]> git.proxmox.com Git - rustc.git/blob - src/llvm/lib/Target/Sparc/SparcInstr64Bit.td
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / lib / Target / Sparc / SparcInstr64Bit.td
1 //===-- SparcInstr64Bit.td - 64-bit instructions for Sparc Target ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains instruction definitions and patterns needed for 64-bit
11 // code generation on SPARC v9.
12 //
13 // Some SPARC v9 instructions are defined in SparcInstrInfo.td because they can
14 // also be used in 32-bit code running on a SPARC v9 CPU.
15 //
16 //===----------------------------------------------------------------------===//
17
18 let Predicates = [Is64Bit] in {
19 // The same integer registers are used for i32 and i64 values.
20 // When registers hold i32 values, the high bits are don't care.
21 // This give us free trunc and anyext.
22 def : Pat<(i64 (anyext i32:$val)), (COPY_TO_REGCLASS $val, I64Regs)>;
23 def : Pat<(i32 (trunc i64:$val)), (COPY_TO_REGCLASS $val, IntRegs)>;
24
25 } // Predicates = [Is64Bit]
26
27
28 //===----------------------------------------------------------------------===//
29 // 64-bit Shift Instructions.
30 //===----------------------------------------------------------------------===//
31 //
32 // The 32-bit shift instructions are still available. The left shift srl
33 // instructions shift all 64 bits, but it only accepts a 5-bit shift amount.
34 //
35 // The srl instructions only shift the low 32 bits and clear the high 32 bits.
36 // Finally, sra shifts the low 32 bits and sign-extends to 64 bits.
37
38 let Predicates = [Is64Bit] in {
39
40 def : Pat<(i64 (zext i32:$val)), (SRLri $val, 0)>;
41 def : Pat<(i64 (sext i32:$val)), (SRAri $val, 0)>;
42
43 def : Pat<(i64 (and i64:$val, 0xffffffff)), (SRLri $val, 0)>;
44 def : Pat<(i64 (sext_inreg i64:$val, i32)), (SRAri $val, 0)>;
45
46 defm SLLX : F3_S<"sllx", 0b100101, 1, shl, i64, I64Regs>;
47 defm SRLX : F3_S<"srlx", 0b100110, 1, srl, i64, I64Regs>;
48 defm SRAX : F3_S<"srax", 0b100111, 1, sra, i64, I64Regs>;
49
50 } // Predicates = [Is64Bit]
51
52
53 //===----------------------------------------------------------------------===//
54 // 64-bit Immediates.
55 //===----------------------------------------------------------------------===//
56 //
57 // All 32-bit immediates can be materialized with sethi+or, but 64-bit
58 // immediates may require more code. There may be a point where it is
59 // preferable to use a constant pool load instead, depending on the
60 // microarchitecture.
61
62 // Single-instruction patterns.
63
64 // The ALU instructions want their simm13 operands as i32 immediates.
65 def as_i32imm : SDNodeXForm<imm, [{
66 return CurDAG->getTargetConstant(N->getSExtValue(), MVT::i32);
67 }]>;
68 def : Pat<(i64 simm13:$val), (ORri (i64 G0), (as_i32imm $val))>;
69 def : Pat<(i64 SETHIimm:$val), (SETHIi (HI22 $val))>;
70
71 // Double-instruction patterns.
72
73 // All unsigned i32 immediates can be handled by sethi+or.
74 def uimm32 : PatLeaf<(imm), [{ return isUInt<32>(N->getZExtValue()); }]>;
75 def : Pat<(i64 uimm32:$val), (ORri (SETHIi (HI22 $val)), (LO10 $val))>,
76 Requires<[Is64Bit]>;
77
78 // All negative i33 immediates can be handled by sethi+xor.
79 def nimm33 : PatLeaf<(imm), [{
80 int64_t Imm = N->getSExtValue();
81 return Imm < 0 && isInt<33>(Imm);
82 }]>;
83 // Bits 10-31 inverted. Same as assembler's %hix.
