]> git.proxmox.com Git - rustc.git/blob - src/llvm/lib/Target/X86/Disassembler/X86Disassembler.cpp
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / lib / Target / X86 / Disassembler / X86Disassembler.cpp
1 //===-- X86Disassembler.cpp - Disassembler for x86 and x86_64 -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is part of the X86 Disassembler.
11 // It contains code to translate the data produced by the decoder into
12 // MCInsts.
13 // Documentation for the disassembler can be found in X86Disassembler.h.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "X86Disassembler.h"
18 #include "X86DisassemblerDecoder.h"
19 #include "llvm/MC/MCContext.h"
20 #include "llvm/MC/MCDisassembler.h"
21 #include "llvm/MC/MCExpr.h"
22 #include "llvm/MC/MCInst.h"
23 #include "llvm/MC/MCInstrInfo.h"
24 #include "llvm/MC/MCSubtargetInfo.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/TargetRegistry.h"
27 #include "llvm/Support/raw_ostream.h"
28
29 using namespace llvm;
30 using namespace llvm::X86Disassembler;
31
32 #define DEBUG_TYPE "x86-disassembler"
33
34 #define GET_REGINFO_ENUM
35 #include "X86GenRegisterInfo.inc"
36 #define GET_INSTRINFO_ENUM
37 #include "X86GenInstrInfo.inc"
38 #define GET_SUBTARGETINFO_ENUM
39 #include "X86GenSubtargetInfo.inc"
40
41 void llvm::X86Disassembler::Debug(const char *file, unsigned line,
42 const char *s) {
43 dbgs() << file << ":" << line << ": " << s;
44 }
45
46 const char *llvm::X86Disassembler::GetInstrName(unsigned Opcode,
47 const void *mii) {
48 const MCInstrInfo *MII = static_cast<const MCInstrInfo *>(mii);
49 return MII->getName(Opcode);
50 }
51
52 #define debug(s) DEBUG(Debug(__FILE__, __LINE__, s));
53
54 namespace llvm {
55
56 // Fill-ins to make the compiler happy. These constants are never actually
57 // assigned; they are just filler to make an automatically-generated switch
58 // statement work.
59 namespace X86 {
60 enum {
61 BX_SI = 500,
62 BX_DI = 501,
63 BP_SI = 502,
64 BP_DI = 503,
65 sib = 504,
66 sib64 = 505
67 };
68 }
69
70 extern Target TheX86_32Target, TheX86_64Target;
71
72 }
73
74 static bool translateInstruction(MCInst &target,
75 InternalInstruction &source,
76 const MCDisassembler *Dis);
77
78 X86GenericDisassembler::X86GenericDisassembler(
79 const MCSubtargetInfo &STI,
80 MCContext &Ctx,
81 std::unique_ptr<const MCInstrInfo> MII)
82 : MCDisassembler(STI, Ctx), MII(std::move(MII)) {
83 switch (STI.getFeatureBits() &
84 (X86::Mode16Bit | X86::Mode32Bit | X86::Mode64Bit)) {
85 case X86::Mode16Bit:
86 fMode = MODE_16BIT;
87 break;
88 case X86::Mode32Bit:
89 fMode = MODE_32BIT;
90 break;
91 case X86::Mode64Bit:
92 fMode = MODE_64BIT;
93 break;
94 default:
95 llvm_unreachable("Invalid CPU mode");
96 }
97 }
98
99 struct Region {
100 ArrayRef<uint8_t> Bytes;
101 uint64_t Base;
102 Region(ArrayRef<uint8_t> Bytes, uint64_t Base) : Bytes(Bytes), Base(Base) {}
103 };
104
105 /// A callback function that wraps the readByte method from Region.
106 ///
107 /// @param Arg - The generic callback parameter. In this case, this should
108 /// be a pointer to a Region.
109 /// @param Byte - A pointer to the byte to be read.
110 /// @param Address - The address to be read.
111 static int regionReader(const void *Arg, uint8_t *Byte, uint64_t Address) {
112 auto *R = static_cast<const Region *>(Arg);
113 ArrayRef<uint8_t> Bytes = R->Bytes;
114 unsigned Index = Address - R->Base;
115 if (Bytes.size() <= Index)
116 return -1;
117 *Byte = Bytes[Index];
118 return 0;
119 }
120
121 /// logger - a callback function that wraps the operator<< method from
122 /// raw_ostream.
123 ///
124 /// @param arg - The generic callback parameter. This should be a pointe
125 /// to a raw_ostream.
126 /// @param log - A string to be logged. logger() adds a newline.
