]> git.proxmox.com Git - rustc.git/blob - src/llvm/lib/Target/X86/Disassembler/X86DisassemblerDecoder.cpp
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / lib / Target / X86 / Disassembler / X86DisassemblerDecoder.cpp
1 //===-- X86DisassemblerDecoder.cpp - Disassembler decoder -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is part of the X86 Disassembler.
11 // It contains the implementation of the instruction decoder.
12 // Documentation for the disassembler can be found in X86Disassembler.h.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include <cstdarg> /* for va_*() */
17 #include <cstdio> /* for vsnprintf() */
18 #include <cstdlib> /* for exit() */
19 #include <cstring> /* for memset() */
20
21 #include "X86DisassemblerDecoder.h"
22
23 using namespace llvm::X86Disassembler;
24
25 /// Specifies whether a ModR/M byte is needed and (if so) which
26 /// instruction each possible value of the ModR/M byte corresponds to. Once
27 /// this information is known, we have narrowed down to a single instruction.
28 struct ModRMDecision {
29 uint8_t modrm_type;
30 uint16_t instructionIDs;
31 };
32
33 /// Specifies which set of ModR/M->instruction tables to look at
34 /// given a particular opcode.
35 struct OpcodeDecision {
36 ModRMDecision modRMDecisions[256];
37 };
38
39 /// Specifies which opcode->instruction tables to look at given
40 /// a particular context (set of attributes). Since there are many possible
41 /// contexts, the decoder first uses CONTEXTS_SYM to determine which context
42 /// applies given a specific set of attributes. Hence there are only IC_max
43 /// entries in this table, rather than 2^(ATTR_max).
44 struct ContextDecision {
45 OpcodeDecision opcodeDecisions[IC_max];
46 };
47
48 #include "X86GenDisassemblerTables.inc"
49
50 #ifndef NDEBUG
51 #define debug(s) do { Debug(__FILE__, __LINE__, s); } while (0)
52 #else
53 #define debug(s) do { } while (0)
54 #endif
55
56
57 /*
58 * contextForAttrs - Client for the instruction context table. Takes a set of
59 * attributes and returns the appropriate decode context.
60 *
61 * @param attrMask - Attributes, from the enumeration attributeBits.
62 * @return - The InstructionContext to use when looking up an
63 * an instruction with these attributes.
64 */
65 static InstructionContext contextForAttrs(uint16_t attrMask) {
66 return static_cast<InstructionContext>(CONTEXTS_SYM[attrMask]);
67 }
68
69 /*
70 * modRMRequired - Reads the appropriate instruction table to determine whether
71 * the ModR/M byte is required to decode a particular instruction.
72 *
73 * @param type - The opcode type (i.e., how many bytes it has).
74 * @param insnContext - The context for the instruction, as returned by
75 * contextForAttrs.
76 * @param opcode - The last byte of the instruction's opcode, not counting
77 * ModR/M extensions and escapes.
78 * @return - true if the ModR/M byte is required, false otherwise.
79 */
80 static int modRMRequired(OpcodeType type,
81 InstructionContext insnContext,
82 uint16_t opcode) {
83 const struct ContextDecision* decision = nullptr;
84
85 switch (type) {
86 case ONEBYTE:
87 decision = &ONEBYTE_SYM;
88 break;
89 case TWOBYTE:
90 decision = &TWOBYTE_SYM;
91 break;
92 case THREEBYTE_38:
93 decision = &THREEBYTE38_SYM;
94 break;
95 case THREEBYTE_3A:
96 decision = &THREEBYTE3A_SYM;
97 break;
98 case XOP8_MAP:
99 decision = &XOP8_MAP_SYM;
100 break;
101 case XOP9_MAP:
102 decision = &XOP9_MAP_SYM;
103 break;
104 case XOPA_MAP:
105 decision = &XOPA_MAP_SYM;
106 break;
107 }
108
109 return decision->opcodeDecisions[insnContext].modRMDecisions[opcode].
