffects = 0, isPredicated = 1, validSubTargets = HasV4SubT in
3818 def TFRI_cdnPt_V4 : ALU32_ri<(outs IntRegs:$dst),
3819 (ins PredRegs:$src1, s16Ext:$src2),
3820 "if($src1.new) $dst = #$src2",
3821 []>,
3822 Requires<[HasV4T]>;
3823
3824 let isExtended = 1, opExtendable = 2, AddedComplexity=50, isPredicatedFalse = 1,
3825 hasSideEffects = 0, isPredicated = 1, validSubTargets = HasV4SubT in
3826 def TFRI_cdnNotPt_V4 : ALU32_ri<(outs IntRegs:$dst),
3827 (ins PredRegs:$src1, s16Ext:$src2),
3828 "if(!$src1.new) $dst = #$src2",
3829 []>,
3830 Requires<[HasV4T]>;
3831
3832 let AddedComplexity = 50, Predicates = [HasV4T] in
3833 def : Pat<(HexagonCONST32_GP tglobaladdr:$src1),
3834 (TFRI_V4 tglobaladdr:$src1)>,
3835 Requires<[HasV4T]>;
3836
3837
3838 // Load - Indirect with long offset: These instructions take global address
3839 // as an operand
3840 let isExtended = 1, opExtendable = 3, AddedComplexity = 40,
3841 validSubTargets = HasV4SubT in
3842 def LDrid_ind_lo_V4 : LDInst<(outs DoubleRegs:$dst),
3843 (ins IntRegs:$src1, u2Imm:$src2, globaladdressExt:$offset),
3844 "$dst=memd($src1<<#$src2+##$offset)",
3845 [(set (i64 DoubleRegs:$dst),
3846 (load (add (shl IntRegs:$src1, u2ImmPred:$src2),
3847 (HexagonCONST32 tglobaladdr:$offset))))]>,
3848 Requires<[HasV4T]>;
3849
3850 let AddedComplexity = 40 in
3851 multiclass LD_indirect_lo<string OpcStr, PatFrag OpNode> {
3852 let isExtended = 1, opExtendable = 3, validSubTargets = HasV4SubT in
3853 def _lo_V4 : LDInst<(outs IntRegs:$dst),
3854 (ins IntRegs:$src1, u2Imm:$src2, globaladdressExt:$offset),
3855 !strconcat("$dst = ",
3856 !strconcat(OpcStr, "($src1<<#$src2+##$offset)")),
3857 [(set IntRegs:$dst,
3858 (i32 (OpNode (add (shl IntRegs:$src1, u2ImmPred:$src2),
3859 (HexagonCONST32 tglobaladdr:$offset)))))]>,
3860 Requires<[HasV4T]>;
3861 }
3862
3863 defm LDrib_ind : LD_indirect_lo<"memb", sextloadi8>;
3864 defm LDriub_ind : LD_indirect_lo<"memub", zextloadi8>;
3865 defm LDriub_ind_anyext : LD_indirect_lo<"memub", extloadi8>;
3866 defm LDrih_ind : LD_indirect_lo<"memh", sextloadi16>;
3867 defm LDriuh_ind : LD_indirect_lo<"memuh", zextloadi16>;
3868 defm LDriuh_ind_anyext : LD_indirect_lo<"memuh", extloadi16>;
3869 defm LDriw_ind : LD_indirect_lo<"memw", load>;
3870
3871 let AddedComplexity = 40 in
3872 def : Pat <(i32 (sextloadi8 (add IntRegs:$src1,
3873 (NumUsesBelowThresCONST32 tglobaladdr:$offset)))),
3874 (i32 (LDrib_ind_lo_V4 IntRegs:$src1, 0, tglobaladdr:$offset))>,
3875 Requires<[HasV4T]>;
3876
3877 let AddedComplexity = 40 in
3878 def : Pat <(i32 (zextloadi8 (add IntRegs:$src1,
3879 (NumUsesBelowThresCONST32 tglobaladdr:$offset)))),
3880 (i32 (LDriub_ind_lo_V4 IntRegs:$src1, 0, tglobaladdr:$offset))>,
3881 Requires<[HasV4T]>;
3882
3883 let Predicates = [HasV4T], AddedComplexity = 30 in {
3884 def : Pat<(truncstorei8 (i32 IntRegs:$src1), u0AlwaysExtPred:$src2),
3885 (S2_storerbabs u0AlwaysExtPred:$src2, IntRegs: $src1)>;
3886
3887 def : Pat<(truncstorei16 (i32 IntRegs:$src1), u0AlwaysExtPred:$src2),
3888 (S2_storerhabs u0AlwaysExtPred:$src2, IntRegs: $src1)>;
3889
3890 def : Pat<(store (i32 IntRegs:$src1), u0AlwaysExtPred:$src2),
3891 (S2_storeriabs u0AlwaysExtPred:$src2, IntRegs: $src1)>;
3892 }
3893
3894 let Predicates = [HasV4T], AddedComplexity = 30 in {
3895 def : Pat<(i32 (load u0AlwaysExtPred:$src)),
3896 (L4_loadri_abs u0AlwaysExtPred:$src)>;
3897
3898 def : Pat<(i32 (sextloadi8 u0AlwaysExtPred:$src)),
3899 (L4_loadrb_abs u0AlwaysExtPred:$src)>;
3900
3901 def : Pat<(i32 (zextloadi8 u0AlwaysExtPred:$src)),
3902 (L4_loadrub_abs u0AlwaysExtPred:$src)>;
3903
3904 def : Pat<(i32 (sextloadi16 u0AlwaysExtPred:$src)),
3905 (L4_loadrh_abs u0AlwaysExtPred:$src)>;
3906
3907 def : Pat<(i32 (zextloadi16 u0AlwaysExtPred:$src)),
3908 (L4_loadruh_abs u0AlwaysExtPred:$src)>;
3909 }
3910
3911 // Indexed store word - global address.