127 static void logger(void* arg, const char* log) {
128 if (!arg)
129 return;
130
131 raw_ostream &vStream = *(static_cast<raw_ostream*>(arg));
132 vStream << log << "\n";
133 }
134
135 //
136 // Public interface for the disassembler
137 //
138
139 MCDisassembler::DecodeStatus X86GenericDisassembler::getInstruction(
140 MCInst &Instr, uint64_t &Size, ArrayRef<uint8_t> Bytes, uint64_t Address,
141 raw_ostream &VStream, raw_ostream &CStream) const {
142 CommentStream = &CStream;
143
144 InternalInstruction InternalInstr;
145
146 dlog_t LoggerFn = logger;
147 if (&VStream == &nulls())
148 LoggerFn = nullptr; // Disable logging completely if it's going to nulls().
149
150 Region R(Bytes, Address);
151
152 int Ret = decodeInstruction(&InternalInstr, regionReader, (const void *)&R,
153 LoggerFn, (void *)&VStream,
154 (const void *)MII.get(), Address, fMode);
155
156 if (Ret) {
157 Size = InternalInstr.readerCursor - Address;
158 return Fail;
159 } else {
160 Size = InternalInstr.length;
161 return (!translateInstruction(Instr, InternalInstr, this)) ? Success : Fail;
162 }
163 }
164
165 //
166 // Private code that translates from struct InternalInstructions to MCInsts.
167 //
168
169 /// translateRegister - Translates an internal register to the appropriate LLVM
170 /// register, and appends it as an operand to an MCInst.
171 ///
172 /// @param mcInst - The MCInst to append to.
173 /// @param reg - The Reg to append.
174 static void translateRegister(MCInst &mcInst, Reg reg) {
175 #define ENTRY(x) X86::x,
176 uint8_t llvmRegnums[] = {
177 ALL_REGS
178 0
179 };
180 #undef ENTRY
181
182 uint8_t llvmRegnum = llvmRegnums[reg];
183 mcInst.addOperand(MCOperand::CreateReg(llvmRegnum));
184 }
185
186 /// tryAddingSymbolicOperand - trys to add a symbolic operand in place of the
187 /// immediate Value in the MCInst.
188 ///
189 /// @param Value - The immediate Value, has had any PC adjustment made by
190 /// the caller.
191 /// @param isBranch - If the instruction is a branch instruction
192 /// @param Address - The starting address of the instruction
193 /// @param Offset - The byte offset to this immediate in the instruction
194 /// @param Width - The byte width of this immediate in the instruction
195 ///
196 /// If the getOpInfo() function was set when setupForSymbolicDisassembly() was
197 /// called then that function is called to get any symbolic information for the
198 /// immediate in the instruction using the Address, Offset and Width. If that
199 /// returns non-zero then the symbolic information it returns is used to create
200 /// an MCExpr and that is added as an operand to the MCInst. If getOpInfo()
201 /// returns zero and isBranch is true then a symbol look up for immediate Value
202 /// is done and if a symbol is found an MCExpr is created with that, else
203 /// an MCExpr with the immediate Value is created. This function returns true
204 /// if it adds an operand to the MCInst and false otherwise.
205 static bool tryAddingSymbolicOperand(int64_t Value, bool isBranch,
206 uint64_t Address, uint64_t Offset,
207 uint64_t Width, MCInst &MI,
208 const MCDisassembler *Dis) {
209 return Dis->tryAddingSymbolicOperand(MI, Value, Address, isBranch,
210 Offset, Width);
211 }
212
213 /// tryAddingPcLoadReferenceComment - trys to add a comment as to what is being
214 /// referenced by a load instruction with the base register that is the rip.
215 /// These can often be addresses in a literal pool. The Address of the
216 /// instruction and its immediate Value are used to determine the address
217 /// being referenced in the literal pool entry. The SymbolLookUp call back will
218 /// return a pointer to a literal 'C' string if the referenced address is an
219 /// address into a section with 'C' string literals.
220 static void tryAddingPcLoadReferenceComment(uint64_t Address, uint64_t Value,
221 const void *Decoder) {
222 const MCDisassembler *Dis = static_cast<const MCDisassembler*>(Decoder);
223 Dis->tryAddingPcLoadReferenceComment(Value, Address);
224 }
225
226 static const uint8_t segmentRegnums[SEG_OVERRIDE_max] = {
227 0, // SEG_OVERRIDE_NONE
228 X86::CS,
229 X86::SS,
230 X86::DS,
231 X86::ES,
232 X86::FS,
233 X86::GS
234 };
235
236 /// translateSrcIndex - Appends a source index operand to an MCInst.