84 def HIX22 : SDNodeXForm<imm, [{
85 uint64_t Val = (~N->getZExtValue() >> 10) & ((1u << 22) - 1);
86 return CurDAG->getTargetConstant(Val, MVT::i32);
87 }]>;
88 // Bits 0-9 with ones in bits 10-31. Same as assembler's %lox.
89 def LOX10 : SDNodeXForm<imm, [{
90 return CurDAG->getTargetConstant(~(~N->getZExtValue() & 0x3ff), MVT::i32);
91 }]>;
92 def : Pat<(i64 nimm33:$val), (XORri (SETHIi (HIX22 $val)), (LOX10 $val))>,
93 Requires<[Is64Bit]>;
94
95 // More possible patterns:
96 //
97 // (sllx sethi, n)
98 // (sllx simm13, n)
99 //
100 // 3 instrs:
101 //
102 // (xor (sllx sethi), simm13)
103 // (sllx (xor sethi, simm13))
104 //
105 // 4 instrs:
106 //
107 // (or sethi, (sllx sethi))
108 // (xnor sethi, (sllx sethi))
109 //
110 // 5 instrs:
111 //
112 // (or (sllx sethi), (or sethi, simm13))
113 // (xnor (sllx sethi), (or sethi, simm13))
114 // (or (sllx sethi), (sllx sethi))
115 // (xnor (sllx sethi), (sllx sethi))
116 //
117 // Worst case is 6 instrs:
118 //
119 // (or (sllx (or sethi, simmm13)), (or sethi, simm13))
120
121 // Bits 42-63, same as assembler's %hh.
122 def HH22 : SDNodeXForm<imm, [{
123 uint64_t Val = (N->getZExtValue() >> 42) & ((1u << 22) - 1);
124 return CurDAG->getTargetConstant(Val, MVT::i32);
125 }]>;
126 // Bits 32-41, same as assembler's %hm.
127 def HM10 : SDNodeXForm<imm, [{
128 uint64_t Val = (N->getZExtValue() >> 32) & ((1u << 10) - 1);
129 return CurDAG->getTargetConstant(Val, MVT::i32);
130 }]>;
131 def : Pat<(i64 imm:$val),
132 (ORrr (SLLXri (ORri (SETHIi (HH22 $val)), (HM10 $val)), (i32 32)),
133 (ORri (SETHIi (HI22 $val)), (LO10 $val)))>,
134 Requires<[Is64Bit]>;
135
136
137 //===----------------------------------------------------------------------===//
138 // 64-bit Integer Arithmetic and Logic.
139 //===----------------------------------------------------------------------===//
140
141 let Predicates = [Is64Bit] in {
142
143 // Register-register instructions.
144 let isCodeGenOnly = 1 in {
145 defm ANDX : F3_12<"and", 0b000001, and, I64Regs, i64, i64imm>;
146 defm ORX : F3_12<"or", 0b000010, or, I64Regs, i64, i64imm>;
147 defm XORX : F3_12<"xor", 0b000011, xor, I64Regs, i64, i64imm>;
148
149 def ANDXNrr : F3_1<2, 0b000101,
150 (outs I64Regs:$dst), (ins I64Regs:$b, I64Regs:$c),
151 "andn $b, $c, $dst",
152 [(set i64:$dst, (and i64:$b, (not i64:$c)))]>;
153 def ORXNrr : F3_1<2, 0b000110,
154 (outs I64Regs:$dst), (ins I64Regs:$b, I64Regs:$c),
155 "orn $b, $c, $dst",
156 [(set i64:$dst, (or i64:$b, (not i64:$c)))]>;
157 def XNORXrr : F3_1<2, 0b000111,
158 (outs I64Regs:$dst), (ins I64Regs:$b, I64Regs:$c),
159 "xnor $b, $c, $dst",
160 [(set i64:$dst, (not (xor i64:$b, i64:$c)))]>;
161
162 defm ADDX : F3_12<"add", 0b000000, add, I64Regs, i64, i64imm>;
163 defm SUBX : F3_12<"sub", 0b000100, sub, I64Regs, i64, i64imm>;
164
165 def TLS_ADDXrr : F3_1<2, 0b000000, (outs I64Regs:$rd),
166 (ins I64Regs:$rs1, I64Regs:$rs2, TLSSym:$sym),
167 "add $rs1, $rs2, $rd, $sym",
168 [(set i64:$rd,
169 (tlsadd i64:$rs1, i64:$rs2, tglobaltlsaddr:$sym))]>;
170
171 // "LEA" form of add
172 def LEAX_ADDri : F3_2<2, 0b000000,
173 (outs I64Regs:$dst), (ins MEMri:$addr),
174 "add ${addr:arith}, $dst",
175 [(set iPTR:$dst, ADDRri:$addr)]>;
176 }
177
178 def : Pat<(SPcmpicc i64:$a, i64:$b), (CMPrr $a, $b)>;
179 def : Pat<(SPcmpicc i64:$a, (i64 simm13:$b)), (CMPri $a, (as_i32imm $b))>;
180 def : Pat<(ctpop i64:$src), (POPCrr $src)>;
181
182 } // Predicates = [Is64Bit]
183
184
185 //===----------------------------------------------------------------------===//
186 // 64-bit Integer Multiply and Divide.
