]> git.proxmox.com Git - rustc.git/blob - src/llvm/lib/Target/Mips/MipsCallingConv.td
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / lib / Target / Mips / MipsCallingConv.td
1 //===-- MipsCallingConv.td - Calling Conventions for Mips --*- tablegen -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 // This describes the calling conventions for Mips architecture.
10 //===----------------------------------------------------------------------===//
11
12 /// CCIfSubtarget - Match if the current subtarget has a feature F.
13 class CCIfSubtarget<string F, CCAction A, string Invert = "">
14 : CCIf<!strconcat(Invert,
15 "static_cast<const MipsSubtarget&>"
16 "(State.getMachineFunction().getSubtarget()).",
17 F),
18 A>;
19
20 // The inverse of CCIfSubtarget
21 class CCIfSubtargetNot<string F, CCAction A> : CCIfSubtarget<F, A, "!">;
22
23 /// Match if the original argument (before lowering) was a float.
24 /// For example, this is true for i32's that were lowered from soft-float.
25 class CCIfOrigArgWasNotFloat<CCAction A>
26 : CCIf<"!static_cast<MipsCCState *>(&State)->WasOriginalArgFloat(ValNo)",
27 A>;
28
29 /// Match if the original argument (before lowering) was a 128-bit float (i.e.
30 /// long double).
31 class CCIfOrigArgWasF128<CCAction A>
32 : CCIf<"static_cast<MipsCCState *>(&State)->WasOriginalArgF128(ValNo)", A>;
33
34 /// Match if this specific argument is a vararg.
35 /// This is slightly different fro CCIfIsVarArg which matches if any argument is
36 /// a vararg.
37 class CCIfArgIsVarArg<CCAction A>
38 : CCIf<"!static_cast<MipsCCState *>(&State)->IsCallOperandFixed(ValNo)", A>;
39
40
41 /// Match if the special calling conv is the specified value.
42 class CCIfSpecialCallingConv<string CC, CCAction A>
43 : CCIf<"static_cast<MipsCCState *>(&State)->getSpecialCallingConv() == "
44 "MipsCCState::" # CC, A>;
45
46 // For soft-float, f128 values are returned in A0_64 rather than V1_64.
47 def RetCC_F128SoftFloat : CallingConv<[
48 CCAssignToReg<[V0_64, A0_64]>
49 ]>;
50
51 // For hard-float, f128 values are returned as a pair of f64's rather than a
52 // pair of i64's.
53 def RetCC_F128HardFloat : CallingConv<[
54 CCBitConvertToType<f64>,
55
56 // Contrary to the ABI documentation, a struct containing a long double is
57 // returned in $f0, and $f1 instead of the usual $f0, and $f2. This is to
58 // match the de facto ABI as implemented by GCC.
59 CCIfInReg<CCAssignToReg<[D0_64, D1_64]>>,
60
61 CCAssignToReg<[D0_64, D2_64]>
62 ]>;
63
64 // Handle F128 specially since we can't identify the original type during the
65 // tablegen-erated code.
66 def RetCC_F128 : CallingConv<[
67 CCIfSubtarget<"abiUsesSoftFloat()",
68 CCIfType<[i64], CCDelegateTo<RetCC_F128SoftFloat>>>,
69 CCIfSubtargetNot<"abiUsesSoftFloat()",
70 CCIfType<[i64], CCDelegateTo<RetCC_F128HardFloat>>>
71 ]>;
72
73 //===----------------------------------------------------------------------===//
74 // Mips O32 Calling Convention
75 //===----------------------------------------------------------------------===//
76
77 def CC_MipsO32 : CallingConv<[
78 // Promote i8/i16 arguments to i32.
79 CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
80
81 // Integer values get stored in stack slots that are 4 bytes in
82 // size and 4-byte aligned.
83 CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
84
85 // Integer values get stored in stack slots that are 8 bytes in
86 // size and 8-byte aligned.
87 CCIfType<[f64], CCAssignToStack<8, 8>>
88 ]>;
89
90 // Only the return rules are defined here for O32. The rules for argument
91 // passing are defined in MipsISelLowering.cpp.
92 def RetCC_MipsO32 : CallingConv<[
93 // i32 are returned in registers V0, V1, A0, A1
94 CCIfType<[i32], CCAssignToReg<[V0, V1, A0, A1]>>,
95
96 // f32 are returned in registers F0, F2
97 CCIfType<[f32], CCAssignToReg<[F0, F2]>>,
98
99 // f64 arguments are returned in D0_64 and D2_64 in FP64bit mode or
100 // in D0 and D1 in FP32bit mode.