237 ///
238 /// @param mcInst - The MCInst to append to.
239 /// @param insn - The internal instruction.
240 static bool translateSrcIndex(MCInst &mcInst, InternalInstruction &insn) {
241 unsigned baseRegNo;
242
243 if (insn.mode == MODE_64BIT)
244 baseRegNo = insn.prefixPresent[0x67] ? X86::ESI : X86::RSI;
245 else if (insn.mode == MODE_32BIT)
246 baseRegNo = insn.prefixPresent[0x67] ? X86::SI : X86::ESI;
247 else {
248 assert(insn.mode == MODE_16BIT);
249 baseRegNo = insn.prefixPresent[0x67] ? X86::ESI : X86::SI;
250 }
251 MCOperand baseReg = MCOperand::CreateReg(baseRegNo);
252 mcInst.addOperand(baseReg);
253
254 MCOperand segmentReg;
255 segmentReg = MCOperand::CreateReg(segmentRegnums[insn.segmentOverride]);
256 mcInst.addOperand(segmentReg);
257 return false;
258 }
259
260 /// translateDstIndex - Appends a destination index operand to an MCInst.
261 ///
262 /// @param mcInst - The MCInst to append to.
263 /// @param insn - The internal instruction.
264
265 static bool translateDstIndex(MCInst &mcInst, InternalInstruction &insn) {
266 unsigned baseRegNo;
267
268 if (insn.mode == MODE_64BIT)
269 baseRegNo = insn.prefixPresent[0x67] ? X86::EDI : X86::RDI;
270 else if (insn.mode == MODE_32BIT)
271 baseRegNo = insn.prefixPresent[0x67] ? X86::DI : X86::EDI;
272 else {
273 assert(insn.mode == MODE_16BIT);
274 baseRegNo = insn.prefixPresent[0x67] ? X86::EDI : X86::DI;
275 }
276 MCOperand baseReg = MCOperand::CreateReg(baseRegNo);
277 mcInst.addOperand(baseReg);
278 return false;
279 }
280
281 /// translateImmediate - Appends an immediate operand to an MCInst.
282 ///
283 /// @param mcInst - The MCInst to append to.
284 /// @param immediate - The immediate value to append.
285 /// @param operand - The operand, as stored in the descriptor table.
286 /// @param insn - The internal instruction.
287 static void translateImmediate(MCInst &mcInst, uint64_t immediate,
288 const OperandSpecifier &operand,
289 InternalInstruction &insn,
290 const MCDisassembler *Dis) {
291 // Sign-extend the immediate if necessary.
292
293 OperandType type = (OperandType)operand.type;
294
295 bool isBranch = false;
296 uint64_t pcrel = 0;
297 if (type == TYPE_RELv) {
298 isBranch = true;
299 pcrel = insn.startLocation +
300 insn.immediateOffset + insn.immediateSize;
301 switch (insn.displacementSize) {
302 default:
303 break;
304 case 1:
305 if(immediate & 0x80)
306 immediate |= ~(0xffull);
307 break;
308 case 2:
309 if(immediate & 0x8000)
310 immediate |= ~(0xffffull);
311 break;
312 case 4:
313 if(immediate & 0x80000000)
314 immediate |= ~(0xffffffffull);
315 break;
316 case 8:
317 break;
318 }
319 }
320 // By default sign-extend all X86 immediates based on their encoding.
321 else if (type == TYPE_IMM8 || type == TYPE_IMM16 || type == TYPE_IMM32 ||
322 type == TYPE_IMM64 || type == TYPE_IMMv) {
323 uint32_t Opcode = mcInst.getOpcode();
324 switch (operand.encoding) {
325 default:
326 break;
327 case ENCODING_IB:
328 // Special case those X86 instructions that use the imm8 as a set of
329 // bits, bit count, etc. and are not sign-extend.
330 if (Opcode != X86::BLENDPSrri && Opcode != X86::BLENDPDrri &&
331 Opcode != X86::PBLENDWrri && Opcode != X86::MPSADBWrri &&
332 Opcode != X86::DPPSrri && Opcode != X86::DPPDrri &&
333 Opcode != X86::INSERTPSrr && Opcode != X86::VBLENDPSYrri &&
334 Opcode != X86::VBLENDPSYrmi && Opcode != X86::VBLENDPDYrri &&
335 Opcode != X86::VBLENDPDYrmi && Opcode != X86::VPBLENDWrri &&
336 Opcode != X86::VMPSADBWrri && Opcode != X86::VDPPSYrri &&
337 Opcode != X86::VDPPSYrmi && Opcode != X86::VDPPDrri &&
338 Opcode != X86::VINSERTPSrr)
339 if(immediate & 0x80)
340 immediate |= ~(0xffull);
341 break;
342 case ENCODING_IW:
343 if(immediate & 0x8000)
344 immediate |= ~(0xffffull);
345 break;
346 case ENCODING_ID:
347 if(immediate & 0x80000000)
348 immediate |= ~(0xffffffffull);
349 break;
350 case ENCODING_IO:
351 break;
352 }
353 } else if (type == TYPE_IMM3) {
354 // Check for immediates that printSSECC can't handle.