187 //===----------------------------------------------------------------------===//
188
189 let Predicates = [Is64Bit] in {
190
191 def MULXrr : F3_1<2, 0b001001,
192 (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2),
193 "mulx $rs1, $rs2, $rd",
194 [(set i64:$rd, (mul i64:$rs1, i64:$rs2))]>;
195 def MULXri : F3_2<2, 0b001001,
196 (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$simm13),
197 "mulx $rs1, $simm13, $rd",
198 [(set i64:$rd, (mul i64:$rs1, (i64 simm13:$simm13)))]>;
199
200 // Division can trap.
201 let hasSideEffects = 1 in {
202 def SDIVXrr : F3_1<2, 0b101101,
203 (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2),
204 "sdivx $rs1, $rs2, $rd",
205 [(set i64:$rd, (sdiv i64:$rs1, i64:$rs2))]>;
206 def SDIVXri : F3_2<2, 0b101101,
207 (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$simm13),
208 "sdivx $rs1, $simm13, $rd",
209 [(set i64:$rd, (sdiv i64:$rs1, (i64 simm13:$simm13)))]>;
210
211 def UDIVXrr : F3_1<2, 0b001101,
212 (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2),
213 "udivx $rs1, $rs2, $rd",
214 [(set i64:$rd, (udiv i64:$rs1, i64:$rs2))]>;
215 def UDIVXri : F3_2<2, 0b001101,
216 (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$simm13),
217 "udivx $rs1, $simm13, $rd",
218 [(set i64:$rd, (udiv i64:$rs1, (i64 simm13:$simm13)))]>;
219 } // hasSideEffects = 1
220
221 } // Predicates = [Is64Bit]
222
223
224 //===----------------------------------------------------------------------===//
225 // 64-bit Loads and Stores.
226 //===----------------------------------------------------------------------===//
227 //
228 // All the 32-bit loads and stores are available. The extending loads are sign
229 // or zero-extending to 64 bits. The LDrr and LDri instructions load 32 bits
230 // zero-extended to i64. Their mnemonic is lduw in SPARC v9 (Load Unsigned
231 // Word).
232 //
233 // SPARC v9 adds 64-bit loads as well as a sign-extending ldsw i32 loads.
234
235 let Predicates = [Is64Bit] in {
236
237 // 64-bit loads.
238 let DecoderMethod = "DecodeLoadInt" in
239 defm LDX : Load<"ldx", 0b001011, load, I64Regs, i64>;
240
241 let mayLoad = 1, isCodeGenOnly = 1, isAsmParserOnly = 1 in
242 def TLS_LDXrr : F3_1<3, 0b001011,
243 (outs IntRegs:$dst), (ins MEMrr:$addr, TLSSym:$sym),
244 "ldx [$addr], $dst, $sym",
245 [(set i64:$dst,
246 (tlsld ADDRrr:$addr, tglobaltlsaddr:$sym))]>;
247
248 // Extending loads to i64.