3912 // memw(Rs+#u6:2)=#S8
3913 let AddedComplexity = 10 in
3914 def STriw_offset_ext_V4 : STInst<(outs),
3915 (ins IntRegs:$src1, u6_2Imm:$src2, globaladdress:$src3),
3916 "memw($src1+#$src2) = ##$src3",
3917 [(store (HexagonCONST32 tglobaladdr:$src3),
3918 (add IntRegs:$src1, u6_2ImmPred:$src2))]>,
3919 Requires<[HasV4T]>;
3920
3921 def : Pat<(i64 (ctlz (i64 DoubleRegs:$src1))),
3922 (i64 (A4_combineir (i32 0), (i32 (CTLZ64_rr DoubleRegs:$src1))))>,
3923 Requires<[HasV4T]>;
3924
3925 def : Pat<(i64 (cttz (i64 DoubleRegs:$src1))),
3926 (i64 (A4_combineir (i32 0), (i32 (CTTZ64_rr DoubleRegs:$src1))))>,
3927 Requires<[HasV4T]>;
3928
3929
3930 // i8 -> i64 loads
3931 // We need a complexity of 120 here to override preceding handling of
3932 // zextloadi8.
3933 let Predicates = [HasV4T], AddedComplexity = 120 in {
3934 def: Pat <(i64 (extloadi8 (NumUsesBelowThresCONST32 tglobaladdr:$addr))),
3935 (i64 (A4_combineir 0, (L4_loadrb_abs tglobaladdr:$addr)))>;
3936
3937 def: Pat <(i64 (zextloadi8 (NumUsesBelowThresCONST32 tglobaladdr:$addr))),
3938 (i64 (A4_combineir 0, (L4_loadrub_abs tglobaladdr:$addr)))>;
3939
3940 def: Pat <(i64 (sextloadi8 (NumUsesBelowThresCONST32 tglobaladdr:$addr))),
3941 (i64 (A2_sxtw (L4_loadrb_abs tglobaladdr:$addr)))>;
3942
3943 def: Pat <(i64 (extloadi8 FoldGlobalAddr:$addr)),
3944 (i64 (A4_combineir 0, (L4_loadrb_abs FoldGlobalAddr:$addr)))>;
3945
3946 def: Pat <(i64 (zextloadi8 FoldGlobalAddr:$addr)),
3947 (i64 (A4_combineir 0, (L4_loadrub_abs FoldGlobalAddr:$addr)))>;
3948
3949 def: Pat <(i64 (sextloadi8 FoldGlobalAddr:$addr)),
3950 (i64 (A2_sxtw (L4_loadrb_abs FoldGlobalAddr:$addr)))>;
3951 }
3952 // i16 -> i64 loads
3953 // We need a complexity of 120 here to override preceding handling of
3954 // zextloadi16.
3955 let AddedComplexity = 120 in {
3956 def: Pat <(i64 (extloadi16 (NumUsesBelowThresCONST32 tglobaladdr:$addr))),
3957 (i64 (A4_combineir 0, (L4_loadrh_abs tglobaladdr:$addr)))>,
3958 Requires<[HasV4T]>;
3959
3960 def: Pat <(i64 (zextloadi16 (NumUsesBelowThresCONST32 tglobaladdr:$addr))),
3961 (i64 (A4_combineir 0, (L4_loadruh_abs tglobaladdr:$addr)))>,
3962 Requires<[HasV4T]>;
3963
3964 def: Pat <(i64 (sextloadi16 (NumUsesBelowThresCONST32 tglobaladdr:$addr))),
3965 (i64 (A2_sxtw (L4_loadrh_abs tglobaladdr:$addr)))>,
3966 Requires<[HasV4T]>;
3967
3968 def: Pat <(i64 (extloadi16 FoldGlobalAddr:$addr)),
3969 (i64 (A4_combineir 0, (L4_loadrh_abs FoldGlobalAddr:$addr)))>,
3970 Requires<[HasV4T]>;
3971
3972 def: Pat <(i64 (zextloadi16 FoldGlobalAddr:$addr)),
3973 (i64 (A4_combineir 0, (L4_loadruh_abs FoldGlobalAddr:$addr)))>,
3974 Requires<[HasV4T]>;
3975
3976 def: Pat <(i64 (sextloadi16 FoldGlobalAddr:$addr)),
3977 (i64 (A2_sxtw (L4_loadrh_abs FoldGlobalAddr:$addr)))>,
3978 Requires<[HasV4T]>;
3979 }
3980 // i32->i64 loads
3981 // We need a complexity of 120 here to override preceding handling of
3982 // zextloadi32.