110 modrm_type != MODRM_ONEENTRY;
111 }
112
113 /*
114 * decode - Reads the appropriate instruction table to obtain the unique ID of
115 * an instruction.
116 *
117 * @param type - See modRMRequired().
118 * @param insnContext - See modRMRequired().
119 * @param opcode - See modRMRequired().
120 * @param modRM - The ModR/M byte if required, or any value if not.
121 * @return - The UID of the instruction, or 0 on failure.
122 */
123 static InstrUID decode(OpcodeType type,
124 InstructionContext insnContext,
125 uint8_t opcode,
126 uint8_t modRM) {
127 const struct ModRMDecision* dec = nullptr;
128
129 switch (type) {
130 case ONEBYTE:
131 dec = &ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
132 break;
133 case TWOBYTE:
134 dec = &TWOBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
135 break;
136 case THREEBYTE_38:
137 dec = &THREEBYTE38_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
138 break;
139 case THREEBYTE_3A:
140 dec = &THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
141 break;
142 case XOP8_MAP:
143 dec = &XOP8_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
144 break;
145 case XOP9_MAP:
146 dec = &XOP9_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
147 break;
148 case XOPA_MAP:
149 dec = &XOPA_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
150 break;
151 }
152
153 switch (dec->modrm_type) {
154 default:
155 debug("Corrupt table! Unknown modrm_type");
156 return 0;
157 case MODRM_ONEENTRY:
158 return modRMTable[dec->instructionIDs];
159 case MODRM_SPLITRM:
160 if (modFromModRM(modRM) == 0x3)
161 return modRMTable[dec->instructionIDs+1];
162 return modRMTable[dec->instructionIDs];
163 case MODRM_SPLITREG:
164 if (modFromModRM(modRM) == 0x3)
165 return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)+8];
166 return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)];
167 case MODRM_SPLITMISC:
168 if (modFromModRM(modRM) == 0x3)
169 return modRMTable[dec->instructionIDs+(modRM & 0x3f)+8];
170 return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)];
171 case MODRM_FULL:
172 return modRMTable[dec->instructionIDs+modRM];
173 }
174 }
175
176 /*
177 * specifierForUID - Given a UID, returns the name and operand specification for
178 * that instruction.
179 *
180 * @param uid - The unique ID for the instruction. This should be returned by
181 * decode(); specifierForUID will not check bounds.
182 * @return - A pointer to the specification for that instruction.
183 */
184 static const struct InstructionSpecifier *specifierForUID(InstrUID uid) {
185 return &INSTRUCTIONS_SYM[uid];
186 }
187
188 /*
189 * consumeByte - Uses the reader function provided by the user to consume one
190 * byte from the instruction's memory and advance the cursor.
191 *
192 * @param insn - The instruction with the reader function to use. The cursor
193 * for this instruction is advanced.
194 * @param byte - A pointer to a pre-allocated memory buffer to be populated
195 * with the data read.
196 * @return - 0 if the read was successful; nonzero otherwise.
197 */
198 static int consumeByte(struct InternalInstruction* insn, uint8_t* byte) {
199 int ret = insn->reader(insn->readerArg, byte, insn->readerCursor);
200
201 if (!ret)
202 ++(insn->readerCursor);
203
204 return ret;
205 }
206
207 /*
208 * lookAtByte - Like consumeByte, but does not advance the cursor.
209 *
210 * @param insn - See consumeByte().
211 * @param byte - See consumeByte().
212 * @return - See consumeByte().