101 CCIfType<[f64], CCIfSubtarget<"isFP64bit()", CCAssignToReg<[D0_64, D2_64]>>>,
102 CCIfType<[f64], CCIfSubtargetNot<"isFP64bit()", CCAssignToReg<[D0, D1]>>>
103 ]>;
104
105 def CC_MipsO32_FP32 : CustomCallingConv;
106 def CC_MipsO32_FP64 : CustomCallingConv;
107
108 def CC_MipsO32_FP : CallingConv<[
109 CCIfSubtargetNot<"isFP64bit()", CCDelegateTo<CC_MipsO32_FP32>>,
110 CCIfSubtarget<"isFP64bit()", CCDelegateTo<CC_MipsO32_FP64>>
111 ]>;
112
113 //===----------------------------------------------------------------------===//
114 // Mips N32/64 Calling Convention
115 //===----------------------------------------------------------------------===//
116
117 def CC_MipsN_SoftFloat : CallingConv<[
118 CCAssignToRegWithShadow<[A0, A1, A2, A3,
119 T0, T1, T2, T3],
120 [D12_64, D13_64, D14_64, D15_64,
121 D16_64, D17_64, D18_64, D19_64]>,
122 CCAssignToStack<4, 8>
123 ]>;
124
125 def CC_MipsN : CallingConv<[
126 CCIfType<[i8, i16, i32],
127 CCIfSubtargetNot<"isLittle()",
128 CCIfInReg<CCPromoteToUpperBitsInType<i64>>>>,
129
130 // All integers (except soft-float integers) are promoted to 64-bit.
131 CCIfType<[i8, i16, i32], CCIfOrigArgWasNotFloat<CCPromoteToType<i64>>>,
132
133 // The only i32's we have left are soft-float arguments.
134 CCIfSubtarget<"abiUsesSoftFloat()", CCIfType<[i32], CCDelegateTo<CC_MipsN_SoftFloat>>>,
135
136 // Integer arguments are passed in integer registers.
137 CCIfType<[i64], CCAssignToRegWithShadow<[A0_64, A1_64, A2_64, A3_64,
138 T0_64, T1_64, T2_64, T3_64],
139 [D12_64, D13_64, D14_64, D15_64,
140 D16_64, D17_64, D18_64, D19_64]>>,
141
142 // f32 arguments are passed in single precision FP registers.
143 CCIfType<[f32], CCAssignToRegWithShadow<[F12, F13, F14, F15,
144 F16, F17, F18, F19],
145 [A0_64, A1_64, A2_64, A3_64,
146 T0_64, T1_64, T2_64, T3_64]>>,
147
148 // f64 arguments are passed in double precision FP registers.
149 CCIfType<[f64], CCAssignToRegWithShadow<[D12_64, D13_64, D14_64, D15_64,
150 D16_64, D17_64, D18_64, D19_64],
151 [A0_64, A1_64, A2_64, A3_64,
152 T0_64, T1_64, T2_64, T3_64]>>,
153
154 // All stack parameter slots become 64-bit doublewords and are 8-byte aligned.
155 CCIfType<[f32], CCAssignToStack<4, 8>>,
156 CCIfType<[i64, f64], CCAssignToStack<8, 8>>
157 ]>;
158
159 // N32/64 variable arguments.
160 // All arguments are passed in integer registers.
161 def CC_MipsN_VarArg : CallingConv<[
162 // All integers are promoted to 64-bit.
163 CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
164
165 CCIfType<[f32], CCAssignToReg<[A0, A1, A2, A3, T0, T1, T2, T3]>>,
166
167 CCIfType<[i64, f64], CCAssignToReg<[A0_64, A1_64, A2_64, A3_64,
168 T0_64, T1_64, T2_64, T3_64]>>,
169
170 // All stack parameter slots become 64-bit doublewords and are 8-byte aligned.
171 CCIfType<[f32], CCAssignToStack<4, 8>>,
172 CCIfType<[i64, f64], CCAssignToStack<8, 8>>
173 ]>;
174
175 def RetCC_MipsN : CallingConv<[
176 // f128 needs to be handled similarly to f32 and f64. However, f128 is not
177 // legal and is lowered to i128 which is further lowered to a pair of i64's.
