]> git.proxmox.com Git - rustc.git/blob - src/llvm/lib/Target/R600/AMDGPUISelLowering.cpp
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / lib / Target / R600 / AMDGPUISelLowering.cpp
1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// \brief This is the parent TargetLowering class for hardware code gen
12 /// targets.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "AMDGPUISelLowering.h"
17 #include "AMDGPU.h"
18 #include "AMDGPUFrameLowering.h"
19 #include "AMDGPUIntrinsicInfo.h"
20 #include "AMDGPURegisterInfo.h"
21 #include "AMDGPUSubtarget.h"
22 #include "R600MachineFunctionInfo.h"
23 #include "SIMachineFunctionInfo.h"
24 #include "llvm/CodeGen/CallingConvLower.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/SelectionDAG.h"
28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DiagnosticInfo.h"
31 #include "llvm/IR/DiagnosticPrinter.h"
32
33 using namespace llvm;
34
35 namespace {
36
37 /// Diagnostic information for unimplemented or unsupported feature reporting.
38 class DiagnosticInfoUnsupported : public DiagnosticInfo {
39 private:
40 const Twine &Description;
41 const Function &Fn;
42
43 static int KindID;
44
45 static int getKindID() {
46 if (KindID == 0)
47 KindID = llvm::getNextAvailablePluginDiagnosticKind();
48 return KindID;
49 }
50
51 public:
52 DiagnosticInfoUnsupported(const Function &Fn, const Twine &Desc,
53 DiagnosticSeverity Severity = DS_Error)
54 : DiagnosticInfo(getKindID(), Severity),
55 Description(Desc),
56 Fn(Fn) { }
57
58 const Function &getFunction() const { return Fn; }
59 const Twine &getDescription() const { return Description; }
60
61 void print(DiagnosticPrinter &DP) const override {
62 DP << "unsupported " << getDescription() << " in " << Fn.getName();
63 }
64
65 static bool classof(const DiagnosticInfo *DI) {
66 return DI->getKind() == getKindID();
67 }
68 };
69
70 int DiagnosticInfoUnsupported::KindID = 0;
71 }
72
73
74 static bool allocateStack(unsigned ValNo, MVT ValVT, MVT LocVT,
75 CCValAssign::LocInfo LocInfo,
76 ISD::ArgFlagsTy ArgFlags, CCState &State) {
77 unsigned Offset = State.AllocateStack(ValVT.getStoreSize(),
78 ArgFlags.getOrigAlign());
79 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
80
81 return true;
82 }
83
84 #include "AMDGPUGenCallingConv.inc"
85
86 // Find a larger type to do a load / store of a vector with.
87 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) {
88 unsigned StoreSize = VT.getStoreSizeInBits();
89 if (StoreSize <= 32)
90 return EVT::getIntegerVT(Ctx, StoreSize);
91
92 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32");
93 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
94 }
95
96 // Type for a vector that will be loaded to.
97 EVT AMDGPUTargetLowering::getEquivalentLoadRegType(LLVMContext &Ctx, EVT VT) {
98 unsigned StoreSize = VT.getStoreSizeInBits();
99 if (StoreSize <= 32)
100 return EVT::getIntegerVT(Ctx, 32);
101
102 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
103 }
104
105 AMDGPUTargetLowering::AMDGPUTargetLowering(TargetMachine &TM) :
106 TargetLowering(TM) {
107
108 Subtarget = &TM.getSubtarget<AMDGPUSubtarget>();
109
110 setOperationAction(ISD::Constant, MVT::i32, Legal);
111 setOperationAction(ISD::Constant, MVT::i64, Legal);
112 setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
113 setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
114
115 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
116 setOperationAction(ISD::BRIND, MVT::Other, Expand);
117
118 // We need to custom lower some of the intrinsics
119 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
120
121 // Library functions. These default to Expand, but we have instructions
122 // for them.
123 setOperationAction(ISD::FCEIL, MVT::f32, Legal);
124 setOperationAction(ISD::FEXP2, MVT::f32, Legal);
125 setOperationAction(ISD::FPOW, MVT::f32, Legal);
126 setOperationAction(ISD::FLOG2, MVT::f32, Legal);
127 setOperationAction(ISD::FABS, MVT::f32, Legal);
128 setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
129 setOperationAction(ISD::FRINT, MVT::f32, Legal);
130 setOperationAction(ISD::FROUND, MVT::f32, Legal);
131 setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
132
133 setOperationAction(ISD::FREM, MVT::f32, Custom);
134 setOperationAction(ISD::FREM, MVT::f64, Custom);
135
136 // Lower floating point store/load to integer store/load to reduce the number
137 // of patterns in tablegen.
138 setOperationAction(ISD::STORE, MVT::f32, Promote);
139 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32);
140
141 setOperationAction(ISD::STORE, MVT::v2f32, Promote);
142 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32);
143
144 setOperationAction(ISD::STORE, MVT::i64, Promote);
145 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32);
146
147 setOperationAction(ISD::STORE, MVT::v4f32, Promote);
148 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32);
149
150 setOperationAction(ISD::STORE, MVT::v8f32, Promote);
151 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32);
152
153 setOperationAction(ISD::STORE, MVT::v16f32, Promote);
154 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32);
155
156 setOperationAction(ISD::STORE, MVT::f64, Promote);
157 AddPromotedToType(ISD::STORE, MVT::f64, MVT::i64);
158
159 setOperationAction(ISD::STORE, MVT::v2f64, Promote);
160 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v2i64);
161
162 // Custom lowering of vector stores is required for local address space
163 // stores.
164 setOperationAction(ISD::STORE, MVT::v4i32, Custom);
165 // XXX: Native v2i32 local address space stores are possible, but not
166 // currently implemented.
167 setOperationAction(ISD::STORE, MVT::v2i32, Custom);
168
169 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom);
170 setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom);
171 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom);
172
173 // XXX: This can be change to Custom, once ExpandVectorStores can
174 // handle 64-bit stores.
175 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
176
177 setTruncStoreAction(MVT::i64, MVT::i16, Expand);
178 setTruncStoreAction(MVT::i64, MVT::i8, Expand);
179 setTruncStoreAction(MVT::i64, MVT::i1, Expand);
180 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand);
181 setTruncStoreAction(MVT::v4i64, MVT::v4i1, Expand);
182
183
184 setOperationAction(ISD::LOAD, MVT::f32, Promote);
185 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32);
186
187 setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
188 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32);
189
190 setOperationAction(ISD::LOAD, MVT::v4f32, Promote);
191 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32);
192
193 setOperationAction(ISD::LOAD, MVT::v8f32, Promote);
194 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32);
195
196 setOperationAction(ISD::LOAD, MVT::v16f32, Promote);
197 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32);
198
199 setOperationAction(ISD::LOAD, MVT::f64, Promote);
200 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::i64);
201
202 setOperationAction(ISD::LOAD, MVT::v2f64, Promote);
203 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v2i64);
204
205 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
206 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom);
207 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
208 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
209 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom);
210 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom);
211 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom);
212 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom);
213 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom);
214 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom);
215
216 // There are no 64-bit extloads. These should be done as a 32-bit extload and
217 // an extension to 64-bit.
218 for (MVT VT : MVT::integer_valuetypes()) {
219 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand);
220 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand);
221 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand);
222 }
223
224 for (MVT VT : MVT::integer_vector_valuetypes()) {
225 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand);
226 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand);
227 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand);
228 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand);
229 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand);
230 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand);
231 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand);
232 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand);
233 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand);
234 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand);
235 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand);
236 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand);
237 }
238
239 setOperationAction(ISD::BR_CC, MVT::i1, Expand);
240
241 if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) {
242 setOperationAction(ISD::FCEIL, MVT::f64, Custom);
243 setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
244 setOperationAction(ISD::FRINT, MVT::f64, Custom);
245 setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
246 }
247
248 if (!Subtarget->hasBFI()) {
249 // fcopysign can be done in a single instruction with BFI.
250 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
251 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
252 }
253
254 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
255
256 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
257 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
258 setTruncStoreAction(MVT::f32, MVT::f16, Expand);
259 setTruncStoreAction(MVT::f64, MVT::f16, Expand);
260
261 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
262 for (MVT VT : ScalarIntVTs) {
263 setOperationAction(ISD::SREM, VT, Expand);
264 setOperationAction(ISD::SDIV, VT, Expand);
265
266 // GPU does not have divrem function for signed or unsigned.
267 setOperationAction(ISD::SDIVREM, VT, Custom);
268 setOperationAction(ISD::UDIVREM, VT, Custom);
269
270 // GPU does not have [S|U]MUL_LOHI functions as a single instruction.
271 setOperationAction(ISD::SMUL_LOHI, VT, Expand);
272 setOperationAction(ISD::UMUL_LOHI, VT, Expand);
273
274 setOperationAction(ISD::BSWAP, VT, Expand);
275 setOperationAction(ISD::CTTZ, VT, Expand);
276 setOperationAction(ISD::CTLZ, VT, Expand);
277 }
278
279 if (!Subtarget->hasBCNT(32))
280 setOperationAction(ISD::CTPOP, MVT::i32, Expand);
281
282 if (!Subtarget->hasBCNT(64))
283 setOperationAction(ISD::CTPOP, MVT::i64, Expand);
284
285 // The hardware supports 32-bit ROTR, but not ROTL.
286 setOperationAction(ISD::ROTL, MVT::i32, Expand);
287 setOperationAction(ISD::ROTL, MVT::i64, Expand);
288 setOperationAction(ISD::ROTR, MVT::i64, Expand);
289
290 setOperationAction(ISD::MUL, MVT::i64, Expand);
291 setOperationAction(ISD::MULHU, MVT::i64, Expand);
292 setOperationAction(ISD::MULHS, MVT::i64, Expand);
293 setOperationAction(ISD::UDIV, MVT::i32, Expand);
294 setOperationAction(ISD::UREM, MVT::i32, Expand);
295 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
296 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
297 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
298 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
299 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
300
301 if (!Subtarget->hasFFBH())
302 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
303
304 if (!Subtarget->hasFFBL())
305 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
306
307 static const MVT::SimpleValueType VectorIntTypes[] = {
308 MVT::v2i32, MVT::v4i32
309 };
310
311 for (MVT VT : VectorIntTypes) {
312 // Expand the following operations for the current type by default.
