]> git.proxmox.com Git - rustc.git/blob - src/llvm/lib/Target/Mips/Mips16ISelLowering.cpp
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / lib / Target / Mips / Mips16ISelLowering.cpp
1 //===-- Mips16ISelLowering.h - Mips16 DAG Lowering Interface ----*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Subclass of MipsTargetLowering specialized for mips16.
11 //
12 //===----------------------------------------------------------------------===//
13 #include "Mips16ISelLowering.h"
14 #include "MCTargetDesc/MipsBaseInfo.h"
15 #include "Mips16HardFloatInfo.h"
16 #include "MipsMachineFunction.h"
17 #include "MipsRegisterInfo.h"
18 #include "MipsTargetMachine.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/Support/CommandLine.h"
22 #include "llvm/Target/TargetInstrInfo.h"
23 #include <string>
24
25 using namespace llvm;
26
27 #define DEBUG_TYPE "mips-lower"
28
29 static cl::opt<bool> DontExpandCondPseudos16(
30 "mips16-dont-expand-cond-pseudo",
31 cl::init(false),
32 cl::desc("Don't expand conditional move related "
33 "pseudos for Mips 16"),
34 cl::Hidden);
35
36 namespace {
37 struct Mips16Libcall {
38 RTLIB::Libcall Libcall;
39 const char *Name;
40
41 bool operator<(const Mips16Libcall &RHS) const {
42 return std::strcmp(Name, RHS.Name) < 0;
43 }
44 };
45
46 struct Mips16IntrinsicHelperType{
47 const char* Name;
48 const char* Helper;
49
50 bool operator<(const Mips16IntrinsicHelperType &RHS) const {
51 return std::strcmp(Name, RHS.Name) < 0;
52 }
53 bool operator==(const Mips16IntrinsicHelperType &RHS) const {
54 return std::strcmp(Name, RHS.Name) == 0;
55 }
56 };
57 }
58
59 // Libcalls for which no helper is generated. Sorted by name for binary search.
60 static const Mips16Libcall HardFloatLibCalls[] = {
61 { RTLIB::ADD_F64, "__mips16_adddf3" },
62 { RTLIB::ADD_F32, "__mips16_addsf3" },
63 { RTLIB::DIV_F64, "__mips16_divdf3" },
64 { RTLIB::DIV_F32, "__mips16_divsf3" },
65 { RTLIB::OEQ_F64, "__mips16_eqdf2" },
66 { RTLIB::OEQ_F32, "__mips16_eqsf2" },
67 { RTLIB::FPEXT_F32_F64, "__mips16_extendsfdf2" },
68 { RTLIB::FPTOSINT_F64_I32, "__mips16_fix_truncdfsi" },
69 { RTLIB::FPTOSINT_F32_I32, "__mips16_fix_truncsfsi" },
70 { RTLIB::SINTTOFP_I32_F64, "__mips16_floatsidf" },
71 { RTLIB::SINTTOFP_I32_F32, "__mips16_floatsisf" },
72 { RTLIB::UINTTOFP_I32_F64, "__mips16_floatunsidf" },
73 { RTLIB::UINTTOFP_I32_F32, "__mips16_floatunsisf" },
74 { RTLIB::OGE_F64, "__mips16_gedf2" },
75 { RTLIB::OGE_F32, "__mips16_gesf2" },
76 { RTLIB::OGT_F64, "__mips16_gtdf2" },
77 { RTLIB::OGT_F32, "__mips16_gtsf2" },
78 { RTLIB::OLE_F64, "__mips16_ledf2" },
79 { RTLIB::OLE_F32, "__mips16_lesf2" },
80 { RTLIB::OLT_F64, "__mips16_ltdf2" },
81 { RTLIB::OLT_F32, "__mips16_ltsf2" },
82 { RTLIB::MUL_F64, "__mips16_muldf3" },
83 { RTLIB::MUL_F32, "__mips16_mulsf3" },
84 { RTLIB::UNE_F64, "__mips16_nedf2" },
85 { RTLIB::UNE_F32, "__mips16_nesf2" },
86 { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_dc" }, // No associated libcall.
87 { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_df" }, // No associated libcall.
88 { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_sc" }, // No associated libcall.
89 { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_sf" }, // No associated libcall.