3983 let AddedComplexity = 120 in {
3984 def: Pat <(i64 (extloadi32 (NumUsesBelowThresCONST32 tglobaladdr:$addr))),
3985 (i64 (A4_combineir 0, (L4_loadri_abs tglobaladdr:$addr)))>,
3986 Requires<[HasV4T]>;
3987
3988 def: Pat <(i64 (zextloadi32 (NumUsesBelowThresCONST32 tglobaladdr:$addr))),
3989 (i64 (A4_combineir 0, (L4_loadri_abs tglobaladdr:$addr)))>,
3990 Requires<[HasV4T]>;
3991
3992 def: Pat <(i64 (sextloadi32 (NumUsesBelowThresCONST32 tglobaladdr:$addr))),
3993 (i64 (A2_sxtw (L4_loadri_abs tglobaladdr:$addr)))>,
3994 Requires<[HasV4T]>;
3995
3996 def: Pat <(i64 (extloadi32 FoldGlobalAddr:$addr)),
3997 (i64 (A4_combineir 0, (L4_loadri_abs FoldGlobalAddr:$addr)))>,
3998 Requires<[HasV4T]>;
3999
4000 def: Pat <(i64 (zextloadi32 FoldGlobalAddr:$addr)),
4001 (i64 (A4_combineir 0, (L4_loadri_abs FoldGlobalAddr:$addr)))>,
4002 Requires<[HasV4T]>;
4003
4004 def: Pat <(i64 (sextloadi32 FoldGlobalAddr:$addr)),
4005 (i64 (A2_sxtw (L4_loadri_abs FoldGlobalAddr:$addr)))>,
4006 Requires<[HasV4T]>;
4007 }
4008
4009 // Indexed store double word - global address.
4010 // memw(Rs+#u6:2)=#S8
4011 let AddedComplexity = 10 in
4012 def STrih_offset_ext_V4 : STInst<(outs),
4013 (ins IntRegs:$src1, u6_1Imm:$src2, globaladdress:$src3),
4014 "memh($src1+#$src2) = ##$src3",
4015 [(truncstorei16 (HexagonCONST32 tglobaladdr:$src3),
4016 (add IntRegs:$src1, u6_1ImmPred:$src2))]>,
4017 Requires<[HasV4T]>;
4018 // Map from store(globaladdress + x) -> memd(#foo + x)
4019 let AddedComplexity = 100 in
4020 def : Pat<(store (i64 DoubleRegs:$src1),
4021 FoldGlobalAddrGP:$addr),
4022 (S2_storerdabs FoldGlobalAddrGP:$addr, (i64 DoubleRegs:$src1))>,
4023 Requires<[HasV4T]>;
4024
4025 def : Pat<(atomic_store_64 FoldGlobalAddrGP:$addr,
4026 (i64 DoubleRegs:$src1)),
4027 (S2_storerdabs FoldGlobalAddrGP:$addr, (i64 DoubleRegs:$src1))>,
4028 Requires<[HasV4T]>;
4029
4030 // Map from store(globaladdress + x) -> memb(#foo + x)
4031 let AddedComplexity = 100 in
4032 def : Pat<(truncstorei8 (i32 IntRegs:$src1), FoldGlobalAddrGP:$addr),
4033 (S2_storerbabs FoldGlobalAddrGP:$addr, (i32 IntRegs:$src1))>,
4034 Requires<[HasV4T]>;
4035
4036 def : Pat<(atomic_store_8 FoldGlobalAddrGP:$addr, (i32 IntRegs:$src1)),
4037 (S2_storerbabs FoldGlobalAddrGP:$addr, (i32 IntRegs:$src1))>,
4038 Requires<[HasV4T]>;
4039
4040 // Map from store(globaladdress + x) -> memh(#foo + x)
4041 let AddedComplexity = 100 in
4042 def : Pat<(truncstorei16 (i32 IntRegs:$src1), FoldGlobalAddrGP:$addr),
4043 (S2_storerhabs FoldGlobalAddrGP:$addr, (i32 IntRegs:$src1))>,
4044 Requires<[HasV4T]>;
4045
4046 def : Pat<(atomic_store_16 FoldGlobalAddrGP:$addr, (i32 IntRegs:$src1)),
4047 (S2_storerhabs FoldGlobalAddrGP:$addr, (i32 IntRegs:$src1))>,
4048 Requires<[HasV4T]>;
4049
4050 // Map from store(globaladdress + x) -> memw(#foo + x)
4051 let AddedComplexity = 100 in
4052 def : Pat<(store (i32 IntRegs:$src1), FoldGlobalAddrGP:$addr),
