]> git.proxmox.com Git - rustc.git/blob - src/llvm/lib/Target/R600/SIISelLowering.cpp
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / lib / Target / R600 / SIISelLowering.cpp
1 //===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// \brief Custom DAG lowering for SI
12 //
13 //===----------------------------------------------------------------------===//
14
15 #ifdef _MSC_VER
16 // Provide M_PI.
17 #define _USE_MATH_DEFINES
18 #include <cmath>
19 #endif
20
21 #include "SIISelLowering.h"
22 #include "AMDGPU.h"
23 #include "AMDGPUIntrinsicInfo.h"
24 #include "AMDGPUSubtarget.h"
25 #include "SIInstrInfo.h"
26 #include "SIMachineFunctionInfo.h"
27 #include "SIRegisterInfo.h"
28 #include "llvm/ADT/BitVector.h"
29 #include "llvm/CodeGen/CallingConvLower.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/SelectionDAG.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/ADT/SmallString.h"
35
36 using namespace llvm;
37
38 SITargetLowering::SITargetLowering(TargetMachine &TM) :
39 AMDGPUTargetLowering(TM) {
40 addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
41 addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
42
43 addRegisterClass(MVT::v32i8, &AMDGPU::SReg_256RegClass);
44 addRegisterClass(MVT::v64i8, &AMDGPU::SReg_512RegClass);
45
46 addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass);
47 addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass);
48
49 addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass);
50 addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
51 addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass);
52
53 addRegisterClass(MVT::v4i32, &AMDGPU::SReg_128RegClass);
54 addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass);
55
56 addRegisterClass(MVT::v8i32, &AMDGPU::SReg_256RegClass);
57 addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass);
58
59 addRegisterClass(MVT::v16i32, &AMDGPU::SReg_512RegClass);
60 addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass);
61
62 computeRegisterProperties();
63
64 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand);
65 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand);
66 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand);
67 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand);
68
69 setOperationAction(ISD::ADD, MVT::i32, Legal);
70 setOperationAction(ISD::ADDC, MVT::i32, Legal);
71 setOperationAction(ISD::ADDE, MVT::i32, Legal);
72 setOperationAction(ISD::SUBC, MVT::i32, Legal);
73 setOperationAction(ISD::SUBE, MVT::i32, Legal);
74
75 setOperationAction(ISD::FSIN, MVT::f32, Custom);
76 setOperationAction(ISD::FCOS, MVT::f32, Custom);
77
78 setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
79 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
80 setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
81 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
82
83 // We need to custom lower vector stores from local memory
84 setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
85 setOperationAction(ISD::LOAD, MVT::v8i32, Custom);
86 setOperationAction(ISD::LOAD, MVT::v16i32, Custom);
87
88 setOperationAction(ISD::STORE, MVT::v8i32, Custom);
89 setOperationAction(ISD::STORE, MVT::v16i32, Custom);
90
91 setOperationAction(ISD::STORE, MVT::i1, Custom);
92 setOperationAction(ISD::STORE, MVT::i32, Custom);
93 setOperationAction(ISD::STORE, MVT::v2i32, Custom);
94 setOperationAction(ISD::STORE, MVT::v4i32, Custom);
95
96 setOperationAction(ISD::SELECT, MVT::i64, Custom);
97 setOperationAction(ISD::SELECT, MVT::f64, Promote);
98 AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
99
100 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
101 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
102 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
103 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
104
105 setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
106 setOperationAction(ISD::SETCC, MVT::v4i1, Expand);
107
108 setOperationAction(ISD::BSWAP, MVT::i32, Legal);
109
110 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Legal);
111 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom);
112 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom);
113
114 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Legal);
115 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
116 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom);
117
118 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Legal);
119 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
120 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom);
121
122 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
123 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom);
124
125 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
126 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom);
127 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v16i8, Custom);
128 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);
129
130 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
131 setOperationAction(ISD::BRCOND, MVT::Other, Custom);
132
133 for (MVT VT : MVT::integer_valuetypes()) {
134 if (VT == MVT::i64)
135 continue;
136
137 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
138 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal);
139 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal);
140 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
141
142 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
143 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal);
144 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal);
145 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
146
147 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
148 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal);
149 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal);
150 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
151 }
152
153 for (MVT VT : MVT::integer_vector_valuetypes()) {
154 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v8i16, Expand);
155 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v16i16, Expand);
156 }
157
158 for (MVT VT : MVT::fp_valuetypes())
159 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
160
161 setTruncStoreAction(MVT::i32, MVT::i8, Custom);
162 setTruncStoreAction(MVT::i32, MVT::i16, Custom);
163 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
164 setTruncStoreAction(MVT::i64, MVT::i32, Expand);
165 setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
166 setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
167
168 setOperationAction(ISD::LOAD, MVT::i1, Custom);
169
170 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
171 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
172 setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
173
174 // These should use UDIVREM, so set them to expand
175 setOperationAction(ISD::UDIV, MVT::i64, Expand);
176 setOperationAction(ISD::UREM, MVT::i64, Expand);
177
178 // We only support LOAD/STORE and vector manipulation ops for vectors
179 // with > 4 elements.
180 MVT VecTypes[] = {
181 MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32
182 };
183
184 setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
185 setOperationAction(ISD::SELECT, MVT::i1, Promote);
186
187 for (MVT VT : VecTypes) {
188 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
189 switch(Op) {
190 case ISD::LOAD:
191 case ISD::STORE:
192 case ISD::BUILD_VECTOR:
193 case ISD::BITCAST:
194 case ISD::EXTRACT_VECTOR_ELT:
195 case ISD::INSERT_VECTOR_ELT:
196 case ISD::INSERT_SUBVECTOR:
197 case ISD::EXTRACT_SUBVECTOR:
198 break;
199 case ISD::CONCAT_VECTORS:
200 setOperationAction(Op, VT, Custom);
201 break;
202 default:
203 setOperationAction(Op, VT, Expand);
204 break;
205 }
206 }
207 }
208
209 if (Subtarget->getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS) {
210 setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
211 setOperationAction(ISD::FCEIL, MVT::f64, Legal);
212 setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
213 setOperationAction(ISD::FRINT, MVT::f64, Legal);
214 }
215
216 setOperationAction(ISD::FDIV, MVT::f32, Custom);
217
218 setTargetDAGCombine(ISD::FADD);
219 setTargetDAGCombine(ISD::FSUB);
220 setTargetDAGCombine(ISD::FMINNUM);
221 setTargetDAGCombine(ISD::FMAXNUM);
222 setTargetDAGCombine(ISD::SELECT_CC);
223 setTargetDAGCombine(ISD::SETCC);
224 setTargetDAGCombine(ISD::AND);
225 setTargetDAGCombine(ISD::OR);
226 setTargetDAGCombine(ISD::UINT_TO_FP);
227
228 // All memory operations. Some folding on the pointer operand is done to help
229 // matching the constant offsets in the addressing modes.
230 setTargetDAGCombine(ISD::LOAD);
231 setTargetDAGCombine(ISD::STORE);
232 setTargetDAGCombine(ISD::ATOMIC_LOAD);
233 setTargetDAGCombine(ISD::ATOMIC_STORE);
234 setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP);
235 setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
236 setTargetDAGCombine(ISD::ATOMIC_SWAP);
237 setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD);
238 setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB);
239 setTargetDAGCombine(ISD::ATOMIC_LOAD_AND);
240 setTargetDAGCombine(ISD::ATOMIC_LOAD_OR);
241 setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR);
242 setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND);
243 setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN);
244 setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX);
245 setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN);
246 setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX);
247
248 setSchedulingPreference(Sched::RegPressure);
249 }
250
251 //===----------------------------------------------------------------------===//
252 // TargetLowering queries
253 //===----------------------------------------------------------------------===//
254
255 bool SITargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &,
256 EVT) const {
257 // SI has some legal vector types, but no legal vector operations. Say no
258 // shuffles are legal in order to prefer scalarizing some vector operations.
259 return false;
260 }
261
262 // FIXME: This really needs an address space argument. The immediate offset
263 // size is different for different sets of memory instruction sets.
264
265 // The single offset DS instructions have a 16-bit unsigned byte offset.
266 //
267 // MUBUF / MTBUF have a 12-bit unsigned byte offset, and additionally can do r +
268 // r + i with addr64. 32-bit has more addressing mode options. Depending on the
269 // resource constant, it can also do (i64 r0) + (i32 r1) * (i14 i).
270 //
271 // SMRD instructions have an 8-bit, dword offset.
272 //
273 bool SITargetLowering::isLegalAddressingMode(const AddrMode &AM,
274 Type *Ty) const {
275 // No global is ever allowed as a base.
276 if (AM.BaseGV)
277 return false;
278
279 // Allow a 16-bit unsigned immediate field, since this is what DS instructions
280 // use.
281 if (!isUInt<16>(AM.BaseOffs))
282 return false;
283
284 // Only support r+r,
285 switch (AM.Scale) {
286 case 0: // "r+i" or just "i", depending on HasBaseReg.
287 break;
288 case 1:
289 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
290 return false;
291 // Otherwise we have r+r or r+i.
292 break;
293 case 2:
294 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
295 return false;
296 // Allow 2*r as r+r.
297 break;
298 default: // Don't allow n * r
299 return false;
300 }
301
302 return true;
303 }
304
305 bool SITargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
306 unsigned AddrSpace,
307 unsigned Align,
308 bool *IsFast) const {
309 if (IsFast)
310 *IsFast = false;
311
312 // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96,
313 // which isn't a simple VT.
314 if (!VT.isSimple() || VT == MVT::Other)
315 return false;
316
317 // XXX - CI changes say "Support for unaligned memory accesses" but I don't
318 // see what for specifically. The wording everywhere else seems to be the
319 // same.
320
321 // XXX - The only mention I see of this in the ISA manual is for LDS direct
322 // reads the "byte address and must be dword aligned". Is it also true for the
323 // normal loads and stores?
324 if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS) {
325 // ds_read/write_b64 require 8-byte alignment, but we can do a 4 byte
326 // aligned, 8 byte access in a single operation using ds_read2/write2_b32
327 // with adjacent offsets.