90 { RTLIB::SUB_F64, "__mips16_subdf3" },
91 { RTLIB::SUB_F32, "__mips16_subsf3" },
92 { RTLIB::FPROUND_F64_F32, "__mips16_truncdfsf2" },
93 { RTLIB::UO_F64, "__mips16_unorddf2" },
94 { RTLIB::UO_F32, "__mips16_unordsf2" }
95 };
96
97 static const Mips16IntrinsicHelperType Mips16IntrinsicHelper[] = {
98 {"__fixunsdfsi", "__mips16_call_stub_2" },
99 {"ceil", "__mips16_call_stub_df_2"},
100 {"ceilf", "__mips16_call_stub_sf_1"},
101 {"copysign", "__mips16_call_stub_df_10"},
102 {"copysignf", "__mips16_call_stub_sf_5"},
103 {"cos", "__mips16_call_stub_df_2"},
104 {"cosf", "__mips16_call_stub_sf_1"},
105 {"exp2", "__mips16_call_stub_df_2"},
106 {"exp2f", "__mips16_call_stub_sf_1"},
107 {"floor", "__mips16_call_stub_df_2"},
108 {"floorf", "__mips16_call_stub_sf_1"},
109 {"log2", "__mips16_call_stub_df_2"},
110 {"log2f", "__mips16_call_stub_sf_1"},
111 {"nearbyint", "__mips16_call_stub_df_2"},
112 {"nearbyintf", "__mips16_call_stub_sf_1"},
113 {"rint", "__mips16_call_stub_df_2"},
114 {"rintf", "__mips16_call_stub_sf_1"},
115 {"sin", "__mips16_call_stub_df_2"},
116 {"sinf", "__mips16_call_stub_sf_1"},
117 {"sqrt", "__mips16_call_stub_df_2"},
118 {"sqrtf", "__mips16_call_stub_sf_1"},
119 {"trunc", "__mips16_call_stub_df_2"},
120 {"truncf", "__mips16_call_stub_sf_1"},
121 };
122
123 Mips16TargetLowering::Mips16TargetLowering(const MipsTargetMachine &TM,
124 const MipsSubtarget &STI)
125 : MipsTargetLowering(TM, STI) {
126
127 // Set up the register classes
128 addRegisterClass(MVT::i32, &Mips::CPU16RegsRegClass);
129
130 if (!TM.Options.UseSoftFloat)
131 setMips16HardFloatLibCalls();
132
133 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Expand);
134 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Expand);
135 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Expand);
136 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Expand);
137 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Expand);
138 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Expand);
139 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Expand);
140 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Expand);
141 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
142 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
143 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
144 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
145 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
146
147 setOperationAction(ISD::ROTR, MVT::i32, Expand);
148 setOperationAction(ISD::ROTR, MVT::i64, Expand);
149 setOperationAction(ISD::BSWAP, MVT::i32, Expand);
150 setOperationAction(ISD::BSWAP, MVT::i64, Expand);
151
152 computeRegisterProperties();
153 }
154
155 const MipsTargetLowering *
156 llvm::createMips16TargetLowering(const MipsTargetMachine &TM,
157 const MipsSubtarget &STI) {
158 return new Mips16TargetLowering(TM, STI);
159 }
160
161 bool
162 Mips16TargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
163 unsigned,
164 unsigned,
165 bool *Fast) const {
166 return false;
167 }
168
169 MachineBasicBlock *
170 Mips16TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
171 MachineBasicBlock *BB) const {
172 switch (MI->getOpcode()) {
173 default:
174 return MipsTargetLowering::EmitInstrWithCustomInserter(MI, BB);
175 case Mips::SelBeqZ:
176 return emitSel16(Mips::BeqzRxImm16, MI, BB);
177 case Mips::SelBneZ:
178 return emitSel16(Mips::BnezRxImm16, MI, BB);
179 case Mips::SelTBteqZCmpi:
180 return emitSeliT16(Mips::Bteqz16, Mips::CmpiRxImmX16, MI, BB);
181 case Mips::SelTBteqZSlti:
182 return emitSeliT16(Mips::Bteqz16, Mips::SltiRxImmX16, MI, BB);
183 case Mips::SelTBteqZSltiu:
184 return emitSeliT16(Mips::Bteqz16, Mips::SltiuRxImmX16, MI, BB);
185 case Mips::SelTBtneZCmpi:
186 return emitSeliT16(Mips::Btnez16, Mips::CmpiRxImmX16, MI, BB);
187 case Mips::SelTBtneZSlti:
188 return emitSeliT16(Mips::Btnez16, Mips::SltiRxImmX16, MI, BB);
189 case Mips::SelTBtneZSltiu:
190 return emitSeliT16(Mips::Btnez16, Mips::SltiuRxImmX16, MI, BB);
191 case Mips::SelTBteqZCmp:
192 return emitSelT16(Mips::Bteqz16, Mips::CmpRxRy16, MI, BB);
193 case Mips::SelTBteqZSlt:
194 return emitSelT16(Mips::Bteqz16, Mips::SltRxRy16, MI, BB);
195 case Mips::SelTBteqZSltu:
196 return emitSelT16(Mips::Bteqz16, Mips::SltuRxRy16, MI, BB);
197 case Mips::SelTBtneZCmp:
198 return emitSelT16(Mips::Btnez16, Mips::CmpRxRy16, MI, BB);
199 case Mips::SelTBtneZSlt:
200 return emitSelT16(Mips::Btnez16, Mips::SltRxRy16, MI, BB);
201 case Mips::SelTBtneZSltu:
202 return emitSelT16(Mips::Btnez16, Mips::SltuRxRy16, MI, BB);
203 case Mips::BteqzT8CmpX16:
204 return emitFEXT_T8I816_ins(Mips::Bteqz16, Mips::CmpRxRy16, MI, BB);
205 case Mips::BteqzT8SltX16:
206 return emitFEXT_T8I816_ins(Mips::Bteqz16, Mips::SltRxRy16, MI, BB);
207 case Mips::BteqzT8SltuX16:
208 // TBD: figure out a way to get this or remove the instruction
209 // altogether.