178 // This presents us with a problem for the calling convention since hard-float
179 // still needs to pass them in FPU registers, and soft-float needs to use $v0,
180 // and $a0 instead of the usual $v0, and $v1. We therefore resort to a
181 // pre-analyze (see PreAnalyzeReturnForF128()) step to pass information on
182 // whether the result was originally an f128 into the tablegen-erated code.
183 //
184 // f128 should only occur for the N64 ABI where long double is 128-bit. On
185 // N32, long double is equivalent to double.
186 CCIfType<[i64], CCIfOrigArgWasF128<CCDelegateTo<RetCC_F128>>>,
187
188 // Aggregate returns are positioned at the lowest address in the slot for
189 // both little and big-endian targets. When passing in registers, this
190 // requires that big-endian targets shift the value into the upper bits.
191 CCIfSubtarget<"isLittle()",
192 CCIfType<[i8, i16, i32, i64], CCIfInReg<CCPromoteToType<i64>>>>,
193 CCIfSubtargetNot<"isLittle()",
194 CCIfType<[i8, i16, i32, i64],
195 CCIfInReg<CCPromoteToUpperBitsInType<i64>>>>,
196
197 // i64 are returned in registers V0_64, V1_64
198 CCIfType<[i64], CCAssignToReg<[V0_64, V1_64]>>,
199
200 // f32 are returned in registers F0, F2
201 CCIfType<[f32], CCAssignToReg<[F0, F2]>>,
202
203 // f64 are returned in registers D0, D2
204 CCIfType<[f64], CCAssignToReg<[D0_64, D2_64]>>
205 ]>;
206
207 //===----------------------------------------------------------------------===//
208 // Mips EABI Calling Convention
209 //===----------------------------------------------------------------------===//
210
211 def CC_MipsEABI : CallingConv<[
212 // Promote i8/i16 arguments to i32.
213 CCIfType<[i8, i16], CCPromoteToType<i32>>,
214
215 // Integer arguments are passed in integer registers.
216 CCIfType<[i32], CCAssignToReg<[A0, A1, A2, A3, T0, T1, T2, T3]>>,
217
218 // Single fp arguments are passed in pairs within 32-bit mode
219 CCIfType<[f32], CCIfSubtarget<"isSingleFloat()",
220 CCAssignToReg<[F12, F13, F14, F15, F16, F17, F18, F19]>>>,
221
222 CCIfType<[f32], CCIfSubtargetNot<"isSingleFloat()",
223 CCAssignToReg<[F12, F14, F16, F18]>>>,
224
225 // The first 4 double fp arguments are passed in single fp registers.
226 CCIfType<[f64], CCIfSubtargetNot<"isSingleFloat()",
227 CCAssignToReg<[D6, D7, D8, D9]>>>,
228
229 // Integer values get stored in stack slots that are 4 bytes in
230 // size and 4-byte aligned.
231 CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
232
233 // Integer values get stored in stack slots that are 8 bytes in
234 // size and 8-byte aligned.
235 CCIfType<[f64], CCIfSubtargetNot<"isSingleFloat()", CCAssignToStack<8, 8>>>
236 ]>;
237
238 def RetCC_MipsEABI : CallingConv<[
239 // i32 are returned in registers V0, V1
240 CCIfType<[i32], CCAssignToReg<[V0, V1]>>,
241
242 // f32 are returned in registers F0, F1
243 CCIfType<[f32], CCAssignToReg<[F0, F1]>>,
244
245 // f64 are returned in register D0
246 CCIfType<[f64], CCIfSubtargetNot<"isSingleFloat()", CCAssignToReg<[D0]>>>
247 ]>;
248
249 //===----------------------------------------------------------------------===//
250 // Mips FastCC Calling Convention
251 //===----------------------------------------------------------------------===//
252 def CC_MipsO32_FastCC : CallingConv<[
253 // f64 arguments are passed in double-precision floating pointer registers.
254 CCIfType<[f64], CCIfSubtargetNot<"isFP64bit()",
255 CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6,
256 D7, D8, D9]>>>,
257 CCIfType<[f64], CCIfSubtarget<"isFP64bit()", CCIfSubtarget<"useOddSPReg()",
258 CCAssignToReg<[D0_64, D1_64, D2_64, D3_64,
259 D4_64, D5_64, D6_64, D7_64,
260 D8_64, D9_64, D10_64, D11_64,
261 D12_64, D13_64, D14_64, D15_64,
262 D16_64, D17_64, D18_64,
263 D19_64]>>>>,
264 CCIfType<[f64], CCIfSubtarget<"isFP64bit()", CCIfSubtarget<"noOddSPReg()",
265 CCAssignToReg<[D0_64, D2_64, D4_64, D6_64,
266 D8_64, D10_64, D12_64, D14_64,
267 D16_64, D18_64]>>>>,
268
269 // Stack parameter slots for f64 are 64-bit doublewords and 8-byte aligned.