249 def : Pat<(i64 (zextloadi1 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>;
250 def : Pat<(i64 (zextloadi1 ADDRri:$addr)), (LDUBri ADDRri:$addr)>;
251 def : Pat<(i64 (extloadi1 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>;
252 def : Pat<(i64 (extloadi1 ADDRri:$addr)), (LDUBri ADDRri:$addr)>;
253
254 def : Pat<(i64 (zextloadi8 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>;
255 def : Pat<(i64 (zextloadi8 ADDRri:$addr)), (LDUBri ADDRri:$addr)>;
256 def : Pat<(i64 (extloadi8 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>;
257 def : Pat<(i64 (extloadi8 ADDRri:$addr)), (LDUBri ADDRri:$addr)>;
258 def : Pat<(i64 (sextloadi8 ADDRrr:$addr)), (LDSBrr ADDRrr:$addr)>;
259 def : Pat<(i64 (sextloadi8 ADDRri:$addr)), (LDSBri ADDRri:$addr)>;
260
261 def : Pat<(i64 (zextloadi16 ADDRrr:$addr)), (LDUHrr ADDRrr:$addr)>;
262 def : Pat<(i64 (zextloadi16 ADDRri:$addr)), (LDUHri ADDRri:$addr)>;
263 def : Pat<(i64 (extloadi16 ADDRrr:$addr)), (LDUHrr ADDRrr:$addr)>;
264 def : Pat<(i64 (extloadi16 ADDRri:$addr)), (LDUHri ADDRri:$addr)>;
265 def : Pat<(i64 (sextloadi16 ADDRrr:$addr)), (LDSHrr ADDRrr:$addr)>;
266 def : Pat<(i64 (sextloadi16 ADDRri:$addr)), (LDSHri ADDRri:$addr)>;
267
268 def : Pat<(i64 (zextloadi32 ADDRrr:$addr)), (LDrr ADDRrr:$addr)>;
269 def : Pat<(i64 (zextloadi32 ADDRri:$addr)), (LDri ADDRri:$addr)>;
270 def : Pat<(i64 (extloadi32 ADDRrr:$addr)), (LDrr ADDRrr:$addr)>;
271 def : Pat<(i64 (extloadi32 ADDRri:$addr)), (LDri ADDRri:$addr)>;
272
273 // Sign-extending load of i32 into i64 is a new SPARC v9 instruction.
274 let DecoderMethod = "DecodeLoadInt" in
275 defm LDSW : Load<"ldsw", 0b001000, sextloadi32, I64Regs, i64>;
276
277 // 64-bit stores.
278 let DecoderMethod = "DecodeStoreInt" in
279 defm STX : Store<"stx", 0b001110, store, I64Regs, i64>;
280
281 // Truncating stores from i64 are identical to the i32 stores.
282 def : Pat<(truncstorei8 i64:$src, ADDRrr:$addr), (STBrr ADDRrr:$addr, $src)>;
283 def : Pat<(truncstorei8 i64:$src, ADDRri:$addr), (STBri ADDRri:$addr, $src)>;
284 def : Pat<(truncstorei16 i64:$src, ADDRrr:$addr), (STHrr ADDRrr:$addr, $src)>;
285 def : Pat<(truncstorei16 i64:$src, ADDRri:$addr), (STHri ADDRri:$addr, $src)>;
286 def : Pat<(truncstorei32 i64:$src, ADDRrr:$addr), (STrr ADDRrr:$addr, $src)>;
287 def : Pat<(truncstorei32 i64:$src, ADDRri:$addr), (STri ADDRri:$addr, $src)>;
288
289 // store 0, addr -> store %g0, addr
290 def : Pat<(store (i64 0), ADDRrr:$dst), (STXrr ADDRrr:$dst, (i64 G0))>;
291 def : Pat<(store (i64 0), ADDRri:$dst), (STXri ADDRri:$dst, (i64 G0))>;
292
293 } // Predicates = [Is64Bit]
294
295
296 //===----------------------------------------------------------------------===//
297 // 64-bit Conditionals.
298 //===----------------------------------------------------------------------===//
299
300 //
301 // Flag-setting instructions like subcc and addcc set both icc and xcc flags.
