]> git.proxmox.com Git - rustc.git/blob - src/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCInst.cpp
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / lib / Target / Hexagon / MCTargetDesc / HexagonMCInst.cpp
1 //===- HexagonMCInst.cpp - Hexagon sub-class of MCInst --------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This class extends MCInst to allow some Hexagon VLIW annotations.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "HexagonInstrInfo.h"
15 #include "MCTargetDesc/HexagonBaseInfo.h"
16 #include "MCTargetDesc/HexagonMCInst.h"
17 #include "MCTargetDesc/HexagonMCTargetDesc.h"
18
19 using namespace llvm;
20
21 std::unique_ptr <MCInstrInfo const> HexagonMCInst::MCII;
22
23 HexagonMCInst::HexagonMCInst() : MCInst() {}
24 HexagonMCInst::HexagonMCInst(MCInstrDesc const &mcid) : MCInst() {}
25
26 void HexagonMCInst::AppendImplicitOperands(MCInst &MCI) {
27 MCI.addOperand(MCOperand::CreateImm(0));
28 MCI.addOperand(MCOperand::CreateInst(nullptr));
29 }
30
31 std::bitset<16> HexagonMCInst::GetImplicitBits(MCInst const &MCI) {
32 SanityCheckImplicitOperands(MCI);
33 std::bitset<16> Bits(MCI.getOperand(MCI.getNumOperands() - 2).getImm());
34 return Bits;
35 }
36
37 void HexagonMCInst::SetImplicitBits(MCInst &MCI, std::bitset<16> Bits) {
38 SanityCheckImplicitOperands(MCI);
39 MCI.getOperand(MCI.getNumOperands() - 2).setImm(Bits.to_ulong());
40 }
41
42 void HexagonMCInst::setPacketBegin(bool f) {
43 std::bitset<16> Bits(GetImplicitBits(*this));
44 Bits.set(packetBeginIndex, f);
45 SetImplicitBits(*this, Bits);
46 }
47
48 bool HexagonMCInst::isPacketBegin() const {
49 std::bitset<16> Bits(GetImplicitBits(*this));
50 return Bits.test(packetBeginIndex);
51 }
52
53 void HexagonMCInst::setPacketEnd(bool f) {
54 std::bitset<16> Bits(GetImplicitBits(*this));
55 Bits.set(packetEndIndex, f);
56 SetImplicitBits(*this, Bits);
57 }
58
59 bool HexagonMCInst::isPacketEnd() const {
60 std::bitset<16> Bits(GetImplicitBits(*this));
61 return Bits.test(packetEndIndex);
62 }
63
64 void HexagonMCInst::resetPacket() {
65 setPacketBegin(false);
66 setPacketEnd(false);
67 }
68
69 // Return the slots used by the insn.
70 unsigned HexagonMCInst::getUnits(const HexagonTargetMachine *TM) const {
71 const HexagonInstrInfo *QII = TM->getSubtargetImpl()->getInstrInfo();
72 const InstrItineraryData *II =
73 TM->getSubtargetImpl()->getInstrItineraryData();
74 const InstrStage *IS =
75 II->beginStage(QII->get(this->getOpcode()).getSchedClass());
76
77 return (IS->getUnits());
78 }
79
80 MCInstrDesc const& HexagonMCInst::getDesc() const { return (MCII->get(getOpcode())); }
81
82 // Return the Hexagon ISA class for the insn.
83 unsigned HexagonMCInst::getType() const {
84 const uint64_t F = getDesc().TSFlags;
85
86 return ((F >> HexagonII::TypePos) & HexagonII::TypeMask);
87 }
88
89 // Return whether the insn is an actual insn.
90 bool HexagonMCInst::isCanon() const {
91 return (!getDesc().isPseudo() && !isPrefix() &&
92 getType() != HexagonII::TypeENDLOOP);
93 }
94
95 // Return whether the insn is a prefix.
96 bool HexagonMCInst::isPrefix() const {
97 return (getType() == HexagonII::TypePREFIX);
98 }
99
100 // Return whether the insn is solo, i.e., cannot be in a packet.
101 bool HexagonMCInst::isSolo() const {
102 const uint64_t F = getDesc().TSFlags;
103 return ((F >> HexagonII::SoloPos) & HexagonII::SoloMask);
104 }
105
106 // Return whether the insn is a new-value consumer.