313 setOperationAction(ISD::ADD, VT, Expand);
314 setOperationAction(ISD::AND, VT, Expand);
315 setOperationAction(ISD::FP_TO_SINT, VT, Expand);
316 setOperationAction(ISD::FP_TO_UINT, VT, Expand);
317 setOperationAction(ISD::MUL, VT, Expand);
318 setOperationAction(ISD::OR, VT, Expand);
319 setOperationAction(ISD::SHL, VT, Expand);
320 setOperationAction(ISD::SRA, VT, Expand);
321 setOperationAction(ISD::SRL, VT, Expand);
322 setOperationAction(ISD::ROTL, VT, Expand);
323 setOperationAction(ISD::ROTR, VT, Expand);
324 setOperationAction(ISD::SUB, VT, Expand);
325 setOperationAction(ISD::SINT_TO_FP, VT, Expand);
326 setOperationAction(ISD::UINT_TO_FP, VT, Expand);
327 setOperationAction(ISD::SDIV, VT, Expand);
328 setOperationAction(ISD::UDIV, VT, Expand);
329 setOperationAction(ISD::SREM, VT, Expand);
330 setOperationAction(ISD::UREM, VT, Expand);
331 setOperationAction(ISD::SMUL_LOHI, VT, Expand);
332 setOperationAction(ISD::UMUL_LOHI, VT, Expand);
333 setOperationAction(ISD::SDIVREM, VT, Custom);
334 setOperationAction(ISD::UDIVREM, VT, Custom);
335 setOperationAction(ISD::ADDC, VT, Expand);
336 setOperationAction(ISD::SUBC, VT, Expand);
337 setOperationAction(ISD::ADDE, VT, Expand);
338 setOperationAction(ISD::SUBE, VT, Expand);
339 setOperationAction(ISD::SELECT, VT, Expand);
340 setOperationAction(ISD::VSELECT, VT, Expand);
341 setOperationAction(ISD::SELECT_CC, VT, Expand);
342 setOperationAction(ISD::XOR, VT, Expand);
343 setOperationAction(ISD::BSWAP, VT, Expand);
344 setOperationAction(ISD::CTPOP, VT, Expand);
345 setOperationAction(ISD::CTTZ, VT, Expand);
346 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
347 setOperationAction(ISD::CTLZ, VT, Expand);
348 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
349 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
350 }
351
352 static const MVT::SimpleValueType FloatVectorTypes[] = {
353 MVT::v2f32, MVT::v4f32
354 };
355
356 for (MVT VT : FloatVectorTypes) {
357 setOperationAction(ISD::FABS, VT, Expand);
358 setOperationAction(ISD::FMINNUM, VT, Expand);
359 setOperationAction(ISD::FMAXNUM, VT, Expand);
360 setOperationAction(ISD::FADD, VT, Expand);
361 setOperationAction(ISD::FCEIL, VT, Expand);
362 setOperationAction(ISD::FCOS, VT, Expand);
363 setOperationAction(ISD::FDIV, VT, Expand);
364 setOperationAction(ISD::FEXP2, VT, Expand);
365 setOperationAction(ISD::FLOG2, VT, Expand);
366 setOperationAction(ISD::FREM, VT, Expand);
367 setOperationAction(ISD::FPOW, VT, Expand);
368 setOperationAction(ISD::FFLOOR, VT, Expand);
369 setOperationAction(ISD::FTRUNC, VT, Expand);
370 setOperationAction(ISD::FMUL, VT, Expand);
371 setOperationAction(ISD::FMA, VT, Expand);
372 setOperationAction(ISD::FRINT, VT, Expand);
373 setOperationAction(ISD::FNEARBYINT, VT, Expand);
374 setOperationAction(ISD::FSQRT, VT, Expand);
375 setOperationAction(ISD::FSIN, VT, Expand);
376 setOperationAction(ISD::FSUB, VT, Expand);
377 setOperationAction(ISD::FNEG, VT, Expand);
378 setOperationAction(ISD::SELECT, VT, Expand);
379 setOperationAction(ISD::VSELECT, VT, Expand);
380 setOperationAction(ISD::SELECT_CC, VT, Expand);
381 setOperationAction(ISD::FCOPYSIGN, VT, Expand);
382 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
383 }
384
385 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom);
386 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom);
387
388 setTargetDAGCombine(ISD::MUL);
389 setTargetDAGCombine(ISD::SELECT);
390 setTargetDAGCombine(ISD::SELECT_CC);
391 setTargetDAGCombine(ISD::STORE);
392
393 setBooleanContents(ZeroOrNegativeOneBooleanContent);
394 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
395
396 setSchedulingPreference(Sched::RegPressure);
397 setJumpIsExpensive(true);
398
399 // SI at least has hardware support for floating point exceptions, but no way
400 // of using or handling them is implemented. They are also optional in OpenCL
401 // (Section 7.3)
402 setHasFloatingPointExceptions(false);
403
404 setSelectIsExpensive(false);
405 PredictableSelectIsExpensive = false;
406
407 // There are no integer divide instructions, and these expand to a pretty
408 // large sequence of instructions.
409 setIntDivIsCheap(false);
410 setPow2SDivIsCheap(false);
411 setFsqrtIsCheap(true);
412
413 // FIXME: Need to really handle these.
414 MaxStoresPerMemcpy = 4096;
415 MaxStoresPerMemmove = 4096;
416 MaxStoresPerMemset = 4096;
417 }
418
419 //===----------------------------------------------------------------------===//
420 // Target Information
421 //===----------------------------------------------------------------------===//
422
423 MVT AMDGPUTargetLowering::getVectorIdxTy() const {
424 return MVT::i32;
425 }
426
427 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const {
428 return true;
429 }
430
431 // The backend supports 32 and 64 bit floating point immediates.
432 // FIXME: Why are we reporting vectors of FP immediates as legal?
433 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
434 EVT ScalarVT = VT.getScalarType();
435 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64);
436 }
437
438 // We don't want to shrink f64 / f32 constants.
439 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const {
440 EVT ScalarVT = VT.getScalarType();
441 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64);
442 }
443
444 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N,
445 ISD::LoadExtType,
446 EVT NewVT) const {
447
448 unsigned NewSize = NewVT.getStoreSizeInBits();
449
450 // If we are reducing to a 32-bit load, this is always better.
451 if (NewSize == 32)
452 return true;
453
454 EVT OldVT = N->getValueType(0);
455 unsigned OldSize = OldVT.getStoreSizeInBits();
456
457 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar
458 // extloads, so doing one requires using a buffer_load. In cases where we
459 // still couldn't use a scalar load, using the wider load shouldn't really
460 // hurt anything.
461
462 // If the old size already had to be an extload, there's no harm in continuing
463 // to reduce the width.
464 return (OldSize < 32);
465 }
466
467 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy,
468 EVT CastTy) const {
469 if (LoadTy.getSizeInBits() != CastTy.getSizeInBits())
470 return true;
471
472 unsigned LScalarSize = LoadTy.getScalarType().getSizeInBits();
473 unsigned CastScalarSize = CastTy.getScalarType().getSizeInBits();
474
475 return ((LScalarSize <= CastScalarSize) ||
476 (CastScalarSize >= 32) ||
477 (LScalarSize < 32));
478 }
479
480 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also
481 // profitable with the expansion for 64-bit since it's generally good to
482 // speculate things.
483 // FIXME: These should really have the size as a parameter.
484 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const {
485 return true;
486 }
487
488 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const {
489 return true;
490 }
491
492 //===---------------------------------------------------------------------===//
493 // Target Properties
494 //===---------------------------------------------------------------------===//
495
496 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const {
497 assert(VT.isFloatingPoint());
498 return VT == MVT::f32 || VT == MVT::f64;
499 }
500
501 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const {
502 assert(VT.isFloatingPoint());
503 return VT == MVT::f32 || VT == MVT::f64;
504 }
505
506 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const {
507 // Truncate is just accessing a subregister.
508 return Dest.bitsLT(Source) && (Dest.getSizeInBits() % 32 == 0);
509 }
510
511 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const {
512 // Truncate is just accessing a subregister.
513 return Dest->getPrimitiveSizeInBits() < Source->getPrimitiveSizeInBits() &&
514 (Dest->getPrimitiveSizeInBits() % 32 == 0);
515 }
516
517 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const {
518 const DataLayout *DL = getDataLayout();
519 unsigned SrcSize = DL->getTypeSizeInBits(Src->getScalarType());
520 unsigned DestSize = DL->getTypeSizeInBits(Dest->getScalarType());
521
522 return SrcSize == 32 && DestSize == 64;
523 }
524
525 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const {
526 // Any register load of a 64-bit value really requires 2 32-bit moves. For all
527 // practical purposes, the extra mov 0 to load a 64-bit is free. As used,
528 // this will enable reducing 64-bit operations the 32-bit, which is always
529 // good.
530 return Src == MVT::i32 && Dest == MVT::i64;
531 }
532
533 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
534 return isZExtFree(Val.getValueType(), VT2);
535 }
536
537 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
538 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a
539 // limited number of native 64-bit operations. Shrinking an operation to fit
540 // in a single 32-bit register should always be helpful. As currently used,
541 // this is much less general than the name suggests, and is only used in
542 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
543 // not profitable, and may actually be harmful.
544 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32;
545 }
546
547 //===---------------------------------------------------------------------===//
548 // TargetLowering Callbacks
549 //===---------------------------------------------------------------------===//
550
551 void AMDGPUTargetLowering::AnalyzeFormalArguments(CCState &State,
552 const SmallVectorImpl<ISD::InputArg> &Ins) const {
553
554 State.AnalyzeFormalArguments(Ins, CC_AMDGPU);
555 }
556
557 SDValue AMDGPUTargetLowering::LowerReturn(
558 SDValue Chain,
559 CallingConv::ID CallConv,
560 bool isVarArg,
561 const SmallVectorImpl<ISD::OutputArg> &Outs,
562 const SmallVectorImpl<SDValue> &OutVals,
563 SDLoc DL, SelectionDAG &DAG) const {
564 return DAG.getNode(AMDGPUISD::RET_FLAG, DL, MVT::Other, Chain);
565 }
566
567 //===---------------------------------------------------------------------===//
568 // Target specific lowering
569 //===---------------------------------------------------------------------===//
570
571 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI,
572 SmallVectorImpl<SDValue> &InVals) const {
573 SDValue Callee = CLI.Callee;
574 SelectionDAG &DAG = CLI.DAG;
575
576 const Function &Fn = *DAG.getMachineFunction().getFunction();
577
578 StringRef FuncName("<unknown>");
579
580 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee))
581 FuncName = G->getSymbol();
582 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
583 FuncName = G->getGlobal()->getName();
584
585 DiagnosticInfoUnsupported NoCalls(Fn, "call to function " + FuncName);
586 DAG.getContext()->diagnose(NoCalls);
587 return SDValue();
588 }
589
590 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op,
591 SelectionDAG &DAG) const {
592 switch (Op.getOpcode()) {
593 default:
594 Op.getNode()->dump();
595 llvm_unreachable("Custom lowering code for this"
596 "instruction is not implemented yet!");
597 break;
598 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
599 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
600 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
601 case ISD::FrameIndex: return LowerFrameIndex(Op, DAG);
602 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
603 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG);
604 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG);
605 case ISD::FREM: return LowerFREM(Op, DAG);
606 case ISD::FCEIL: return LowerFCEIL(Op, DAG);
607 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG);
608 case ISD::FRINT: return LowerFRINT(Op, DAG);
609 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG);
610 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG);
611 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
612 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
613 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
614 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
615 }
616 return Op;
617 }
618
619 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N,
620 SmallVectorImpl<SDValue> &Results,
621 SelectionDAG &DAG) const {
622 switch (N->getOpcode()) {
623 case ISD::SIGN_EXTEND_INREG:
624 // Different parts of legalization seem to interpret which type of
625 // sign_extend_inreg is the one to check for custom lowering. The extended
626 // from type is what really matters, but some places check for custom
627 // lowering of the result type. This results in trying to use
628 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
629 // nothing here and let the illegal result integer be handled normally.
630 return;
631 case ISD::LOAD: {
632 SDNode *Node = LowerLOAD(SDValue(N, 0), DAG).getNode();
633 if (!Node)
634 return;
635
636 Results.push_back(SDValue(Node, 0));
637 Results.push_back(SDValue(Node, 1));
638 // XXX: LLVM seems not to replace Chain Value inside CustomWidenLowerNode
639 // function
640 DAG.ReplaceAllUsesOfValueWith(SDValue(N,1), SDValue(Node, 1));
641 return;
642 }
643 case ISD::STORE: {
644 SDValue Lowered = LowerSTORE(SDValue(N, 0), DAG);
645 if (Lowered.getNode())
646 Results.push_back(Lowered);
647 return;
648 }
649 default:
650 return;
651 }
652 }
653
654 // FIXME: This implements accesses to initialized globals in the constant
655 // address space by copying them to private and accessing that. It does not
656 // properly handle illegal types or vectors. The private vector loads are not
657 // scalarized, and the illegal scalars hit an assertion. This technique will not
658 // work well with large initializers, and this should eventually be
659 // removed. Initialized globals should be placed into a data section that the
660 // runtime will load into a buffer before the kernel is executed. Uses of the
661 // global need to be replaced with a pointer loaded from an implicit kernel
662 // argument into this buffer holding the copy of the data, which will remove the
663 // need for any of this.
