]> git.proxmox.com Git - rustc.git/blob - src/llvm/lib/Target/SystemZ/SystemZLongBranch.cpp
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / lib / Target / SystemZ / SystemZLongBranch.cpp
1 //===-- SystemZLongBranch.cpp - Branch lengthening for SystemZ ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass makes sure that all branches are in range. There are several ways
11 // in which this could be done. One aggressive approach is to assume that all
12 // branches are in range and successively replace those that turn out not
13 // to be in range with a longer form (branch relaxation). A simple
14 // implementation is to continually walk through the function relaxing
15 // branches until no more changes are needed and a fixed point is reached.
16 // However, in the pathological worst case, this implementation is
17 // quadratic in the number of blocks; relaxing branch N can make branch N-1
18 // go out of range, which in turn can make branch N-2 go out of range,
19 // and so on.
20 //
21 // An alternative approach is to assume that all branches must be
22 // converted to their long forms, then reinstate the short forms of
23 // branches that, even under this pessimistic assumption, turn out to be
24 // in range (branch shortening). This too can be implemented as a function
25 // walk that is repeated until a fixed point is reached. In general,
26 // the result of shortening is not as good as that of relaxation, and
27 // shortening is also quadratic in the worst case; shortening branch N
28 // can bring branch N-1 in range of the short form, which in turn can do
29 // the same for branch N-2, and so on. The main advantage of shortening
30 // is that each walk through the function produces valid code, so it is
31 // possible to stop at any point after the first walk. The quadraticness
32 // could therefore be handled with a maximum pass count, although the
33 // question then becomes: what maximum count should be used?
34 //
35 // On SystemZ, long branches are only needed for functions bigger than 64k,
36 // which are relatively rare to begin with, and the long branch sequences
37 // are actually relatively cheap. It therefore doesn't seem worth spending
38 // much compilation time on the problem. Instead, the approach we take is:
39 //
40 // (1) Work out the address that each block would have if no branches
41 // need relaxing. Exit the pass early if all branches are in range
42 // according to this assumption.
43 //
44 // (2) Work out the address that each block would have if all branches
45 // need relaxing.
46 //
47 // (3) Walk through the block calculating the final address of each instruction
48 // and relaxing those that need to be relaxed. For backward branches,
49 // this check uses the final address of the target block, as calculated
50 // earlier in the walk. For forward branches, this check uses the
51 // address of the target block that was calculated in (2). Both checks
52 // give a conservatively-correct range.
53 //
54 //===----------------------------------------------------------------------===//
55
56 #include "SystemZTargetMachine.h"
57 #include "llvm/ADT/Statistic.h"
58 #include "llvm/CodeGen/MachineFunctionPass.h"
59 #include "llvm/CodeGen/MachineInstrBuilder.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/MathExtras.h"
63 #include "llvm/Target/TargetInstrInfo.h"
64 #include "llvm/Target/TargetMachine.h"
65 #include "llvm/Target/TargetRegisterInfo.h"
66
67 using namespace llvm;
68
69 #define DEBUG_TYPE "systemz-long-branch"
70
71 STATISTIC(LongBranches, "Number of long branches.");
72
73 namespace {
74 // Represents positional information about a basic block.
75 struct MBBInfo {
76 // The address that we currently assume the block has.
77 uint64_t Address;
78
79 // The size of the block in bytes, excluding terminators.
80 // This value never changes.
81 uint64_t Size;
82
83 // The minimum alignment of the block, as a log2 value.
84 // This value never changes.
85 unsigned Alignment;
86
87 // The number of terminators in this block. This value never changes.
88 unsigned NumTerminators;
89
90 MBBInfo()
91 : Address(0), Size(0), Alignment(0), NumTerminators(0) {}
92 };
93
94 // Represents the state of a block terminator.
95 struct TerminatorInfo {
96 // If this terminator is a relaxable branch, this points to the branch
97 // instruction, otherwise it is null.
98 MachineInstr *Branch;
99
100 // The address that we currently assume the terminator has.
101 uint64_t Address;
102
103 // The current size of the terminator in bytes.
104 uint64_t Size;
105
106 // If Branch is nonnull, this is the number of the target block,
107 // otherwise it is unused.
108 unsigned TargetBlock;
109
110 // If Branch is nonnull, this is the length of the longest relaxed form,
111 // otherwise it is zero.
112 unsigned ExtraRelaxSize;
113
114 TerminatorInfo() : Branch(nullptr), Size(0), TargetBlock(0),
115 ExtraRelaxSize(0) {}
116 };
117
118 // Used to keep track of the current position while iterating over the blocks.
119 struct BlockPosition {
120 // The address that we assume this position has.