4053 (S2_storeriabs FoldGlobalAddrGP:$addr, (i32 IntRegs:$src1))>,
4054 Requires<[HasV4T]>;
4055
4056 def : Pat<(atomic_store_32 FoldGlobalAddrGP:$addr, (i32 IntRegs:$src1)),
4057 (S2_storeriabs FoldGlobalAddrGP:$addr, (i32 IntRegs:$src1))>,
4058 Requires<[HasV4T]>;
4059
4060 // Map from load(globaladdress + x) -> memd(#foo + x)
4061 let AddedComplexity = 100 in
4062 def : Pat<(i64 (load FoldGlobalAddrGP:$addr)),
4063 (i64 (L4_loadrd_abs FoldGlobalAddrGP:$addr))>,
4064 Requires<[HasV4T]>;
4065
4066 def : Pat<(atomic_load_64 FoldGlobalAddrGP:$addr),
4067 (i64 (L4_loadrd_abs FoldGlobalAddrGP:$addr))>,
4068 Requires<[HasV4T]>;
4069
4070 // Map from load(globaladdress + x) -> memb(#foo + x)
4071 let AddedComplexity = 100 in
4072 def : Pat<(i32 (extloadi8 FoldGlobalAddrGP:$addr)),
4073 (i32 (L4_loadrb_abs FoldGlobalAddrGP:$addr))>,
4074 Requires<[HasV4T]>;
4075
4076 // Map from load(globaladdress + x) -> memb(#foo + x)
4077 let AddedComplexity = 100 in
4078 def : Pat<(i32 (sextloadi8 FoldGlobalAddrGP:$addr)),
4079 (i32 (L4_loadrb_abs FoldGlobalAddrGP:$addr))>,
4080 Requires<[HasV4T]>;
4081
4082 //let AddedComplexity = 100 in
4083 let AddedComplexity = 100 in
4084 def : Pat<(i32 (extloadi16 FoldGlobalAddrGP:$addr)),
4085 (i32 (L4_loadrh_abs FoldGlobalAddrGP:$addr))>,
4086 Requires<[HasV4T]>;
4087
4088 // Map from load(globaladdress + x) -> memh(#foo + x)
4089 let AddedComplexity = 100 in
4090 def : Pat<(i32 (sextloadi16 FoldGlobalAddrGP:$addr)),
4091 (i32 (L4_loadrh_abs FoldGlobalAddrGP:$addr))>,
4092 Requires<[HasV4T]>;
4093
4094 // Map from load(globaladdress + x) -> memuh(#foo + x)
4095 let AddedComplexity = 100 in
4096 def : Pat<(i32 (zextloadi16 FoldGlobalAddrGP:$addr)),
4097 (i32 (L4_loadruh_abs FoldGlobalAddrGP:$addr))>,
4098 Requires<[HasV4T]>;
4099
4100 def : Pat<(atomic_load_16 FoldGlobalAddrGP:$addr),
4101 (i32 (L4_loadruh_abs FoldGlobalAddrGP:$addr))>,
4102 Requires<[HasV4T]>;
4103
4104 // Map from load(globaladdress + x) -> memub(#foo + x)
4105 let AddedComplexity = 100 in
4106 def : Pat<(i32 (zextloadi8 FoldGlobalAddrGP:$addr)),
4107 (i32 (L4_loadrub_abs FoldGlobalAddrGP:$addr))>,
4108 Requires<[HasV4T]>;
4109
4110 def : Pat<(atomic_load_8 FoldGlobalAddrGP:$addr),
4111 (i32 (L4_loadrub_abs FoldGlobalAddrGP:$addr))>,
4112 Requires<[HasV4T]>;
4113
4114 // Map from load(globaladdress + x) -> memw(#foo + x)
4115 let AddedComplexity = 100 in
4116 def : Pat<(i32 (load FoldGlobalAddrGP:$addr)),
4117 (i32 (L4_loadri_abs FoldGlobalAddrGP:$addr))>,
4118 Requires<[HasV4T]>;
4119
4120 def : Pat<(atomic_load_32 FoldGlobalAddrGP:$addr),
4121 (i32 (L4_loadri_abs FoldGlobalAddrGP:$addr))>,
4122 Requires<[HasV4T]>;
4123
4124 //===----------------------------------------------------------------------===//
4125 // :raw for of boundscheck:hi:lo insns
4126 //===----------------------------------------------------------------------===//
4127
4128 // A4_boundscheck_lo: Detect if a register is within bounds.