664 SDValue AMDGPUTargetLowering::LowerConstantInitializer(const Constant* Init,
665 const GlobalValue *GV,
666 const SDValue &InitPtr,
667 SDValue Chain,
668 SelectionDAG &DAG) const {
669 const DataLayout *TD = getTargetMachine().getSubtargetImpl()->getDataLayout();
670 SDLoc DL(InitPtr);
671 Type *InitTy = Init->getType();
672
673 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Init)) {
674 EVT VT = EVT::getEVT(InitTy);
675 PointerType *PtrTy = PointerType::get(InitTy, AMDGPUAS::PRIVATE_ADDRESS);
676 return DAG.getStore(Chain, DL, DAG.getConstant(*CI, VT), InitPtr,
677 MachinePointerInfo(UndefValue::get(PtrTy)), false, false,
678 TD->getPrefTypeAlignment(InitTy));
679 }
680
681 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(Init)) {
682 EVT VT = EVT::getEVT(CFP->getType());
683 PointerType *PtrTy = PointerType::get(CFP->getType(), 0);
684 return DAG.getStore(Chain, DL, DAG.getConstantFP(*CFP, VT), InitPtr,
685 MachinePointerInfo(UndefValue::get(PtrTy)), false, false,
686 TD->getPrefTypeAlignment(CFP->getType()));
687 }
688
689 if (StructType *ST = dyn_cast<StructType>(InitTy)) {
690 const StructLayout *SL = TD->getStructLayout(ST);
691
692 EVT PtrVT = InitPtr.getValueType();
693 SmallVector<SDValue, 8> Chains;
694
695 for (unsigned I = 0, N = ST->getNumElements(); I != N; ++I) {
696 SDValue Offset = DAG.getConstant(SL->getElementOffset(I), PtrVT);
697 SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset);
698
699 Constant *Elt = Init->getAggregateElement(I);
700 Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG));
701 }
702
703 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
704 }
705
706 if (SequentialType *SeqTy = dyn_cast<SequentialType>(InitTy)) {
707 EVT PtrVT = InitPtr.getValueType();
708
709 unsigned NumElements;
710 if (ArrayType *AT = dyn_cast<ArrayType>(SeqTy))
711 NumElements = AT->getNumElements();
712 else if (VectorType *VT = dyn_cast<VectorType>(SeqTy))
713 NumElements = VT->getNumElements();
714 else
715 llvm_unreachable("Unexpected type");
716
717 unsigned EltSize = TD->getTypeAllocSize(SeqTy->getElementType());
718 SmallVector<SDValue, 8> Chains;
719 for (unsigned i = 0; i < NumElements; ++i) {
720 SDValue Offset = DAG.getConstant(i * EltSize, PtrVT);
721 SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset);
722
723 Constant *Elt = Init->getAggregateElement(i);
724 Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG));
725 }
726
727 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
728 }
729
730 if (isa<UndefValue>(Init)) {
731 EVT VT = EVT::getEVT(InitTy);
732 PointerType *PtrTy = PointerType::get(InitTy, AMDGPUAS::PRIVATE_ADDRESS);
733 return DAG.getStore(Chain, DL, DAG.getUNDEF(VT), InitPtr,
734 MachinePointerInfo(UndefValue::get(PtrTy)), false, false,
735 TD->getPrefTypeAlignment(InitTy));
736 }
737
738 Init->dump();
739 llvm_unreachable("Unhandled constant initializer");
740 }
741
742 static bool hasDefinedInitializer(const GlobalValue *GV) {
743 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
744 if (!GVar || !GVar->hasInitializer())
745 return false;
746
747 if (isa<UndefValue>(GVar->getInitializer()))
748 return false;
749
750 return true;
751 }
752
753 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI,
754 SDValue Op,
755 SelectionDAG &DAG) const {
756
757 const DataLayout *TD = getTargetMachine().getSubtargetImpl()->getDataLayout();
758 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
759 const GlobalValue *GV = G->getGlobal();
760
761 switch (G->getAddressSpace()) {
762 case AMDGPUAS::LOCAL_ADDRESS: {
763 // XXX: What does the value of G->getOffset() mean?
764 assert(G->getOffset() == 0 &&
765 "Do not know what to do with an non-zero offset");
766
767 // TODO: We could emit code to handle the initialization somewhere.
768 if (hasDefinedInitializer(GV))
769 break;
770
771 unsigned Offset;
772 if (MFI->LocalMemoryObjects.count(GV) == 0) {
773 uint64_t Size = TD->getTypeAllocSize(GV->getType()->getElementType());
774 Offset = MFI->LDSSize;
775 MFI->LocalMemoryObjects[GV] = Offset;
776 // XXX: Account for alignment?
777 MFI->LDSSize += Size;
778 } else {
779 Offset = MFI->LocalMemoryObjects[GV];
780 }
781
782 return DAG.getConstant(Offset, getPointerTy(AMDGPUAS::LOCAL_ADDRESS));
783 }
784 case AMDGPUAS::CONSTANT_ADDRESS: {
785 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
786 Type *EltType = GV->getType()->getElementType();
787 unsigned Size = TD->getTypeAllocSize(EltType);
788 unsigned Alignment = TD->getPrefTypeAlignment(EltType);
789
790 MVT PrivPtrVT = getPointerTy(AMDGPUAS::PRIVATE_ADDRESS);
791 MVT ConstPtrVT = getPointerTy(AMDGPUAS::CONSTANT_ADDRESS);
792
793 int FI = FrameInfo->CreateStackObject(Size, Alignment, false);
794 SDValue InitPtr = DAG.getFrameIndex(FI, PrivPtrVT);
795
796 const GlobalVariable *Var = cast<GlobalVariable>(GV);
797 if (!Var->hasInitializer()) {
798 // This has no use, but bugpoint will hit it.
799 return DAG.getZExtOrTrunc(InitPtr, SDLoc(Op), ConstPtrVT);
800 }
801
802 const Constant *Init = Var->getInitializer();
803 SmallVector<SDNode*, 8> WorkList;
804
805 for (SDNode::use_iterator I = DAG.getEntryNode()->use_begin(),
806 E = DAG.getEntryNode()->use_end(); I != E; ++I) {
807 if (I->getOpcode() != AMDGPUISD::REGISTER_LOAD && I->getOpcode() != ISD::LOAD)
808 continue;
809 WorkList.push_back(*I);
810 }
811 SDValue Chain = LowerConstantInitializer(Init, GV, InitPtr, DAG.getEntryNode(), DAG);
812 for (SmallVector<SDNode*, 8>::iterator I = WorkList.begin(),
813 E = WorkList.end(); I != E; ++I) {
814 SmallVector<SDValue, 8> Ops;
815 Ops.push_back(Chain);
816 for (unsigned i = 1; i < (*I)->getNumOperands(); ++i) {
817 Ops.push_back((*I)->getOperand(i));
818 }
819 DAG.UpdateNodeOperands(*I, Ops);
820 }
821 return DAG.getZExtOrTrunc(InitPtr, SDLoc(Op), ConstPtrVT);
822 }
823 }
824
825 const Function &Fn = *DAG.getMachineFunction().getFunction();
826 DiagnosticInfoUnsupported BadInit(Fn,
827 "initializer for address space");
828 DAG.getContext()->diagnose(BadInit);
829 return SDValue();
830 }
831
832 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
833 SelectionDAG &DAG) const {
834 SmallVector<SDValue, 8> Args;
835 SDValue A = Op.getOperand(0);
836 SDValue B = Op.getOperand(1);
837
838 DAG.ExtractVectorElements(A, Args);
839 DAG.ExtractVectorElements(B, Args);
840
841 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Op), Op.getValueType(), Args);
842 }
843
844 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
845 SelectionDAG &DAG) const {
846
847 SmallVector<SDValue, 8> Args;
848 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
849 EVT VT = Op.getValueType();
850 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start,
851 VT.getVectorNumElements());
852
853 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Op), Op.getValueType(), Args);
854 }
855
856 SDValue AMDGPUTargetLowering::LowerFrameIndex(SDValue Op,
857 SelectionDAG &DAG) const {
858
859 MachineFunction &MF = DAG.getMachineFunction();
860 const AMDGPUFrameLowering *TFL = static_cast<const AMDGPUFrameLowering *>(
861 getTargetMachine().getSubtargetImpl()->getFrameLowering());
862
863 FrameIndexSDNode *FIN = cast<FrameIndexSDNode>(Op);
864
865 unsigned FrameIndex = FIN->getIndex();
866 unsigned Offset = TFL->getFrameIndexOffset(MF, FrameIndex);
867 return DAG.getConstant(Offset * 4 * TFL->getStackWidth(MF),
868 Op.getValueType());
869 }
870
871 SDValue AMDGPUTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
872 SelectionDAG &DAG) const {
873 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
874 SDLoc DL(Op);
875 EVT VT = Op.getValueType();
876
877 switch (IntrinsicID) {
878 default: return Op;
879 case AMDGPUIntrinsic::AMDGPU_abs:
880 case AMDGPUIntrinsic::AMDIL_abs: // Legacy name.
881 return LowerIntrinsicIABS(Op, DAG);
882 case AMDGPUIntrinsic::AMDGPU_lrp:
883 return LowerIntrinsicLRP(Op, DAG);
884 case AMDGPUIntrinsic::AMDGPU_fract:
885 case AMDGPUIntrinsic::AMDIL_fraction: // Legacy name.
886 return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1));
887
888 case AMDGPUIntrinsic::AMDGPU_clamp:
889 case AMDGPUIntrinsic::AMDIL_clamp: // Legacy name.
890 return DAG.getNode(AMDGPUISD::CLAMP, DL, VT,
891 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
892
893 case Intrinsic::AMDGPU_div_scale: {
894 // 3rd parameter required to be a constant.
895 const ConstantSDNode *Param = dyn_cast<ConstantSDNode>(Op.getOperand(3));
896 if (!Param)
897 return DAG.getUNDEF(VT);
898
899 // Translate to the operands expected by the machine instruction. The
900 // first parameter must be the same as the first instruction.
901 SDValue Numerator = Op.getOperand(1);
902 SDValue Denominator = Op.getOperand(2);
903
904 // Note this order is opposite of the machine instruction's operations,
905 // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The
906 // intrinsic has the numerator as the first operand to match a normal
907 // division operation.
908
909 SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator;
910
911 return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0,
912 Denominator, Numerator);
913 }
914
915 case Intrinsic::AMDGPU_div_fmas:
916 // FIXME: Dropping bool parameter. Work is needed to support the implicit
917 // read from VCC.
918 return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT,
919 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
920
921 case Intrinsic::AMDGPU_div_fixup:
922 return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT,
923 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
924
925 case Intrinsic::AMDGPU_trig_preop:
926 return DAG.getNode(AMDGPUISD::TRIG_PREOP, DL, VT,
927 Op.getOperand(1), Op.getOperand(2));
928
929 case Intrinsic::AMDGPU_rcp:
930 return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1));
931
932 case Intrinsic::AMDGPU_rsq:
933 return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
934
935 case AMDGPUIntrinsic::AMDGPU_legacy_rsq:
936 return DAG.getNode(AMDGPUISD::RSQ_LEGACY, DL, VT, Op.getOperand(1));
937
938 case Intrinsic::AMDGPU_rsq_clamped:
939 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
940 Type *Type = VT.getTypeForEVT(*DAG.getContext());
941 APFloat Max = APFloat::getLargest(Type->getFltSemantics());
942 APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true);
943
944 SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
945 SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq,
946 DAG.getConstantFP(Max, VT));
947 return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp,
948 DAG.getConstantFP(Min, VT));
949 } else {
950 return DAG.getNode(AMDGPUISD::RSQ_CLAMPED, DL, VT, Op.getOperand(1));
951 }
952
953 case Intrinsic::AMDGPU_ldexp:
954 return DAG.getNode(AMDGPUISD::LDEXP, DL, VT, Op.getOperand(1),
955 Op.getOperand(2));
956
957 case AMDGPUIntrinsic::AMDGPU_imax:
958 return DAG.getNode(AMDGPUISD::SMAX, DL, VT, Op.getOperand(1),
959 Op.getOperand(2));
960 case AMDGPUIntrinsic::AMDGPU_umax:
961 return DAG.getNode(AMDGPUISD::UMAX, DL, VT, Op.getOperand(1),
962 Op.getOperand(2));
963 case AMDGPUIntrinsic::AMDGPU_imin:
964 return DAG.getNode(AMDGPUISD::SMIN, DL, VT, Op.getOperand(1),
965 Op.getOperand(2));
966 case AMDGPUIntrinsic::AMDGPU_umin:
967 return DAG.getNode(AMDGPUISD::UMIN, DL, VT, Op.getOperand(1),
968 Op.getOperand(2));
969
970 case AMDGPUIntrinsic::AMDGPU_umul24:
971 return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT,
972 Op.getOperand(1), Op.getOperand(2));
973
974 case AMDGPUIntrinsic::AMDGPU_imul24:
975 return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT,
976 Op.getOperand(1), Op.getOperand(2));
977
978 case AMDGPUIntrinsic::AMDGPU_umad24:
979 return DAG.getNode(AMDGPUISD::MAD_U24, DL, VT,
980 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
981
982 case AMDGPUIntrinsic::AMDGPU_imad24:
983 return DAG.getNode(AMDGPUISD::MAD_I24, DL, VT,
984 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
985
986 case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte0:
987 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Op.getOperand(1));
988
989 case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte1:
990 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE1, DL, VT, Op.getOperand(1));
991
992 case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte2:
993 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE2, DL, VT, Op.getOperand(1));
994
995 case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte3:
996 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE3, DL, VT, Op.getOperand(1));
997
998 case AMDGPUIntrinsic::AMDGPU_bfe_i32:
999 return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
1000 Op.getOperand(1),
1001 Op.getOperand(2),
1002 Op.getOperand(3));
1003
1004 case AMDGPUIntrinsic::AMDGPU_bfe_u32:
1005 return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
1006 Op.getOperand(1),
1007 Op.getOperand(2),
1008 Op.getOperand(3));
1009
1010 case AMDGPUIntrinsic::AMDGPU_bfi:
1011 return DAG.getNode(AMDGPUISD::BFI, DL, VT,
1012 Op.getOperand(1),
1013 Op.getOperand(2),
1014 Op.getOperand(3));
1015
1016 case AMDGPUIntrinsic::AMDGPU_bfm:
1017 return DAG.getNode(AMDGPUISD::BFM, DL, VT,
1018 Op.getOperand(1),
1019 Op.getOperand(2));
1020
1021 case AMDGPUIntrinsic::AMDGPU_brev:
1022 return DAG.getNode(AMDGPUISD::BREV, DL, VT, Op.getOperand(1));
1023
1024 case Intrinsic::AMDGPU_class:
1025 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT,
1026 Op.getOperand(1), Op.getOperand(2));
1027
1028 case AMDGPUIntrinsic::AMDIL_exp: // Legacy name.