121 uint64_t Address;
122
123 // The number of low bits in Address that are known to be the same
124 // as the runtime address.
125 unsigned KnownBits;
126
127 BlockPosition(unsigned InitialAlignment)
128 : Address(0), KnownBits(InitialAlignment) {}
129 };
130
131 class SystemZLongBranch : public MachineFunctionPass {
132 public:
133 static char ID;
134 SystemZLongBranch(const SystemZTargetMachine &tm)
135 : MachineFunctionPass(ID), TII(nullptr) {}
136
137 const char *getPassName() const override {
138 return "SystemZ Long Branch";
139 }
140
141 bool runOnMachineFunction(MachineFunction &F) override;
142
143 private:
144 void skipNonTerminators(BlockPosition &Position, MBBInfo &Block);
145 void skipTerminator(BlockPosition &Position, TerminatorInfo &Terminator,
146 bool AssumeRelaxed);
147 TerminatorInfo describeTerminator(MachineInstr *MI);
148 uint64_t initMBBInfo();
149 bool mustRelaxBranch(const TerminatorInfo &Terminator, uint64_t Address);
150 bool mustRelaxABranch();
151 void setWorstCaseAddresses();
152 void splitBranchOnCount(MachineInstr *MI, unsigned AddOpcode);
153 void splitCompareBranch(MachineInstr *MI, unsigned CompareOpcode);
154 void relaxBranch(TerminatorInfo &Terminator);
155 void relaxBranches();
156
157 const SystemZInstrInfo *TII;
158 MachineFunction *MF;
159 SmallVector<MBBInfo, 16> MBBs;
160 SmallVector<TerminatorInfo, 16> Terminators;
161 };
162
163 char SystemZLongBranch::ID = 0;
164
165 const uint64_t MaxBackwardRange = 0x10000;
166 const uint64_t MaxForwardRange = 0xfffe;
167 } // end anonymous namespace
168
169 FunctionPass *llvm::createSystemZLongBranchPass(SystemZTargetMachine &TM) {
170 return new SystemZLongBranch(TM);
171 }
172
173 // Position describes the state immediately before Block. Update Block
174 // accordingly and move Position to the end of the block's non-terminator
175 // instructions.
176 void SystemZLongBranch::skipNonTerminators(BlockPosition &Position,
177 MBBInfo &Block) {
178 if (Block.Alignment > Position.KnownBits) {
179 // When calculating the address of Block, we need to conservatively
180 // assume that Block had the worst possible misalignment.
181 Position.Address += ((uint64_t(1) << Block.Alignment) -
182 (uint64_t(1) << Position.KnownBits));
183 Position.KnownBits = Block.Alignment;
184 }
185
186 // Align the addresses.
187 uint64_t AlignMask = (uint64_t(1) << Block.Alignment) - 1;
188 Position.Address = (Position.Address + AlignMask) & ~AlignMask;
189
190 // Record the block's position.
191 Block.Address = Position.Address;
192
193 // Move past the non-terminators in the block.
194 Position.Address += Block.Size;
195 }
196
197 // Position describes the state immediately before Terminator.
198 // Update Terminator accordingly and move Position past it.
199 // Assume that Terminator will be relaxed if AssumeRelaxed.
200 void SystemZLongBranch::skipTerminator(BlockPosition &Position,
201 TerminatorInfo &Terminator,
202 bool AssumeRelaxed) {
203 Terminator.Address = Position.Address;
204 Position.Address += Terminator.Size;
205 if (AssumeRelaxed)
206 Position.Address += Terminator.ExtraRelaxSize;
207 }
208
209 // Return a description of terminator instruction MI.
210 TerminatorInfo SystemZLongBranch::describeTerminator(MachineInstr *MI) {
211 TerminatorInfo Terminator;
212 Terminator.Size = TII->getInstSizeInBytes(MI);
213 if (MI->isConditionalBranch() || MI->isUnconditionalBranch()) {
214 switch (MI->getOpcode()) {
215 case SystemZ::J:
216 // Relaxes to JG, which is 2 bytes longer.
217 Terminator.ExtraRelaxSize = 2;
218 break;
219 case SystemZ::BRC:
220 // Relaxes to BRCL, which is 2 bytes longer.
221 Terminator.ExtraRelaxSize = 2;
222 break;
223 case SystemZ::BRCT:
224 case SystemZ::BRCTG:
225 // Relaxes to A(G)HI and BRCL, which is 6 bytes longer.
226 Terminator.ExtraRelaxSize = 6;
227 break;
228 case SystemZ::CRJ:
229 case SystemZ::CLRJ:
230 // Relaxes to a C(L)R/BRCL sequence, which is 2 bytes longer.