355 if (immediate >= 8) {
356 unsigned NewOpc;
357 switch (mcInst.getOpcode()) {
358 default: llvm_unreachable("unexpected opcode");
359 case X86::CMPPDrmi: NewOpc = X86::CMPPDrmi_alt; break;
360 case X86::CMPPDrri: NewOpc = X86::CMPPDrri_alt; break;
361 case X86::CMPPSrmi: NewOpc = X86::CMPPSrmi_alt; break;
362 case X86::CMPPSrri: NewOpc = X86::CMPPSrri_alt; break;
363 case X86::CMPSDrm: NewOpc = X86::CMPSDrm_alt; break;
364 case X86::CMPSDrr: NewOpc = X86::CMPSDrr_alt; break;
365 case X86::CMPSSrm: NewOpc = X86::CMPSSrm_alt; break;
366 case X86::CMPSSrr: NewOpc = X86::CMPSSrr_alt; break;
367 }
368 // Switch opcode to the one that doesn't get special printing.
369 mcInst.setOpcode(NewOpc);
370 }
371 } else if (type == TYPE_IMM5) {
372 // Check for immediates that printAVXCC can't handle.
373 if (immediate >= 32) {
374 unsigned NewOpc;
375 switch (mcInst.getOpcode()) {
376 default: llvm_unreachable("unexpected opcode");
377 case X86::VCMPPDrmi: NewOpc = X86::VCMPPDrmi_alt; break;
378 case X86::VCMPPDrri: NewOpc = X86::VCMPPDrri_alt; break;
379 case X86::VCMPPSrmi: NewOpc = X86::VCMPPSrmi_alt; break;
380 case X86::VCMPPSrri: NewOpc = X86::VCMPPSrri_alt; break;
381 case X86::VCMPSDrm: NewOpc = X86::VCMPSDrm_alt; break;
382 case X86::VCMPSDrr: NewOpc = X86::VCMPSDrr_alt; break;
383 case X86::VCMPSSrm: NewOpc = X86::VCMPSSrm_alt; break;
384 case X86::VCMPSSrr: NewOpc = X86::VCMPSSrr_alt; break;
385 case X86::VCMPPDYrmi: NewOpc = X86::VCMPPDYrmi_alt; break;
386 case X86::VCMPPDYrri: NewOpc = X86::VCMPPDYrri_alt; break;
387 case X86::VCMPPSYrmi: NewOpc = X86::VCMPPSYrmi_alt; break;
388 case X86::VCMPPSYrri: NewOpc = X86::VCMPPSYrri_alt; break;
389 case X86::VCMPPDZrmi: NewOpc = X86::VCMPPDZrmi_alt; break;
390 case X86::VCMPPDZrri: NewOpc = X86::VCMPPDZrri_alt; break;
391 case X86::VCMPPSZrmi: NewOpc = X86::VCMPPSZrmi_alt; break;
392 case X86::VCMPPSZrri: NewOpc = X86::VCMPPSZrri_alt; break;
393 case X86::VCMPSDZrm: NewOpc = X86::VCMPSDZrmi_alt; break;
394 case X86::VCMPSDZrr: NewOpc = X86::VCMPSDZrri_alt; break;
395 case X86::VCMPSSZrm: NewOpc = X86::VCMPSSZrmi_alt; break;
396 case X86::VCMPSSZrr: NewOpc = X86::VCMPSSZrri_alt; break;
397 }
398 // Switch opcode to the one that doesn't get special printing.