4129 let hasSideEffects = 0, isCodeGenOnly = 0 in
4130 def A4_boundscheck_lo: ALU64Inst <
4131 (outs PredRegs:$Pd),
4132 (ins DoubleRegs:$Rss, DoubleRegs:$Rtt),
4133 "$Pd = boundscheck($Rss, $Rtt):raw:lo"> {
4134 bits<2> Pd;
4135 bits<5> Rss;
4136 bits<5> Rtt;
4137
4138 let IClass = 0b1101;
4139
4140 let Inst{27-23} = 0b00100;
4141 let Inst{13} = 0b1;
4142 let Inst{7-5} = 0b100;
4143 let Inst{1-0} = Pd;
4144 let Inst{20-16} = Rss;
4145 let Inst{12-8} = Rtt;
4146 }
4147
4148 // A4_boundscheck_hi: Detect if a register is within bounds.
4149 let hasSideEffects = 0, isCodeGenOnly = 0 in
4150 def A4_boundscheck_hi: ALU64Inst <
4151 (outs PredRegs:$Pd),
4152 (ins DoubleRegs:$Rss, DoubleRegs:$Rtt),
4153 "$Pd = boundscheck($Rss, $Rtt):raw:hi"> {
4154 bits<2> Pd;
4155 bits<5> Rss;
4156 bits<5> Rtt;
4157
4158 let IClass = 0b1101;
4159
4160 let Inst{27-23} = 0b00100;
4161 let Inst{13} = 0b1;
4162 let Inst{7-5} = 0b101;
4163 let Inst{1-0} = Pd;
4164 let Inst{20-16} = Rss;
4165 let Inst{12-8} = Rtt;
4166 }
4167
4168 let hasSideEffects = 0 in
4169 def A4_boundscheck : MInst <
4170 (outs PredRegs:$Pd), (ins IntRegs:$Rs, DoubleRegs:$Rtt),
4171 "$Pd=boundscheck($Rs,$Rtt)">;
4172
4173 // A4_tlbmatch: Detect if a VA/ASID matches a TLB entry.
4174 let isPredicateLate = 1, hasSideEffects = 0, isCodeGenOnly = 0 in
4175 def A4_tlbmatch : ALU64Inst<(outs PredRegs:$Pd),
4176 (ins DoubleRegs:$Rs, IntRegs:$Rt),
4177 "$Pd = tlbmatch($Rs, $Rt)",
4178 [], "", ALU64_tc_2early_SLOT23> {
4179 bits<2> Pd;
4180 bits<5> Rs;
4181 bits<5> Rt;
4182
4183 let IClass = 0b1101;
4184 let Inst{27-23} = 0b00100;
4185 let Inst{20-16} = Rs;
4186 let Inst{13} = 0b1;
4187 let Inst{12-8} = Rt;
4188 let Inst{7-5} = 0b011;
4189 let Inst{1-0} = Pd;
4190 }
4191
4192 // We need custom lowering of ISD::PREFETCH into HexagonISD::DCFETCH
4193 // because the SDNode ISD::PREFETCH has properties MayLoad and MayStore.
4194 // We don't really want either one here.
4195 def SDTHexagonDCFETCH : SDTypeProfile<0, 2, [SDTCisPtrTy<0>,SDTCisInt<1>]>;
4196 def HexagonDCFETCH : SDNode<"HexagonISD::DCFETCH", SDTHexagonDCFETCH,
4197 [SDNPHasChain]>;
4198
4199 // Use LD0Inst for dcfetch, but set "mayLoad" to 0 because this doesn't
4200 // really do a load.