231 Terminator.ExtraRelaxSize = 2;
232 break;
233 case SystemZ::CGRJ:
234 case SystemZ::CLGRJ:
235 // Relaxes to a C(L)GR/BRCL sequence, which is 4 bytes longer.
236 Terminator.ExtraRelaxSize = 4;
237 break;
238 case SystemZ::CIJ:
239 case SystemZ::CGIJ:
240 // Relaxes to a C(G)HI/BRCL sequence, which is 4 bytes longer.
241 Terminator.ExtraRelaxSize = 4;
242 break;
243 case SystemZ::CLIJ:
244 case SystemZ::CLGIJ:
245 // Relaxes to a CL(G)FI/BRCL sequence, which is 6 bytes longer.
246 Terminator.ExtraRelaxSize = 6;
247 break;
248 default:
249 llvm_unreachable("Unrecognized branch instruction");
250 }
251 Terminator.Branch = MI;
252 Terminator.TargetBlock =
253 TII->getBranchInfo(MI).Target->getMBB()->getNumber();
254 }
255 return Terminator;
256 }
257
258 // Fill MBBs and Terminators, setting the addresses on the assumption
259 // that no branches need relaxation. Return the size of the function under
260 // this assumption.
261 uint64_t SystemZLongBranch::initMBBInfo() {
262 MF->RenumberBlocks();
263 unsigned NumBlocks = MF->size();
264
265 MBBs.clear();
266 MBBs.resize(NumBlocks);
267
268 Terminators.clear();
269 Terminators.reserve(NumBlocks);
270
271 BlockPosition Position(MF->getAlignment());
272 for (unsigned I = 0; I < NumBlocks; ++I) {
273 MachineBasicBlock *MBB = MF->getBlockNumbered(I);
274 MBBInfo &Block = MBBs[I];
275
276 // Record the alignment, for quick access.
277 Block.Alignment = MBB->getAlignment();
278
279 // Calculate the size of the fixed part of the block.
280 MachineBasicBlock::iterator MI = MBB->begin();
281 MachineBasicBlock::iterator End = MBB->end();
282 while (MI != End && !MI->isTerminator()) {
283 Block.Size += TII->getInstSizeInBytes(MI);
284 ++MI;
285 }
286 skipNonTerminators(Position, Block);
287
288 // Add the terminators.
289 while (MI != End) {
290 if (!MI->isDebugValue()) {
291 assert(MI->isTerminator() && "Terminator followed by non-terminator");
292 Terminators.push_back(describeTerminator(MI));
293 skipTerminator(Position, Terminators.back(), false);
294 ++Block.NumTerminators;
295 }
296 ++MI;
297 }
298 }
299
300 return Position.Address;
301 }
302
303 // Return true if, under current assumptions, Terminator would need to be
304 // relaxed if it were placed at address Address.
305 bool SystemZLongBranch::mustRelaxBranch(const TerminatorInfo &Terminator,
306 uint64_t Address) {
307 if (!Terminator.Branch)
308 return false;
309
310 const MBBInfo &Target = MBBs[Terminator.TargetBlock];
311 if (Address >= Target.Address) {
312 if (Address - Target.Address <= MaxBackwardRange)
313 return false;
314 } else {
315 if (Target.Address - Address <= MaxForwardRange)
316 return false;
317 }
318
319 return true;
320 }
321
322 // Return true if, under current assumptions, any terminator needs
323 // to be relaxed.
324 bool SystemZLongBranch::mustRelaxABranch() {
325 for (auto &Terminator : Terminators)
326 if (mustRelaxBranch(Terminator, Terminator.Address))
327 return true;
328 return false;
329 }
330
331 // Set the address of each block on the assumption that all branches
332 // must be long.
333 void SystemZLongBranch::setWorstCaseAddresses() {
334 SmallVector<TerminatorInfo, 16>::iterator TI = Terminators.begin();
335 BlockPosition Position(MF->getAlignment());
336 for (auto &Block : MBBs) {
337 skipNonTerminators(Position, Block);
338 for (unsigned BTI = 0, BTE = Block.NumTerminators; BTI != BTE; ++BTI) {
339 skipTerminator(Position, *TI, true);
340 ++TI;
341 }
342 }
343 }
344
345 // Split BRANCH ON COUNT MI into the addition given by AddOpcode followed
346 // by a BRCL on the result.