302 // The icc flags correspond to the 32-bit result, and the xcc are for the
303 // full 64-bit result.
304 //
305 // We reuse CMPICC SDNodes for compares, but use new BRXCC branch nodes for
306 // 64-bit compares. See LowerBR_CC.
307
308 let Predicates = [Is64Bit] in {
309
310 let Uses = [ICC], cc = 0b10 in
311 defm BPX : IPredBranch<"%xcc", [(SPbrxcc bb:$imm19, imm:$cond)]>;
312
313 // Conditional moves on %xcc.
314 let Uses = [ICC], Constraints = "$f = $rd" in {
315 let intcc = 1, cc = 0b10 in {
316 def MOVXCCrr : F4_1<0b101100, (outs IntRegs:$rd),
317 (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
318 "mov$cond %xcc, $rs2, $rd",
319 [(set i32:$rd,
320 (SPselectxcc i32:$rs2, i32:$f, imm:$cond))]>;
321 def MOVXCCri : F4_2<0b101100, (outs IntRegs:$rd),
322 (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond),
323 "mov$cond %xcc, $simm11, $rd",
324 [(set i32:$rd,
325 (SPselectxcc simm11:$simm11, i32:$f, imm:$cond))]>;
326 } // cc
327
328 let intcc = 1, opf_cc = 0b10 in {
329 def FMOVS_XCC : F4_3<0b110101, 0b000001, (outs FPRegs:$rd),
330 (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
331 "fmovs$cond %xcc, $rs2, $rd",
332 [(set f32:$rd,
333 (SPselectxcc f32:$rs2, f32:$f, imm:$cond))]>;
334 def FMOVD_XCC : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd),
335 (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
336 "fmovd$cond %xcc, $rs2, $rd",
337 [(set f64:$rd,
338 (SPselectxcc f64:$rs2, f64:$f, imm:$cond))]>;
339 def FMOVQ_XCC : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd),
340 (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond),
341 "fmovq$cond %xcc, $rs2, $rd",
342 [(set f128:$rd,
343 (SPselectxcc f128:$rs2, f128:$f, imm:$cond))]>;
344 } // opf_cc
345 } // Uses, Constraints
346
347 // Branch On integer register with Prediction (BPr).
348 let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in
349 multiclass BranchOnReg<bits<3> cond, string OpcStr> {
350 def napt : F2_4<cond, 0, 1, (outs), (ins I64Regs:$rs1, bprtarget16:$imm16),
351 !strconcat(OpcStr, " $rs1, $imm16"), []>;
352 def apt : F2_4<cond, 1, 1, (outs), (ins I64Regs:$rs1, bprtarget16:$imm16),
353 !strconcat(OpcStr, ",a $rs1, $imm16"), []>;
354 def napn : F2_4<cond, 0, 0, (outs), (ins I64Regs:$rs1, bprtarget16:$imm16),
355 !strconcat(OpcStr, ",pn $rs1, $imm16"), []>;
356 def apn : F2_4<cond, 1, 0, (outs), (ins I64Regs:$rs1, bprtarget16:$imm16),
357 !strconcat(OpcStr, ",a,pn $rs1, $imm16"), []>;
358 }
359
360 multiclass bpr_alias<string OpcStr, Instruction NAPT, Instruction APT> {
361 def : InstAlias<!strconcat(OpcStr, ",pt $rs1, $imm16"),
362 (NAPT I64Regs:$rs1, bprtarget16:$imm16), 0>;
363 def : InstAlias<!strconcat(OpcStr, ",a,pt $rs1, $imm16"),
364 (APT I64Regs:$rs1, bprtarget16:$imm16), 0>;
365 }
366
367 defm BPZ : BranchOnReg<0b001, "brz">;
368 defm BPLEZ : BranchOnReg<0b010, "brlez">;
369 defm BPLZ : BranchOnReg<0b011, "brlz">;
370 defm BPNZ : BranchOnReg<0b101, "brnz">;
371 defm BPGZ : BranchOnReg<0b110, "brgz">;
372 defm BPGEZ : BranchOnReg<0b111, "brgez">;
373
374 defm : bpr_alias<"brz", BPZnapt, BPZapt >;
375 defm : bpr_alias<"brlez", BPLEZnapt, BPLEZapt>;
376 defm : bpr_alias<"brlz", BPLZnapt, BPLZapt >;
377 defm : bpr_alias<"brnz", BPNZnapt, BPNZapt >;
378 defm : bpr_alias<"brgz", BPGZnapt, BPGZapt >;
379 defm : bpr_alias<"brgez", BPGEZnapt, BPGEZapt>;
380
381 // Move integer register on register condition (MOVr).