1029 return DAG.getNode(ISD::FEXP2, DL, VT, Op.getOperand(1));
1030
1031 case AMDGPUIntrinsic::AMDIL_round_nearest: // Legacy name.
1032 return DAG.getNode(ISD::FRINT, DL, VT, Op.getOperand(1));
1033 case AMDGPUIntrinsic::AMDGPU_trunc: // Legacy name.
1034 return DAG.getNode(ISD::FTRUNC, DL, VT, Op.getOperand(1));
1035 }
1036 }
1037
1038 ///IABS(a) = SMAX(sub(0, a), a)
1039 SDValue AMDGPUTargetLowering::LowerIntrinsicIABS(SDValue Op,
1040 SelectionDAG &DAG) const {
1041 SDLoc DL(Op);
1042 EVT VT = Op.getValueType();
1043 SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, VT),
1044 Op.getOperand(1));
1045
1046 return DAG.getNode(AMDGPUISD::SMAX, DL, VT, Neg, Op.getOperand(1));
1047 }
1048
1049 /// Linear Interpolation
1050 /// LRP(a, b, c) = muladd(a, b, (1 - a) * c)
1051 SDValue AMDGPUTargetLowering::LowerIntrinsicLRP(SDValue Op,
1052 SelectionDAG &DAG) const {
1053 SDLoc DL(Op);
1054 EVT VT = Op.getValueType();
1055 SDValue OneSubA = DAG.getNode(ISD::FSUB, DL, VT,
1056 DAG.getConstantFP(1.0f, MVT::f32),
1057 Op.getOperand(1));
1058 SDValue OneSubAC = DAG.getNode(ISD::FMUL, DL, VT, OneSubA,
1059 Op.getOperand(3));
1060 return DAG.getNode(ISD::FADD, DL, VT,
1061 DAG.getNode(ISD::FMUL, DL, VT, Op.getOperand(1), Op.getOperand(2)),
1062 OneSubAC);
1063 }
1064
1065 /// \brief Generate Min/Max node
1066 SDValue AMDGPUTargetLowering::CombineFMinMaxLegacy(SDLoc DL,
1067 EVT VT,
1068 SDValue LHS,
1069 SDValue RHS,
1070 SDValue True,
1071 SDValue False,
1072 SDValue CC,
1073 DAGCombinerInfo &DCI) const {
1074 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
1075 return SDValue();
1076
1077 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
1078 return SDValue();
1079
1080 SelectionDAG &DAG = DCI.DAG;
1081 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
1082 switch (CCOpcode) {
1083 case ISD::SETOEQ:
1084 case ISD::SETONE:
1085 case ISD::SETUNE:
1086 case ISD::SETNE:
1087 case ISD::SETUEQ:
1088 case ISD::SETEQ:
1089 case ISD::SETFALSE:
1090 case ISD::SETFALSE2:
1091 case ISD::SETTRUE:
1092 case ISD::SETTRUE2:
1093 case ISD::SETUO:
1094 case ISD::SETO:
1095 break;
1096 case ISD::SETULE:
1097 case ISD::SETULT: {
1098 if (LHS == True)
1099 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1100 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1101 }
1102 case ISD::SETOLE:
1103 case ISD::SETOLT:
1104 case ISD::SETLE:
1105 case ISD::SETLT: {
1106 // Ordered. Assume ordered for undefined.
1107
1108 // Only do this after legalization to avoid interfering with other combines
1109 // which might occur.
1110 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1111 !DCI.isCalledByLegalizer())
1112 return SDValue();
1113
1114 // We need to permute the operands to get the correct NaN behavior. The
1115 // selected operand is the second one based on the failing compare with NaN,
1116 // so permute it based on the compare type the hardware uses.
1117 if (LHS == True)
1118 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1119 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1120 }
1121 case ISD::SETUGE:
1122 case ISD::SETUGT: {
1123 if (LHS == True)
1124 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1125 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1126 }
1127 case ISD::SETGT:
1128 case ISD::SETGE:
1129 case ISD::SETOGE:
1130 case ISD::SETOGT: {
1131 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1132 !DCI.isCalledByLegalizer())
1133 return SDValue();
1134
1135 if (LHS == True)
1136 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1137 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1138 }
1139 case ISD::SETCC_INVALID:
1140 llvm_unreachable("Invalid setcc condcode!");
1141 }
1142 return SDValue();
1143 }
1144
1145 /// \brief Generate Min/Max node
1146 SDValue AMDGPUTargetLowering::CombineIMinMax(SDLoc DL,
1147 EVT VT,
1148 SDValue LHS,
1149 SDValue RHS,
1150 SDValue True,
1151 SDValue False,
1152 SDValue CC,
1153 SelectionDAG &DAG) const {
1154 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
1155 return SDValue();
1156
1157 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
1158 switch (CCOpcode) {
1159 case ISD::SETULE:
1160 case ISD::SETULT: {
1161 unsigned Opc = (LHS == True) ? AMDGPUISD::UMIN : AMDGPUISD::UMAX;
1162 return DAG.getNode(Opc, DL, VT, LHS, RHS);
1163 }
1164 case ISD::SETLE:
1165 case ISD::SETLT: {
1166 unsigned Opc = (LHS == True) ? AMDGPUISD::SMIN : AMDGPUISD::SMAX;
1167 return DAG.getNode(Opc, DL, VT, LHS, RHS);
1168 }
1169 case ISD::SETGT:
1170 case ISD::SETGE: {
1171 unsigned Opc = (LHS == True) ? AMDGPUISD::SMAX : AMDGPUISD::SMIN;
1172 return DAG.getNode(Opc, DL, VT, LHS, RHS);
1173 }
1174 case ISD::SETUGE:
1175 case ISD::SETUGT: {
1176 unsigned Opc = (LHS == True) ? AMDGPUISD::UMAX : AMDGPUISD::UMIN;
1177 return DAG.getNode(Opc, DL, VT, LHS, RHS);
1178 }
1179 default:
1180 return SDValue();
1181 }
1182 }
1183
1184 SDValue AMDGPUTargetLowering::ScalarizeVectorLoad(const SDValue Op,
1185 SelectionDAG &DAG) const {
1186 LoadSDNode *Load = cast<LoadSDNode>(Op);
1187 EVT MemVT = Load->getMemoryVT();
1188 EVT MemEltVT = MemVT.getVectorElementType();
1189
1190 EVT LoadVT = Op.getValueType();
1191 EVT EltVT = LoadVT.getVectorElementType();
1192 EVT PtrVT = Load->getBasePtr().getValueType();
1193
1194 unsigned NumElts = Load->getMemoryVT().getVectorNumElements();
1195 SmallVector<SDValue, 8> Loads;
1196 SmallVector<SDValue, 8> Chains;
1197
1198 SDLoc SL(Op);
1199 unsigned MemEltSize = MemEltVT.getStoreSize();
1200 MachinePointerInfo SrcValue(Load->getMemOperand()->getValue());
1201
1202 for (unsigned i = 0; i < NumElts; ++i) {
1203 SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, Load->getBasePtr(),
1204 DAG.getConstant(i * MemEltSize, PtrVT));
1205
1206 SDValue NewLoad
1207 = DAG.getExtLoad(Load->getExtensionType(), SL, EltVT,
1208 Load->getChain(), Ptr,
1209 SrcValue.getWithOffset(i * MemEltSize),
1210 MemEltVT, Load->isVolatile(), Load->isNonTemporal(),
1211 Load->isInvariant(), Load->getAlignment());
1212 Loads.push_back(NewLoad.getValue(0));
1213 Chains.push_back(NewLoad.getValue(1));
1214 }
1215
1216 SDValue Ops[] = {
1217 DAG.getNode(ISD::BUILD_VECTOR, SL, LoadVT, Loads),
1218 DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Chains)
1219 };
1220
1221 return DAG.getMergeValues(Ops, SL);
1222 }
1223
1224 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op,
1225 SelectionDAG &DAG) const {
1226 EVT VT = Op.getValueType();
1227
1228 // If this is a 2 element vector, we really want to scalarize and not create
1229 // weird 1 element vectors.
1230 if (VT.getVectorNumElements() == 2)
1231 return ScalarizeVectorLoad(Op, DAG);
1232
1233 LoadSDNode *Load = cast<LoadSDNode>(Op);
1234 SDValue BasePtr = Load->getBasePtr();
1235 EVT PtrVT = BasePtr.getValueType();
1236 EVT MemVT = Load->getMemoryVT();
1237 SDLoc SL(Op);
1238 MachinePointerInfo SrcValue(Load->getMemOperand()->getValue());
1239
1240 EVT LoVT, HiVT;
1241 EVT LoMemVT, HiMemVT;
1242 SDValue Lo, Hi;
1243
1244 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
1245 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
1246 std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT);
1247 SDValue LoLoad
1248 = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT,
1249 Load->getChain(), BasePtr,
1250 SrcValue,
1251 LoMemVT, Load->isVolatile(), Load->isNonTemporal(),
1252 Load->isInvariant(), Load->getAlignment());
1253
1254 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
1255 DAG.getConstant(LoMemVT.getStoreSize(), PtrVT));
1256
1257 SDValue HiLoad
1258 = DAG.getExtLoad(Load->getExtensionType(), SL, HiVT,
1259 Load->getChain(), HiPtr,
1260 SrcValue.getWithOffset(LoMemVT.getStoreSize()),
1261 HiMemVT, Load->isVolatile(), Load->isNonTemporal(),
1262 Load->isInvariant(), Load->getAlignment());
1263
1264 SDValue Ops[] = {
1265 DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad),
1266 DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
1267 LoLoad.getValue(1), HiLoad.getValue(1))
1268 };
1269
1270 return DAG.getMergeValues(Ops, SL);
1271 }
1272
1273 SDValue AMDGPUTargetLowering::MergeVectorStore(const SDValue &Op,
1274 SelectionDAG &DAG) const {
1275 StoreSDNode *Store = cast<StoreSDNode>(Op);
1276 EVT MemVT = Store->getMemoryVT();
1277 unsigned MemBits = MemVT.getSizeInBits();
1278
1279 // Byte stores are really expensive, so if possible, try to pack 32-bit vector
1280 // truncating store into an i32 store.
1281 // XXX: We could also handle optimize other vector bitwidths.