210 return emitFEXT_T8I816_ins(Mips::Bteqz16, Mips::SltuRxRy16, MI, BB);
211 case Mips::BtnezT8CmpX16:
212 return emitFEXT_T8I816_ins(Mips::Btnez16, Mips::CmpRxRy16, MI, BB);
213 case Mips::BtnezT8SltX16:
214 return emitFEXT_T8I816_ins(Mips::Btnez16, Mips::SltRxRy16, MI, BB);
215 case Mips::BtnezT8SltuX16:
216 // TBD: figure out a way to get this or remove the instruction
217 // altogether.
218 return emitFEXT_T8I816_ins(Mips::Btnez16, Mips::SltuRxRy16, MI, BB);
219 case Mips::BteqzT8CmpiX16: return emitFEXT_T8I8I16_ins(
220 Mips::Bteqz16, Mips::CmpiRxImm16, Mips::CmpiRxImmX16, false, MI, BB);
221 case Mips::BteqzT8SltiX16: return emitFEXT_T8I8I16_ins(
222 Mips::Bteqz16, Mips::SltiRxImm16, Mips::SltiRxImmX16, true, MI, BB);
223 case Mips::BteqzT8SltiuX16: return emitFEXT_T8I8I16_ins(
224 Mips::Bteqz16, Mips::SltiuRxImm16, Mips::SltiuRxImmX16, false, MI, BB);
225 case Mips::BtnezT8CmpiX16: return emitFEXT_T8I8I16_ins(
226 Mips::Btnez16, Mips::CmpiRxImm16, Mips::CmpiRxImmX16, false, MI, BB);
227 case Mips::BtnezT8SltiX16: return emitFEXT_T8I8I16_ins(
228 Mips::Btnez16, Mips::SltiRxImm16, Mips::SltiRxImmX16, true, MI, BB);
229 case Mips::BtnezT8SltiuX16: return emitFEXT_T8I8I16_ins(
230 Mips::Btnez16, Mips::SltiuRxImm16, Mips::SltiuRxImmX16, false, MI, BB);
231 break;
232 case Mips::SltCCRxRy16:
233 return emitFEXT_CCRX16_ins(Mips::SltRxRy16, MI, BB);
234 break;
235 case Mips::SltiCCRxImmX16:
236 return emitFEXT_CCRXI16_ins
237 (Mips::SltiRxImm16, Mips::SltiRxImmX16, MI, BB);
238 case Mips::SltiuCCRxImmX16:
239 return emitFEXT_CCRXI16_ins
240 (Mips::SltiuRxImm16, Mips::SltiuRxImmX16, MI, BB);
241 case Mips::SltuCCRxRy16:
242 return emitFEXT_CCRX16_ins
243 (Mips::SltuRxRy16, MI, BB);
244 }
245 }
246
247 bool Mips16TargetLowering::isEligibleForTailCallOptimization(
248 const CCState &CCInfo, unsigned NextStackOffset,
249 const MipsFunctionInfo &FI) const {
250 // No tail call optimization for mips16.