399 mcInst.setOpcode(NewOpc);
400 }
401 }
402
403 switch (type) {
404 case TYPE_XMM32:
405 case TYPE_XMM64:
406 case TYPE_XMM128:
407 mcInst.addOperand(MCOperand::CreateReg(X86::XMM0 + (immediate >> 4)));
408 return;
409 case TYPE_XMM256:
410 mcInst.addOperand(MCOperand::CreateReg(X86::YMM0 + (immediate >> 4)));
411 return;
412 case TYPE_XMM512:
413 mcInst.addOperand(MCOperand::CreateReg(X86::ZMM0 + (immediate >> 4)));
414 return;
415 case TYPE_REL8:
416 isBranch = true;
417 pcrel = insn.startLocation + insn.immediateOffset + insn.immediateSize;
418 if(immediate & 0x80)
419 immediate |= ~(0xffull);
420 break;
421 case TYPE_REL32:
422 case TYPE_REL64:
423 isBranch = true;
424 pcrel = insn.startLocation + insn.immediateOffset + insn.immediateSize;
425 if(immediate & 0x80000000)
426 immediate |= ~(0xffffffffull);
427 break;
428 default:
429 // operand is 64 bits wide. Do nothing.
430 break;
431 }
432
433 if(!tryAddingSymbolicOperand(immediate + pcrel, isBranch, insn.startLocation,
434 insn.immediateOffset, insn.immediateSize,
435 mcInst, Dis))
436 mcInst.addOperand(MCOperand::CreateImm(immediate));
437
438 if (type == TYPE_MOFFS8 || type == TYPE_MOFFS16 ||
439 type == TYPE_MOFFS32 || type == TYPE_MOFFS64) {
440 MCOperand segmentReg;
441 segmentReg = MCOperand::CreateReg(segmentRegnums[insn.segmentOverride]);
442 mcInst.addOperand(segmentReg);
443 }
444 }
445
446 /// translateRMRegister - Translates a register stored in the R/M field of the
447 /// ModR/M byte to its LLVM equivalent and appends it to an MCInst.
448 /// @param mcInst - The MCInst to append to.
449 /// @param insn - The internal instruction to extract the R/M field
450 /// from.
451 /// @return - 0 on success; -1 otherwise
452 static bool translateRMRegister(MCInst &mcInst,
453 InternalInstruction &insn) {
454 if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
455 debug("A R/M register operand may not have a SIB byte");
456 return true;
457 }
458
459 switch (insn.eaBase) {
460 default:
461 debug("Unexpected EA base register");
462 return true;
463 case EA_BASE_NONE:
464 debug("EA_BASE_NONE for ModR/M base");
465 return true;
466 #define ENTRY(x) case EA_BASE_##x:
467 ALL_EA_BASES
468 #undef ENTRY
469 debug("A R/M register operand may not have a base; "
470 "the operand must be a register.");
471 return true;
472 #define ENTRY(x) \
473 case EA_REG_##x: \
474 mcInst.addOperand(MCOperand::CreateReg(X86::x)); break;
475 ALL_REGS
476 #undef ENTRY
477 }
478
479 return false;
480 }
481
482 /// translateRMMemory - Translates a memory operand stored in the Mod and R/M
483 /// fields of an internal instruction (and possibly its SIB byte) to a memory
484 /// operand in LLVM's format, and appends it to an MCInst.
485 ///
486 /// @param mcInst - The MCInst to append to.
487 /// @param insn - The instruction to extract Mod, R/M, and SIB fields
488 /// from.
489 /// @return - 0 on success; nonzero otherwise
490 static bool translateRMMemory(MCInst &mcInst, InternalInstruction &insn,
491 const MCDisassembler *Dis) {
492 // Addresses in an MCInst are represented as five operands:
493 // 1. basereg (register) The R/M base, or (if there is a SIB) the
494 // SIB base
495 // 2. scaleamount (immediate) 1, or (if there is a SIB) the specified
496 // scale amount
497 // 3. indexreg (register) x86_registerNONE, or (if there is a SIB)
498 // the index (which is multiplied by the
499 // scale amount)
500 // 4. displacement (immediate) 0, or the displacement if there is one
501 // 5. segmentreg (register) x86_registerNONE for now, but could be set
502 // if we have segment overrides
503
504 MCOperand baseReg;
505 MCOperand scaleAmount;
506 MCOperand indexReg;
507 MCOperand displacement;
508 MCOperand segmentReg;
509 uint64_t pcrel = 0;
510
511 if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
512 if (insn.sibBase != SIB_BASE_NONE) {
513 switch (insn.sibBase) {
514 default:
515 debug("Unexpected sibBase");
516 return true;
517 #define ENTRY(x) \
518 case SIB_BASE_##x: \
519 baseReg = MCOperand::CreateReg(X86::x); break;
520 ALL_SIB_BASES
521 #undef ENTRY
522 }
523 } else {
524 baseReg = MCOperand::CreateReg(0);
525 }
526
527 // Check whether we are handling VSIB addressing mode for GATHER.
528 // If sibIndex was set to SIB_INDEX_NONE, index offset is 4 and
529 // we should use SIB_INDEX_XMM4|YMM4 for VSIB.