328 return Align % 4 == 0;
329 }
330
331 // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
332 // byte-address are ignored, thus forcing Dword alignment.
333 // This applies to private, global, and constant memory.
334 if (IsFast)
335 *IsFast = true;
336 return VT.bitsGT(MVT::i32);
337 }
338
339 EVT SITargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
340 unsigned SrcAlign, bool IsMemset,
341 bool ZeroMemset,
342 bool MemcpyStrSrc,
343 MachineFunction &MF) const {
344 // FIXME: Should account for address space here.
345
346 // The default fallback uses the private pointer size as a guess for a type to
347 // use. Make sure we switch these to 64-bit accesses.
348
349 if (Size >= 16 && DstAlign >= 4) // XXX: Should only do for global
350 return MVT::v4i32;
351
352 if (Size >= 8 && DstAlign >= 4)
353 return MVT::v2i32;
354
355 // Use the default.
356 return MVT::Other;
357 }
358
359 TargetLoweringBase::LegalizeTypeAction
360 SITargetLowering::getPreferredVectorAction(EVT VT) const {
361 if (VT.getVectorNumElements() != 1 && VT.getScalarType().bitsLE(MVT::i16))
362 return TypeSplitVector;
363
364 return TargetLoweringBase::getPreferredVectorAction(VT);
365 }
366
367 bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
368 Type *Ty) const {
369 const SIInstrInfo *TII = static_cast<const SIInstrInfo *>(
370 getTargetMachine().getSubtargetImpl()->getInstrInfo());
371 return TII->isInlineConstant(Imm);
372 }
373
374 SDValue SITargetLowering::LowerParameter(SelectionDAG &DAG, EVT VT, EVT MemVT,
375 SDLoc SL, SDValue Chain,
376 unsigned Offset, bool Signed) const {
377 const DataLayout *DL = getDataLayout();
378 MachineFunction &MF = DAG.getMachineFunction();
379 const SIRegisterInfo *TRI =
380 static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo());
381 unsigned InputPtrReg = TRI->getPreloadedValue(MF, SIRegisterInfo::INPUT_PTR);
382
383 Type *Ty = VT.getTypeForEVT(*DAG.getContext());
384
385 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
386 PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
387 SDValue BasePtr = DAG.getCopyFromReg(Chain, SL,
388 MRI.getLiveInVirtReg(InputPtrReg), MVT::i64);
389 SDValue Ptr = DAG.getNode(ISD::ADD, SL, MVT::i64, BasePtr,
390 DAG.getConstant(Offset, MVT::i64));
391 SDValue PtrOffset = DAG.getUNDEF(getPointerTy(AMDGPUAS::CONSTANT_ADDRESS));
392 MachinePointerInfo PtrInfo(UndefValue::get(PtrTy));
393
394 return DAG.getLoad(ISD::UNINDEXED, Signed ? ISD::SEXTLOAD : ISD::ZEXTLOAD,
395 VT, SL, Chain, Ptr, PtrOffset, PtrInfo, MemVT,
396 false, // isVolatile
397 true, // isNonTemporal
398 true, // isInvariant
399 DL->getABITypeAlignment(Ty)); // Alignment
400 }
401
402 SDValue SITargetLowering::LowerFormalArguments(
403 SDValue Chain,
404 CallingConv::ID CallConv,
405 bool isVarArg,
406 const SmallVectorImpl<ISD::InputArg> &Ins,
407 SDLoc DL, SelectionDAG &DAG,
408 SmallVectorImpl<SDValue> &InVals) const {
409
410 const TargetMachine &TM = getTargetMachine();
411 const SIRegisterInfo *TRI =
412 static_cast<const SIRegisterInfo*>(TM.getSubtargetImpl()->getRegisterInfo());
413
414 MachineFunction &MF = DAG.getMachineFunction();
415 FunctionType *FType = MF.getFunction()->getFunctionType();
416 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
417
418 assert(CallConv == CallingConv::C);
419
420 SmallVector<ISD::InputArg, 16> Splits;
421 BitVector Skipped(Ins.size());
422
423 for (unsigned i = 0, e = Ins.size(), PSInputNum = 0; i != e; ++i) {
424 const ISD::InputArg &Arg = Ins[i];
425
426 // First check if it's a PS input addr
427 if (Info->getShaderType() == ShaderType::PIXEL && !Arg.Flags.isInReg() &&
428 !Arg.Flags.isByVal()) {
429
430 assert((PSInputNum <= 15) && "Too many PS inputs!");
431
432 if (!Arg.Used) {
433 // We can savely skip PS inputs
434 Skipped.set(i);
435 ++PSInputNum;
436 continue;
437 }
438
439 Info->PSInputAddr |= 1 << PSInputNum++;
440 }
441
442 // Second split vertices into their elements
443 if (Info->getShaderType() != ShaderType::COMPUTE && Arg.VT.isVector()) {
444 ISD::InputArg NewArg = Arg;
445 NewArg.Flags.setSplit();
446 NewArg.VT = Arg.VT.getVectorElementType();
447
448 // We REALLY want the ORIGINAL number of vertex elements here, e.g. a
449 // three or five element vertex only needs three or five registers,
450 // NOT four or eigth.
451 Type *ParamType = FType->getParamType(Arg.OrigArgIndex);
452 unsigned NumElements = ParamType->getVectorNumElements();
453
454 for (unsigned j = 0; j != NumElements; ++j) {
455 Splits.push_back(NewArg);
456 NewArg.PartOffset += NewArg.VT.getStoreSize();
457 }
458
459 } else if (Info->getShaderType() != ShaderType::COMPUTE) {
460 Splits.push_back(Arg);
461 }
462 }
463
464 SmallVector<CCValAssign, 16> ArgLocs;
465 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
466 *DAG.getContext());
467
468 // At least one interpolation mode must be enabled or else the GPU will hang.
469 if (Info->getShaderType() == ShaderType::PIXEL &&
470 (Info->PSInputAddr & 0x7F) == 0) {
471 Info->PSInputAddr |= 1;
472 CCInfo.AllocateReg(AMDGPU::VGPR0);
473 CCInfo.AllocateReg(AMDGPU::VGPR1);
474 }
475
476 // The pointer to the list of arguments is stored in SGPR0, SGPR1
477 // The pointer to the scratch buffer is stored in SGPR2, SGPR3
478 if (Info->getShaderType() == ShaderType::COMPUTE) {
479 if (Subtarget->isAmdHsaOS())
480 Info->NumUserSGPRs = 2; // FIXME: Need to support scratch buffers.
481 else
482 Info->NumUserSGPRs = 4;
483
484 unsigned InputPtrReg =
485 TRI->getPreloadedValue(MF, SIRegisterInfo::INPUT_PTR);
486 unsigned InputPtrRegLo =
487 TRI->getPhysRegSubReg(InputPtrReg, &AMDGPU::SReg_32RegClass, 0);
488 unsigned InputPtrRegHi =
489 TRI->getPhysRegSubReg(InputPtrReg, &AMDGPU::SReg_32RegClass, 1);
490
491 unsigned ScratchPtrReg =
492 TRI->getPreloadedValue(MF, SIRegisterInfo::SCRATCH_PTR);
493 unsigned ScratchPtrRegLo =
494 TRI->getPhysRegSubReg(ScratchPtrReg, &AMDGPU::SReg_32RegClass, 0);
495 unsigned ScratchPtrRegHi =
496 TRI->getPhysRegSubReg(ScratchPtrReg, &AMDGPU::SReg_32RegClass, 1);
497
498 CCInfo.AllocateReg(InputPtrRegLo);
499 CCInfo.AllocateReg(InputPtrRegHi);
500 CCInfo.AllocateReg(ScratchPtrRegLo);
501 CCInfo.AllocateReg(ScratchPtrRegHi);
502 MF.addLiveIn(InputPtrReg, &AMDGPU::SReg_64RegClass);
503 MF.addLiveIn(ScratchPtrReg, &AMDGPU::SReg_64RegClass);
504 }
505
506 if (Info->getShaderType() == ShaderType::COMPUTE) {
507 getOriginalFunctionArgs(DAG, DAG.getMachineFunction().getFunction(), Ins,
508 Splits);
509 }
510
511 AnalyzeFormalArguments(CCInfo, Splits);
512
513 for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
514
515 const ISD::InputArg &Arg = Ins[i];
516 if (Skipped[i]) {
517 InVals.push_back(DAG.getUNDEF(Arg.VT));
518 continue;
519 }
520
521 CCValAssign &VA = ArgLocs[ArgIdx++];
522 MVT VT = VA.getLocVT();
523
524 if (VA.isMemLoc()) {
525 VT = Ins[i].VT;
526 EVT MemVT = Splits[i].VT;
527 const unsigned Offset = 36 + VA.getLocMemOffset();
528 // The first 36 bytes of the input buffer contains information about
529 // thread group and global sizes.
530 SDValue Arg = LowerParameter(DAG, VT, MemVT, DL, DAG.getRoot(),
531 Offset, Ins[i].Flags.isSExt());
532
533 const PointerType *ParamTy =
534 dyn_cast<PointerType>(FType->getParamType(Ins[i].OrigArgIndex));
535 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
536 ParamTy && ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
537 // On SI local pointers are just offsets into LDS, so they are always
538 // less than 16-bits. On CI and newer they could potentially be
539 // real pointers, so we can't guarantee their size.