251 return false;
252 }
253
254 void Mips16TargetLowering::setMips16HardFloatLibCalls() {
255 for (unsigned I = 0; I != array_lengthof(HardFloatLibCalls); ++I) {
256 assert((I == 0 || HardFloatLibCalls[I - 1] < HardFloatLibCalls[I]) &&
257 "Array not sorted!");
258 if (HardFloatLibCalls[I].Libcall != RTLIB::UNKNOWN_LIBCALL)
259 setLibcallName(HardFloatLibCalls[I].Libcall, HardFloatLibCalls[I].Name);
260 }
261
262 setLibcallName(RTLIB::O_F64, "__mips16_unorddf2");
263 setLibcallName(RTLIB::O_F32, "__mips16_unordsf2");
264 }
265
266 //
267 // The Mips16 hard float is a crazy quilt inherited from gcc. I have a much
268 // cleaner way to do all of this but it will have to wait until the traditional
269 // gcc mechanism is completed.
270 //
271 // For Pic, in order for Mips16 code to call Mips32 code which according the abi
272 // have either arguments or returned values placed in floating point registers,
273 // we use a set of helper functions. (This includes functions which return type
274 // complex which on Mips are returned in a pair of floating point registers).
275 //
276 // This is an encoding that we inherited from gcc.
277 // In Mips traditional O32, N32 ABI, floating point numbers are passed in
278 // floating point argument registers 1,2 only when the first and optionally
279 // the second arguments are float (sf) or double (df).
280 // For Mips16 we are only concerned with the situations where floating point
281 // arguments are being passed in floating point registers by the ABI, because
282 // Mips16 mode code cannot execute floating point instructions to load those
283 // values and hence helper functions are needed.
284 // The possibilities are (), (sf), (sf, sf), (sf, df), (df), (df, sf), (df, df)
285 // the helper function suffixs for these are:
286 // 0, 1, 5, 9, 2, 6, 10
287 // this suffix can then be calculated as follows:
288 // for a given argument Arg:
289 // Arg1x, Arg2x = 1 : Arg is sf
290 // 2 : Arg is df
291 // 0: Arg is neither sf or df
292 // So this stub is the string for number Arg1x + Arg2x*4.
293 // However not all numbers between 0 and 10 are possible, we check anyway and
294 // assert if the impossible exists.
295 //
296
297 unsigned int Mips16TargetLowering::getMips16HelperFunctionStubNumber
298 (ArgListTy &Args) const {
299 unsigned int resultNum = 0;
300 if (Args.size() >= 1) {
301 Type *t = Args[0].Ty;
302 if (t->isFloatTy()) {
303 resultNum = 1;
304 }
305 else if (t->isDoubleTy()) {
306 resultNum = 2;
307 }
308 }
309 if (resultNum) {
310 if (Args.size() >=2) {
311 Type *t = Args[1].Ty;
312 if (t->isFloatTy()) {
313 resultNum += 4;
314 }
315 else if (t->isDoubleTy()) {
316 resultNum += 8;
317 }
318 }
319 }
320 return resultNum;
321 }
322
323 //
324 // Prefixes are attached to stub numbers depending on the return type.
325 // return type: float sf_
326 // double df_
327 // single complex sc_
328 // double complext dc_
329 // others NO PREFIX
330 //
331 //
332 // The full name of a helper function is__mips16_call_stub +
333 // return type dependent prefix + stub number
334 //
335 // FIXME: This is something that probably should be in a different source file
336 // and perhaps done differently but my main purpose is to not waste runtime
337 // on something that we can enumerate in the source. Another possibility is
338 // to have a python script to generate these mapping tables. This will do
339 // for now. There are a whole series of helper function mapping arrays, one
340 // for each return type class as outlined above. There there are 11 possible
341 // entries. Ones with 0 are ones which should never be selected.
342 //
343 // All the arrays are similar except for ones which return neither
344 // sf, df, sc, dc, in which we only care about ones which have sf or df as a
345 // first parameter.