4201 let hasSideEffects = 1, mayLoad = 0, isCodeGenOnly = 0 in
4202 def Y2_dcfetchbo : LD0Inst<(outs), (ins IntRegs:$Rs, u11_3Imm:$u11_3),
4203 "dcfetch($Rs + #$u11_3)",
4204 [(HexagonDCFETCH IntRegs:$Rs, u11_3ImmPred:$u11_3)],
4205 "", LD_tc_ld_SLOT0> {
4206 bits<5> Rs;
4207 bits<14> u11_3;
4208
4209 let IClass = 0b1001;
4210 let Inst{27-21} = 0b0100000;
4211 let Inst{20-16} = Rs;
4212 let Inst{13} = 0b0;
4213 let Inst{10-0} = u11_3{13-3};
4214 }
4215
4216 //===----------------------------------------------------------------------===//
4217 // Compound instructions
4218 //===----------------------------------------------------------------------===//
4219
4220 let isBranch = 1, hasSideEffects = 0, isExtentSigned = 1,
4221 isPredicated = 1, isPredicatedNew = 1, isExtendable = 1,
4222 opExtentBits = 11, opExtentAlign = 2, opExtendable = 1,
4223 isTerminator = 1, validSubTargets = HasV4SubT in
4224 class CJInst_tstbit_R0<string px, bit np, string tnt>
4225 : InstHexagon<(outs), (ins IntRegs:$Rs, brtarget:$r9_2),
4226 ""#px#" = tstbit($Rs, #0); if ("
4227 #!if(np, "!","")#""#px#".new) jump:"#tnt#" $r9_2",
4228 [], "", COMPOUND, TypeCOMPOUND> {
4229 bits<4> Rs;
4230 bits<11> r9_2;
4231
4232 // np: !p[01]
4233 let isPredicatedFalse = np;
4234 // tnt: Taken/Not Taken
4235 let isBrTaken = !if (!eq(tnt, "t"), "true", "false");
4236 let isTaken = !if (!eq(tnt, "t"), 1, 0);
4237
4238 let IClass = 0b0001;
4239 let Inst{27-26} = 0b00;
4240 let Inst{25} = !if (!eq(px, "!p1"), 1,
4241 !if (!eq(px, "p1"), 1, 0));
4242 let Inst{24-23} = 0b11;
4243 let Inst{22} = np;
4244 let Inst{21-20} = r9_2{10-9};
4245 let Inst{19-16} = Rs;
4246 let Inst{13} = !if (!eq(tnt, "t"), 1, 0);
4247 let Inst{9-8} = 0b11;
4248 let Inst{7-1} = r9_2{8-2};
4249 }
4250
4251 let Defs = [PC, P0], Uses = [P0], isCodeGenOnly = 0 in {
4252 def J4_tstbit0_tp0_jump_nt : CJInst_tstbit_R0<"p0", 0, "nt">;
4253 def J4_tstbit0_tp0_jump_t : CJInst_tstbit_R0<"p0", 0, "t">;
4254 def J4_tstbit0_fp0_jump_nt : CJInst_tstbit_R0<"p0", 1, "nt">;
4255 def J4_tstbit0_fp0_jump_t : CJInst_tstbit_R0<"p0", 1, "t">;
4256 }
4257
4258 let Defs = [PC, P1], Uses = [P1], isCodeGenOnly = 0 in {
4259 def J4_tstbit0_tp1_jump_nt : CJInst_tstbit_R0<"p1", 0, "nt">;
4260 def J4_tstbit0_tp1_jump_t : CJInst_tstbit_R0<"p1", 0, "t">;
4261 def J4_tstbit0_fp1_jump_nt : CJInst_tstbit_R0<"p1", 1, "nt">;
4262 def J4_tstbit0_fp1_jump_t : CJInst_tstbit_R0<"p1", 1, "t">;
4263 }
4264
4265
4266 let isBranch = 1, hasSideEffects = 0,
4267 isExtentSigned = 1, isPredicated = 1, isPredicatedNew = 1,
4268 isExtendable = 1, opExtentBits = 11, opExtentAlign = 2,
4269 opExtendable = 2, isTerminator = 1, validSubTargets = HasV4SubT in
4270 class CJInst_RR<string px, string op, bit np, string tnt>
4271 : InstHexagon<(outs), (ins IntRegs:$Rs, IntRegs:$Rt, brtarget:$r9_2),
4272 ""#px#" = cmp."#op#"($Rs, $Rt); if ("
4273 #!if(np, "!","")#""#px#".new) jump:"#tnt#" $r9_2",
4274 [], "", COMPOUND, TypeCOMPOUND> {
4275 bits<4> Rs;
4276 bits<4> Rt;
4277 bits<11> r9_2;
4278
4279 // np: !p[01]
4280 let isPredicatedFalse = np;
4281 // tnt: Taken/Not Taken
4282 let isBrTaken = !if (!eq(tnt, "t"), "true", "false");
4283 let isTaken = !if (!eq(tnt, "t"), 1, 0);
4284
4285 let IClass = 0b0001;
4286 let Inst{27-23} = !if (!eq(op, "eq"), 0b01000,
4287 !if (!eq(op, "gt"), 0b01001,
4288 !if (!eq(op, "gtu"), 0b01010, 0)));
4289 let Inst{22} = np;
4290 let Inst{21-20} = r9_2{10-9};
4291 let Inst{19-16} = Rs;
4292 let Inst{13} = !if (!eq(tnt, "t"), 1, 0);
4293 // px: Predicate reg 0/1
4294 let Inst{12} = !if (!eq(px, "!p1"), 1,
4295 !if (!eq(px, "p1"), 1, 0));
4296 let Inst{11-8} = Rt;
4297 let Inst{7-1} = r9_2{8-2};
4298 }
4299
4300 // P[10] taken/not taken.