1282 if (!MemVT.isVector() || MemBits > 32) {
1283 return SDValue();
1284 }
1285
1286 SDLoc DL(Op);
1287 SDValue Value = Store->getValue();
1288 EVT VT = Value.getValueType();
1289 EVT ElemVT = VT.getVectorElementType();
1290 SDValue Ptr = Store->getBasePtr();
1291 EVT MemEltVT = MemVT.getVectorElementType();
1292 unsigned MemEltBits = MemEltVT.getSizeInBits();
1293 unsigned MemNumElements = MemVT.getVectorNumElements();
1294 unsigned PackedSize = MemVT.getStoreSizeInBits();
1295 SDValue Mask = DAG.getConstant((1 << MemEltBits) - 1, MVT::i32);
1296
1297 assert(Value.getValueType().getScalarSizeInBits() >= 32);
1298
1299 SDValue PackedValue;
1300 for (unsigned i = 0; i < MemNumElements; ++i) {
1301 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ElemVT, Value,
1302 DAG.getConstant(i, MVT::i32));
1303 Elt = DAG.getZExtOrTrunc(Elt, DL, MVT::i32);
1304 Elt = DAG.getNode(ISD::AND, DL, MVT::i32, Elt, Mask); // getZeroExtendInReg
1305
1306 SDValue Shift = DAG.getConstant(MemEltBits * i, MVT::i32);
1307 Elt = DAG.getNode(ISD::SHL, DL, MVT::i32, Elt, Shift);
1308
1309 if (i == 0) {
1310 PackedValue = Elt;
1311 } else {
1312 PackedValue = DAG.getNode(ISD::OR, DL, MVT::i32, PackedValue, Elt);
1313 }
1314 }
1315
1316 if (PackedSize < 32) {
1317 EVT PackedVT = EVT::getIntegerVT(*DAG.getContext(), PackedSize);
1318 return DAG.getTruncStore(Store->getChain(), DL, PackedValue, Ptr,
1319 Store->getMemOperand()->getPointerInfo(),
1320 PackedVT,
1321 Store->isNonTemporal(), Store->isVolatile(),
1322 Store->getAlignment());
1323 }
1324
1325 return DAG.getStore(Store->getChain(), DL, PackedValue, Ptr,
1326 Store->getMemOperand()->getPointerInfo(),
1327 Store->isVolatile(), Store->isNonTemporal(),
1328 Store->getAlignment());
1329 }
1330
1331 SDValue AMDGPUTargetLowering::ScalarizeVectorStore(SDValue Op,
1332 SelectionDAG &DAG) const {
1333 StoreSDNode *Store = cast<StoreSDNode>(Op);
1334 EVT MemEltVT = Store->getMemoryVT().getVectorElementType();
1335 EVT EltVT = Store->getValue().getValueType().getVectorElementType();
1336 EVT PtrVT = Store->getBasePtr().getValueType();
1337 unsigned NumElts = Store->getMemoryVT().getVectorNumElements();
1338 SDLoc SL(Op);
1339
1340 SmallVector<SDValue, 8> Chains;
1341
1342 unsigned EltSize = MemEltVT.getStoreSize();
1343 MachinePointerInfo SrcValue(Store->getMemOperand()->getValue());
1344
1345 for (unsigned i = 0, e = NumElts; i != e; ++i) {
1346 SDValue Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
1347 Store->getValue(),
1348 DAG.getConstant(i, MVT::i32));
1349
1350 SDValue Offset = DAG.getConstant(i * MemEltVT.getStoreSize(), PtrVT);
1351 SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, Store->getBasePtr(), Offset);
1352 SDValue NewStore =
1353 DAG.getTruncStore(Store->getChain(), SL, Val, Ptr,
1354 SrcValue.getWithOffset(i * EltSize),
1355 MemEltVT, Store->isNonTemporal(), Store->isVolatile(),
1356 Store->getAlignment());
1357 Chains.push_back(NewStore);
1358 }
1359
1360 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Chains);
1361 }
1362
1363 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op,
1364 SelectionDAG &DAG) const {
1365 StoreSDNode *Store = cast<StoreSDNode>(Op);
1366 SDValue Val = Store->getValue();
1367 EVT VT = Val.getValueType();
1368
1369 // If this is a 2 element vector, we really want to scalarize and not create
1370 // weird 1 element vectors.
1371 if (VT.getVectorNumElements() == 2)
1372 return ScalarizeVectorStore(Op, DAG);
1373
1374 EVT MemVT = Store->getMemoryVT();
1375 SDValue Chain = Store->getChain();
1376 SDValue BasePtr = Store->getBasePtr();
1377 SDLoc SL(Op);
1378
1379 EVT LoVT, HiVT;
1380 EVT LoMemVT, HiMemVT;
1381 SDValue Lo, Hi;
1382
1383 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
1384 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
1385 std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT);
1386
1387 EVT PtrVT = BasePtr.getValueType();
1388 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
1389 DAG.getConstant(LoMemVT.getStoreSize(), PtrVT));
1390
1391 MachinePointerInfo SrcValue(Store->getMemOperand()->getValue());
1392 SDValue LoStore
1393 = DAG.getTruncStore(Chain, SL, Lo,
1394 BasePtr,
1395 SrcValue,
1396 LoMemVT,
1397 Store->isNonTemporal(),
1398 Store->isVolatile(),
1399 Store->getAlignment());
1400 SDValue HiStore
1401 = DAG.getTruncStore(Chain, SL, Hi,
1402 HiPtr,
1403 SrcValue.getWithOffset(LoMemVT.getStoreSize()),
1404 HiMemVT,
1405 Store->isNonTemporal(),
1406 Store->isVolatile(),
1407 Store->getAlignment());
1408
1409 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore);
1410 }
1411
1412
1413 SDValue AMDGPUTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1414 SDLoc DL(Op);
1415 LoadSDNode *Load = cast<LoadSDNode>(Op);
1416 ISD::LoadExtType ExtType = Load->getExtensionType();
1417 EVT VT = Op.getValueType();
1418 EVT MemVT = Load->getMemoryVT();
1419
1420 if (ExtType == ISD::NON_EXTLOAD && VT.getSizeInBits() < 32) {
1421 assert(VT == MVT::i1 && "Only i1 non-extloads expected");
1422 // FIXME: Copied from PPC
1423 // First, load into 32 bits, then truncate to 1 bit.
1424
1425 SDValue Chain = Load->getChain();
1426 SDValue BasePtr = Load->getBasePtr();
1427 MachineMemOperand *MMO = Load->getMemOperand();
1428
1429 SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
1430 BasePtr, MVT::i8, MMO);
1431
1432 SDValue Ops[] = {
1433 DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD),
1434 NewLD.getValue(1)
1435 };
1436
1437 return DAG.getMergeValues(Ops, DL);
1438 }
1439
1440 if (Subtarget->getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS ||
1441 Load->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS ||
1442 ExtType == ISD::NON_EXTLOAD || Load->getMemoryVT().bitsGE(MVT::i32))
1443 return SDValue();
1444
1445
1446 SDValue Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, Load->getBasePtr(),
1447 DAG.getConstant(2, MVT::i32));
1448 SDValue Ret = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, Op.getValueType(),
1449 Load->getChain(), Ptr,
1450 DAG.getTargetConstant(0, MVT::i32),
1451 Op.getOperand(2));
1452 SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32,
1453 Load->getBasePtr(),
1454 DAG.getConstant(0x3, MVT::i32));
1455 SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
1456 DAG.getConstant(3, MVT::i32));
1457
1458 Ret = DAG.getNode(ISD::SRL, DL, MVT::i32, Ret, ShiftAmt);
1459
1460 EVT MemEltVT = MemVT.getScalarType();
1461 if (ExtType == ISD::SEXTLOAD) {
1462 SDValue MemEltVTNode = DAG.getValueType(MemEltVT);
1463
1464 SDValue Ops[] = {
1465 DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, Ret, MemEltVTNode),
1466 Load->getChain()
1467 };
1468
1469 return DAG.getMergeValues(Ops, DL);
1470 }
1471
1472 SDValue Ops[] = {
1473 DAG.getZeroExtendInReg(Ret, DL, MemEltVT),
1474 Load->getChain()
1475 };
1476
1477 return DAG.getMergeValues(Ops, DL);
1478 }
1479
1480 SDValue AMDGPUTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
1481 SDLoc DL(Op);
1482 SDValue Result = AMDGPUTargetLowering::MergeVectorStore(Op, DAG);
1483 if (Result.getNode()) {
1484 return Result;
1485 }
1486
1487 StoreSDNode *Store = cast<StoreSDNode>(Op);
1488 SDValue Chain = Store->getChain();
1489 if ((Store->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
1490 Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) &&
1491 Store->getValue().getValueType().isVector()) {
1492 return ScalarizeVectorStore(Op, DAG);
1493 }
1494
1495 EVT MemVT = Store->getMemoryVT();
1496 if (Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS &&
1497 MemVT.bitsLT(MVT::i32)) {
1498 unsigned Mask = 0;
1499 if (Store->getMemoryVT() == MVT::i8) {
1500 Mask = 0xff;
1501 } else if (Store->getMemoryVT() == MVT::i16) {
1502 Mask = 0xffff;
1503 }
1504 SDValue BasePtr = Store->getBasePtr();
1505 SDValue Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, BasePtr,
1506 DAG.getConstant(2, MVT::i32));
1507 SDValue Dst = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, MVT::i32,
1508 Chain, Ptr, DAG.getTargetConstant(0, MVT::i32));
1509
1510 SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, BasePtr,
1511 DAG.getConstant(0x3, MVT::i32));
1512
1513 SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
1514 DAG.getConstant(3, MVT::i32));
1515
1516 SDValue SExtValue = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32,
1517 Store->getValue());
1518
1519 SDValue MaskedValue = DAG.getZeroExtendInReg(SExtValue, DL, MemVT);
1520
1521 SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, MVT::i32,
1522 MaskedValue, ShiftAmt);
1523
1524 SDValue DstMask = DAG.getNode(ISD::SHL, DL, MVT::i32, DAG.getConstant(Mask, MVT::i32),
1525 ShiftAmt);
1526 DstMask = DAG.getNode(ISD::XOR, DL, MVT::i32, DstMask,
1527 DAG.getConstant(0xffffffff, MVT::i32));
1528 Dst = DAG.getNode(ISD::AND, DL, MVT::i32, Dst, DstMask);
1529
1530 SDValue Value = DAG.getNode(ISD::OR, DL, MVT::i32, Dst, ShiftedValue);
1531 return DAG.getNode(AMDGPUISD::REGISTER_STORE, DL, MVT::Other,
1532 Chain, Value, Ptr, DAG.getTargetConstant(0, MVT::i32));
1533 }
1534 return SDValue();
1535 }
1536
1537 // This is a shortcut for integer division because we have fast i32<->f32
1538 // conversions, and fast f32 reciprocal instructions. The fractional part of a
1539 // float is enough to accurately represent up to a 24-bit integer.
1540 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, bool sign) const {
1541 SDLoc DL(Op);
1542 EVT VT = Op.getValueType();
1543 SDValue LHS = Op.getOperand(0);
1544 SDValue RHS = Op.getOperand(1);
1545 MVT IntVT = MVT::i32;
1546 MVT FltVT = MVT::f32;
1547
1548 ISD::NodeType ToFp = sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
1549 ISD::NodeType ToInt = sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT;
1550
1551 if (VT.isVector()) {
1552 unsigned NElts = VT.getVectorNumElements();
1553 IntVT = MVT::getVectorVT(MVT::i32, NElts);
1554 FltVT = MVT::getVectorVT(MVT::f32, NElts);
1555 }
1556
1557 unsigned BitSize = VT.getScalarType().getSizeInBits();
1558
1559 SDValue jq = DAG.getConstant(1, IntVT);
1560
1561 if (sign) {
1562 // char|short jq = ia ^ ib;
1563 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS);
1564
1565 // jq = jq >> (bitsize - 2)
1566 jq = DAG.getNode(ISD::SRA, DL, VT, jq, DAG.getConstant(BitSize - 2, VT));
1567
1568 // jq = jq | 0x1
1569 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, VT));
1570
1571 // jq = (int)jq
1572 jq = DAG.getSExtOrTrunc(jq, DL, IntVT);
1573 }
1574
1575 // int ia = (int)LHS;
1576 SDValue ia = sign ?
1577 DAG.getSExtOrTrunc(LHS, DL, IntVT) : DAG.getZExtOrTrunc(LHS, DL, IntVT);
1578
1579 // int ib, (int)RHS;