346 //
347 #define P_ "__mips16_call_stub_"
348 #define MAX_STUB_NUMBER 10
349 #define T1 P "1", P "2", 0, 0, P "5", P "6", 0, 0, P "9", P "10"
350 #define T P "0" , T1
351 #define P P_
352 static char const * vMips16Helper[MAX_STUB_NUMBER+1] =
353 {nullptr, T1 };
354 #undef P
355 #define P P_ "sf_"
356 static char const * sfMips16Helper[MAX_STUB_NUMBER+1] =
357 { T };
358 #undef P
359 #define P P_ "df_"
360 static char const * dfMips16Helper[MAX_STUB_NUMBER+1] =
361 { T };
362 #undef P
363 #define P P_ "sc_"
364 static char const * scMips16Helper[MAX_STUB_NUMBER+1] =
365 { T };
366 #undef P
367 #define P P_ "dc_"
368 static char const * dcMips16Helper[MAX_STUB_NUMBER+1] =
369 { T };
370 #undef P
371 #undef P_
372
373
374 const char* Mips16TargetLowering::
375 getMips16HelperFunction
376 (Type* RetTy, ArgListTy &Args, bool &needHelper) const {
377 const unsigned int stubNum = getMips16HelperFunctionStubNumber(Args);
378 #ifndef NDEBUG
379 const unsigned int maxStubNum = 10;
380 assert(stubNum <= maxStubNum);
381 const bool validStubNum[maxStubNum+1] =
382 {true, true, true, false, false, true, true, false, false, true, true};
383 assert(validStubNum[stubNum]);
384 #endif
385 const char *result;
386 if (RetTy->isFloatTy()) {
387 result = sfMips16Helper[stubNum];
388 }
389 else if (RetTy ->isDoubleTy()) {
390 result = dfMips16Helper[stubNum];
391 }
392 else if (RetTy->isStructTy()) {
393 // check if it's complex
394 if (RetTy->getNumContainedTypes() == 2) {
395 if ((RetTy->getContainedType(0)->isFloatTy()) &&
396 (RetTy->getContainedType(1)->isFloatTy())) {
397 result = scMips16Helper[stubNum];
398 }
399 else if ((RetTy->getContainedType(0)->isDoubleTy()) &&
400 (RetTy->getContainedType(1)->isDoubleTy())) {
401 result = dcMips16Helper[stubNum];
402 }
403 else {
404 llvm_unreachable("Uncovered condition");
405 }
406 }
407 else {
408 llvm_unreachable("Uncovered condition");
409 }
410 }
411 else {
412 if (stubNum == 0) {
413 needHelper = false;
414 return "";
415 }
416 result = vMips16Helper[stubNum];
417 }
418 needHelper = true;
419 return result;
420 }
421
422 void Mips16TargetLowering::
423 getOpndList(SmallVectorImpl<SDValue> &Ops,
424 std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
425 bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
426 bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee,
427 SDValue Chain) const {
428 SelectionDAG &DAG = CLI.DAG;
429 MachineFunction &MF = DAG.getMachineFunction();
430 MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
431 const char* Mips16HelperFunction = nullptr;
432 bool NeedMips16Helper = false;
433
434 if (Subtarget.inMips16HardFloat()) {
435 //
436 // currently we don't have symbols tagged with the mips16 or mips32
437 // qualifier so we will assume that we don't know what kind it is.
438 // and generate the helper
439 //
440 bool LookupHelper = true;
441 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(CLI.Callee)) {
442 Mips16Libcall Find = { RTLIB::UNKNOWN_LIBCALL, S->getSymbol() };
443
444 if (std::binary_search(std::begin(HardFloatLibCalls),
445 std::end(HardFloatLibCalls), Find))
446 LookupHelper = false;
447 else {
448 const char *Symbol = S->getSymbol();
449 Mips16IntrinsicHelperType IntrinsicFind = { Symbol, "" };
450 const Mips16HardFloatInfo::FuncSignature *Signature =
451 Mips16HardFloatInfo::findFuncSignature(Symbol);
452 if (!IsPICCall && (Signature && (FuncInfo->StubsNeeded.find(Symbol) ==
453 FuncInfo->StubsNeeded.end()))) {
454 FuncInfo->StubsNeeded[Symbol] = Signature;
455 //
456 // S2 is normally saved if the stub is for a function which
457 // returns a float or double value and is not otherwise. This is
458 // because more work is required after the function the stub
459 // is calling completes, and so the stub cannot directly return
460 // and the stub has no stack space to store the return address so
461 // S2 is used for that purpose.
462 // In order to take advantage of not saving S2, we need to also
463 // optimize the call in the stub and this requires some further
464 // functionality in MipsAsmPrinter which we don't have yet.
465 // So for now we always save S2. The optimization will be done
466 // in a follow-on patch.
467 //
468 if (1 || (Signature->RetSig != Mips16HardFloatInfo::NoFPRet))
469 FuncInfo->setSaveS2();
470 }
471 // one more look at list of intrinsics
472 const Mips16IntrinsicHelperType *Helper =
473 std::lower_bound(std::begin(Mips16IntrinsicHelper),
474 std::end(Mips16IntrinsicHelper), IntrinsicFind);
475 if (Helper != std::end(Mips16IntrinsicHelper) &&
476 *Helper == IntrinsicFind) {
477 Mips16HelperFunction = Helper->Helper;
478 NeedMips16Helper = true;
479 LookupHelper = false;
480 }
481
482 }
483 } else if (GlobalAddressSDNode *G =
484 dyn_cast<GlobalAddressSDNode>(CLI.Callee)) {
485 Mips16Libcall Find = { RTLIB::UNKNOWN_LIBCALL,
486 G->getGlobal()->getName().data() };
487
488 if (std::binary_search(std::begin(HardFloatLibCalls),
489 std::end(HardFloatLibCalls), Find))
490 LookupHelper = false;
491 }
492 if (LookupHelper)
493 Mips16HelperFunction =
494 getMips16HelperFunction(CLI.RetTy, CLI.getArgs(), NeedMips16Helper);
495 }
496
497 SDValue JumpTarget = Callee;
498
499 // T9 should contain the address of the callee function if
500 // -relocation-model=pic or it is an indirect call.