530 // I don't see a way to get the correct IndexReg in readSIB:
531 // We can tell whether it is VSIB or SIB after instruction ID is decoded,
532 // but instruction ID may not be decoded yet when calling readSIB.
533 uint32_t Opcode = mcInst.getOpcode();
534 bool IndexIs128 = (Opcode == X86::VGATHERDPDrm ||
535 Opcode == X86::VGATHERDPDYrm ||
536 Opcode == X86::VGATHERQPDrm ||
537 Opcode == X86::VGATHERDPSrm ||
538 Opcode == X86::VGATHERQPSrm ||
539 Opcode == X86::VPGATHERDQrm ||
540 Opcode == X86::VPGATHERDQYrm ||
541 Opcode == X86::VPGATHERQQrm ||
542 Opcode == X86::VPGATHERDDrm ||
543 Opcode == X86::VPGATHERQDrm);
544 bool IndexIs256 = (Opcode == X86::VGATHERQPDYrm ||
545 Opcode == X86::VGATHERDPSYrm ||
546 Opcode == X86::VGATHERQPSYrm ||
547 Opcode == X86::VGATHERDPDZrm ||
548 Opcode == X86::VPGATHERDQZrm ||
549 Opcode == X86::VPGATHERQQYrm ||
550 Opcode == X86::VPGATHERDDYrm ||
551 Opcode == X86::VPGATHERQDYrm);
552 bool IndexIs512 = (Opcode == X86::VGATHERQPDZrm ||
553 Opcode == X86::VGATHERDPSZrm ||
554 Opcode == X86::VGATHERQPSZrm ||
555 Opcode == X86::VPGATHERQQZrm ||
556 Opcode == X86::VPGATHERDDZrm ||
557 Opcode == X86::VPGATHERQDZrm);
558 if (IndexIs128 || IndexIs256 || IndexIs512) {
559 unsigned IndexOffset = insn.sibIndex -
560 (insn.addressSize == 8 ? SIB_INDEX_RAX:SIB_INDEX_EAX);
561 SIBIndex IndexBase = IndexIs512 ? SIB_INDEX_ZMM0 :
562 IndexIs256 ? SIB_INDEX_YMM0 : SIB_INDEX_XMM0;
563 insn.sibIndex = (SIBIndex)(IndexBase +
564 (insn.sibIndex == SIB_INDEX_NONE ? 4 : IndexOffset));
565 }
566
567 if (insn.sibIndex != SIB_INDEX_NONE) {
568 switch (insn.sibIndex) {
569 default:
570 debug("Unexpected sibIndex");
571 return true;
572 #define ENTRY(x) \
573 case SIB_INDEX_##x: \
574 indexReg = MCOperand::CreateReg(X86::x); break;
575 EA_BASES_32BIT
576 EA_BASES_64BIT
577 REGS_XMM
578 REGS_YMM
579 REGS_ZMM
580 #undef ENTRY
581 }
582 } else {
583 indexReg = MCOperand::CreateReg(0);
584 }
585
586 scaleAmount = MCOperand::CreateImm(insn.sibScale);
587 } else {
588 switch (insn.eaBase) {
589 case EA_BASE_NONE:
590 if (insn.eaDisplacement == EA_DISP_NONE) {
591 debug("EA_BASE_NONE and EA_DISP_NONE for ModR/M base");
592 return true;
593 }
594 if (insn.mode == MODE_64BIT){
595 pcrel = insn.startLocation +
596 insn.displacementOffset + insn.displacementSize;
597 tryAddingPcLoadReferenceComment(insn.startLocation +
598 insn.displacementOffset,
599 insn.displacement + pcrel, Dis);
600 baseReg = MCOperand::CreateReg(X86::RIP); // Section 2.2.1.6
601 }
602 else
603 baseReg = MCOperand::CreateReg(0);
604
605 indexReg = MCOperand::CreateReg(0);
606 break;
607 case EA_BASE_BX_SI:
608 baseReg = MCOperand::CreateReg(X86::BX);
609 indexReg = MCOperand::CreateReg(X86::SI);
610 break;
611 case EA_BASE_BX_DI:
612 baseReg = MCOperand::CreateReg(X86::BX);
613 indexReg = MCOperand::CreateReg(X86::DI);
614 break;
615 case EA_BASE_BP_SI:
616 baseReg = MCOperand::CreateReg(X86::BP);
617 indexReg = MCOperand::CreateReg(X86::SI);
618 break;
619 case EA_BASE_BP_DI:
620 baseReg = MCOperand::CreateReg(X86::BP);
621 indexReg = MCOperand::CreateReg(X86::DI);
622 break;
623 default:
624 indexReg = MCOperand::CreateReg(0);
625 switch (insn.eaBase) {
626 default:
627 debug("Unexpected eaBase");
628 return true;
629 // Here, we will use the fill-ins defined above. However,
630 // BX_SI, BX_DI, BP_SI, and BP_DI are all handled above and
631 // sib and sib64 were handled in the top-level if, so they're only
632 // placeholders to keep the compiler happy.