270 CCIfType<[f64], CCAssignToStack<8, 8>>
271 ]>;
272
273 def CC_MipsN_FastCC : CallingConv<[
274 // Integer arguments are passed in integer registers.
275 CCIfType<[i64], CCAssignToReg<[A0_64, A1_64, A2_64, A3_64, T0_64, T1_64,
276 T2_64, T3_64, T4_64, T5_64, T6_64, T7_64,
277 T8_64, V1_64]>>,
278
279 // f64 arguments are passed in double-precision floating pointer registers.
280 CCIfType<[f64], CCAssignToReg<[D0_64, D1_64, D2_64, D3_64, D4_64, D5_64,
281 D6_64, D7_64, D8_64, D9_64, D10_64, D11_64,
282 D12_64, D13_64, D14_64, D15_64, D16_64, D17_64,
283 D18_64, D19_64]>>,
284
285 // Stack parameter slots for i64 and f64 are 64-bit doublewords and
286 // 8-byte aligned.
287 CCIfType<[i64, f64], CCAssignToStack<8, 8>>
288 ]>;
289
290 def CC_Mips_FastCC : CallingConv<[
291 // Handles byval parameters.
292 CCIfByVal<CCPassByVal<4, 4>>,
293
294 // Promote i8/i16 arguments to i32.
295 CCIfType<[i8, i16], CCPromoteToType<i32>>,
296
297 // Integer arguments are passed in integer registers. All scratch registers,
298 // except for AT, V0 and T9, are available to be used as argument registers.
299 CCIfType<[i32], CCIfSubtargetNot<"isTargetNaCl()",
300 CCAssignToReg<[A0, A1, A2, A3, T0, T1, T2, T3, T4, T5, T6, T7, T8, V1]>>>,
301
302 // In NaCl, T6, T7 and T8 are reserved and not available as argument
303 // registers for fastcc. T6 contains the mask for sandboxing control flow
304 // (indirect jumps and calls). T7 contains the mask for sandboxing memory
305 // accesses (loads and stores). T8 contains the thread pointer.
306 CCIfType<[i32], CCIfSubtarget<"isTargetNaCl()",
307 CCAssignToReg<[A0, A1, A2, A3, T0, T1, T2, T3, T4, T5, V1]>>>,
308
309 // f32 arguments are passed in single-precision floating pointer registers.
310 CCIfType<[f32], CCIfSubtarget<"useOddSPReg()",
311 CCAssignToReg<[F0, F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13,
312 F14, F15, F16, F17, F18, F19]>>>,
313
314 // Don't use odd numbered single-precision registers for -mno-odd-spreg.
315 CCIfType<[f32], CCIfSubtarget<"noOddSPReg()",
316 CCAssignToReg<[F0, F2, F4, F6, F8, F10, F12, F14, F16, F18]>>>,
317
318 // Stack parameter slots for i32 and f32 are 32-bit words and 4-byte aligned.
319 CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
320
321 CCIfSubtarget<"isABI_EABI()", CCDelegateTo<CC_MipsEABI>>,
322 CCIfSubtarget<"isABI_O32()", CCDelegateTo<CC_MipsO32_FastCC>>,
323 CCDelegateTo<CC_MipsN_FastCC>
324 ]>;
325
326 //===----------------------------------------------------------------------===//
327 // Mips Calling Convention Dispatch
328 //===----------------------------------------------------------------------===//
329
330 def RetCC_Mips : CallingConv<[
331 CCIfSubtarget<"isABI_EABI()", CCDelegateTo<RetCC_MipsEABI>>,
332 CCIfSubtarget<"isABI_N32()", CCDelegateTo<RetCC_MipsN>>,
333 CCIfSubtarget<"isABI_N64()", CCDelegateTo<RetCC_MipsN>>,
334 CCDelegateTo<RetCC_MipsO32>
335 ]>;
336
337 def CC_Mips_ByVal : CallingConv<[
338 CCIfSubtarget<"isABI_O32()", CCIfByVal<CCPassByVal<4, 4>>>,
339 CCIfByVal<CCPassByVal<8, 8>>
340 ]>;
341
342 def CC_Mips16RetHelper : CallingConv<[
343 CCIfByVal<CCDelegateTo<CC_Mips_ByVal>>,
344
345 // Integer arguments are passed in integer registers.