501 if (IsPICCall || !GlobalOrExternal) {
502 unsigned V0Reg = Mips::V0;
503 if (NeedMips16Helper) {
504 RegsToPass.push_front(std::make_pair(V0Reg, Callee));
505 JumpTarget = DAG.getExternalSymbol(Mips16HelperFunction, getPointerTy());
506 ExternalSymbolSDNode *S = cast<ExternalSymbolSDNode>(JumpTarget);
507 JumpTarget = getAddrGlobal(S, CLI.DL, JumpTarget.getValueType(), DAG,
508 MipsII::MO_GOT, Chain,
509 FuncInfo->callPtrInfo(S->getSymbol()));
510 } else
511 RegsToPass.push_front(std::make_pair((unsigned)Mips::T9, Callee));
512 }
513
514 Ops.push_back(JumpTarget);
515
516 MipsTargetLowering::getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal,
517 InternalLinkage, IsCallReloc, CLI, Callee,
518 Chain);
519 }
520
521 MachineBasicBlock *Mips16TargetLowering::
522 emitSel16(unsigned Opc, MachineInstr *MI, MachineBasicBlock *BB) const {
523 if (DontExpandCondPseudos16)
524 return BB;
525 const TargetInstrInfo *TII =
526 getTargetMachine().getSubtargetImpl()->getInstrInfo();
527 DebugLoc DL = MI->getDebugLoc();
528 // To "insert" a SELECT_CC instruction, we actually have to insert the
529 // diamond control-flow pattern. The incoming instruction knows the
530 // destination vreg to set, the condition code register to branch on, the
531 // true/false values to select between, and a branch opcode to use.
532 const BasicBlock *LLVM_BB = BB->getBasicBlock();
533 MachineFunction::iterator It = BB;
534 ++It;
535
536 // thisMBB:
537 // ...
538 // TrueVal = ...
539 // setcc r1, r2, r3
540 // bNE r1, r0, copy1MBB
541 // fallthrough --> copy0MBB
542 MachineBasicBlock *thisMBB = BB;
543 MachineFunction *F = BB->getParent();
544 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
545 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
546 F->insert(It, copy0MBB);
547 F->insert(It, sinkMBB);
548
549 // Transfer the remainder of BB and its successor edges to sinkMBB.
550 sinkMBB->splice(sinkMBB->begin(), BB,
551 std::next(MachineBasicBlock::iterator(MI)), BB->end());
552 sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
553
554 // Next, add the true and fallthrough blocks as its successors.
555 BB->addSuccessor(copy0MBB);
556 BB->addSuccessor(sinkMBB);
557
558 BuildMI(BB, DL, TII->get(Opc)).addReg(MI->getOperand(3).getReg())
559 .addMBB(sinkMBB);
560
561 // copy0MBB:
562 // %FalseValue = ...
563 // # fallthrough to sinkMBB
564 BB = copy0MBB;
565
566 // Update machine-CFG edges
567 BB->addSuccessor(sinkMBB);
568
569 // sinkMBB:
570 // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
571 // ...
572 BB = sinkMBB;
573
574 BuildMI(*BB, BB->begin(), DL,
575 TII->get(Mips::PHI), MI->getOperand(0).getReg())
576 .addReg(MI->getOperand(1).getReg()).addMBB(thisMBB)
577 .addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB);
578
579 MI->eraseFromParent(); // The pseudo instruction is gone now.
580 return BB;
581 }
582
583 MachineBasicBlock *Mips16TargetLowering::emitSelT16
584 (unsigned Opc1, unsigned Opc2,
585 MachineInstr *MI, MachineBasicBlock *BB) const {
586 if (DontExpandCondPseudos16)
587 return BB;
588 const TargetInstrInfo *TII =
589 getTargetMachine().getSubtargetImpl()->getInstrInfo();
590 DebugLoc DL = MI->getDebugLoc();
591 // To "insert" a SELECT_CC instruction, we actually have to insert the
592 // diamond control-flow pattern. The incoming instruction knows the
593 // destination vreg to set, the condition code register to branch on, the
594 // true/false values to select between, and a branch opcode to use.