633 #define ENTRY(x) \
634 case EA_BASE_##x: \
635 baseReg = MCOperand::CreateReg(X86::x); break;
636 ALL_EA_BASES
637 #undef ENTRY
638 #define ENTRY(x) case EA_REG_##x:
639 ALL_REGS
640 #undef ENTRY
641 debug("A R/M memory operand may not be a register; "
642 "the base field must be a base.");
643 return true;
644 }
645 }
646
647 scaleAmount = MCOperand::CreateImm(1);
648 }
649
650 displacement = MCOperand::CreateImm(insn.displacement);
651
652 segmentReg = MCOperand::CreateReg(segmentRegnums[insn.segmentOverride]);
653
654 mcInst.addOperand(baseReg);
655 mcInst.addOperand(scaleAmount);
656 mcInst.addOperand(indexReg);
657 if(!tryAddingSymbolicOperand(insn.displacement + pcrel, false,
658 insn.startLocation, insn.displacementOffset,
659 insn.displacementSize, mcInst, Dis))
660 mcInst.addOperand(displacement);
661 mcInst.addOperand(segmentReg);
662 return false;
663 }
664
665 /// translateRM - Translates an operand stored in the R/M (and possibly SIB)
666 /// byte of an instruction to LLVM form, and appends it to an MCInst.
667 ///
668 /// @param mcInst - The MCInst to append to.
669 /// @param operand - The operand, as stored in the descriptor table.
670 /// @param insn - The instruction to extract Mod, R/M, and SIB fields
671 /// from.
672 /// @return - 0 on success; nonzero otherwise
673 static bool translateRM(MCInst &mcInst, const OperandSpecifier &operand,
674 InternalInstruction &insn, const MCDisassembler *Dis) {
675 switch (operand.type) {
676 default:
677 debug("Unexpected type for a R/M operand");
678 return true;
679 case TYPE_R8:
680 case TYPE_R16:
681 case TYPE_R32:
682 case TYPE_R64:
683 case TYPE_Rv:
684 case TYPE_MM64:
685 case TYPE_XMM:
686 case TYPE_XMM32:
687 case TYPE_XMM64:
688 case TYPE_XMM128:
689 case TYPE_XMM256:
690 case TYPE_XMM512:
691 case TYPE_VK1:
692 case TYPE_VK8:
693 case TYPE_VK16:
694 case TYPE_DEBUGREG:
695 case TYPE_CONTROLREG:
696 return translateRMRegister(mcInst, insn);
697 case TYPE_M:
698 case TYPE_M8:
699 case TYPE_M16:
700 case TYPE_M32:
701 case TYPE_M64:
702 case TYPE_M128:
703 case TYPE_M256:
704 case TYPE_M512:
705 case TYPE_Mv:
706 case TYPE_M32FP:
707 case TYPE_M64FP:
708 case TYPE_M80FP:
709 case TYPE_M1616:
710 case TYPE_M1632:
711 case TYPE_M1664:
712 case TYPE_LEA:
713 return translateRMMemory(mcInst, insn, Dis);
714 }
715 }
716
717 /// translateFPRegister - Translates a stack position on the FPU stack to its
718 /// LLVM form, and appends it to an MCInst.
719 ///
720 /// @param mcInst - The MCInst to append to.
721 /// @param stackPos - The stack position to translate.
722 static void translateFPRegister(MCInst &mcInst,
723 uint8_t stackPos) {
724 mcInst.addOperand(MCOperand::CreateReg(X86::ST0 + stackPos));
725 }
726
727 /// translateMaskRegister - Translates a 3-bit mask register number to
728 /// LLVM form, and appends it to an MCInst.
729 ///
730 /// @param mcInst - The MCInst to append to.
731 /// @param maskRegNum - Number of mask register from 0 to 7.
732 /// @return - false on success; true otherwise.
733 static bool translateMaskRegister(MCInst &mcInst,
734 uint8_t maskRegNum) {
735 if (maskRegNum >= 8) {
736 debug("Invalid mask register number");
737 return true;
738 }
739
740 mcInst.addOperand(MCOperand::CreateReg(X86::K0 + maskRegNum));
741 return false;
742 }
743
744 /// translateOperand - Translates an operand stored in an internal instruction
745 /// to LLVM's format and appends it to an MCInst.