4301 multiclass T_tnt_CJInst_RR<string op, bit np> {
4302 let Defs = [PC, P0], Uses = [P0] in {
4303 def NAME#p0_jump_nt : CJInst_RR<"p0", op, np, "nt">;
4304 def NAME#p0_jump_t : CJInst_RR<"p0", op, np, "t">;
4305 }
4306 let Defs = [PC, P1], Uses = [P1] in {
4307 def NAME#p1_jump_nt : CJInst_RR<"p1", op, np, "nt">;
4308 def NAME#p1_jump_t : CJInst_RR<"p1", op, np, "t">;
4309 }
4310 }
4311 // Predicate / !Predicate
4312 multiclass T_pnp_CJInst_RR<string op>{
4313 defm J4_cmp#NAME#_t : T_tnt_CJInst_RR<op, 0>;
4314 defm J4_cmp#NAME#_f : T_tnt_CJInst_RR<op, 1>;
4315 }
4316 // TypeCJ Instructions compare RR and jump
4317 let isCodeGenOnly = 0 in {
4318 defm eq : T_pnp_CJInst_RR<"eq">;
4319 defm gt : T_pnp_CJInst_RR<"gt">;
4320 defm gtu : T_pnp_CJInst_RR<"gtu">;
4321 }
4322
4323 let isBranch = 1, hasSideEffects = 0, isExtentSigned = 1,
4324 isPredicated = 1, isPredicatedNew = 1, isExtendable = 1, opExtentBits = 11,
4325 opExtentAlign = 2, opExtendable = 2, isTerminator = 1,
4326 validSubTargets = HasV4SubT in
4327 class CJInst_RU5<string px, string op, bit np, string tnt>
4328 : InstHexagon<(outs), (ins IntRegs:$Rs, u5Imm:$U5, brtarget:$r9_2),
4329 ""#px#" = cmp."#op#"($Rs, #$U5); if ("
4330 #!if(np, "!","")#""#px#".new) jump:"#tnt#" $r9_2",
4331 [], "", COMPOUND, TypeCOMPOUND> {
4332 bits<4> Rs;
4333 bits<5> U5;
4334 bits<11> r9_2;
4335
4336 // np: !p[01]
4337 let isPredicatedFalse = np;
4338 // tnt: Taken/Not Taken
4339 let isBrTaken = !if (!eq(tnt, "t"), "true", "false");
4340 let isTaken = !if (!eq(tnt, "t"), 1, 0);
4341
4342 let IClass = 0b0001;
4343 let Inst{27-26} = 0b00;
4344 // px: Predicate reg 0/1
4345 let Inst{25} = !if (!eq(px, "!p1"), 1,
4346 !if (!eq(px, "p1"), 1, 0));
4347 let Inst{24-23} = !if (!eq(op, "eq"), 0b00,
4348 !if (!eq(op, "gt"), 0b01,
4349 !if (!eq(op, "gtu"), 0b10, 0)));
4350 let Inst{22} = np;
4351 let Inst{21-20} = r9_2{10-9};
4352 let Inst{19-16} = Rs;
4353 let Inst{13} = !if (!eq(tnt, "t"), 1, 0);
4354 let Inst{12-8} = U5;
4355 let Inst{7-1} = r9_2{8-2};
4356 }
4357 // P[10] taken/not taken.
4358 multiclass T_tnt_CJInst_RU5<string op, bit np> {
4359 let Defs = [PC, P0], Uses = [P0] in {
4360 def NAME#p0_jump_nt : CJInst_RU5<"p0", op, np, "nt">;
4361 def NAME#p0_jump_t : CJInst_RU5<"p0", op, np, "t">;
4362 }
4363 let Defs = [PC, P1], Uses = [P1] in {
4364 def NAME#p1_jump_nt : CJInst_RU5<"p1", op, np, "nt">;
4365 def NAME#p1_jump_t : CJInst_RU5<"p1", op, np, "t">;
4366 }
4367 }
4368 // Predicate / !Predicate
4369 multiclass T_pnp_CJInst_RU5<string op>{
4370 defm J4_cmp#NAME#i_t : T_tnt_CJInst_RU5<op, 0>;
4371 defm J4_cmp#NAME#i_f : T_tnt_CJInst_RU5<op, 1>;
4372 }
4373 // TypeCJ Instructions compare RI and jump
4374 let isCodeGenOnly = 0 in {
4375 defm eq : T_pnp_CJInst_RU5<"eq">;
4376 defm gt : T_pnp_CJInst_RU5<"gt">;
4377 defm gtu : T_pnp_CJInst_RU5<"gtu">;
4378 }
4379
4380 let isBranch = 1, hasSideEffects = 0, isExtentSigned = 1,
4381 isPredicated = 1, isPredicatedFalse = 1, isPredicatedNew = 1,
4382 isExtendable = 1, opExtentBits = 11, opExtentAlign = 2, opExtendable = 1,
4383 isTerminator = 1, validSubTargets = HasV4SubT in
4384 class CJInst_Rn1<string px, string op, bit np, string tnt>
4385 : InstHexagon<(outs), (ins IntRegs:$Rs, brtarget:$r9_2),
4386 ""#px#" = cmp."#op#"($Rs,#-1); if ("
4387 #!if(np, "!","")#""#px#".new) jump:"#tnt#" $r9_2",
4388 [], "", COMPOUND, TypeCOMPOUND> {
4389 bits<4> Rs;
4390 bits<11> r9_2;
4391
4392 // np: !p[01]
4393 let isPredicatedFalse = np;
4394 // tnt: Taken/Not Taken
4395 let isBrTaken = !if (!eq(tnt, "t"), "true", "false");
4396 let isTaken = !if (!eq(tnt, "t"), 1, 0);
4397
4398 let IClass = 0b0001;
4399 let Inst{27-26} = 0b00;
4400 let Inst{25} = !if (!eq(px, "!p1"), 1,
4401 !if (!eq(px, "p1"), 1, 0));
4402
4403 let Inst{24-23} = 0b11;
4404 let Inst{22} = np;
4405 let Inst{21-20} = r9_2{10-9};
4406 let Inst{19-16} = Rs;
4407 let Inst{13} = !if (!eq(tnt, "t"), 1, 0);
4408 let Inst{9-8} = !if (!eq(op, "eq"), 0b00,
4409 !if (!eq(op, "gt"), 0b01, 0));
4410 let Inst{7-1} = r9_2{8-2};
4411 }
4412
4413 // P[10] taken/not taken.