595 const BasicBlock *LLVM_BB = BB->getBasicBlock();
596 MachineFunction::iterator It = BB;
597 ++It;
598
599 // thisMBB:
600 // ...
601 // TrueVal = ...
602 // setcc r1, r2, r3
603 // bNE r1, r0, copy1MBB
604 // fallthrough --> copy0MBB
605 MachineBasicBlock *thisMBB = BB;
606 MachineFunction *F = BB->getParent();
607 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
608 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
609 F->insert(It, copy0MBB);
610 F->insert(It, sinkMBB);
611
612 // Transfer the remainder of BB and its successor edges to sinkMBB.
613 sinkMBB->splice(sinkMBB->begin(), BB,
614 std::next(MachineBasicBlock::iterator(MI)), BB->end());
615 sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
616
617 // Next, add the true and fallthrough blocks as its successors.
618 BB->addSuccessor(copy0MBB);
619 BB->addSuccessor(sinkMBB);
620
621 BuildMI(BB, DL, TII->get(Opc2)).addReg(MI->getOperand(3).getReg())
622 .addReg(MI->getOperand(4).getReg());
623 BuildMI(BB, DL, TII->get(Opc1)).addMBB(sinkMBB);
624
625 // copy0MBB:
626 // %FalseValue = ...
627 // # fallthrough to sinkMBB
628 BB = copy0MBB;
629
630 // Update machine-CFG edges
631 BB->addSuccessor(sinkMBB);
632
633 // sinkMBB:
634 // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
635 // ...
636 BB = sinkMBB;
637
638 BuildMI(*BB, BB->begin(), DL,
639 TII->get(Mips::PHI), MI->getOperand(0).getReg())
640 .addReg(MI->getOperand(1).getReg()).addMBB(thisMBB)
641 .addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB);
642
643 MI->eraseFromParent(); // The pseudo instruction is gone now.
644 return BB;
645
646 }
647
648 MachineBasicBlock *Mips16TargetLowering::emitSeliT16
649 (unsigned Opc1, unsigned Opc2,
650 MachineInstr *MI, MachineBasicBlock *BB) const {
651 if (DontExpandCondPseudos16)
652 return BB;
653 const TargetInstrInfo *TII =
654 getTargetMachine().getSubtargetImpl()->getInstrInfo();
655 DebugLoc DL = MI->getDebugLoc();
656 // To "insert" a SELECT_CC instruction, we actually have to insert the
657 // diamond control-flow pattern. The incoming instruction knows the
658 // destination vreg to set, the condition code register to branch on, the
659 // true/false values to select between, and a branch opcode to use.
660 const BasicBlock *LLVM_BB = BB->getBasicBlock();
661 MachineFunction::iterator It = BB;
662 ++It;
663
664 // thisMBB:
665 // ...
666 // TrueVal = ...
667 // setcc r1, r2, r3
668 // bNE r1, r0, copy1MBB
669 // fallthrough --> copy0MBB
670 MachineBasicBlock *thisMBB = BB;
671 MachineFunction *F = BB->getParent();
672 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
673 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
674 F->insert(It, copy0MBB);
675 F->insert(It, sinkMBB);
676
677 // Transfer the remainder of BB and its successor edges to sinkMBB.
678 sinkMBB->splice(sinkMBB->begin(), BB,
679 std::next(MachineBasicBlock::iterator(MI)), BB->end());
680 sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
681
682 // Next, add the true and fallthrough blocks as its successors.
683 BB->addSuccessor(copy0MBB);
684 BB->addSuccessor(sinkMBB);
685
686 BuildMI(BB, DL, TII->get(Opc2)).addReg(MI->getOperand(3).getReg())
687 .addImm(MI->getOperand(4).getImm());
688 BuildMI(BB, DL, TII->get(Opc1)).addMBB(sinkMBB);
689
690 // copy0MBB:
691 // %FalseValue = ...
692 // # fallthrough to sinkMBB
693 BB = copy0MBB;
694
695 // Update machine-CFG edges
696 BB->addSuccessor(sinkMBB);
697
698 // sinkMBB:
699 // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
700 // ...