540 Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg,
541 DAG.getValueType(MVT::i16));
542 }
543
544 InVals.push_back(Arg);
545 Info->ABIArgOffset = Offset + MemVT.getStoreSize();
546 continue;
547 }
548 assert(VA.isRegLoc() && "Parameter must be in a register!");
549
550 unsigned Reg = VA.getLocReg();
551
552 if (VT == MVT::i64) {
553 // For now assume it is a pointer
554 Reg = TRI->getMatchingSuperReg(Reg, AMDGPU::sub0,
555 &AMDGPU::SReg_64RegClass);
556 Reg = MF.addLiveIn(Reg, &AMDGPU::SReg_64RegClass);
557 InVals.push_back(DAG.getCopyFromReg(Chain, DL, Reg, VT));
558 continue;
559 }
560
561 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
562
563 Reg = MF.addLiveIn(Reg, RC);
564 SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
565
566 if (Arg.VT.isVector()) {
567
568 // Build a vector from the registers
569 Type *ParamType = FType->getParamType(Arg.OrigArgIndex);
570 unsigned NumElements = ParamType->getVectorNumElements();
571
572 SmallVector<SDValue, 4> Regs;
573 Regs.push_back(Val);
574 for (unsigned j = 1; j != NumElements; ++j) {
575 Reg = ArgLocs[ArgIdx++].getLocReg();
576 Reg = MF.addLiveIn(Reg, RC);
577 Regs.push_back(DAG.getCopyFromReg(Chain, DL, Reg, VT));
578 }
579
580 // Fill up the missing vector elements
581 NumElements = Arg.VT.getVectorNumElements() - NumElements;
582 for (unsigned j = 0; j != NumElements; ++j)
583 Regs.push_back(DAG.getUNDEF(VT));
584
585 InVals.push_back(DAG.getNode(ISD::BUILD_VECTOR, DL, Arg.VT, Regs));
586 continue;
587 }
588
589 InVals.push_back(Val);
590 }
591
592 if (Info->getShaderType() != ShaderType::COMPUTE) {
593 unsigned ScratchIdx = CCInfo.getFirstUnallocated(
594 AMDGPU::SGPR_32RegClass.begin(), AMDGPU::SGPR_32RegClass.getNumRegs());
595 Info->ScratchOffsetReg = AMDGPU::SGPR_32RegClass.getRegister(ScratchIdx);
596 }
597 return Chain;
598 }
599
600 MachineBasicBlock * SITargetLowering::EmitInstrWithCustomInserter(
601 MachineInstr * MI, MachineBasicBlock * BB) const {
602
603 MachineBasicBlock::iterator I = *MI;
604 const SIInstrInfo *TII = static_cast<const SIInstrInfo *>(
605 getTargetMachine().getSubtargetImpl()->getInstrInfo());
606
607 switch (MI->getOpcode()) {
608 default:
609 return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
610 case AMDGPU::BRANCH: return BB;
611 case AMDGPU::V_SUB_F64: {
612 unsigned DestReg = MI->getOperand(0).getReg();
613 BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::V_ADD_F64), DestReg)
614 .addImm(0) // SRC0 modifiers
615 .addReg(MI->getOperand(1).getReg())
616 .addImm(1) // SRC1 modifiers
617 .addReg(MI->getOperand(2).getReg())
618 .addImm(0) // CLAMP
619 .addImm(0); // OMOD
620 MI->eraseFromParent();
621 break;
622 }
623 case AMDGPU::SI_RegisterStorePseudo: {
624 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
625 unsigned Reg = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
626 MachineInstrBuilder MIB =
627 BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::SI_RegisterStore),
628 Reg);
629 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
630 MIB.addOperand(MI->getOperand(i));
631
632 MI->eraseFromParent();
633 break;
634 }
635 }
636 return BB;
637 }
638
639 EVT SITargetLowering::getSetCCResultType(LLVMContext &Ctx, EVT VT) const {
640 if (!VT.isVector()) {
641 return MVT::i1;
642 }
643 return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
644 }
645
646 MVT SITargetLowering::getScalarShiftAmountTy(EVT VT) const {
647 return MVT::i32;
648 }
649
650 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
651 VT = VT.getScalarType();
652
653 if (!VT.isSimple())
654 return false;
655
656 switch (VT.getSimpleVT().SimpleTy) {
657 case MVT::f32:
658 return false; /* There is V_MAD_F32 for f32 */
659 case MVT::f64:
660 return true;
661 default:
662 break;
663 }
664
665 return false;
666 }
667
668 //===----------------------------------------------------------------------===//
669 // Custom DAG Lowering Operations
670 //===----------------------------------------------------------------------===//
671
672 SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
673 switch (Op.getOpcode()) {
674 default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
675 case ISD::FrameIndex: return LowerFrameIndex(Op, DAG);
676 case ISD::BRCOND: return LowerBRCOND(Op, DAG);
677 case ISD::LOAD: {
678 SDValue Result = LowerLOAD(Op, DAG);
679 assert((!Result.getNode() ||
680 Result.getNode()->getNumValues() == 2) &&
681 "Load should return a value and a chain");
682 return Result;
683 }
684
685 case ISD::FSIN:
686 case ISD::FCOS:
687 return LowerTrig(Op, DAG);
688 case ISD::SELECT: return LowerSELECT(Op, DAG);
689 case ISD::FDIV: return LowerFDIV(Op, DAG);
690 case ISD::STORE: return LowerSTORE(Op, DAG);
691 case ISD::GlobalAddress: {
692 MachineFunction &MF = DAG.getMachineFunction();
693 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
694 return LowerGlobalAddress(MFI, Op, DAG);
695 }
696 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
697 case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
698 }
699 return SDValue();
700 }
701
702 /// \brief Helper function for LowerBRCOND
703 static SDNode *findUser(SDValue Value, unsigned Opcode) {
704
705 SDNode *Parent = Value.getNode();
706 for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
707 I != E; ++I) {
708
709 if (I.getUse().get() != Value)
710 continue;
711
712 if (I->getOpcode() == Opcode)
713 return *I;
714 }
715 return nullptr;
716 }
717
718 SDValue SITargetLowering::LowerFrameIndex(SDValue Op, SelectionDAG &DAG) const {
719
720 FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Op);
721 unsigned FrameIndex = FINode->getIndex();
722
723 return DAG.getTargetFrameIndex(FrameIndex, MVT::i32);
724 }
725
726 /// This transforms the control flow intrinsics to get the branch destination as
727 /// last parameter, also switches branch target with BR if the need arise
728 SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
729 SelectionDAG &DAG) const {
730
731 SDLoc DL(BRCOND);
732
733 SDNode *Intr = BRCOND.getOperand(1).getNode();
734 SDValue Target = BRCOND.getOperand(2);
735 SDNode *BR = nullptr;
736
737 if (Intr->getOpcode() == ISD::SETCC) {
738 // As long as we negate the condition everything is fine
739 SDNode *SetCC = Intr;
740 assert(SetCC->getConstantOperandVal(1) == 1);
741 assert(cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==
742 ISD::SETNE);
743 Intr = SetCC->getOperand(0).getNode();
744
745 } else {
746 // Get the target from BR if we don't negate the condition
747 BR = findUser(BRCOND, ISD::BR);
748 Target = BR->getOperand(1);
749 }
750
751 assert(Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN);
752
753 // Build the result and
754 SmallVector<EVT, 4> Res;
755 for (unsigned i = 1, e = Intr->getNumValues(); i != e; ++i)
756 Res.push_back(Intr->getValueType(i));
757
758 // operands of the new intrinsic call
759 SmallVector<SDValue, 4> Ops;
760 Ops.push_back(BRCOND.getOperand(0));
761 for (unsigned i = 1, e = Intr->getNumOperands(); i != e; ++i)
762 Ops.push_back(Intr->getOperand(i));
763 Ops.push_back(Target);
764
765 // build the new intrinsic call
766 SDNode *Result = DAG.getNode(
767 Res.size() > 1 ? ISD::INTRINSIC_W_CHAIN : ISD::INTRINSIC_VOID, DL,
768 DAG.getVTList(Res), Ops).getNode();
769
770 if (BR) {
771 // Give the branch instruction our target
772 SDValue Ops[] = {
773 BR->getOperand(0),
774 BRCOND.getOperand(2)
775 };
776 SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
777 DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
778 BR = NewBR.getNode();
779 }
780
781 SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
782
783 // Copy the intrinsic results to registers
784 for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
785 SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
786 if (!CopyToReg)
787 continue;
788
789 Chain = DAG.getCopyToReg(
790 Chain, DL,
791 CopyToReg->getOperand(1),
792 SDValue(Result, i - 1),
793 SDValue());
794
795 DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
796 }
797
798 // Remove the old intrinsic from the chain
799 DAG.ReplaceAllUsesOfValueWith(
800 SDValue(Intr, Intr->getNumValues() - 1),
801 Intr->getOperand(0));
802
803 return Chain;
804 }
805
806 SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
807 SDValue Op,
808 SelectionDAG &DAG) const {
809 GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
810
811 if (GSD->getAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS)
812 return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
813
814 SDLoc DL(GSD);
815 const GlobalValue *GV = GSD->getGlobal();
816 MVT PtrVT = getPointerTy(GSD->getAddressSpace());
817
818 SDValue Ptr = DAG.getNode(AMDGPUISD::CONST_DATA_PTR, DL, PtrVT);
819 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32);
820
821 SDValue PtrLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Ptr,
822 DAG.getConstant(0, MVT::i32));
823 SDValue PtrHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Ptr,
824 DAG.getConstant(1, MVT::i32));
825
826 SDValue Lo = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i32, MVT::Glue),
827 PtrLo, GA);
828 SDValue Hi = DAG.getNode(ISD::ADDE, DL, DAG.getVTList(MVT::i32, MVT::Glue),
829 PtrHi, DAG.getConstant(0, MVT::i32),
830 SDValue(Lo.getNode(), 1));
831 return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Lo, Hi);
832 }
833
834 SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
835 SelectionDAG &DAG) const {
836 MachineFunction &MF = DAG.getMachineFunction();
837 const SIRegisterInfo *TRI =
838 static_cast<const SIRegisterInfo*>(MF.getSubtarget().getRegisterInfo());
839
840 EVT VT = Op.getValueType();
841 SDLoc DL(Op);
842 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
843
844 switch (IntrinsicID) {
845 case Intrinsic::r600_read_ngroups_x:
846 return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
847 SI::KernelInputOffsets::NGROUPS_X, false);
848 case Intrinsic::r600_read_ngroups_y:
849 return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
850 SI::KernelInputOffsets::NGROUPS_Y, false);
851 case Intrinsic::r600_read_ngroups_z:
852 return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
853 SI::KernelInputOffsets::NGROUPS_Z, false);
854 case Intrinsic::r600_read_global_size_x:
855 return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
856 SI::KernelInputOffsets::GLOBAL_SIZE_X, false);
857 case Intrinsic::r600_read_global_size_y:
858 return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
859 SI::KernelInputOffsets::GLOBAL_SIZE_Y, false);
860 case Intrinsic::r600_read_global_size_z:
861 return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
862 SI::KernelInputOffsets::GLOBAL_SIZE_Z, false);
863 case Intrinsic::r600_read_local_size_x:
864 return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
865 SI::KernelInputOffsets::LOCAL_SIZE_X, false);
866 case Intrinsic::r600_read_local_size_y:
867 return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
868 SI::KernelInputOffsets::LOCAL_SIZE_Y, false);
869 case Intrinsic::r600_read_local_size_z:
870 return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
871 SI::KernelInputOffsets::LOCAL_SIZE_Z, false);
872
873 case Intrinsic::AMDGPU_read_workdim:
874 return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
875 MF.getInfo<SIMachineFunctionInfo>()->ABIArgOffset,
876 false);
877
878 case Intrinsic::r600_read_tgid_x:
879 return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
880 TRI->getPreloadedValue(MF, SIRegisterInfo::TGID_X), VT);
881 case Intrinsic::r600_read_tgid_y:
882 return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
883 TRI->getPreloadedValue(MF, SIRegisterInfo::TGID_Y), VT);
884 case Intrinsic::r600_read_tgid_z:
885 return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
886 TRI->getPreloadedValue(MF, SIRegisterInfo::TGID_Z), VT);
887 case Intrinsic::r600_read_tidig_x:
888 return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
889 TRI->getPreloadedValue(MF, SIRegisterInfo::TIDIG_X), VT);
890 case Intrinsic::r600_read_tidig_y:
891 return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
892 TRI->getPreloadedValue(MF, SIRegisterInfo::TIDIG_Y), VT);
893 case Intrinsic::r600_read_tidig_z:
894 return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
895 TRI->getPreloadedValue(MF, SIRegisterInfo::TIDIG_Z), VT);
896 case AMDGPUIntrinsic::SI_load_const: {
897 SDValue Ops[] = {
898 Op.getOperand(1),
899 Op.getOperand(2)
900 };
901
902 MachineMemOperand *MMO = MF.getMachineMemOperand(
903 MachinePointerInfo(),
904 MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant,
905 VT.getStoreSize(), 4);
906 return DAG.getMemIntrinsicNode(AMDGPUISD::LOAD_CONSTANT, DL,
907 Op->getVTList(), Ops, VT, MMO);
908 }
909 case AMDGPUIntrinsic::SI_sample:
910 return LowerSampleIntrinsic(AMDGPUISD::SAMPLE, Op, DAG);
911 case AMDGPUIntrinsic::SI_sampleb:
912 return LowerSampleIntrinsic(AMDGPUISD::SAMPLEB, Op, DAG);
913 case AMDGPUIntrinsic::SI_sampled:
914 return LowerSampleIntrinsic(AMDGPUISD::SAMPLED, Op, DAG);
915 case AMDGPUIntrinsic::SI_samplel:
916 return LowerSampleIntrinsic(AMDGPUISD::SAMPLEL, Op, DAG);
917 case AMDGPUIntrinsic::SI_vs_load_input:
918 return DAG.getNode(AMDGPUISD::LOAD_INPUT, DL, VT,
919 Op.getOperand(1),
920 Op.getOperand(2),
921 Op.getOperand(3));
922 default:
923 return AMDGPUTargetLowering::LowerOperation(Op, DAG);
924 }
925 }
926
927 SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op,
928 SelectionDAG &DAG) const {
929 MachineFunction &MF = DAG.getMachineFunction();
930 SDValue Chain = Op.getOperand(0);
931 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
932
933 switch (IntrinsicID) {
934 case AMDGPUIntrinsic::SI_tbuffer_store: {
935 SDLoc DL(Op);
936 SDValue Ops[] = {
937 Chain,
938 Op.getOperand(2),
939 Op.getOperand(3),
940 Op.getOperand(4),
941 Op.getOperand(5),
942 Op.getOperand(6),
943 Op.getOperand(7),
944 Op.getOperand(8),
945 Op.getOperand(9),
946 Op.getOperand(10),
947 Op.getOperand(11),
948 Op.getOperand(12),
949 Op.getOperand(13),
950 Op.getOperand(14)
951 };
952
953 EVT VT = Op.getOperand(3).getValueType();
954
955 MachineMemOperand *MMO = MF.getMachineMemOperand(
956 MachinePointerInfo(),
957 MachineMemOperand::MOStore,
958 VT.getStoreSize(), 4);
959 return DAG.getMemIntrinsicNode(AMDGPUISD::TBUFFER_STORE_FORMAT, DL,
960 Op->getVTList(), Ops, VT, MMO);
961 }
962 default:
963 return SDValue();
964 }
965 }
966
967 SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
968 SDLoc DL(Op);
969 LoadSDNode *Load = cast<LoadSDNode>(Op);
970
971 if (Op.getValueType().isVector()) {
972 assert(Op.getValueType().getVectorElementType() == MVT::i32 &&
973 "Custom lowering for non-i32 vectors hasn't been implemented.");
974 unsigned NumElements = Op.getValueType().getVectorNumElements();
975 assert(NumElements != 2 && "v2 loads are supported for all address spaces.");
976 switch (Load->getAddressSpace()) {
977 default: break;
978 case AMDGPUAS::GLOBAL_ADDRESS:
979 case AMDGPUAS::PRIVATE_ADDRESS:
980 // v4 loads are supported for private and global memory.
981 if (NumElements <= 4)
982 break;
983 // fall-through
984 case AMDGPUAS::LOCAL_ADDRESS:
985 return ScalarizeVectorLoad(Op, DAG);
986 }
987 }
988
989 return AMDGPUTargetLowering::LowerLOAD(Op, DAG);
990 }
991
992 SDValue SITargetLowering::LowerSampleIntrinsic(unsigned Opcode,
993 const SDValue &Op,
994 SelectionDAG &DAG) const {
995 return DAG.getNode(Opcode, SDLoc(Op), Op.getValueType(), Op.getOperand(1),
996 Op.getOperand(2),
997 Op.getOperand(3),
998 Op.getOperand(4));
999 }
1000
1001 SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
1002 if (Op.getValueType() != MVT::i64)
1003 return SDValue();
1004
1005 SDLoc DL(Op);
1006 SDValue Cond = Op.getOperand(0);
1007
1008 SDValue Zero = DAG.getConstant(0, MVT::i32);
1009 SDValue One = DAG.getConstant(1, MVT::i32);
1010
1011 SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
1012 SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
1013
1014 SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
1015 SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
1016
1017 SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
1018
1019 SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
1020 SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
1021
1022 SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
1023
1024 SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2i32, Lo, Hi);
1025 return DAG.getNode(ISD::BITCAST, DL, MVT::i64, Res);
1026 }
1027
1028 // Catch division cases where we can use shortcuts with rcp and rsq
1029 // instructions.
1030 SDValue SITargetLowering::LowerFastFDIV(SDValue Op, SelectionDAG &DAG) const {
1031 SDLoc SL(Op);
1032 SDValue LHS = Op.getOperand(0);
1033 SDValue RHS = Op.getOperand(1);
1034 EVT VT = Op.getValueType();
1035 bool Unsafe = DAG.getTarget().Options.UnsafeFPMath;
1036
1037 if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
1038 if ((Unsafe || (VT == MVT::f32 && !Subtarget->hasFP32Denormals())) &&
1039 CLHS->isExactlyValue(1.0)) {
1040 // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
1041 // the CI documentation has a worst case error of 1 ulp.
1042 // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
1043 // use it as long as we aren't trying to use denormals.
1044
1045 // 1.0 / sqrt(x) -> rsq(x)
1046 //
1047 // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP
1048 // error seems really high at 2^29 ULP.
1049 if (RHS.getOpcode() == ISD::FSQRT)
1050 return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0));
1051
1052 // 1.0 / x -> rcp(x)
1053 return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
1054 }
1055 }
1056
1057 if (Unsafe) {
1058 // Turn into multiply by the reciprocal.
1059 // x / y -> x * (1.0 / y)
1060 SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
1061 return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip);
1062 }
1063
1064 return SDValue();
1065 }
1066
1067 SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
1068 SDValue FastLowered = LowerFastFDIV(Op, DAG);
1069 if (FastLowered.getNode())
1070 return FastLowered;
1071
1072 // This uses v_rcp_f32 which does not handle denormals. Let this hit a
1073 // selection error for now rather than do something incorrect.
1074 if (Subtarget->hasFP32Denormals())
1075 return SDValue();
1076
1077 SDLoc SL(Op);
1078 SDValue LHS = Op.getOperand(0);
1079 SDValue RHS = Op.getOperand(1);
1080
1081 SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS);
1082
1083 const APFloat K0Val(BitsToFloat(0x6f800000));
1084 const SDValue K0 = DAG.getConstantFP(K0Val, MVT::f32);
1085
1086 const APFloat K1Val(BitsToFloat(0x2f800000));
1087 const SDValue K1 = DAG.getConstantFP(K1Val, MVT::f32);
1088
1089 const SDValue One = DAG.getConstantFP(1.0, MVT::f32);
1090
1091 EVT SetCCVT = getSetCCResultType(*DAG.getContext(), MVT::f32);
1092
1093 SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);
1094
1095 SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One);
1096
1097 r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3);
1098
1099 SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1);
1100
1101 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0);
1102
1103 return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul);
1104 }
1105
1106 SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
1107 return SDValue();
1108 }
1109
1110 SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
1111 EVT VT = Op.getValueType();
1112
1113 if (VT == MVT::f32)
1114 return LowerFDIV32(Op, DAG);
1115
1116 if (VT == MVT::f64)
1117 return LowerFDIV64(Op, DAG);
1118
1119 llvm_unreachable("Unexpected type for fdiv");
1120 }
1121
1122 SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
1123 SDLoc DL(Op);
1124 StoreSDNode *Store = cast<StoreSDNode>(Op);
1125 EVT VT = Store->getMemoryVT();
1126
1127 // These stores are legal.
