]> git.proxmox.com Git - rustc.git/blob - src/llvm/lib/Target/R600/SIInsertWaits.cpp
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / lib / Target / R600 / SIInsertWaits.cpp
1 //===-- SILowerControlFlow.cpp - Use predicates for control flow ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// \brief Insert wait instructions for memory reads and writes.
12 ///
13 /// Memory reads and writes are issued asynchronously, so we need to insert
14 /// S_WAITCNT instructions when we want to access any of their results or
15 /// overwrite any register that's used asynchronously.
16 //
17 //===----------------------------------------------------------------------===//
18
19 #include "AMDGPU.h"
20 #include "AMDGPUSubtarget.h"
21 #include "SIDefines.h"
22 #include "SIInstrInfo.h"
23 #include "SIMachineFunctionInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineFunctionPass.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28
29 using namespace llvm;
30
31 namespace {
32
33 /// \brief One variable for each of the hardware counters
34 typedef union {
35 struct {
36 unsigned VM;
37 unsigned EXP;
38 unsigned LGKM;
39 } Named;
40 unsigned Array[3];
41
42 } Counters;
43
44 typedef enum {
45 OTHER,
46 SMEM,
47 VMEM
48 } InstType;
49
50 typedef Counters RegCounters[512];
51 typedef std::pair<unsigned, unsigned> RegInterval;
52
53 class SIInsertWaits : public MachineFunctionPass {
54
55 private:
56 static char ID;
57 const SIInstrInfo *TII;
58 const SIRegisterInfo *TRI;
59 const MachineRegisterInfo *MRI;
60
61 /// \brief Constant hardware limits
62 static const Counters WaitCounts;
63
64 /// \brief Constant zero value
65 static const Counters ZeroCounts;
66
67 /// \brief Counter values we have already waited on.
68 Counters WaitedOn;
69
70 /// \brief Counter values for last instruction issued.
71 Counters LastIssued;
72
73 /// \brief Registers used by async instructions.
74 RegCounters UsedRegs;
75
76 /// \brief Registers defined by async instructions.
77 RegCounters DefinedRegs;
78
79 /// \brief Different export instruction types seen since last wait.
80 unsigned ExpInstrTypesSeen;
81
82 /// \brief Type of the last opcode.
83 InstType LastOpcodeType;
84
85 /// \brief Get increment/decrement amount for this instruction.
86 Counters getHwCounts(MachineInstr &MI);
87
88 /// \brief Is operand relevant for async execution?
89 bool isOpRelevant(MachineOperand &Op);
90
91 /// \brief Get register interval an operand affects.
92 RegInterval getRegInterval(MachineOperand &Op);
93
94 /// \brief Handle instructions async components
95 void pushInstruction(MachineBasicBlock &MBB,
96 MachineBasicBlock::iterator I);
97
98 /// \brief Insert the actual wait instruction
99 bool insertWait(MachineBasicBlock &MBB,
100 MachineBasicBlock::iterator I,
101 const Counters &Counts);
102
103 /// \brief Do we need def2def checks?
104 bool unorderedDefines(MachineInstr &MI);
105
106 /// \brief Resolve all operand dependencies to counter requirements
107 Counters handleOperands(MachineInstr &MI);
108
109 public:
110 SIInsertWaits(TargetMachine &tm) :
111 MachineFunctionPass(ID),
112 TII(nullptr),
113 TRI(nullptr),
114 ExpInstrTypesSeen(0) { }
115
116 bool runOnMachineFunction(MachineFunction &MF) override;
117
118 const char *getPassName() const override {
119 return "SI insert wait instructions";
120 }
121
122 };
123
124 } // End anonymous namespace
125
126 char SIInsertWaits::ID = 0;
127
128 const Counters SIInsertWaits::WaitCounts = { { 15, 7, 7 } };
129 const Counters SIInsertWaits::ZeroCounts = { { 0, 0, 0 } };
130
131 FunctionPass *llvm::createSIInsertWaits(TargetMachine &tm) {
132 return new SIInsertWaits(tm);
133 }
134
135 Counters SIInsertWaits::getHwCounts(MachineInstr &MI) {
136
137 uint64_t TSFlags = TII->get(MI.getOpcode()).TSFlags;
138 Counters Result;
139
140 Result.Named.VM = !!(TSFlags & SIInstrFlags::VM_CNT);
141
142 // Only consider stores or EXP for EXP_CNT
143 Result.Named.EXP = !!(TSFlags & SIInstrFlags::EXP_CNT &&
144 (MI.getOpcode() == AMDGPU::EXP || MI.getDesc().mayStore()));
145
146 // LGKM may uses larger values
147 if (TSFlags & SIInstrFlags::LGKM_CNT) {
148
149 if (TII->isSMRD(MI.getOpcode())) {
150
151 MachineOperand &Op = MI.getOperand(0);
152 assert(Op.isReg() && "First LGKM operand must be a register!");
153
154 unsigned Reg = Op.getReg();
155 unsigned Size = TRI->getMinimalPhysRegClass(Reg)->getSize();
156 Result.Named.LGKM = Size > 4 ? 2 : 1;
157
158 } else {
159 // DS
160 Result.Named.LGKM = 1;
161 }
162
163 } else {
164 Result.Named.LGKM = 0;
165 }
166
167 return Result;
168 }
169
170 bool SIInsertWaits::isOpRelevant(MachineOperand &Op) {
171
172 // Constants are always irrelevant
173 if (!Op.isReg())
174 return false;
175
176 // Defines are always relevant
177 if (Op.isDef())
178 return true;
179
180 // For exports all registers are relevant
181 MachineInstr &MI = *Op.getParent();
182 if (MI.getOpcode() == AMDGPU::EXP)
183 return true;
184
185 // For stores the stored value is also relevant
186 if (!MI.getDesc().mayStore())
187 return false;
188
189 // Check if this operand is the value being stored.