746 ///
747 /// @param mcInst - The MCInst to append to.
748 /// @param operand - The operand, as stored in the descriptor table.
749 /// @param insn - The internal instruction.
750 /// @return - false on success; true otherwise.
751 static bool translateOperand(MCInst &mcInst, const OperandSpecifier &operand,
752 InternalInstruction &insn,
753 const MCDisassembler *Dis) {
754 switch (operand.encoding) {
755 default:
756 debug("Unhandled operand encoding during translation");
757 return true;
758 case ENCODING_REG:
759 translateRegister(mcInst, insn.reg);
760 return false;
761 case ENCODING_WRITEMASK:
762 return translateMaskRegister(mcInst, insn.writemask);
763 CASE_ENCODING_RM:
764 return translateRM(mcInst, operand, insn, Dis);
765 case ENCODING_CB:
766 case ENCODING_CW:
767 case ENCODING_CD:
768 case ENCODING_CP:
769 case ENCODING_CO:
770 case ENCODING_CT:
771 debug("Translation of code offsets isn't supported.");
772 return true;
773 case ENCODING_IB:
774 case ENCODING_IW:
775 case ENCODING_ID:
776 case ENCODING_IO:
777 case ENCODING_Iv:
778 case ENCODING_Ia:
779 translateImmediate(mcInst,
780 insn.immediates[insn.numImmediatesTranslated++],
781 operand,
782 insn,
783 Dis);
784 return false;
785 case ENCODING_SI:
786 return translateSrcIndex(mcInst, insn);
787 case ENCODING_DI:
788 return translateDstIndex(mcInst, insn);
789 case ENCODING_RB:
790 case ENCODING_RW:
791 case ENCODING_RD:
792 case ENCODING_RO:
793 case ENCODING_Rv:
794 translateRegister(mcInst, insn.opcodeRegister);
795 return false;
796 case ENCODING_FP:
797 translateFPRegister(mcInst, insn.modRM & 7);
798 return false;
799 case ENCODING_VVVV:
800 translateRegister(mcInst, insn.vvvv);
801 return false;
802 case ENCODING_DUP:
803 return translateOperand(mcInst, insn.operands[operand.type - TYPE_DUP0],
804 insn, Dis);
805 }
806 }
807
808 /// translateInstruction - Translates an internal instruction and all its
809 /// operands to an MCInst.
810 ///
811 /// @param mcInst - The MCInst to populate with the instruction's data.
812 /// @param insn - The internal instruction.
813 /// @return - false on success; true otherwise.
814 static bool translateInstruction(MCInst &mcInst,
815 InternalInstruction &insn,
816 const MCDisassembler *Dis) {
817 if (!insn.spec) {
818 debug("Instruction has no specification");
819 return true;
820 }
821
822 mcInst.setOpcode(insn.instructionID);
823 // If when reading the prefix bytes we determined the overlapping 0xf2 or 0xf3
824 // prefix bytes should be disassembled as xrelease and xacquire then set the
825 // opcode to those instead of the rep and repne opcodes.
826 if (insn.xAcquireRelease) {
827 if(mcInst.getOpcode() == X86::REP_PREFIX)
828 mcInst.setOpcode(X86::XRELEASE_PREFIX);
829 else if(mcInst.getOpcode() == X86::REPNE_PREFIX)
830 mcInst.setOpcode(X86::XACQUIRE_PREFIX);
831 }
832
833 insn.numImmediatesTranslated = 0;
834
835 for (const auto &Op : insn.operands) {
836 if (Op.encoding != ENCODING_NONE) {
837 if (translateOperand(mcInst, Op, insn, Dis)) {
838 return true;
839 }
840 }
841 }
842
843 return false;
844 }
845
846 static MCDisassembler *createX86Disassembler(const Target &T,
847 const MCSubtargetInfo &STI,
848 MCContext &Ctx) {
849 std::unique_ptr<const MCInstrInfo> MII(T.createMCInstrInfo());
850 return new X86Disassembler::X86GenericDisassembler(STI, Ctx, std::move(MII));
851 }
852
853 extern "C" void LLVMInitializeX86Disassembler() {
854 // Register the disassembler.
855 TargetRegistry::RegisterMCDisassembler(TheX86_32Target,
856 createX86Disassembler);
857 TargetRegistry::RegisterMCDisassembler(TheX86_64Target,
858 createX86Disassembler);
859 }