346 CCIfType<[i32], CCAssignToReg<[V0, V1, A0, A1]>>
347 ]>;
348
349 def CC_Mips_FixedArg : CallingConv<[
350 // Mips16 needs special handling on some functions.
351 CCIf<"State.getCallingConv() != CallingConv::Fast",
352 CCIfSpecialCallingConv<"Mips16RetHelperConv",
353 CCDelegateTo<CC_Mips16RetHelper>>>,
354
355 CCIfByVal<CCDelegateTo<CC_Mips_ByVal>>,
356
357 // f128 needs to be handled similarly to f32 and f64 on hard-float. However,
358 // f128 is not legal and is lowered to i128 which is further lowered to a pair
359 // of i64's.
360 // This presents us with a problem for the calling convention since hard-float
361 // still needs to pass them in FPU registers. We therefore resort to a
362 // pre-analyze (see PreAnalyzeFormalArgsForF128()) step to pass information on
363 // whether the argument was originally an f128 into the tablegen-erated code.
364 //
365 // f128 should only occur for the N64 ABI where long double is 128-bit. On
366 // N32, long double is equivalent to double.
367 CCIfType<[i64],
368 CCIfSubtargetNot<"abiUsesSoftFloat()",
369 CCIfOrigArgWasF128<CCBitConvertToType<f64>>>>,
370
371 CCIfCC<"CallingConv::Fast", CCDelegateTo<CC_Mips_FastCC>>,
372
373 // FIXME: There wasn't an EABI case in the original code and it seems unlikely
374 // that it's the same as CC_MipsN
375 CCIfSubtarget<"isABI_O32()", CCDelegateTo<CC_MipsO32_FP>>,
376 CCDelegateTo<CC_MipsN>
377 ]>;
378
379 def CC_Mips_VarArg : CallingConv<[
380 CCIfByVal<CCDelegateTo<CC_Mips_ByVal>>,
381
382 // FIXME: There wasn't an EABI case in the original code and it seems unlikely
383 // that it's the same as CC_MipsN_VarArg
384 CCIfSubtarget<"isABI_O32()", CCDelegateTo<CC_MipsO32_FP>>,
385 CCDelegateTo<CC_MipsN_VarArg>
386 ]>;
387
388 def CC_Mips : CallingConv<[
389 CCIfVarArg<CCIfArgIsVarArg<CCDelegateTo<CC_Mips_VarArg>>>,
390 CCDelegateTo<CC_Mips_FixedArg>
391 ]>;
392
393 //===----------------------------------------------------------------------===//
394 // Callee-saved register lists.
395 //===----------------------------------------------------------------------===//
396
397 def CSR_SingleFloatOnly : CalleeSavedRegs<(add (sequence "F%u", 31, 20), RA, FP,
398 (sequence "S%u", 7, 0))>;
399
400 def CSR_O32_FPXX : CalleeSavedRegs<(add (sequence "D%u", 15, 10), RA, FP,
401 (sequence "S%u", 7, 0))> {
402 let OtherPreserved = (add (decimate (sequence "F%u", 30, 20), 2));
403 }
404
405 def CSR_O32 : CalleeSavedRegs<(add (sequence "D%u", 15, 10), RA, FP,
406 (sequence "S%u", 7, 0))>;
407
408 def CSR_O32_FP64 :
409 CalleeSavedRegs<(add (decimate (sequence "D%u_64", 30, 20), 2), RA, FP,
410 (sequence "S%u", 7, 0))>;
411
412 def CSR_N32 : CalleeSavedRegs<(add D20_64, D22_64, D24_64, D26_64, D28_64,
413 D30_64, RA_64, FP_64, GP_64,
414 (sequence "S%u_64", 7, 0))>;
415
416 def CSR_N64 : CalleeSavedRegs<(add (sequence "D%u_64", 31, 24), RA_64, FP_64,
417 GP_64, (sequence "S%u_64", 7, 0))>;
418
419 def CSR_Mips16RetHelper :
420 CalleeSavedRegs<(add V0, V1, FP,
421 (sequence "A%u", 3, 0), (sequence "S%u", 7, 0),
422 (sequence "D%u", 15, 10))>;