4414 multiclass T_tnt_CJInst_Rn1<string op, bit np> {
4415 let Defs = [PC, P0], Uses = [P0] in {
4416 def NAME#p0_jump_nt : CJInst_Rn1<"p0", op, np, "nt">;
4417 def NAME#p0_jump_t : CJInst_Rn1<"p0", op, np, "t">;
4418 }
4419 let Defs = [PC, P1], Uses = [P1] in {
4420 def NAME#p1_jump_nt : CJInst_Rn1<"p1", op, np, "nt">;
4421 def NAME#p1_jump_t : CJInst_Rn1<"p1", op, np, "t">;
4422 }
4423 }
4424 // Predicate / !Predicate
4425 multiclass T_pnp_CJInst_Rn1<string op>{
4426 defm J4_cmp#NAME#n1_t : T_tnt_CJInst_Rn1<op, 0>;
4427 defm J4_cmp#NAME#n1_f : T_tnt_CJInst_Rn1<op, 1>;
4428 }
4429 // TypeCJ Instructions compare -1 and jump
4430 let isCodeGenOnly = 0 in {
4431 defm eq : T_pnp_CJInst_Rn1<"eq">;
4432 defm gt : T_pnp_CJInst_Rn1<"gt">;
4433 }
4434
4435 // J4_jumpseti: Direct unconditional jump and set register to immediate.
4436 let Defs = [PC], isBranch = 1, hasSideEffects = 0, hasNewValue = 1,
4437 isExtentSigned = 1, opNewValue = 0, isExtendable = 1, opExtentBits = 11,
4438 opExtentAlign = 2, opExtendable = 2, validSubTargets = HasV4SubT,
4439 isCodeGenOnly = 0 in
4440 def J4_jumpseti: CJInst <
4441 (outs IntRegs:$Rd),
4442 (ins u6Imm:$U6, brtarget:$r9_2),
4443 "$Rd = #$U6 ; jump $r9_2"> {
4444 bits<4> Rd;
4445 bits<6> U6;
4446 bits<11> r9_2;
4447
4448 let IClass = 0b0001;
4449 let Inst{27-24} = 0b0110;
4450 let Inst{21-20} = r9_2{10-9};
4451 let Inst{19-16} = Rd;
4452 let Inst{13-8} = U6;
4453 let Inst{7-1} = r9_2{8-2};
4454 }
4455
4456 // J4_jumpsetr: Direct unconditional jump and transfer register.
4457 let Defs = [PC], isBranch = 1, hasSideEffects = 0, hasNewValue = 1,
4458 isExtentSigned = 1, opNewValue = 0, isExtendable = 1, opExtentBits = 11,
4459 opExtentAlign = 2, opExtendable = 2, validSubTargets = HasV4SubT,
4460 isCodeGenOnly = 0 in
4461 def J4_jumpsetr: CJInst <
4462 (outs IntRegs:$Rd),
4463 (ins IntRegs:$Rs, brtarget:$r9_2),
4464 "$Rd = $Rs ; jump $r9_2"> {
4465 bits<4> Rd;
4466 bits<4> Rs;
4467 bits<11> r9_2;
4468
4469 let IClass = 0b0001;
4470 let Inst{27-24} = 0b0111;
4471 let Inst{21-20} = r9_2{10-9};
4472 let Inst{11-8} = Rd;
4473 let Inst{19-16} = Rs;
4474 let Inst{7-1} = r9_2{8-2};
4475 }