382 multiclass MOVR< bits<3> rcond, string OpcStr> {
383 def rr : F4_4r<0b101111, 0b00000, rcond, (outs I64Regs:$rd),
384 (ins I64Regs:$rs1, IntRegs:$rs2),
385 !strconcat(OpcStr, " $rs1, $rs2, $rd"), []>;
386
387 def ri : F4_4i<0b101111, rcond, (outs I64Regs:$rd),
388 (ins I64Regs:$rs1, i64imm:$simm10),
389 !strconcat(OpcStr, " $rs1, $simm10, $rd"), []>;
390 }
391
392 defm MOVRRZ : MOVR<0b001, "movrz">;
393 defm MOVRLEZ : MOVR<0b010, "movrlez">;
394 defm MOVRLZ : MOVR<0b011, "movrlz">;
395 defm MOVRNZ : MOVR<0b101, "movrnz">;
396 defm MOVRGZ : MOVR<0b110, "movrgz">;
397 defm MOVRGEZ : MOVR<0b111, "movrgez">;
398
399 // Move FP register on integer register condition (FMOVr).
400 multiclass FMOVR<bits<3> rcond, string OpcStr> {
401
402 def S : F4_4r<0b110101, 0b00101, rcond,
403 (outs FPRegs:$rd), (ins I64Regs:$rs1, FPRegs:$rs2),
404 !strconcat(!strconcat("fmovrs", OpcStr)," $rs1, $rs2, $rd"),
405 []>;
406 def D : F4_4r<0b110101, 0b00110, rcond,
407 (outs FPRegs:$rd), (ins I64Regs:$rs1, FPRegs:$rs2),
408 !strconcat(!strconcat("fmovrd", OpcStr)," $rs1, $rs2, $rd"),
409 []>;
410 def Q : F4_4r<0b110101, 0b00111, rcond,
411 (outs FPRegs:$rd), (ins I64Regs:$rs1, FPRegs:$rs2),
412 !strconcat(!strconcat("fmovrq", OpcStr)," $rs1, $rs2, $rd"),
413 []>, Requires<[HasHardQuad]>;
414 }
415
416 let Predicates = [HasV9] in {
417 defm FMOVRZ : FMOVR<0b001, "z">;
418 defm FMOVRLEZ : FMOVR<0b010, "lez">;
419 defm FMOVRLZ : FMOVR<0b011, "lz">;
420 defm FMOVRNZ : FMOVR<0b101, "nz">;
421 defm FMOVRGZ : FMOVR<0b110, "gz">;
422 defm FMOVRGEZ : FMOVR<0b111, "gez">;
423 }
424
425 //===----------------------------------------------------------------------===//
426 // 64-bit Floating Point Conversions.