1580 SDValue ib = sign ?
1581 DAG.getSExtOrTrunc(RHS, DL, IntVT) : DAG.getZExtOrTrunc(RHS, DL, IntVT);
1582
1583 // float fa = (float)ia;
1584 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia);
1585
1586 // float fb = (float)ib;
1587 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib);
1588
1589 // float fq = native_divide(fa, fb);
1590 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT,
1591 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb));
1592
1593 // fq = trunc(fq);
1594 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq);
1595
1596 // float fqneg = -fq;
1597 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq);
1598
1599 // float fr = mad(fqneg, fb, fa);
1600 SDValue fr = DAG.getNode(ISD::FADD, DL, FltVT,
1601 DAG.getNode(ISD::FMUL, DL, FltVT, fqneg, fb), fa);
1602
1603 // int iq = (int)fq;
1604 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq);
1605
1606 // fr = fabs(fr);
1607 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr);
1608
1609 // fb = fabs(fb);
1610 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb);
1611
1612 EVT SetCCVT = getSetCCResultType(*DAG.getContext(), VT);
1613
1614 // int cv = fr >= fb;
1615 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE);
1616
1617 // jq = (cv ? jq : 0);
1618 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, VT));
1619
1620 // dst = trunc/extend to legal type
1621 iq = sign ? DAG.getSExtOrTrunc(iq, DL, VT) : DAG.getZExtOrTrunc(iq, DL, VT);
1622
1623 // dst = iq + jq;
1624 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq);
1625
1626 // Rem needs compensation, it's easier to recompute it
1627 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS);
1628 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem);
1629
1630 SDValue Res[2] = {
1631 Div,
1632 Rem
1633 };
1634 return DAG.getMergeValues(Res, DL);
1635 }
1636
1637 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op,
1638 SelectionDAG &DAG,
1639 SmallVectorImpl<SDValue> &Results) const {
1640 assert(Op.getValueType() == MVT::i64);
1641
1642 SDLoc DL(Op);
1643 EVT VT = Op.getValueType();
1644 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1645
1646 SDValue one = DAG.getConstant(1, HalfVT);
1647 SDValue zero = DAG.getConstant(0, HalfVT);
1648
1649 //HiLo split
1650 SDValue LHS = Op.getOperand(0);
1651 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, zero);
1652 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, one);
1653
1654 SDValue RHS = Op.getOperand(1);
1655 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, zero);
1656 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, one);
1657
1658 // Get Speculative values
1659 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo);
1660 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo);
1661
1662 SDValue REM_Hi = zero;
1663 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, zero, REM_Part, LHS_Hi, ISD::SETEQ);
1664
1665 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, zero, DIV_Part, zero, ISD::SETEQ);
1666 SDValue DIV_Lo = zero;
1667
1668 const unsigned halfBitWidth = HalfVT.getSizeInBits();
1669
1670 for (unsigned i = 0; i < halfBitWidth; ++i) {
1671 SDValue POS = DAG.getConstant(halfBitWidth - i - 1, HalfVT);
1672 // Get Value of high bit
1673 SDValue HBit;
1674 if (halfBitWidth == 32 && Subtarget->hasBFE()) {
1675 HBit = DAG.getNode(AMDGPUISD::BFE_U32, DL, HalfVT, LHS_Lo, POS, one);
1676 } else {
1677 HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS);
1678 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, one);
1679 }
1680
1681 SDValue Carry = DAG.getNode(ISD::SRL, DL, HalfVT, REM_Lo,
1682 DAG.getConstant(halfBitWidth - 1, HalfVT));
1683 REM_Hi = DAG.getNode(ISD::SHL, DL, HalfVT, REM_Hi, one);
1684 REM_Hi = DAG.getNode(ISD::OR, DL, HalfVT, REM_Hi, Carry);
1685
1686 REM_Lo = DAG.getNode(ISD::SHL, DL, HalfVT, REM_Lo, one);
1687 REM_Lo = DAG.getNode(ISD::OR, DL, HalfVT, REM_Lo, HBit);
1688
1689
1690 SDValue REM = DAG.getNode(ISD::BUILD_PAIR, DL, VT, REM_Lo, REM_Hi);
1691
1692 SDValue BIT = DAG.getConstant(1 << (halfBitWidth - i - 1), HalfVT);
1693 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, zero, ISD::SETUGE);
1694
1695 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT);
1696
1697 // Update REM
1698
1699 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS);
1700
1701 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE);
1702 REM_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, REM, zero);
1703 REM_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, REM, one);
1704 }
1705
1706 SDValue REM = DAG.getNode(ISD::BUILD_PAIR, DL, VT, REM_Lo, REM_Hi);
1707 SDValue DIV = DAG.getNode(ISD::BUILD_PAIR, DL, VT, DIV_Lo, DIV_Hi);
1708 Results.push_back(DIV);
1709 Results.push_back(REM);
1710 }
1711
1712 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op,
1713 SelectionDAG &DAG) const {
1714 SDLoc DL(Op);
1715 EVT VT = Op.getValueType();
1716
1717 if (VT == MVT::i64) {
1718 SmallVector<SDValue, 2> Results;
1719 LowerUDIVREM64(Op, DAG, Results);
1720 return DAG.getMergeValues(Results, DL);
1721 }
1722
1723 SDValue Num = Op.getOperand(0);
1724 SDValue Den = Op.getOperand(1);
1725
1726 if (VT == MVT::i32) {
1727 if (DAG.MaskedValueIsZero(Op.getOperand(0), APInt(32, 0xff << 24)) &&
1728 DAG.MaskedValueIsZero(Op.getOperand(1), APInt(32, 0xff << 24))) {
1729 // TODO: We technically could do this for i64, but shouldn't that just be
1730 // handled by something generally reducing 64-bit division on 32-bit
1731 // values to 32-bit?
1732 return LowerDIVREM24(Op, DAG, false);
1733 }
1734 }
1735
1736 // RCP = URECIP(Den) = 2^32 / Den + e
1737 // e is rounding error.
1738 SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den);
1739
1740 // RCP_LO = mul(RCP, Den) */
1741 SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den);
1742
1743 // RCP_HI = mulhu (RCP, Den) */
1744 SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den);
1745
1746 // NEG_RCP_LO = -RCP_LO
1747 SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, VT),
1748 RCP_LO);
1749
1750 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
1751 SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, VT),
1752 NEG_RCP_LO, RCP_LO,
1753 ISD::SETEQ);
1754 // Calculate the rounding error from the URECIP instruction
1755 // E = mulhu(ABS_RCP_LO, RCP)
1756 SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP);
1757
1758 // RCP_A_E = RCP + E
1759 SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E);
1760
1761 // RCP_S_E = RCP - E
1762 SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E);
1763
1764 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
1765 SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, VT),
1766 RCP_A_E, RCP_S_E,
1767 ISD::SETEQ);
1768 // Quotient = mulhu(Tmp0, Num)
1769 SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num);
1770
1771 // Num_S_Remainder = Quotient * Den
1772 SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den);
1773
1774 // Remainder = Num - Num_S_Remainder
1775 SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder);
1776
1777 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
1778 SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den,
1779 DAG.getConstant(-1, VT),
1780 DAG.getConstant(0, VT),
1781 ISD::SETUGE);
1782 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
1783 SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num,
1784 Num_S_Remainder,
1785 DAG.getConstant(-1, VT),
1786 DAG.getConstant(0, VT),
1787 ISD::SETUGE);
1788 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
1789 SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den,
1790 Remainder_GE_Zero);
1791
1792 // Calculate Division result:
1793
1794 // Quotient_A_One = Quotient + 1
1795 SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient,
1796 DAG.getConstant(1, VT));
1797
1798 // Quotient_S_One = Quotient - 1
1799 SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient,
1800 DAG.getConstant(1, VT));
1801
1802 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
1803 SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, VT),
1804 Quotient, Quotient_A_One, ISD::SETEQ);
1805
1806 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
1807 Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, VT),
1808 Quotient_S_One, Div, ISD::SETEQ);
1809
1810 // Calculate Rem result:
1811
1812 // Remainder_S_Den = Remainder - Den
1813 SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den);
1814
1815 // Remainder_A_Den = Remainder + Den
1816 SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den);
1817
1818 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
1819 SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, VT),
1820 Remainder, Remainder_S_Den, ISD::SETEQ);
1821
1822 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
1823 Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, VT),
1824 Remainder_A_Den, Rem, ISD::SETEQ);
1825 SDValue Ops[2] = {
1826 Div,
1827 Rem
1828 };
1829 return DAG.getMergeValues(Ops, DL);
1830 }
1831
1832 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op,
1833 SelectionDAG &DAG) const {
1834 SDLoc DL(Op);
1835 EVT VT = Op.getValueType();
1836
1837 SDValue LHS = Op.getOperand(0);
1838 SDValue RHS = Op.getOperand(1);
1839
1840 if (VT == MVT::i32) {
1841 if (DAG.ComputeNumSignBits(Op.getOperand(0)) > 8 &&
1842 DAG.ComputeNumSignBits(Op.getOperand(1)) > 8) {
1843 // TODO: We technically could do this for i64, but shouldn't that just be
1844 // handled by something generally reducing 64-bit division on 32-bit
1845 // values to 32-bit?
1846 return LowerDIVREM24(Op, DAG, true);
1847 }
1848 }
1849
1850 SDValue Zero = DAG.getConstant(0, VT);
1851 SDValue NegOne = DAG.getConstant(-1, VT);
1852
1853 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT);
1854 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT);
1855 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign);
1856 SDValue RSign = LHSign; // Remainder sign is the same as LHS
1857
1858 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign);
1859 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign);
1860
1861 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign);
1862 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign);
1863
1864 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS);
1865 SDValue Rem = Div.getValue(1);
1866
1867 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign);
1868 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign);
1869
1870 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign);
1871 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign);
1872
1873 SDValue Res[2] = {
1874 Div,
1875 Rem
1876 };
1877 return DAG.getMergeValues(Res, DL);
1878 }
1879
1880 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y))
1881 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const {
1882 SDLoc SL(Op);
1883 EVT VT = Op.getValueType();
1884 SDValue X = Op.getOperand(0);
1885 SDValue Y = Op.getOperand(1);
1886
1887 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y);
1888 SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div);
1889 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y);
1890
1891 return DAG.getNode(ISD::FSUB, SL, VT, X, Mul);
1892 }
1893
1894 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const {
1895 SDLoc SL(Op);
1896 SDValue Src = Op.getOperand(0);
1897
1898 // result = trunc(src)
1899 // if (src > 0.0 && src != result)
1900 // result += 1.0
1901
1902 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
1903
1904 const SDValue Zero = DAG.getConstantFP(0.0, MVT::f64);
1905 const SDValue One = DAG.getConstantFP(1.0, MVT::f64);
1906
1907 EVT SetCCVT = getSetCCResultType(*DAG.getContext(), MVT::f64);
1908
1909 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT);
1910 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
1911 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
1912
1913 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero);
1914 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
1915 }
1916
1917 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const {
1918 SDLoc SL(Op);
1919 SDValue Src = Op.getOperand(0);
1920
1921 assert(Op.getValueType() == MVT::f64);
1922
1923 const SDValue Zero = DAG.getConstant(0, MVT::i32);
1924 const SDValue One = DAG.getConstant(1, MVT::i32);
1925
1926 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
1927
1928 // Extract the upper half, since this is where we will find the sign and
1929 // exponent.
1930 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One);
1931
1932 const unsigned FractBits = 52;
1933 const unsigned ExpBits = 11;
1934
1935 // Extract the exponent.
1936 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
1937 Hi,
1938 DAG.getConstant(FractBits - 32, MVT::i32),
1939 DAG.getConstant(ExpBits, MVT::i32));
1940 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart,
1941 DAG.getConstant(1023, MVT::i32));
1942
1943 // Extract the sign bit.
1944 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, MVT::i32);
1945 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask);
1946
1947 // Extend back to to 64-bits.
1948 SDValue SignBit64 = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
1949 Zero, SignBit);
1950 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64);
1951
1952 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src);
1953 const SDValue FractMask
1954 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, MVT::i64);
1955
1956 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp);
1957 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64);
1958 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not);
1959
1960 EVT SetCCVT = getSetCCResultType(*DAG.getContext(), MVT::i32);
1961
1962 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, MVT::i32);
1963
1964 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
1965 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
1966
1967 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0);
1968 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1);
1969
1970 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2);
1971 }
1972
1973 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const {
1974 SDLoc SL(Op);
1975 SDValue Src = Op.getOperand(0);
1976
1977 assert(Op.getValueType() == MVT::f64);
1978
1979 APFloat C1Val(APFloat::IEEEdouble, "0x1.0p+52");
1980 SDValue C1 = DAG.getConstantFP(C1Val, MVT::f64);
1981 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src);
1982
1983 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign);
1984 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign);
1985
1986 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src);
1987
1988 APFloat C2Val(APFloat::IEEEdouble, "0x1.fffffffffffffp+51");
1989 SDValue C2 = DAG.getConstantFP(C2Val, MVT::f64);
1990
1991 EVT SetCCVT = getSetCCResultType(*DAG.getContext(), MVT::f64);
1992 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT);
1993
1994 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2);
1995 }
1996
1997 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const {
1998 // FNEARBYINT and FRINT are the same, except in their handling of FP
1999 // exceptions. Those aren't really meaningful for us, and OpenCL only has
2000 // rint, so just treat them as equivalent.