1128 if (Store->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS &&
1129 VT.isVector() && VT.getVectorNumElements() == 2 &&
1130 VT.getVectorElementType() == MVT::i32)
1131 return SDValue();
1132
1133 if (Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) {
1134 if (VT.isVector() && VT.getVectorNumElements() > 4)
1135 return ScalarizeVectorStore(Op, DAG);
1136 return SDValue();
1137 }
1138
1139 SDValue Ret = AMDGPUTargetLowering::LowerSTORE(Op, DAG);
1140 if (Ret.getNode())
1141 return Ret;
1142
1143 if (VT.isVector() && VT.getVectorNumElements() >= 8)
1144 return ScalarizeVectorStore(Op, DAG);
1145
1146 if (VT == MVT::i1)
1147 return DAG.getTruncStore(Store->getChain(), DL,
1148 DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
1149 Store->getBasePtr(), MVT::i1, Store->getMemOperand());
1150
1151 return SDValue();
1152 }
1153
1154 SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
1155 EVT VT = Op.getValueType();
1156 SDValue Arg = Op.getOperand(0);
1157 SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, SDLoc(Op), VT,
1158 DAG.getNode(ISD::FMUL, SDLoc(Op), VT, Arg,
1159 DAG.getConstantFP(0.5 / M_PI, VT)));
1160
1161 switch (Op.getOpcode()) {
1162 case ISD::FCOS:
1163 return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, FractPart);
1164 case ISD::FSIN:
1165 return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, FractPart);
1166 default:
1167 llvm_unreachable("Wrong trig opcode");
1168 }
1169 }
1170
1171 //===----------------------------------------------------------------------===//
1172 // Custom DAG optimizations
1173 //===----------------------------------------------------------------------===//
1174
1175 SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
1176 DAGCombinerInfo &DCI) const {
1177 EVT VT = N->getValueType(0);
1178 EVT ScalarVT = VT.getScalarType();
1179 if (ScalarVT != MVT::f32)
1180 return SDValue();
1181
1182 SelectionDAG &DAG = DCI.DAG;
1183 SDLoc DL(N);
1184
1185 SDValue Src = N->getOperand(0);
1186 EVT SrcVT = Src.getValueType();
1187
1188 // TODO: We could try to match extracting the higher bytes, which would be
1189 // easier if i8 vectors weren't promoted to i32 vectors, particularly after
1190 // types are legalized. v4i8 -> v4f32 is probably the only case to worry
1191 // about in practice.
1192 if (DCI.isAfterLegalizeVectorOps() && SrcVT == MVT::i32) {
1193 if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
1194 SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Src);
1195 DCI.AddToWorklist(Cvt.getNode());
1196 return Cvt;
1197 }
1198 }
1199
1200 // We are primarily trying to catch operations on illegal vector types
1201 // before they are expanded.
1202 // For scalars, we can use the more flexible method of checking masked bits
1203 // after legalization.
1204 if (!DCI.isBeforeLegalize() ||
1205 !SrcVT.isVector() ||
1206 SrcVT.getVectorElementType() != MVT::i8) {
1207 return SDValue();
1208 }
1209
1210 assert(DCI.isBeforeLegalize() && "Unexpected legal type");
1211
1212 // Weird sized vectors are a pain to handle, but we know 3 is really the same
1213 // size as 4.
1214 unsigned NElts = SrcVT.getVectorNumElements();
1215 if (!SrcVT.isSimple() && NElts != 3)
1216 return SDValue();
1217
1218 // Handle v4i8 -> v4f32 extload. Replace the v4i8 with a legal i32 load to
1219 // prevent a mess from expanding to v4i32 and repacking.
1220 if (ISD::isNormalLoad(Src.getNode()) && Src.hasOneUse()) {
1221 EVT LoadVT = getEquivalentMemType(*DAG.getContext(), SrcVT);
1222 EVT RegVT = getEquivalentLoadRegType(*DAG.getContext(), SrcVT);
1223 EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f32, NElts);
1224 LoadSDNode *Load = cast<LoadSDNode>(Src);
1225
1226 unsigned AS = Load->getAddressSpace();
1227 unsigned Align = Load->getAlignment();
1228 Type *Ty = LoadVT.getTypeForEVT(*DAG.getContext());
1229 unsigned ABIAlignment = getDataLayout()->getABITypeAlignment(Ty);
1230
1231 // Don't try to replace the load if we have to expand it due to alignment
1232 // problems. Otherwise we will end up scalarizing the load, and trying to
1233 // repack into the vector for no real reason.
1234 if (Align < ABIAlignment &&
1235 !allowsMisalignedMemoryAccesses(LoadVT, AS, Align, nullptr)) {
1236 return SDValue();
1237 }
1238
1239 SDValue NewLoad = DAG.getExtLoad(ISD::ZEXTLOAD, DL, RegVT,
1240 Load->getChain(),
1241 Load->getBasePtr(),
1242 LoadVT,
1243 Load->getMemOperand());
1244
1245 // Make sure successors of the original load stay after it by updating
1246 // them to use the new Chain.
1247 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), NewLoad.getValue(1));
1248
1249 SmallVector<SDValue, 4> Elts;
1250 if (RegVT.isVector())
1251 DAG.ExtractVectorElements(NewLoad, Elts);
1252 else
1253 Elts.push_back(NewLoad);
1254
1255 SmallVector<SDValue, 4> Ops;
1256
1257 unsigned EltIdx = 0;
1258 for (SDValue Elt : Elts) {
1259 unsigned ComponentsInElt = std::min(4u, NElts - 4 * EltIdx);
1260 for (unsigned I = 0; I < ComponentsInElt; ++I) {
1261 unsigned Opc = AMDGPUISD::CVT_F32_UBYTE0 + I;
1262 SDValue Cvt = DAG.getNode(Opc, DL, MVT::f32, Elt);
1263 DCI.AddToWorklist(Cvt.getNode());
1264 Ops.push_back(Cvt);
1265 }
1266
1267 ++EltIdx;
1268 }
1269
1270 assert(Ops.size() == NElts);
1271
1272 return DAG.getNode(ISD::BUILD_VECTOR, DL, FloatVT, Ops);
1273 }
1274
1275 return SDValue();
1276 }
1277
1278 // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2)
1279
1280 // This is a variant of
1281 // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2),
1282 //
1283 // The normal DAG combiner will do this, but only if the add has one use since
1284 // that would increase the number of instructions.
1285 //
1286 // This prevents us from seeing a constant offset that can be folded into a
1287 // memory instruction's addressing mode. If we know the resulting add offset of
1288 // a pointer can be folded into an addressing offset, we can replace the pointer
1289 // operand with the add of new constant offset. This eliminates one of the uses,
1290 // and may allow the remaining use to also be simplified.
1291 //
1292 SDValue SITargetLowering::performSHLPtrCombine(SDNode *N,
1293 unsigned AddrSpace,
1294 DAGCombinerInfo &DCI) const {
1295 SDValue N0 = N->getOperand(0);
1296 SDValue N1 = N->getOperand(1);
1297
1298 if (N0.getOpcode() != ISD::ADD)
1299 return SDValue();
1300
1301 const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1);
1302 if (!CN1)
1303 return SDValue();
1304
1305 const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1));
1306 if (!CAdd)
1307 return SDValue();
1308
1309 const SIInstrInfo *TII = static_cast<const SIInstrInfo *>(
1310 getTargetMachine().getSubtargetImpl()->getInstrInfo());
1311
1312 // If the resulting offset is too large, we can't fold it into the addressing
1313 // mode offset.
1314 APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue();
1315 if (!TII->canFoldOffset(Offset.getZExtValue(), AddrSpace))
1316 return SDValue();
1317
1318 SelectionDAG &DAG = DCI.DAG;
1319 SDLoc SL(N);
1320 EVT VT = N->getValueType(0);
1321
1322 SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1);
1323 SDValue COffset = DAG.getConstant(Offset, MVT::i32);
1324
1325 return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset);
1326 }
1327
1328 SDValue SITargetLowering::performAndCombine(SDNode *N,
1329 DAGCombinerInfo &DCI) const {
1330 if (DCI.isBeforeLegalize())
1331 return SDValue();
1332
1333 SelectionDAG &DAG = DCI.DAG;
1334
1335 // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) ->
1336 // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity)
1337 SDValue LHS = N->getOperand(0);
1338 SDValue RHS = N->getOperand(1);
1339
1340 if (LHS.getOpcode() == ISD::SETCC &&
1341 RHS.getOpcode() == ISD::SETCC) {
1342 ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
1343 ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get();
1344
1345 SDValue X = LHS.getOperand(0);
1346 SDValue Y = RHS.getOperand(0);
1347 if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X)
1348 return SDValue();
1349
1350 if (LCC == ISD::SETO) {
1351 if (X != LHS.getOperand(1))
1352 return SDValue();
1353
1354 if (RCC == ISD::SETUNE) {
1355 const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1));
1356 if (!C1 || !C1->isInfinity() || C1->isNegative())
1357 return SDValue();
1358
1359 const uint32_t Mask = SIInstrFlags::N_NORMAL |
1360 SIInstrFlags::N_SUBNORMAL |
1361 SIInstrFlags::N_ZERO |
1362 SIInstrFlags::P_ZERO |
1363 SIInstrFlags::P_SUBNORMAL |
1364 SIInstrFlags::P_NORMAL;
1365
1366 static_assert(((~(SIInstrFlags::S_NAN |
1367 SIInstrFlags::Q_NAN |
1368 SIInstrFlags::N_INFINITY |
1369 SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask,
1370 "mask not equal");
1371
1372 return DAG.getNode(AMDGPUISD::FP_CLASS, SDLoc(N), MVT::i1,
1373 X, DAG.getConstant(Mask, MVT::i32));
1374 }
1375 }
1376 }
1377
1378 return SDValue();
1379 }
1380
1381 SDValue SITargetLowering::performOrCombine(SDNode *N,
1382 DAGCombinerInfo &DCI) const {
1383 SelectionDAG &DAG = DCI.DAG;
1384 SDValue LHS = N->getOperand(0);
1385 SDValue RHS = N->getOperand(1);
1386
1387 // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2)
1388 if (LHS.getOpcode() == AMDGPUISD::FP_CLASS &&
1389 RHS.getOpcode() == AMDGPUISD::FP_CLASS) {
1390 SDValue Src = LHS.getOperand(0);
1391 if (Src != RHS.getOperand(0))
1392 return SDValue();
1393
1394 const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
1395 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
1396 if (!CLHS || !CRHS)
1397 return SDValue();
1398
1399 // Only 10 bits are used.