427 //===----------------------------------------------------------------------===//
428
429 let Predicates = [Is64Bit] in {
430
431 def FXTOS : F3_3u<2, 0b110100, 0b010000100,
432 (outs FPRegs:$rd), (ins DFPRegs:$rs2),
433 "fxtos $rs2, $rd",
434 [(set FPRegs:$rd, (SPxtof DFPRegs:$rs2))]>;
435 def FXTOD : F3_3u<2, 0b110100, 0b010001000,
436 (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
437 "fxtod $rs2, $rd",
438 [(set DFPRegs:$rd, (SPxtof DFPRegs:$rs2))]>;
439 def FXTOQ : F3_3u<2, 0b110100, 0b010001100,
440 (outs QFPRegs:$rd), (ins DFPRegs:$rs2),
441 "fxtoq $rs2, $rd",
442 [(set QFPRegs:$rd, (SPxtof DFPRegs:$rs2))]>,
443 Requires<[HasHardQuad]>;
444
445 def FSTOX : F3_3u<2, 0b110100, 0b010000001,
446 (outs DFPRegs:$rd), (ins FPRegs:$rs2),
447 "fstox $rs2, $rd",
448 [(set DFPRegs:$rd, (SPftox FPRegs:$rs2))]>;
449 def FDTOX : F3_3u<2, 0b110100, 0b010000010,
450 (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
451 "fdtox $rs2, $rd",
452 [(set DFPRegs:$rd, (SPftox DFPRegs:$rs2))]>;
453 def FQTOX : F3_3u<2, 0b110100, 0b010000011,
454 (outs DFPRegs:$rd), (ins QFPRegs:$rs2),
455 "fqtox $rs2, $rd",
456 [(set DFPRegs:$rd, (SPftox QFPRegs:$rs2))]>,
457 Requires<[HasHardQuad]>;
458
459 } // Predicates = [Is64Bit]
460
461 def : Pat<(SPselectxcc i64:$t, i64:$f, imm:$cond),
462 (MOVXCCrr $t, $f, imm:$cond)>;
463 def : Pat<(SPselectxcc (i64 simm11:$t), i64:$f, imm:$cond),
464 (MOVXCCri (as_i32imm $t), $f, imm:$cond)>;
465
466 def : Pat<(SPselecticc i64:$t, i64:$f, imm:$cond),
467 (MOVICCrr $t, $f, imm:$cond)>;
468 def : Pat<(SPselecticc (i64 simm11:$t), i64:$f, imm:$cond),
469 (MOVICCri (as_i32imm $t), $f, imm:$cond)>;
470
471 def : Pat<(SPselectfcc i64:$t, i64:$f, imm:$cond),
472 (MOVFCCrr $t, $f, imm:$cond)>;
473 def : Pat<(SPselectfcc (i64 simm11:$t), i64:$f, imm:$cond),
474 (MOVFCCri (as_i32imm $t), $f, imm:$cond)>;
475
476 } // Predicates = [Is64Bit]
477
478
479 // 64 bit SETHI
480 let Predicates = [Is64Bit], isCodeGenOnly = 1 in {
481 def SETHIXi : F2_1<0b100,
482 (outs IntRegs:$rd), (ins i64imm:$imm22),
483 "sethi $imm22, $rd",
484 [(set i64:$rd, SETHIimm:$imm22)]>;
485 }
486
487 // ATOMICS.
488 let Predicates = [Is64Bit], Constraints = "$swap = $rd" in {
489 def CASXrr: F3_1_asi<3, 0b111110, 0b10000000,
490 (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2,
491 I64Regs:$swap),
492 "casx [$rs1], $rs2, $rd",
493 [(set i64:$rd,
494 (atomic_cmp_swap i64:$rs1, i64:$rs2, i64:$swap))]>;
495
496 } // Predicates = [Is64Bit], Constraints = ...