701 BB = sinkMBB;
702
703 BuildMI(*BB, BB->begin(), DL,
704 TII->get(Mips::PHI), MI->getOperand(0).getReg())
705 .addReg(MI->getOperand(1).getReg()).addMBB(thisMBB)
706 .addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB);
707
708 MI->eraseFromParent(); // The pseudo instruction is gone now.
709 return BB;
710
711 }
712
713 MachineBasicBlock
714 *Mips16TargetLowering::emitFEXT_T8I816_ins(unsigned BtOpc, unsigned CmpOpc,
715 MachineInstr *MI,
716 MachineBasicBlock *BB) const {
717 if (DontExpandCondPseudos16)
718 return BB;
719 const TargetInstrInfo *TII =
720 getTargetMachine().getSubtargetImpl()->getInstrInfo();
721 unsigned regX = MI->getOperand(0).getReg();
722 unsigned regY = MI->getOperand(1).getReg();
723 MachineBasicBlock *target = MI->getOperand(2).getMBB();
724 BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(CmpOpc)).addReg(regX)
725 .addReg(regY);
726 BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(BtOpc)).addMBB(target);
727 MI->eraseFromParent(); // The pseudo instruction is gone now.
728 return BB;
729 }
730
731 MachineBasicBlock *Mips16TargetLowering::emitFEXT_T8I8I16_ins(
732 unsigned BtOpc, unsigned CmpiOpc, unsigned CmpiXOpc, bool ImmSigned,
733 MachineInstr *MI, MachineBasicBlock *BB) const {
734 if (DontExpandCondPseudos16)
735 return BB;
736 const TargetInstrInfo *TII =
737 getTargetMachine().getSubtargetImpl()->getInstrInfo();
738 unsigned regX = MI->getOperand(0).getReg();
739 int64_t imm = MI->getOperand(1).getImm();
740 MachineBasicBlock *target = MI->getOperand(2).getMBB();
741 unsigned CmpOpc;
742 if (isUInt<8>(imm))
743 CmpOpc = CmpiOpc;
744 else if ((!ImmSigned && isUInt<16>(imm)) ||
745 (ImmSigned && isInt<16>(imm)))
746 CmpOpc = CmpiXOpc;
747 else
748 llvm_unreachable("immediate field not usable");
749 BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(CmpOpc)).addReg(regX)
750 .addImm(imm);
751 BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(BtOpc)).addMBB(target);
752 MI->eraseFromParent(); // The pseudo instruction is gone now.
753 return BB;
754 }
755
756 static unsigned Mips16WhichOp8uOr16simm
757 (unsigned shortOp, unsigned longOp, int64_t Imm) {
758 if (isUInt<8>(Imm))
759 return shortOp;
760 else if (isInt<16>(Imm))
761 return longOp;
762 else
763 llvm_unreachable("immediate field not usable");
764 }
765
766 MachineBasicBlock *Mips16TargetLowering::emitFEXT_CCRX16_ins(
767 unsigned SltOpc,
768 MachineInstr *MI, MachineBasicBlock *BB) const {
769 if (DontExpandCondPseudos16)
770 return BB;
771 const TargetInstrInfo *TII =
772 getTargetMachine().getSubtargetImpl()->getInstrInfo();
773 unsigned CC = MI->getOperand(0).getReg();
774 unsigned regX = MI->getOperand(1).getReg();
775 unsigned regY = MI->getOperand(2).getReg();
776 BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(SltOpc)).addReg(regX).addReg(
777 regY);
778 BuildMI(*BB, MI, MI->getDebugLoc(),
779 TII->get(Mips::MoveR3216), CC).addReg(Mips::T8);
780 MI->eraseFromParent(); // The pseudo instruction is gone now.
781 return BB;
782 }
783
784 MachineBasicBlock *Mips16TargetLowering::emitFEXT_CCRXI16_ins(
785 unsigned SltiOpc, unsigned SltiXOpc,
786 MachineInstr *MI, MachineBasicBlock *BB )const {
787 if (DontExpandCondPseudos16)
788 return BB;
789 const TargetInstrInfo *TII =
790 getTargetMachine().getSubtargetImpl()->getInstrInfo();
791 unsigned CC = MI->getOperand(0).getReg();
792 unsigned regX = MI->getOperand(1).getReg();
793 int64_t Imm = MI->getOperand(2).getImm();
794 unsigned SltOpc = Mips16WhichOp8uOr16simm(SltiOpc, SltiXOpc, Imm);
795 BuildMI(*BB, MI, MI->getDebugLoc(),
796 TII->get(SltOpc)).addReg(regX).addImm(Imm);
797 BuildMI(*BB, MI, MI->getDebugLoc(),
798 TII->get(Mips::MoveR3216), CC).addReg(Mips::T8);
799 MI->eraseFromParent(); // The pseudo instruction is gone now.
800 return BB;
801
802 }