1400 static const uint32_t MaxMask = 0x3ff;
1401
1402 uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask;
1403 return DAG.getNode(AMDGPUISD::FP_CLASS, SDLoc(N), MVT::i1,
1404 Src, DAG.getConstant(NewMask, MVT::i32));
1405 }
1406
1407 return SDValue();
1408 }
1409
1410 SDValue SITargetLowering::performClassCombine(SDNode *N,
1411 DAGCombinerInfo &DCI) const {
1412 SelectionDAG &DAG = DCI.DAG;
1413 SDValue Mask = N->getOperand(1);
1414
1415 // fp_class x, 0 -> false
1416 if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) {
1417 if (CMask->isNullValue())
1418 return DAG.getConstant(0, MVT::i1);
1419 }
1420
1421 return SDValue();
1422 }
1423
1424 static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) {
1425 switch (Opc) {
1426 case ISD::FMAXNUM:
1427 return AMDGPUISD::FMAX3;
1428 case AMDGPUISD::SMAX:
1429 return AMDGPUISD::SMAX3;
1430 case AMDGPUISD::UMAX:
1431 return AMDGPUISD::UMAX3;
1432 case ISD::FMINNUM:
1433 return AMDGPUISD::FMIN3;
1434 case AMDGPUISD::SMIN:
1435 return AMDGPUISD::SMIN3;
1436 case AMDGPUISD::UMIN:
1437 return AMDGPUISD::UMIN3;
1438 default:
1439 llvm_unreachable("Not a min/max opcode");
1440 }
1441 }
1442
1443 SDValue SITargetLowering::performMin3Max3Combine(SDNode *N,
1444 DAGCombinerInfo &DCI) const {
1445 SelectionDAG &DAG = DCI.DAG;
1446
1447 unsigned Opc = N->getOpcode();
1448 SDValue Op0 = N->getOperand(0);
1449 SDValue Op1 = N->getOperand(1);
1450
1451 // Only do this if the inner op has one use since this will just increases
1452 // register pressure for no benefit.
1453
1454 // max(max(a, b), c)
1455 if (Op0.getOpcode() == Opc && Op0.hasOneUse()) {
1456 SDLoc DL(N);
1457 return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
1458 DL,
1459 N->getValueType(0),
1460 Op0.getOperand(0),
1461 Op0.getOperand(1),
1462 Op1);
1463 }
1464
1465 // max(a, max(b, c))
1466 if (Op1.getOpcode() == Opc && Op1.hasOneUse()) {
1467 SDLoc DL(N);
1468 return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
1469 DL,
1470 N->getValueType(0),
1471 Op0,
1472 Op1.getOperand(0),
1473 Op1.getOperand(1));
1474 }
1475
1476 return SDValue();
1477 }
1478
1479 SDValue SITargetLowering::performSetCCCombine(SDNode *N,
1480 DAGCombinerInfo &DCI) const {
1481 SelectionDAG &DAG = DCI.DAG;
1482 SDLoc SL(N);
1483
1484 SDValue LHS = N->getOperand(0);
1485 SDValue RHS = N->getOperand(1);
1486 EVT VT = LHS.getValueType();
1487
1488 if (VT != MVT::f32 && VT != MVT::f64)
1489 return SDValue();
1490
1491 // Match isinf pattern
1492 // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity))
1493 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
1494 if (CC == ISD::SETOEQ && LHS.getOpcode() == ISD::FABS) {
1495 const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
1496 if (!CRHS)
1497 return SDValue();
1498
1499 const APFloat &APF = CRHS->getValueAPF();
1500 if (APF.isInfinity() && !APF.isNegative()) {
1501 unsigned Mask = SIInstrFlags::P_INFINITY | SIInstrFlags::N_INFINITY;
1502 return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1,
1503 LHS.getOperand(0), DAG.getConstant(Mask, MVT::i32));
1504 }
1505 }
1506
1507 return SDValue();
1508 }
1509
1510 SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
1511 DAGCombinerInfo &DCI) const {
1512 SelectionDAG &DAG = DCI.DAG;
1513 SDLoc DL(N);
1514
1515 switch (N->getOpcode()) {
1516 default:
1517 return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
1518 case ISD::SETCC:
1519 return performSetCCCombine(N, DCI);
1520 case ISD::FMAXNUM: // TODO: What about fmax_legacy?
1521 case ISD::FMINNUM:
1522 case AMDGPUISD::SMAX:
1523 case AMDGPUISD::SMIN:
1524 case AMDGPUISD::UMAX:
1525 case AMDGPUISD::UMIN: {
1526 if (DCI.getDAGCombineLevel() >= AfterLegalizeDAG &&
1527 getTargetMachine().getOptLevel() > CodeGenOpt::None)
1528 return performMin3Max3Combine(N, DCI);
1529 break;
1530 }
1531
1532 case AMDGPUISD::CVT_F32_UBYTE0:
1533 case AMDGPUISD::CVT_F32_UBYTE1:
1534 case AMDGPUISD::CVT_F32_UBYTE2:
1535 case AMDGPUISD::CVT_F32_UBYTE3: {
1536 unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
1537
1538 SDValue Src = N->getOperand(0);
1539 APInt Demanded = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
1540
1541 APInt KnownZero, KnownOne;
1542 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1543 !DCI.isBeforeLegalizeOps());
1544 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1545 if (TLO.ShrinkDemandedConstant(Src, Demanded) ||
1546 TLI.SimplifyDemandedBits(Src, Demanded, KnownZero, KnownOne, TLO)) {
1547 DCI.CommitTargetLoweringOpt(TLO);
1548 }
1549
1550 break;
1551 }
1552
1553 case ISD::UINT_TO_FP: {
1554 return performUCharToFloatCombine(N, DCI);
1555
1556 case ISD::FADD: {
1557 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
1558 break;
1559
1560 EVT VT = N->getValueType(0);
1561 if (VT != MVT::f32)
1562 break;
1563
1564 SDValue LHS = N->getOperand(0);
1565 SDValue RHS = N->getOperand(1);
1566
1567 // These should really be instruction patterns, but writing patterns with
1568 // source modiifiers is a pain.
1569
1570 // fadd (fadd (a, a), b) -> mad 2.0, a, b
1571 if (LHS.getOpcode() == ISD::FADD) {
1572 SDValue A = LHS.getOperand(0);
1573 if (A == LHS.getOperand(1)) {
1574 const SDValue Two = DAG.getConstantFP(2.0, MVT::f32);
1575 return DAG.getNode(AMDGPUISD::MAD, DL, VT, Two, A, RHS);
1576 }
1577 }
1578
1579 // fadd (b, fadd (a, a)) -> mad 2.0, a, b
1580 if (RHS.getOpcode() == ISD::FADD) {
1581 SDValue A = RHS.getOperand(0);
1582 if (A == RHS.getOperand(1)) {
1583 const SDValue Two = DAG.getConstantFP(2.0, MVT::f32);
1584 return DAG.getNode(AMDGPUISD::MAD, DL, VT, Two, A, LHS);
1585 }
1586 }
1587
1588 break;
1589 }
1590 case ISD::FSUB: {
1591 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
1592 break;
1593
1594 EVT VT = N->getValueType(0);
1595
1596 // Try to get the fneg to fold into the source modifier. This undoes generic
1597 // DAG combines and folds them into the mad.
1598 if (VT == MVT::f32) {
1599 SDValue LHS = N->getOperand(0);
1600 SDValue RHS = N->getOperand(1);
1601
1602 if (LHS.getOpcode() == ISD::FMUL) {
1603 // (fsub (fmul a, b), c) -> mad a, b, (fneg c)
1604
1605 SDValue A = LHS.getOperand(0);
1606 SDValue B = LHS.getOperand(1);
1607 SDValue C = DAG.getNode(ISD::FNEG, DL, VT, RHS);
1608
1609 return DAG.getNode(AMDGPUISD::MAD, DL, VT, A, B, C);
1610 }
1611
1612 if (RHS.getOpcode() == ISD::FMUL) {
1613 // (fsub c, (fmul a, b)) -> mad (fneg a), b, c
1614
1615 SDValue A = DAG.getNode(ISD::FNEG, DL, VT, RHS.getOperand(0));
1616 SDValue B = RHS.getOperand(1);
1617 SDValue C = LHS;
1618
1619 return DAG.getNode(AMDGPUISD::MAD, DL, VT, A, B, C);
1620 }
1621
1622 if (LHS.getOpcode() == ISD::FADD) {
1623 // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c)
1624
1625 SDValue A = LHS.getOperand(0);
1626 if (A == LHS.getOperand(1)) {
1627 const SDValue Two = DAG.getConstantFP(2.0, MVT::f32);
1628 SDValue NegRHS = DAG.getNode(ISD::FNEG, DL, VT, RHS);
1629
1630 return DAG.getNode(AMDGPUISD::MAD, DL, VT, Two, A, NegRHS);
1631 }
1632 }
1633
1634 if (RHS.getOpcode() == ISD::FADD) {
1635 // (fsub c, (fadd a, a)) -> mad -2.0, a, c
1636
1637 SDValue A = RHS.getOperand(0);
1638 if (A == RHS.getOperand(1)) {
1639 const SDValue NegTwo = DAG.getConstantFP(-2.0, MVT::f32);
1640 return DAG.getNode(AMDGPUISD::MAD, DL, VT, NegTwo, A, LHS);
1641 }
1642 }
1643 }
1644
1645 break;
1646 }
1647 }
1648 case ISD::LOAD:
1649 case ISD::STORE:
1650 case ISD::ATOMIC_LOAD:
1651 case ISD::ATOMIC_STORE:
1652 case ISD::ATOMIC_CMP_SWAP:
1653 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
1654 case ISD::ATOMIC_SWAP:
1655 case ISD::ATOMIC_LOAD_ADD:
1656 case ISD::ATOMIC_LOAD_SUB:
1657 case ISD::ATOMIC_LOAD_AND:
1658 case ISD::ATOMIC_LOAD_OR:
1659 case ISD::ATOMIC_LOAD_XOR:
1660 case ISD::ATOMIC_LOAD_NAND:
1661 case ISD::ATOMIC_LOAD_MIN:
1662 case ISD::ATOMIC_LOAD_MAX:
1663 case ISD::ATOMIC_LOAD_UMIN:
1664 case ISD::ATOMIC_LOAD_UMAX: { // TODO: Target mem intrinsics.