2001 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0));
2002 }
2003
2004 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const {
2005 SDLoc SL(Op);
2006 SDValue Src = Op.getOperand(0);
2007
2008 // result = trunc(src);
2009 // if (src < 0.0 && src != result)
2010 // result += -1.0.
2011
2012 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2013
2014 const SDValue Zero = DAG.getConstantFP(0.0, MVT::f64);
2015 const SDValue NegOne = DAG.getConstantFP(-1.0, MVT::f64);
2016
2017 EVT SetCCVT = getSetCCResultType(*DAG.getContext(), MVT::f64);
2018
2019 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT);
2020 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
2021 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
2022
2023 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero);
2024 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
2025 }
2026
2027 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG,
2028 bool Signed) const {
2029 SDLoc SL(Op);
2030 SDValue Src = Op.getOperand(0);
2031
2032 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2033
2034 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2035 DAG.getConstant(0, MVT::i32));
2036 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2037 DAG.getConstant(1, MVT::i32));
2038
2039 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP,
2040 SL, MVT::f64, Hi);
2041
2042 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo);
2043
2044 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi,
2045 DAG.getConstant(32, MVT::i32));
2046
2047 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo);
2048 }
2049
2050 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op,
2051 SelectionDAG &DAG) const {
2052 SDValue S0 = Op.getOperand(0);
2053 if (S0.getValueType() != MVT::i64)
2054 return SDValue();
2055
2056 EVT DestVT = Op.getValueType();
2057 if (DestVT == MVT::f64)
2058 return LowerINT_TO_FP64(Op, DAG, false);
2059
2060 assert(DestVT == MVT::f32);
2061
2062 SDLoc DL(Op);
2063
2064 // f32 uint_to_fp i64
2065 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, S0,
2066 DAG.getConstant(0, MVT::i32));
2067 SDValue FloatLo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, Lo);
2068 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, S0,
2069 DAG.getConstant(1, MVT::i32));
2070 SDValue FloatHi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, Hi);
2071 FloatHi = DAG.getNode(ISD::FMUL, DL, MVT::f32, FloatHi,
2072 DAG.getConstantFP(4294967296.0f, MVT::f32)); // 2^32
2073 return DAG.getNode(ISD::FADD, DL, MVT::f32, FloatLo, FloatHi);
2074 }
2075
2076 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op,
2077 SelectionDAG &DAG) const {
2078 SDValue Src = Op.getOperand(0);
2079 if (Src.getValueType() == MVT::i64 && Op.getValueType() == MVT::f64)
2080 return LowerINT_TO_FP64(Op, DAG, true);
2081
2082 return SDValue();
2083 }
2084
2085 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG,
2086 bool Signed) const {
2087 SDLoc SL(Op);
2088
2089 SDValue Src = Op.getOperand(0);
2090
2091 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2092
2093 SDValue K0
2094 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), MVT::f64);
2095 SDValue K1
2096 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), MVT::f64);
2097
2098 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0);
2099
2100 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul);
2101
2102
2103 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc);
2104
2105 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL,
2106 MVT::i32, FloorMul);
2107 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma);
2108
2109 SDValue Result = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Lo, Hi);
2110
2111 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result);
2112 }
2113
2114 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op,
2115 SelectionDAG &DAG) const {
2116 SDValue Src = Op.getOperand(0);
2117
2118 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2119 return LowerFP64_TO_INT(Op, DAG, true);
2120
2121 return SDValue();
2122 }
2123
2124 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op,
2125 SelectionDAG &DAG) const {
2126 SDValue Src = Op.getOperand(0);
2127
2128 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2129 return LowerFP64_TO_INT(Op, DAG, false);
2130
2131 return SDValue();
2132 }
2133
2134 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
2135 SelectionDAG &DAG) const {
2136 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2137 MVT VT = Op.getSimpleValueType();
2138 MVT ScalarVT = VT.getScalarType();
2139
2140 if (!VT.isVector())
2141 return SDValue();
2142
2143 SDValue Src = Op.getOperand(0);
2144 SDLoc DL(Op);
2145
2146 // TODO: Don't scalarize on Evergreen?
2147 unsigned NElts = VT.getVectorNumElements();
2148 SmallVector<SDValue, 8> Args;
2149 DAG.ExtractVectorElements(Src, Args, 0, NElts);
2150
2151 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType());
2152 for (unsigned I = 0; I < NElts; ++I)
2153 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp);
2154
2155 return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Args);
2156 }
2157
2158 //===----------------------------------------------------------------------===//
2159 // Custom DAG optimizations
2160 //===----------------------------------------------------------------------===//
2161
2162 static bool isU24(SDValue Op, SelectionDAG &DAG) {
2163 APInt KnownZero, KnownOne;
2164 EVT VT = Op.getValueType();
2165 DAG.computeKnownBits(Op, KnownZero, KnownOne);
2166
2167 return (VT.getSizeInBits() - KnownZero.countLeadingOnes()) <= 24;
2168 }
2169
2170 static bool isI24(SDValue Op, SelectionDAG &DAG) {
2171 EVT VT = Op.getValueType();
2172
2173 // In order for this to be a signed 24-bit value, bit 23, must
2174 // be a sign bit.
2175 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
2176 // as unsigned 24-bit values.
2177 (VT.getSizeInBits() - DAG.ComputeNumSignBits(Op)) < 24;
2178 }
2179
2180 static void simplifyI24(SDValue Op, TargetLowering::DAGCombinerInfo &DCI) {
2181
2182 SelectionDAG &DAG = DCI.DAG;
2183 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2184 EVT VT = Op.getValueType();
2185
2186 APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24);
2187 APInt KnownZero, KnownOne;
2188 TargetLowering::TargetLoweringOpt TLO(DAG, true, true);
2189 if (TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
2190 DCI.CommitTargetLoweringOpt(TLO);
2191 }
2192
2193 template <typename IntTy>
2194 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0,
2195 uint32_t Offset, uint32_t Width) {
2196 if (Width + Offset < 32) {
2197 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width);
2198 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width);
2199 return DAG.getConstant(Result, MVT::i32);
2200 }
2201
2202 return DAG.getConstant(Src0 >> Offset, MVT::i32);
2203 }
2204
2205 static bool usesAllNormalStores(SDNode *LoadVal) {
2206 for (SDNode::use_iterator I = LoadVal->use_begin(); !I.atEnd(); ++I) {
2207 if (!ISD::isNormalStore(*I))
2208 return false;
2209 }
2210
2211 return true;
2212 }
2213
2214 // If we have a copy of an illegal type, replace it with a load / store of an
2215 // equivalently sized legal type. This avoids intermediate bit pack / unpack
2216 // instructions emitted when handling extloads and truncstores. Ideally we could
2217 // recognize the pack / unpack pattern to eliminate it.
2218 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N,
2219 DAGCombinerInfo &DCI) const {
2220 if (!DCI.isBeforeLegalize())
2221 return SDValue();
2222
2223 StoreSDNode *SN = cast<StoreSDNode>(N);
2224 SDValue Value = SN->getValue();
2225 EVT VT = Value.getValueType();
2226
2227 if (isTypeLegal(VT) || SN->isVolatile() ||
2228 !ISD::isNormalLoad(Value.getNode()) || VT.getSizeInBits() < 8)
2229 return SDValue();
2230
2231 LoadSDNode *LoadVal = cast<LoadSDNode>(Value);
2232 if (LoadVal->isVolatile() || !usesAllNormalStores(LoadVal))
2233 return SDValue();
2234
2235 EVT MemVT = LoadVal->getMemoryVT();
2236
2237 SDLoc SL(N);
2238 SelectionDAG &DAG = DCI.DAG;
2239 EVT LoadVT = getEquivalentMemType(*DAG.getContext(), MemVT);
2240
2241 SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD,
2242 LoadVT, SL,
2243 LoadVal->getChain(),
2244 LoadVal->getBasePtr(),
2245 LoadVal->getOffset(),
2246 LoadVT,
2247 LoadVal->getMemOperand());
2248
2249 SDValue CastLoad = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad.getValue(0));
2250 DCI.CombineTo(LoadVal, CastLoad, NewLoad.getValue(1), false);
2251
2252 return DAG.getStore(SN->getChain(), SL, NewLoad,
2253 SN->getBasePtr(), SN->getMemOperand());
2254 }
2255
2256 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N,
2257 DAGCombinerInfo &DCI) const {
2258 EVT VT = N->getValueType(0);
2259
2260 if (VT.isVector() || VT.getSizeInBits() > 32)
2261 return SDValue();
2262
2263 SelectionDAG &DAG = DCI.DAG;
2264 SDLoc DL(N);
2265
2266 SDValue N0 = N->getOperand(0);
2267 SDValue N1 = N->getOperand(1);
2268 SDValue Mul;
2269
2270 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) {
2271 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
2272 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
2273 Mul = DAG.getNode(AMDGPUISD::MUL_U24, DL, MVT::i32, N0, N1);
2274 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) {
2275 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
2276 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
2277 Mul = DAG.getNode(AMDGPUISD::MUL_I24, DL, MVT::i32, N0, N1);
2278 } else {
2279 return SDValue();
2280 }
2281
2282 // We need to use sext even for MUL_U24, because MUL_U24 is used
2283 // for signed multiply of 8 and 16-bit types.
2284 return DAG.getSExtOrTrunc(Mul, DL, VT);
2285 }
2286
2287 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N,
2288 DAGCombinerInfo &DCI) const {
2289 SelectionDAG &DAG = DCI.DAG;
2290 SDLoc DL(N);
2291
2292 switch(N->getOpcode()) {
2293 default: break;
2294 case ISD::MUL:
2295 return performMulCombine(N, DCI);
2296 case AMDGPUISD::MUL_I24:
2297 case AMDGPUISD::MUL_U24: {
2298 SDValue N0 = N->getOperand(0);
2299 SDValue N1 = N->getOperand(1);
2300 simplifyI24(N0, DCI);
2301 simplifyI24(N1, DCI);
2302 return SDValue();
2303 }
2304 case ISD::SELECT: {
2305 SDValue Cond = N->getOperand(0);
2306 if (Cond.getOpcode() == ISD::SETCC && Cond.hasOneUse()) {
2307 SDLoc DL(N);
2308 EVT VT = N->getValueType(0);
2309 SDValue LHS = Cond.getOperand(0);
2310 SDValue RHS = Cond.getOperand(1);
2311 SDValue CC = Cond.getOperand(2);
2312
2313 SDValue True = N->getOperand(1);
2314 SDValue False = N->getOperand(2);
2315
2316 if (VT == MVT::f32)
2317 return CombineFMinMaxLegacy(DL, VT, LHS, RHS, True, False, CC, DCI);
2318
2319 // TODO: Implement min / max Evergreen instructions.
2320 if (VT == MVT::i32 &&
2321 Subtarget->getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) {
2322 return CombineIMinMax(DL, VT, LHS, RHS, True, False, CC, DAG);
2323 }
2324 }
2325
2326 break;
2327 }
2328 case AMDGPUISD::BFE_I32:
2329 case AMDGPUISD::BFE_U32: {
2330 assert(!N->getValueType(0).isVector() &&
2331 "Vector handling of BFE not implemented");
2332 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
2333 if (!Width)
2334 break;
2335
2336 uint32_t WidthVal = Width->getZExtValue() & 0x1f;
2337 if (WidthVal == 0)
2338 return DAG.getConstant(0, MVT::i32);
2339
2340 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
2341 if (!Offset)
2342 break;
2343
2344 SDValue BitsFrom = N->getOperand(0);
2345 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f;
2346
2347 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32;
2348
2349 if (OffsetVal == 0) {
2350 // This is already sign / zero extended, so try to fold away extra BFEs.
2351 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal);
2352
2353 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom);
2354 if (OpSignBits >= SignBits)
2355 return BitsFrom;
2356
2357 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal);
2358 if (Signed) {
2359 // This is a sign_extend_inreg. Replace it to take advantage of existing
2360 // DAG Combines. If not eliminated, we will match back to BFE during
2361 // selection.
2362
2363 // TODO: The sext_inreg of extended types ends, although we can could
2364 // handle them in a single BFE.