347 void SystemZLongBranch::splitBranchOnCount(MachineInstr *MI,
348 unsigned AddOpcode) {
349 MachineBasicBlock *MBB = MI->getParent();
350 DebugLoc DL = MI->getDebugLoc();
351 BuildMI(*MBB, MI, DL, TII->get(AddOpcode))
352 .addOperand(MI->getOperand(0))
353 .addOperand(MI->getOperand(1))
354 .addImm(-1);
355 MachineInstr *BRCL = BuildMI(*MBB, MI, DL, TII->get(SystemZ::BRCL))
356 .addImm(SystemZ::CCMASK_ICMP)
357 .addImm(SystemZ::CCMASK_CMP_NE)
358 .addOperand(MI->getOperand(2));
359 // The implicit use of CC is a killing use.
360 BRCL->addRegisterKilled(SystemZ::CC, &TII->getRegisterInfo());
361 MI->eraseFromParent();
362 }
363
364 // Split MI into the comparison given by CompareOpcode followed
365 // a BRCL on the result.
366 void SystemZLongBranch::splitCompareBranch(MachineInstr *MI,
367 unsigned CompareOpcode) {
368 MachineBasicBlock *MBB = MI->getParent();
369 DebugLoc DL = MI->getDebugLoc();
370 BuildMI(*MBB, MI, DL, TII->get(CompareOpcode))
371 .addOperand(MI->getOperand(0))
372 .addOperand(MI->getOperand(1));
373 MachineInstr *BRCL = BuildMI(*MBB, MI, DL, TII->get(SystemZ::BRCL))
374 .addImm(SystemZ::CCMASK_ICMP)
375 .addOperand(MI->getOperand(2))
376 .addOperand(MI->getOperand(3));
377 // The implicit use of CC is a killing use.
378 BRCL->addRegisterKilled(SystemZ::CC, &TII->getRegisterInfo());
379 MI->eraseFromParent();
380 }
381
382 // Relax the branch described by Terminator.
383 void SystemZLongBranch::relaxBranch(TerminatorInfo &Terminator) {
384 MachineInstr *Branch = Terminator.Branch;
385 switch (Branch->getOpcode()) {
386 case SystemZ::J:
387 Branch->setDesc(TII->get(SystemZ::JG));
388 break;
389 case SystemZ::BRC:
390 Branch->setDesc(TII->get(SystemZ::BRCL));
391 break;
392 case SystemZ::BRCT:
393 splitBranchOnCount(Branch, SystemZ::AHI);
394 break;
395 case SystemZ::BRCTG:
396 splitBranchOnCount(Branch, SystemZ::AGHI);
397 break;
398 case SystemZ::CRJ:
399 splitCompareBranch(Branch, SystemZ::CR);
400 break;
401 case SystemZ::CGRJ:
402 splitCompareBranch(Branch, SystemZ::CGR);
403 break;
404 case SystemZ::CIJ:
405 splitCompareBranch(Branch, SystemZ::CHI);
406 break;
407 case SystemZ::CGIJ:
408 splitCompareBranch(Branch, SystemZ::CGHI);
409 break;
410 case SystemZ::CLRJ:
411 splitCompareBranch(Branch, SystemZ::CLR);
412 break;
413 case SystemZ::CLGRJ:
414 splitCompareBranch(Branch, SystemZ::CLGR);
415 break;
416 case SystemZ::CLIJ:
417 splitCompareBranch(Branch, SystemZ::CLFI);
418 break;
419 case SystemZ::CLGIJ:
420 splitCompareBranch(Branch, SystemZ::CLGFI);
421 break;
422 default:
423 llvm_unreachable("Unrecognized branch");
424 }
425
426 Terminator.Size += Terminator.ExtraRelaxSize;
427 Terminator.ExtraRelaxSize = 0;
428 Terminator.Branch = nullptr;
429
430 ++LongBranches;
431 }
432
433 // Run a shortening pass and relax any branches that need to be relaxed.
434 void SystemZLongBranch::relaxBranches() {
435 SmallVector<TerminatorInfo, 16>::iterator TI = Terminators.begin();
436 BlockPosition Position(MF->getAlignment());
437 for (auto &Block : MBBs) {
438 skipNonTerminators(Position, Block);
439 for (unsigned BTI = 0, BTE = Block.NumTerminators; BTI != BTE; ++BTI) {
440 assert(Position.Address <= TI->Address &&
441 "Addresses shouldn't go forwards");
442 if (mustRelaxBranch(*TI, Position.Address))
443 relaxBranch(*TI);
444 skipTerminator(Position, *TI, false);
445 ++TI;
446 }
447 }
448 }
449
450 bool SystemZLongBranch::runOnMachineFunction(MachineFunction &F) {
451 TII = static_cast<const SystemZInstrInfo *>(F.getSubtarget().getInstrInfo());
452 MF = &F;
453 uint64_t Size = initMBBInfo();
454 if (Size <= MaxForwardRange || !mustRelaxABranch())
455 return false;
456
457 setWorstCaseAddresses();
458 relaxBranches();
459 return true;
460 }