1665 if (DCI.isBeforeLegalize())
1666 break;
1667
1668 MemSDNode *MemNode = cast<MemSDNode>(N);
1669 SDValue Ptr = MemNode->getBasePtr();
1670
1671 // TODO: We could also do this for multiplies.
1672 unsigned AS = MemNode->getAddressSpace();
1673 if (Ptr.getOpcode() == ISD::SHL && AS != AMDGPUAS::PRIVATE_ADDRESS) {
1674 SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), AS, DCI);
1675 if (NewPtr) {
1676 SmallVector<SDValue, 8> NewOps;
1677 for (unsigned I = 0, E = MemNode->getNumOperands(); I != E; ++I)
1678 NewOps.push_back(MemNode->getOperand(I));
1679
1680 NewOps[N->getOpcode() == ISD::STORE ? 2 : 1] = NewPtr;
1681 return SDValue(DAG.UpdateNodeOperands(MemNode, NewOps), 0);
1682 }
1683 }
1684 break;
1685 }
1686 case ISD::AND:
1687 return performAndCombine(N, DCI);
1688 case ISD::OR:
1689 return performOrCombine(N, DCI);
1690 case AMDGPUISD::FP_CLASS:
1691 return performClassCombine(N, DCI);
1692 }
1693 return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
1694 }
1695
1696 /// \brief Test if RegClass is one of the VSrc classes
1697 static bool isVSrc(unsigned RegClass) {
1698 switch(RegClass) {
1699 default: return false;
1700 case AMDGPU::VS_32RegClassID:
1701 case AMDGPU::VS_64RegClassID:
1702 return true;
1703 }
1704 }
1705
1706 /// \brief Analyze the possible immediate value Op
1707 ///
1708 /// Returns -1 if it isn't an immediate, 0 if it's and inline immediate
1709 /// and the immediate value if it's a literal immediate
1710 int32_t SITargetLowering::analyzeImmediate(const SDNode *N) const {
1711
1712 const SIInstrInfo *TII = static_cast<const SIInstrInfo *>(
1713 getTargetMachine().getSubtargetImpl()->getInstrInfo());
1714
1715 if (const ConstantSDNode *Node = dyn_cast<ConstantSDNode>(N)) {
1716 if (Node->getZExtValue() >> 32)
1717 return -1;
1718
1719 if (TII->isInlineConstant(Node->getAPIntValue()))
1720 return 0;
1721
1722 return Node->getZExtValue();
1723 }
1724
1725 if (const ConstantFPSDNode *Node = dyn_cast<ConstantFPSDNode>(N)) {
1726 if (TII->isInlineConstant(Node->getValueAPF().bitcastToAPInt()))
1727 return 0;
1728
1729 if (Node->getValueType(0) == MVT::f32)
1730 return FloatToBits(Node->getValueAPF().convertToFloat());
1731
1732 return -1;
1733 }
1734
1735 return -1;
1736 }
1737
1738 const TargetRegisterClass *SITargetLowering::getRegClassForNode(
1739 SelectionDAG &DAG, const SDValue &Op) const {
1740 const SIInstrInfo *TII = static_cast<const SIInstrInfo *>(
1741 getTargetMachine().getSubtargetImpl()->getInstrInfo());
1742 const SIRegisterInfo &TRI = TII->getRegisterInfo();
1743
1744 if (!Op->isMachineOpcode()) {
1745 switch(Op->getOpcode()) {
1746 case ISD::CopyFromReg: {
1747 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1748 unsigned Reg = cast<RegisterSDNode>(Op->getOperand(1))->getReg();
1749 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1750 return MRI.getRegClass(Reg);
1751 }
1752 return TRI.getPhysRegClass(Reg);
1753 }
1754 default: return nullptr;
1755 }
1756 }
1757 const MCInstrDesc &Desc = TII->get(Op->getMachineOpcode());
1758 int OpClassID = Desc.OpInfo[Op.getResNo()].RegClass;
1759 if (OpClassID != -1) {
1760 return TRI.getRegClass(OpClassID);
1761 }
1762 switch(Op.getMachineOpcode()) {
1763 case AMDGPU::COPY_TO_REGCLASS:
1764 // Operand 1 is the register class id for COPY_TO_REGCLASS instructions.
1765 OpClassID = cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue();
1766
1767 // If the COPY_TO_REGCLASS instruction is copying to a VSrc register
1768 // class, then the register class for the value could be either a
1769 // VReg or and SReg. In order to get a more accurate
1770 if (isVSrc(OpClassID))
1771 return getRegClassForNode(DAG, Op.getOperand(0));
1772
1773 return TRI.getRegClass(OpClassID);
1774 case AMDGPU::EXTRACT_SUBREG: {
1775 int SubIdx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1776 const TargetRegisterClass *SuperClass =
1777 getRegClassForNode(DAG, Op.getOperand(0));
1778 return TRI.getSubClassWithSubReg(SuperClass, SubIdx);
1779 }
1780 case AMDGPU::REG_SEQUENCE:
1781 // Operand 0 is the register class id for REG_SEQUENCE instructions.
1782 return TRI.getRegClass(
1783 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue());
1784 default:
1785 return getRegClassFor(Op.getSimpleValueType());
1786 }
1787 }
1788
1789 /// \brief Does "Op" fit into register class "RegClass" ?
1790 bool SITargetLowering::fitsRegClass(SelectionDAG &DAG, const SDValue &Op,
1791 unsigned RegClass) const {
1792 const TargetRegisterInfo *TRI =
1793 getTargetMachine().getSubtargetImpl()->getRegisterInfo();
1794 const TargetRegisterClass *RC = getRegClassForNode(DAG, Op);
1795 if (!RC) {
1796 return false;
1797 }
1798 return TRI->getRegClass(RegClass)->hasSubClassEq(RC);
1799 }
1800
1801 /// \brief Helper function for adjustWritemask
1802 static unsigned SubIdx2Lane(unsigned Idx) {
1803 switch (Idx) {
1804 default: return 0;
1805 case AMDGPU::sub0: return 0;
1806 case AMDGPU::sub1: return 1;
1807 case AMDGPU::sub2: return 2;
1808 case AMDGPU::sub3: return 3;
1809 }
1810 }
1811
1812 /// \brief Adjust the writemask of MIMG instructions
1813 void SITargetLowering::adjustWritemask(MachineSDNode *&Node,
1814 SelectionDAG &DAG) const {
1815 SDNode *Users[4] = { };
1816 unsigned Lane = 0;
1817 unsigned OldDmask = Node->getConstantOperandVal(0);
1818 unsigned NewDmask = 0;
1819
1820 // Try to figure out the used register components
1821 for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
1822 I != E; ++I) {
1823
1824 // Abort if we can't understand the usage
1825 if (!I->isMachineOpcode() ||
1826 I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
1827 return;
1828
1829 // Lane means which subreg of %VGPRa_VGPRb_VGPRc_VGPRd is used.
1830 // Note that subregs are packed, i.e. Lane==0 is the first bit set
1831 // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
1832 // set, etc.
1833 Lane = SubIdx2Lane(I->getConstantOperandVal(1));
1834
1835 // Set which texture component corresponds to the lane.
1836 unsigned Comp;
1837 for (unsigned i = 0, Dmask = OldDmask; i <= Lane; i++) {
1838 assert(Dmask);
1839 Comp = countTrailingZeros(Dmask);
1840 Dmask &= ~(1 << Comp);
1841 }
1842
1843 // Abort if we have more than one user per component
1844 if (Users[Lane])
1845 return;
1846
1847 Users[Lane] = *I;
1848 NewDmask |= 1 << Comp;
1849 }
1850
1851 // Abort if there's no change
1852 if (NewDmask == OldDmask)
1853 return;
1854
1855 // Adjust the writemask in the node
1856 std::vector<SDValue> Ops;
1857 Ops.push_back(DAG.getTargetConstant(NewDmask, MVT::i32));
1858 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
1859 Ops.push_back(Node->getOperand(i));
1860 Node = (MachineSDNode*)DAG.UpdateNodeOperands(Node, Ops);
1861
1862 // If we only got one lane, replace it with a copy
1863 // (if NewDmask has only one bit set...)
1864 if (NewDmask && (NewDmask & (NewDmask-1)) == 0) {
1865 SDValue RC = DAG.getTargetConstant(AMDGPU::VGPR_32RegClassID, MVT::i32);
1866 SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
1867 SDLoc(), Users[Lane]->getValueType(0),
1868 SDValue(Node, 0), RC);
1869 DAG.ReplaceAllUsesWith(Users[Lane], Copy);
1870 return;
1871 }
1872
1873 // Update the users of the node with the new indices
1874 for (unsigned i = 0, Idx = AMDGPU::sub0; i < 4; ++i) {
1875
1876 SDNode *User = Users[i];
1877 if (!User)
1878 continue;
1879
1880 SDValue Op = DAG.getTargetConstant(Idx, MVT::i32);
1881 DAG.UpdateNodeOperands(User, User->getOperand(0), Op);
1882
1883 switch (Idx) {
1884 default: break;
1885 case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
1886 case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
1887 case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
1888 }
1889 }
1890 }
1891
1892 /// \brief Legalize target independent instructions (e.g. INSERT_SUBREG)
1893 /// with frame index operands.
1894 /// LLVM assumes that inputs are to these instructions are registers.