2365 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom,
2366 DAG.getValueType(SmallVT));
2367 }
2368
2369 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT);
2370 }
2371
2372 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) {
2373 if (Signed) {
2374 return constantFoldBFE<int32_t>(DAG,
2375 CVal->getSExtValue(),
2376 OffsetVal,
2377 WidthVal);
2378 }
2379
2380 return constantFoldBFE<uint32_t>(DAG,
2381 CVal->getZExtValue(),
2382 OffsetVal,
2383 WidthVal);
2384 }
2385
2386 if ((OffsetVal + WidthVal) >= 32) {
2387 SDValue ShiftVal = DAG.getConstant(OffsetVal, MVT::i32);
2388 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32,
2389 BitsFrom, ShiftVal);
2390 }
2391
2392 if (BitsFrom.hasOneUse()) {
2393 APInt Demanded = APInt::getBitsSet(32,
2394 OffsetVal,
2395 OffsetVal + WidthVal);
2396
2397 APInt KnownZero, KnownOne;
2398 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2399 !DCI.isBeforeLegalizeOps());
2400 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2401 if (TLO.ShrinkDemandedConstant(BitsFrom, Demanded) ||
2402 TLI.SimplifyDemandedBits(BitsFrom, Demanded,
2403 KnownZero, KnownOne, TLO)) {
2404 DCI.CommitTargetLoweringOpt(TLO);
2405 }
2406 }
2407
2408 break;
2409 }
2410
2411 case ISD::STORE:
2412 return performStoreCombine(N, DCI);
2413 }
2414 return SDValue();
2415 }
2416
2417 //===----------------------------------------------------------------------===//
2418 // Helper functions
2419 //===----------------------------------------------------------------------===//
2420
2421 void AMDGPUTargetLowering::getOriginalFunctionArgs(
2422 SelectionDAG &DAG,
2423 const Function *F,
2424 const SmallVectorImpl<ISD::InputArg> &Ins,
2425 SmallVectorImpl<ISD::InputArg> &OrigIns) const {
2426
2427 for (unsigned i = 0, e = Ins.size(); i < e; ++i) {
2428 if (Ins[i].ArgVT == Ins[i].VT) {
2429 OrigIns.push_back(Ins[i]);
2430 continue;
2431 }
2432
2433 EVT VT;
2434 if (Ins[i].ArgVT.isVector() && !Ins[i].VT.isVector()) {
2435 // Vector has been split into scalars.
2436 VT = Ins[i].ArgVT.getVectorElementType();
2437 } else if (Ins[i].VT.isVector() && Ins[i].ArgVT.isVector() &&
2438 Ins[i].ArgVT.getVectorElementType() !=
2439 Ins[i].VT.getVectorElementType()) {
2440 // Vector elements have been promoted
2441 VT = Ins[i].ArgVT;
2442 } else {
2443 // Vector has been spilt into smaller vectors.
2444 VT = Ins[i].VT;
2445 }
2446
2447 ISD::InputArg Arg(Ins[i].Flags, VT, VT, Ins[i].Used,
2448 Ins[i].OrigArgIndex, Ins[i].PartOffset);
2449 OrigIns.push_back(Arg);
2450 }
2451 }
2452
2453 bool AMDGPUTargetLowering::isHWTrueValue(SDValue Op) const {
2454 if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
2455 return CFP->isExactlyValue(1.0);
2456 }
2457 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
2458 return C->isAllOnesValue();
2459 }
2460 return false;
2461 }
2462
2463 bool AMDGPUTargetLowering::isHWFalseValue(SDValue Op) const {
2464 if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
2465 return CFP->getValueAPF().isZero();
2466 }
2467 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
2468 return C->isNullValue();
2469 }
2470 return false;
2471 }
2472
2473 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
2474 const TargetRegisterClass *RC,
2475 unsigned Reg, EVT VT) const {
2476 MachineFunction &MF = DAG.getMachineFunction();
2477 MachineRegisterInfo &MRI = MF.getRegInfo();
2478 unsigned VirtualRegister;
2479 if (!MRI.isLiveIn(Reg)) {
2480 VirtualRegister = MRI.createVirtualRegister(RC);
2481 MRI.addLiveIn(Reg, VirtualRegister);
2482 } else {
2483 VirtualRegister = MRI.getLiveInVirtReg(Reg);
2484 }
2485 return DAG.getRegister(VirtualRegister, VT);
2486 }
2487
2488 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
2489
2490 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
2491 switch (Opcode) {
2492 default: return nullptr;
2493 // AMDIL DAG nodes
2494 NODE_NAME_CASE(CALL);
2495 NODE_NAME_CASE(UMUL);
2496 NODE_NAME_CASE(RET_FLAG);
2497 NODE_NAME_CASE(BRANCH_COND);
2498
2499 // AMDGPU DAG nodes
2500 NODE_NAME_CASE(DWORDADDR)
2501 NODE_NAME_CASE(FRACT)
2502 NODE_NAME_CASE(CLAMP)
2503 NODE_NAME_CASE(MAD)
2504 NODE_NAME_CASE(FMAX_LEGACY)
2505 NODE_NAME_CASE(SMAX)
2506 NODE_NAME_CASE(UMAX)
2507 NODE_NAME_CASE(FMIN_LEGACY)
2508 NODE_NAME_CASE(SMIN)
2509 NODE_NAME_CASE(UMIN)
2510 NODE_NAME_CASE(FMAX3)
2511 NODE_NAME_CASE(SMAX3)
2512 NODE_NAME_CASE(UMAX3)
2513 NODE_NAME_CASE(FMIN3)
2514 NODE_NAME_CASE(SMIN3)
2515 NODE_NAME_CASE(UMIN3)
2516 NODE_NAME_CASE(URECIP)
2517 NODE_NAME_CASE(DIV_SCALE)
2518 NODE_NAME_CASE(DIV_FMAS)
2519 NODE_NAME_CASE(DIV_FIXUP)
2520 NODE_NAME_CASE(TRIG_PREOP)
2521 NODE_NAME_CASE(RCP)
2522 NODE_NAME_CASE(RSQ)
2523 NODE_NAME_CASE(RSQ_LEGACY)
2524 NODE_NAME_CASE(RSQ_CLAMPED)
2525 NODE_NAME_CASE(LDEXP)
2526 NODE_NAME_CASE(FP_CLASS)
2527 NODE_NAME_CASE(DOT4)
2528 NODE_NAME_CASE(BFE_U32)
2529 NODE_NAME_CASE(BFE_I32)
2530 NODE_NAME_CASE(BFI)
2531 NODE_NAME_CASE(BFM)
2532 NODE_NAME_CASE(BREV)
2533 NODE_NAME_CASE(MUL_U24)
2534 NODE_NAME_CASE(MUL_I24)
2535 NODE_NAME_CASE(MAD_U24)
2536 NODE_NAME_CASE(MAD_I24)
2537 NODE_NAME_CASE(EXPORT)
2538 NODE_NAME_CASE(CONST_ADDRESS)
2539 NODE_NAME_CASE(REGISTER_LOAD)
2540 NODE_NAME_CASE(REGISTER_STORE)
2541 NODE_NAME_CASE(LOAD_CONSTANT)
2542 NODE_NAME_CASE(LOAD_INPUT)
2543 NODE_NAME_CASE(SAMPLE)
2544 NODE_NAME_CASE(SAMPLEB)
2545 NODE_NAME_CASE(SAMPLED)
2546 NODE_NAME_CASE(SAMPLEL)
2547 NODE_NAME_CASE(CVT_F32_UBYTE0)
2548 NODE_NAME_CASE(CVT_F32_UBYTE1)
2549 NODE_NAME_CASE(CVT_F32_UBYTE2)
2550 NODE_NAME_CASE(CVT_F32_UBYTE3)
2551 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR)
2552 NODE_NAME_CASE(CONST_DATA_PTR)
2553 NODE_NAME_CASE(STORE_MSKOR)
2554 NODE_NAME_CASE(TBUFFER_STORE_FORMAT)
2555 }
2556 }
2557
2558 SDValue AMDGPUTargetLowering::getRsqrtEstimate(SDValue Operand,
2559 DAGCombinerInfo &DCI,
2560 unsigned &RefinementSteps,
2561 bool &UseOneConstNR) const {
2562 SelectionDAG &DAG = DCI.DAG;
2563 EVT VT = Operand.getValueType();
2564
2565 if (VT == MVT::f32) {
2566 RefinementSteps = 0;
2567 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand);
2568 }
2569
2570 // TODO: There is also f64 rsq instruction, but the documentation is less
2571 // clear on its precision.
2572
2573 return SDValue();
2574 }
2575
2576 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand,
2577 DAGCombinerInfo &DCI,
2578 unsigned &RefinementSteps) const {
2579 SelectionDAG &DAG = DCI.DAG;
2580 EVT VT = Operand.getValueType();
2581
2582 if (VT == MVT::f32) {
2583 // Reciprocal, < 1 ulp error.
2584 //
2585 // This reciprocal approximation converges to < 0.5 ulp error with one
2586 // newton rhapson performed with two fused multiple adds (FMAs).
2587
2588 RefinementSteps = 0;
2589 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand);
2590 }
2591
2592 // TODO: There is also f64 rcp instruction, but the documentation is less
2593 // clear on its precision.
2594
2595 return SDValue();
2596 }
2597
2598 static void computeKnownBitsForMinMax(const SDValue Op0,
2599 const SDValue Op1,
2600 APInt &KnownZero,
2601 APInt &KnownOne,
2602 const SelectionDAG &DAG,
2603 unsigned Depth) {
2604 APInt Op0Zero, Op0One;
2605 APInt Op1Zero, Op1One;
2606 DAG.computeKnownBits(Op0, Op0Zero, Op0One, Depth);
2607 DAG.computeKnownBits(Op1, Op1Zero, Op1One, Depth);
2608
2609 KnownZero = Op0Zero & Op1Zero;
2610 KnownOne = Op0One & Op1One;
2611 }
2612
2613 void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
2614 const SDValue Op,
2615 APInt &KnownZero,
2616 APInt &KnownOne,
2617 const SelectionDAG &DAG,
2618 unsigned Depth) const {
2619
2620 KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); // Don't know anything.
2621
2622 APInt KnownZero2;
2623 APInt KnownOne2;
2624 unsigned Opc = Op.getOpcode();
2625
2626 switch (Opc) {
2627 default:
2628 break;
2629 case ISD::INTRINSIC_WO_CHAIN: {
2630 // FIXME: The intrinsic should just use the node.
2631 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
2632 case AMDGPUIntrinsic::AMDGPU_imax:
2633 case AMDGPUIntrinsic::AMDGPU_umax:
2634 case AMDGPUIntrinsic::AMDGPU_imin:
2635 case AMDGPUIntrinsic::AMDGPU_umin:
2636 computeKnownBitsForMinMax(Op.getOperand(1), Op.getOperand(2),
2637 KnownZero, KnownOne, DAG, Depth);
2638 break;
2639 default:
2640 break;
2641 }
2642
2643 break;
2644 }
2645 case AMDGPUISD::SMAX:
2646 case AMDGPUISD::UMAX:
2647 case AMDGPUISD::SMIN:
2648 case AMDGPUISD::UMIN:
2649 computeKnownBitsForMinMax(Op.getOperand(0), Op.getOperand(1),
2650 KnownZero, KnownOne, DAG, Depth);
2651 break;
2652
2653 case AMDGPUISD::BFE_I32:
2654 case AMDGPUISD::BFE_U32: {
2655 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2656 if (!CWidth)
2657 return;
2658
2659 unsigned BitWidth = 32;
2660 uint32_t Width = CWidth->getZExtValue() & 0x1f;
2661
2662 if (Opc == AMDGPUISD::BFE_U32)
2663 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - Width);
2664
2665 break;
2666 }
2667 }
2668 }
2669
2670 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
2671 SDValue Op,
2672 const SelectionDAG &DAG,
2673 unsigned Depth) const {
2674 switch (Op.getOpcode()) {
2675 case AMDGPUISD::BFE_I32: {
2676 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2677 if (!Width)
2678 return 1;
2679
2680 unsigned SignBits = 32 - Width->getZExtValue() + 1;
2681 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2682 if (!Offset || !Offset->isNullValue())
2683 return SignBits;
2684
2685 // TODO: Could probably figure something out with non-0 offsets.
2686 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
2687 return std::max(SignBits, Op0SignBits);
2688 }
2689
2690 case AMDGPUISD::BFE_U32: {
2691 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2692 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1;
2693 }
2694
2695 default:
2696 return 1;
2697 }
2698 }