107 bool HexagonMCInst::isNewValue() const {
108 const uint64_t F = getDesc().TSFlags;
109 return ((F >> HexagonII::NewValuePos) & HexagonII::NewValueMask);
110 }
111
112 // Return whether the instruction is a legal new-value producer.
113 bool HexagonMCInst::hasNewValue() const {
114 const uint64_t F = getDesc().TSFlags;
115 return ((F >> HexagonII::hasNewValuePos) & HexagonII::hasNewValueMask);
116 }
117
118 // Return the operand that consumes or produces a new value.
119 const MCOperand &HexagonMCInst::getNewValue() const {
120 const uint64_t F = getDesc().TSFlags;
121 const unsigned O =
122 (F >> HexagonII::NewValueOpPos) & HexagonII::NewValueOpMask;
123 const MCOperand &MCO = getOperand(O);
124
125 assert((isNewValue() || hasNewValue()) && MCO.isReg());
126 return (MCO);
127 }
128
129 // Return whether the instruction needs to be constant extended.
130 // 1) Always return true if the instruction has 'isExtended' flag set.
131 //
132 // isExtendable:
133 // 2) For immediate extended operands, return true only if the value is
134 // out-of-range.
135 // 3) For global address, always return true.
136
137 bool HexagonMCInst::isConstExtended(void) const {
138 if (isExtended())
139 return true;
140
141 if (!isExtendable())
142 return false;
143
144 short ExtOpNum = getCExtOpNum();
145 int MinValue = getMinValue();
146 int MaxValue = getMaxValue();
147 const MCOperand &MO = getOperand(ExtOpNum);
148
149 // We could be using an instruction with an extendable immediate and shoehorn
150 // a global address into it. If it is a global address it will be constant
151 // extended. We do this for COMBINE.
152 // We currently only handle isGlobal() because it is the only kind of
153 // object we are going to end up with here for now.
154 // In the future we probably should add isSymbol(), etc.
155 if (MO.isExpr())
156 return true;
157
158 // If the extendable operand is not 'Immediate' type, the instruction should
159 // have 'isExtended' flag set.
160 assert(MO.isImm() && "Extendable operand must be Immediate type");
161
162 int ImmValue = MO.getImm();
163 return (ImmValue < MinValue || ImmValue > MaxValue);
164 }
165
166 // Return whether the instruction must be always extended.
167 bool HexagonMCInst::isExtended(void) const {
168 const uint64_t F = getDesc().TSFlags;
169 return (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask;
170 }
171
172 // Return true if the instruction may be extended based on the operand value.
173 bool HexagonMCInst::isExtendable(void) const {
174 const uint64_t F = getDesc().TSFlags;
175 return (F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask;
176 }
177
178 // Return number of bits in the constant extended operand.
179 unsigned HexagonMCInst::getBitCount(void) const {
180 const uint64_t F = getDesc().TSFlags;
181 return ((F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask);
182 }
183
184 // Return constant extended operand number.
185 unsigned short HexagonMCInst::getCExtOpNum(void) const {
186 const uint64_t F = getDesc().TSFlags;
187 return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask);
188 }
189
190 // Return whether the operand can be constant extended.
191 bool HexagonMCInst::isOperandExtended(const unsigned short OperandNum) const {
192 const uint64_t F = getDesc().TSFlags;
193 return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask) ==
194 OperandNum;
195 }
196
197 // Return the min value that a constant extendable operand can have
198 // without being extended.
199 int HexagonMCInst::getMinValue(void) const {
200 const uint64_t F = getDesc().TSFlags;
201 unsigned isSigned =
202 (F >> HexagonII::ExtentSignedPos) & HexagonII::ExtentSignedMask;
203 unsigned bits = (F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask;
204
205 if (isSigned) // if value is signed
206 return -1U << (bits - 1);
207 else
208 return 0;
209 }
210
211 // Return the max value that a constant extendable operand can have
212 // without being extended.
213 int HexagonMCInst::getMaxValue(void) const {
214 const uint64_t F = getDesc().TSFlags;
215 unsigned isSigned =
216 (F >> HexagonII::ExtentSignedPos) & HexagonII::ExtentSignedMask;
217 unsigned bits = (F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask;
218
219 if (isSigned) // if value is signed
220 return ~(-1U << (bits - 1));
221 else
222 return ~(-1U << bits);
223 }