1895 void SITargetLowering::legalizeTargetIndependentNode(SDNode *Node,
1896 SelectionDAG &DAG) const {
1897
1898 SmallVector<SDValue, 8> Ops;
1899 for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
1900 if (!isa<FrameIndexSDNode>(Node->getOperand(i))) {
1901 Ops.push_back(Node->getOperand(i));
1902 continue;
1903 }
1904
1905 SDLoc DL(Node);
1906 Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL,
1907 Node->getOperand(i).getValueType(),
1908 Node->getOperand(i)), 0));
1909 }
1910
1911 DAG.UpdateNodeOperands(Node, Ops);
1912 }
1913
1914 /// \brief Fold the instructions after selecting them.
1915 SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
1916 SelectionDAG &DAG) const {
1917 const SIInstrInfo *TII = static_cast<const SIInstrInfo *>(
1918 getTargetMachine().getSubtargetImpl()->getInstrInfo());
1919 Node = AdjustRegClass(Node, DAG);
1920
1921 if (TII->isMIMG(Node->getMachineOpcode()))
1922 adjustWritemask(Node, DAG);
1923
1924 if (Node->getMachineOpcode() == AMDGPU::INSERT_SUBREG ||
1925 Node->getMachineOpcode() == AMDGPU::REG_SEQUENCE) {
1926 legalizeTargetIndependentNode(Node, DAG);
1927 return Node;
1928 }
1929 return Node;
1930 }
1931
1932 /// \brief Assign the register class depending on the number of
1933 /// bits set in the writemask
1934 void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
1935 SDNode *Node) const {
1936 const SIInstrInfo *TII = static_cast<const SIInstrInfo *>(
1937 getTargetMachine().getSubtargetImpl()->getInstrInfo());
1938
1939 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
1940 TII->legalizeOperands(MI);
1941
1942 if (TII->isMIMG(MI->getOpcode())) {
1943 unsigned VReg = MI->getOperand(0).getReg();
1944 unsigned Writemask = MI->getOperand(1).getImm();
1945 unsigned BitsSet = 0;
1946 for (unsigned i = 0; i < 4; ++i)
1947 BitsSet += Writemask & (1 << i) ? 1 : 0;
1948
1949 const TargetRegisterClass *RC;
1950 switch (BitsSet) {
1951 default: return;
1952 case 1: RC = &AMDGPU::VGPR_32RegClass; break;
1953 case 2: RC = &AMDGPU::VReg_64RegClass; break;
1954 case 3: RC = &AMDGPU::VReg_96RegClass; break;
1955 }
1956
1957 unsigned NewOpcode = TII->getMaskedMIMGOp(MI->getOpcode(), BitsSet);
1958 MI->setDesc(TII->get(NewOpcode));
1959 MRI.setRegClass(VReg, RC);
1960 return;
1961 }
1962
1963 // Replace unused atomics with the no return version.
1964 int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI->getOpcode());
1965 if (NoRetAtomicOp != -1) {
1966 if (!Node->hasAnyUseOfValue(0)) {
1967 MI->setDesc(TII->get(NoRetAtomicOp));
1968 MI->RemoveOperand(0);
1969 }
1970
1971 return;
1972 }
1973 }
1974
1975 static SDValue buildSMovImm32(SelectionDAG &DAG, SDLoc DL, uint64_t Val) {
1976 SDValue K = DAG.getTargetConstant(Val, MVT::i32);
1977 return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0);
1978 }
1979
1980 MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG,
1981 SDLoc DL,
1982 SDValue Ptr) const {
1983 const SIInstrInfo *TII = static_cast<const SIInstrInfo *>(
1984 getTargetMachine().getSubtargetImpl()->getInstrInfo());
1985 #if 1
1986 // XXX - Workaround for moveToVALU not handling different register class
1987 // inserts for REG_SEQUENCE.
1988
1989 // Build the half of the subregister with the constants.
1990 const SDValue Ops0[] = {
1991 DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, MVT::i32),
1992 buildSMovImm32(DAG, DL, 0),
1993 DAG.getTargetConstant(AMDGPU::sub0, MVT::i32),
1994 buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32),
1995 DAG.getTargetConstant(AMDGPU::sub1, MVT::i32)
1996 };
1997
1998 SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL,
1999 MVT::v2i32, Ops0), 0);
2000
2001 // Combine the constants and the pointer.
2002 const SDValue Ops1[] = {
2003 DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, MVT::i32),
2004 Ptr,
2005 DAG.getTargetConstant(AMDGPU::sub0_sub1, MVT::i32),
2006 SubRegHi,
2007 DAG.getTargetConstant(AMDGPU::sub2_sub3, MVT::i32)
2008 };
2009
2010 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1);
2011 #else
2012 const SDValue Ops[] = {
2013 DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, MVT::i32),
2014 Ptr,
2015 DAG.getTargetConstant(AMDGPU::sub0_sub1, MVT::i32),
2016 buildSMovImm32(DAG, DL, 0),
2017 DAG.getTargetConstant(AMDGPU::sub2, MVT::i32),
2018 buildSMovImm32(DAG, DL, TII->getDefaultRsrcFormat() >> 32),
2019 DAG.getTargetConstant(AMDGPU::sub3, MVT::i32)
2020 };
2021
2022 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
2023
2024 #endif
2025 }
2026
2027 /// \brief Return a resource descriptor with the 'Add TID' bit enabled
2028 /// The TID (Thread ID) is multipled by the stride value (bits [61:48]
2029 /// of the resource descriptor) to create an offset, which is added to the
2030 /// resource ponter.
2031 MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG,
2032 SDLoc DL,
2033 SDValue Ptr,
2034 uint32_t RsrcDword1,
2035 uint64_t RsrcDword2And3) const {
2036 SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
2037 SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
2038 if (RsrcDword1) {
2039 PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi,
2040 DAG.getConstant(RsrcDword1, MVT::i32)), 0);
2041 }
2042
2043 SDValue DataLo = buildSMovImm32(DAG, DL,
2044 RsrcDword2And3 & UINT64_C(0xFFFFFFFF));
2045 SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32);
2046
2047 const SDValue Ops[] = {
2048 DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, MVT::i32),
2049 PtrLo,
2050 DAG.getTargetConstant(AMDGPU::sub0, MVT::i32),
2051 PtrHi,
2052 DAG.getTargetConstant(AMDGPU::sub1, MVT::i32),
2053 DataLo,
2054 DAG.getTargetConstant(AMDGPU::sub2, MVT::i32),
2055 DataHi,
2056 DAG.getTargetConstant(AMDGPU::sub3, MVT::i32)
2057 };
2058
2059 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
2060 }
2061
2062 MachineSDNode *SITargetLowering::buildScratchRSRC(SelectionDAG &DAG,
2063 SDLoc DL,
2064 SDValue Ptr) const {
2065 const SIInstrInfo *TII = static_cast<const SIInstrInfo *>(
2066 getTargetMachine().getSubtargetImpl()->getInstrInfo());
2067 uint64_t Rsrc = TII->getDefaultRsrcDataFormat() | AMDGPU::RSRC_TID_ENABLE |
2068 0xffffffff; // Size
2069
2070 return buildRSRC(DAG, DL, Ptr, 0, Rsrc);
2071 }
2072
2073 MachineSDNode *SITargetLowering::AdjustRegClass(MachineSDNode *N,
2074 SelectionDAG &DAG) const {
2075
2076 SDLoc DL(N);
2077 unsigned NewOpcode = N->getMachineOpcode();
2078
2079 switch (N->getMachineOpcode()) {
2080 default: return N;
2081 case AMDGPU::S_LOAD_DWORD_IMM:
2082 NewOpcode = AMDGPU::BUFFER_LOAD_DWORD_ADDR64;
2083 // Fall-through
2084 case AMDGPU::S_LOAD_DWORDX2_SGPR:
2085 if (NewOpcode == N->getMachineOpcode()) {
2086 NewOpcode = AMDGPU::BUFFER_LOAD_DWORDX2_ADDR64;
2087 }
2088 // Fall-through
2089 case AMDGPU::S_LOAD_DWORDX4_IMM:
2090 case AMDGPU::S_LOAD_DWORDX4_SGPR: {
2091 if (NewOpcode == N->getMachineOpcode()) {
2092 NewOpcode = AMDGPU::BUFFER_LOAD_DWORDX4_ADDR64;
2093 }
2094 if (fitsRegClass(DAG, N->getOperand(0), AMDGPU::SReg_64RegClassID)) {
2095 return N;
2096 }
2097 ConstantSDNode *Offset = cast<ConstantSDNode>(N->getOperand(1));
2098
2099 const SDValue Zero64 = DAG.getTargetConstant(0, MVT::i64);
2100 SDValue Ptr(DAG.getMachineNode(AMDGPU::S_MOV_B64, DL, MVT::i64, Zero64), 0);
2101 MachineSDNode *RSrc = wrapAddr64Rsrc(DAG, DL, Ptr);
2102
2103 SmallVector<SDValue, 8> Ops;
2104 Ops.push_back(SDValue(RSrc, 0));
2105 Ops.push_back(N->getOperand(0));
2106
2107 // The immediate offset is in dwords on SI and in bytes on VI.
2108 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
2109 Ops.push_back(DAG.getTargetConstant(Offset->getSExtValue(), MVT::i32));
2110 else
2111 Ops.push_back(DAG.getTargetConstant(Offset->getSExtValue() << 2, MVT::i32));
2112
2113 // Copy remaining operands so we keep any chain and glue nodes that follow
2114 // the normal operands.
2115 for (unsigned I = 2, E = N->getNumOperands(); I != E; ++I)
2116 Ops.push_back(N->getOperand(I));
2117
2118 return DAG.getMachineNode(NewOpcode, DL, N->getVTList(), Ops);
2119 }
2120 }
2121 }
2122
2123 SDValue SITargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
2124 const TargetRegisterClass *RC,
2125 unsigned Reg, EVT VT) const {
2126 SDValue VReg = AMDGPUTargetLowering::CreateLiveInRegister(DAG, RC, Reg, VT);
2127
2128 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(DAG.getEntryNode()),
2129 cast<RegisterSDNode>(VReg)->getReg(), VT);
2130 }