497
498 let Predicates = [Is64Bit] in {
499
500 def : Pat<(atomic_fence imm, imm), (MEMBARi 0xf)>;
501
502 // atomic_load_64 addr -> load addr
503 def : Pat<(i64 (atomic_load ADDRrr:$src)), (LDXrr ADDRrr:$src)>;
504 def : Pat<(i64 (atomic_load ADDRri:$src)), (LDXri ADDRri:$src)>;
505
506 // atomic_store_64 val, addr -> store val, addr
507 def : Pat<(atomic_store ADDRrr:$dst, i64:$val), (STXrr ADDRrr:$dst, $val)>;
508 def : Pat<(atomic_store ADDRri:$dst, i64:$val), (STXri ADDRri:$dst, $val)>;
509
510 } // Predicates = [Is64Bit]
511
512 let usesCustomInserter = 1, hasCtrlDep = 1, mayLoad = 1, mayStore = 1,
513 Defs = [ICC] in
514 multiclass AtomicRMW<SDPatternOperator op32, SDPatternOperator op64> {
515
516 def _32 : Pseudo<(outs IntRegs:$rd),
517 (ins ptr_rc:$addr, IntRegs:$rs2), "",
518 [(set i32:$rd, (op32 iPTR:$addr, i32:$rs2))]>;
519
520 let Predicates = [Is64Bit] in
521 def _64 : Pseudo<(outs I64Regs:$rd),
522 (ins ptr_rc:$addr, I64Regs:$rs2), "",
523 [(set i64:$rd, (op64 iPTR:$addr, i64:$rs2))]>;
524 }
525
526 defm ATOMIC_LOAD_ADD : AtomicRMW<atomic_load_add_32, atomic_load_add_64>;
527 defm ATOMIC_LOAD_SUB : AtomicRMW<atomic_load_sub_32, atomic_load_sub_64>;
528 defm ATOMIC_LOAD_AND : AtomicRMW<atomic_load_and_32, atomic_load_and_64>;
529 defm ATOMIC_LOAD_OR : AtomicRMW<atomic_load_or_32, atomic_load_or_64>;
530 defm ATOMIC_LOAD_XOR : AtomicRMW<atomic_load_xor_32, atomic_load_xor_64>;
531 defm ATOMIC_LOAD_NAND : AtomicRMW<atomic_load_nand_32, atomic_load_nand_64>;
532 defm ATOMIC_LOAD_MIN : AtomicRMW<atomic_load_min_32, atomic_load_min_64>;
533 defm ATOMIC_LOAD_MAX : AtomicRMW<atomic_load_max_32, atomic_load_max_64>;
534 defm ATOMIC_LOAD_UMIN : AtomicRMW<atomic_load_umin_32, atomic_load_umin_64>;
535 defm ATOMIC_LOAD_UMAX : AtomicRMW<atomic_load_umax_32, atomic_load_umax_64>;
536
537 // There is no 64-bit variant of SWAP, so use a pseudo.
538 let usesCustomInserter = 1, hasCtrlDep = 1, mayLoad = 1, mayStore = 1,
539 Defs = [ICC], Predicates = [Is64Bit] in
540 def ATOMIC_SWAP_64 : Pseudo<(outs I64Regs:$rd),
541 (ins ptr_rc:$addr, I64Regs:$rs2), "",
542 [(set i64:$rd,
543 (atomic_swap_64 iPTR:$addr, i64:$rs2))]>;
544
545 let Predicates = [Is64Bit], hasSideEffects = 1, Uses = [ICC], cc = 0b10 in
546 defm TXCC : TRAP<"%xcc">;
547
548 // Global addresses, constant pool entries
549 let Predicates = [Is64Bit] in {
550
551 def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
552 def : Pat<(SPlo tglobaladdr:$in), (ORXri (i64 G0), tglobaladdr:$in)>;
553 def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>;
554 def : Pat<(SPlo tconstpool:$in), (ORXri (i64 G0), tconstpool:$in)>;
555
556 // GlobalTLS addresses
557 def : Pat<(SPhi tglobaltlsaddr:$in), (SETHIi tglobaltlsaddr:$in)>;
558 def : Pat<(SPlo tglobaltlsaddr:$in), (ORXri (i64 G0), tglobaltlsaddr:$in)>;
559 def : Pat<(add (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)),
560 (ADDXri (SETHIXi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>;
561 def : Pat<(xor (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)),
562 (XORXri (SETHIXi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>;
563
564 // Blockaddress
565 def : Pat<(SPhi tblockaddress:$in), (SETHIi tblockaddress:$in)>;
566 def : Pat<(SPlo tblockaddress:$in), (ORXri (i64 G0), tblockaddress:$in)>;
567
568 // Add reg, lo. This is used when taking the addr of a global/constpool entry.
569 def : Pat<(add iPTR:$r, (SPlo tglobaladdr:$in)), (ADDXri $r, tglobaladdr:$in)>;
570 def : Pat<(add iPTR:$r, (SPlo tconstpool:$in)), (ADDXri $r, tconstpool:$in)>;
571 def : Pat<(add iPTR:$r, (SPlo tblockaddress:$in)),
572 (ADDXri $r, tblockaddress:$in)>;
573 }