190 // Special case for DS instructions, since the address
191 // operand comes before the value operand and it may have
192 // multiple data operands.
193
194 if (TII->isDS(MI.getOpcode())) {
195 MachineOperand *Data = TII->getNamedOperand(MI, AMDGPU::OpName::data);
196 if (Data && Op.isIdenticalTo(*Data))
197 return true;
198
199 MachineOperand *Data0 = TII->getNamedOperand(MI, AMDGPU::OpName::data0);
200 if (Data0 && Op.isIdenticalTo(*Data0))
201 return true;
202
203 MachineOperand *Data1 = TII->getNamedOperand(MI, AMDGPU::OpName::data1);
204 if (Data1 && Op.isIdenticalTo(*Data1))
205 return true;
206
207 return false;
208 }
209
210 // NOTE: This assumes that the value operand is before the
211 // address operand, and that there is only one value operand.
212 for (MachineInstr::mop_iterator I = MI.operands_begin(),
213 E = MI.operands_end(); I != E; ++I) {
214
215 if (I->isReg() && I->isUse())
216 return Op.isIdenticalTo(*I);
217 }
218
219 return false;
220 }
221
222 RegInterval SIInsertWaits::getRegInterval(MachineOperand &Op) {
223
224 if (!Op.isReg() || !TRI->isInAllocatableClass(Op.getReg()))
225 return std::make_pair(0, 0);
226
227 unsigned Reg = Op.getReg();
228 unsigned Size = TRI->getMinimalPhysRegClass(Reg)->getSize();
229
230 assert(Size >= 4);
231
232 RegInterval Result;
233 Result.first = TRI->getEncodingValue(Reg);
234 Result.second = Result.first + Size / 4;
235
236 return Result;
237 }
238
239 void SIInsertWaits::pushInstruction(MachineBasicBlock &MBB,
240 MachineBasicBlock::iterator I) {
241
242 // Get the hardware counter increments and sum them up
243 Counters Increment = getHwCounts(*I);
244 unsigned Sum = 0;
245
246 for (unsigned i = 0; i < 3; ++i) {
247 LastIssued.Array[i] += Increment.Array[i];
248 Sum += Increment.Array[i];
249 }
250
251 // If we don't increase anything then that's it
252 if (Sum == 0) {
253 LastOpcodeType = OTHER;
254 return;
255 }
256
257 if (TRI->ST.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
258 // Any occurence of consecutive VMEM or SMEM instructions forms a VMEM
259 // or SMEM clause, respectively.
260 //
261 // The temporary workaround is to break the clauses with S_NOP.
262 //
263 // The proper solution would be to allocate registers such that all source
264 // and destination registers don't overlap, e.g. this is illegal:
265 // r0 = load r2
266 // r2 = load r0
267 if ((LastOpcodeType == SMEM && TII->isSMRD(I->getOpcode())) ||
268 (LastOpcodeType == VMEM && Increment.Named.VM)) {
269 // Insert a NOP to break the clause.
270 BuildMI(MBB, I, DebugLoc(), TII->get(AMDGPU::S_NOP))
271 .addImm(0);
272 }
273
274 if (TII->isSMRD(I->getOpcode()))
275 LastOpcodeType = SMEM;
276 else if (Increment.Named.VM)
277 LastOpcodeType = VMEM;
278 }
279
280 // Remember which export instructions we have seen
281 if (Increment.Named.EXP) {
282 ExpInstrTypesSeen |= I->getOpcode() == AMDGPU::EXP ? 1 : 2;
283 }
284
285 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
286
287 MachineOperand &Op = I->getOperand(i);
288 if (!isOpRelevant(Op))
289 continue;
290
291 RegInterval Interval = getRegInterval(Op);
292 for (unsigned j = Interval.first; j < Interval.second; ++j) {
293
294 // Remember which registers we define
295 if (Op.isDef())
296 DefinedRegs[j] = LastIssued;
297
298 // and which one we are using
299 if (Op.isUse())
300 UsedRegs[j] = LastIssued;
301 }
302 }
303 }
304
305 bool SIInsertWaits::insertWait(MachineBasicBlock &MBB,
306 MachineBasicBlock::iterator I,
307 const Counters &Required) {
308
309 // End of program? No need to wait on anything
310 if (I != MBB.end() && I->getOpcode() == AMDGPU::S_ENDPGM)
311 return false;
312
313 // Figure out if the async instructions execute in order
314 bool Ordered[3];
315
316 // VM_CNT is always ordered
317 Ordered[0] = true;
318
319 // EXP_CNT is unordered if we have both EXP & VM-writes
320 Ordered[1] = ExpInstrTypesSeen == 3;
321
322 // LGKM_CNT is handled as always unordered. TODO: Handle LDS and GDS
323 Ordered[2] = false;
324
325 // The values we are going to put into the S_WAITCNT instruction
326 Counters Counts = WaitCounts;
327
328 // Do we really need to wait?
329 bool NeedWait = false;
330
331 for (unsigned i = 0; i < 3; ++i) {
332
333 if (Required.Array[i] <= WaitedOn.Array[i])
334 continue;
335
336 NeedWait = true;
337
338 if (Ordered[i]) {
339 unsigned Value = LastIssued.Array[i] - Required.Array[i];
340
341 // Adjust the value to the real hardware possibilities.
342 Counts.Array[i] = std::min(Value, WaitCounts.Array[i]);
343
344 } else
345 Counts.Array[i] = 0;
346
347 // Remember on what we have waited on.
348 WaitedOn.Array[i] = LastIssued.Array[i] - Counts.Array[i];
349 }
350
351 if (!NeedWait)
352 return false;
353
354 // Reset EXP_CNT instruction types
355 if (Counts.Named.EXP == 0)
356 ExpInstrTypesSeen = 0;
357
358 // Build the wait instruction
359 BuildMI(MBB, I, DebugLoc(), TII->get(AMDGPU::S_WAITCNT))
360 .addImm((Counts.Named.VM & 0xF) |
361 ((Counts.Named.EXP & 0x7) << 4) |
362 ((Counts.Named.LGKM & 0x7) << 8));
363
364 LastOpcodeType = OTHER;
365 return true;
366 }
367
368 /// \brief helper function for handleOperands
369 static void increaseCounters(Counters &Dst, const Counters &Src) {
370
371 for (unsigned i = 0; i < 3; ++i)
372 Dst.Array[i] = std::max(Dst.Array[i], Src.Array[i]);
373 }
374
375 Counters SIInsertWaits::handleOperands(MachineInstr &MI) {
376
377 Counters Result = ZeroCounts;
378
379 // S_SENDMSG implicitly waits for all outstanding LGKM transfers to finish,
380 // but we also want to wait for any other outstanding transfers before
381 // signalling other hardware blocks
382 if (MI.getOpcode() == AMDGPU::S_SENDMSG)
383 return LastIssued;
384
385 // For each register affected by this
386 // instruction increase the result sequence
387 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
388
389 MachineOperand &Op = MI.getOperand(i);
390 RegInterval Interval = getRegInterval(Op);
391 for (unsigned j = Interval.first; j < Interval.second; ++j) {
392
393 if (Op.isDef()) {
394 increaseCounters(Result, UsedRegs[j]);
395 increaseCounters(Result, DefinedRegs[j]);
396 }
397
398 if (Op.isUse())
399 increaseCounters(Result, DefinedRegs[j]);
400 }
401 }
402
403 return Result;
404 }
405
406 // FIXME: Insert waits listed in Table 4.2 "Required User-Inserted Wait States"
407 // around other non-memory instructions.
408 bool SIInsertWaits::runOnMachineFunction(MachineFunction &MF) {
409 bool Changes = false;
410
411 TII = static_cast<const SIInstrInfo *>(MF.getSubtarget().getInstrInfo());
412 TRI =
413 static_cast<const SIRegisterInfo *>(MF.getSubtarget().getRegisterInfo());
414
415 MRI = &MF.getRegInfo();
416
417 WaitedOn = ZeroCounts;
418 LastIssued = ZeroCounts;
419 LastOpcodeType = OTHER;
420
421 memset(&UsedRegs, 0, sizeof(UsedRegs));
422 memset(&DefinedRegs, 0, sizeof(DefinedRegs));
423
424 for (MachineFunction::iterator BI = MF.begin(), BE = MF.end();
425 BI != BE; ++BI) {
426
427 MachineBasicBlock &MBB = *BI;
428 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
429 I != E; ++I) {
430
431 // Wait for everything before a barrier.
432 if (I->getOpcode() == AMDGPU::S_BARRIER)
433 Changes |= insertWait(MBB, I, LastIssued);
434 else
435 Changes |= insertWait(MBB, I, handleOperands(*I));
436 pushInstruction(MBB, I);
437 }
438
439 // Wait for everything at the end of the MBB
440 Changes |= insertWait(MBB, MBB.getFirstTerminator(), LastIssued);
441 }
442
443 return Changes;
444 }