213 */
214 static int lookAtByte(struct InternalInstruction* insn, uint8_t* byte) {
215 return insn->reader(insn->readerArg, byte, insn->readerCursor);
216 }
217
218 static void unconsumeByte(struct InternalInstruction* insn) {
219 insn->readerCursor--;
220 }
221
222 #define CONSUME_FUNC(name, type) \
223 static int name(struct InternalInstruction* insn, type* ptr) { \
224 type combined = 0; \
225 unsigned offset; \
226 for (offset = 0; offset < sizeof(type); ++offset) { \
227 uint8_t byte; \
228 int ret = insn->reader(insn->readerArg, \
229 &byte, \
230 insn->readerCursor + offset); \
231 if (ret) \
232 return ret; \
233 combined = combined | ((uint64_t)byte << (offset * 8)); \
234 } \
235 *ptr = combined; \
236 insn->readerCursor += sizeof(type); \
237 return 0; \
238 }
239
240 /*
241 * consume* - Use the reader function provided by the user to consume data
242 * values of various sizes from the instruction's memory and advance the
243 * cursor appropriately. These readers perform endian conversion.
244 *
245 * @param insn - See consumeByte().
246 * @param ptr - A pointer to a pre-allocated memory of appropriate size to
247 * be populated with the data read.
248 * @return - See consumeByte().
249 */
250 CONSUME_FUNC(consumeInt8, int8_t)
251 CONSUME_FUNC(consumeInt16, int16_t)
252 CONSUME_FUNC(consumeInt32, int32_t)
253 CONSUME_FUNC(consumeUInt16, uint16_t)
254 CONSUME_FUNC(consumeUInt32, uint32_t)
255 CONSUME_FUNC(consumeUInt64, uint64_t)
256
257 /*
258 * dbgprintf - Uses the logging function provided by the user to log a single
259 * message, typically without a carriage-return.
260 *
261 * @param insn - The instruction containing the logging function.
262 * @param format - See printf().
263 * @param ... - See printf().
264 */
265 static void dbgprintf(struct InternalInstruction* insn,
266 const char* format,
267 ...) {
268 char buffer[256];
269 va_list ap;
270
271 if (!insn->dlog)
272 return;
273
274 va_start(ap, format);
275 (void)vsnprintf(buffer, sizeof(buffer), format, ap);
276 va_end(ap);
277
278 insn->dlog(insn->dlogArg, buffer);
279
280 return;
281 }
282
283 /*
284 * setPrefixPresent - Marks that a particular prefix is present at a particular
285 * location.
286 *
287 * @param insn - The instruction to be marked as having the prefix.
288 * @param prefix - The prefix that is present.
289 * @param location - The location where the prefix is located (in the address
290 * space of the instruction's reader).
291 */
292 static void setPrefixPresent(struct InternalInstruction* insn,
293 uint8_t prefix,
294 uint64_t location)
295 {
296 insn->prefixPresent[prefix] = 1;
297 insn->prefixLocations[prefix] = location;
298 }
299
300 /*
301 * isPrefixAtLocation - Queries an instruction to determine whether a prefix is
302 * present at a given location.
303 *
304 * @param insn - The instruction to be queried.
305 * @param prefix - The prefix.
306 * @param location - The location to query.
307 * @return - Whether the prefix is at that location.
308 */
309 static bool isPrefixAtLocation(struct InternalInstruction* insn,
310 uint8_t prefix,
311 uint64_t location)
312 {
313 if (insn->prefixPresent[prefix] == 1 &&
314 insn->prefixLocations[prefix] == location)
315 return true;
316 else
317 return false;
318 }
319
320 /*
321 * readPrefixes - Consumes all of an instruction's prefix bytes, and marks the
322 * instruction as having them. Also sets the instruction's default operand,
323 * address, and other relevant data sizes to report operands correctly.
324 *
325 * @param insn - The instruction whose prefixes are to be read.
326 * @return - 0 if the instruction could be read until the end of the prefix
327 * bytes, and no prefixes conflicted; nonzero otherwise.
328 */
329 static int readPrefixes(struct InternalInstruction* insn) {
330 bool isPrefix = true;
331 bool prefixGroups[4] = { false };
332 uint64_t prefixLocation;
333 uint8_t byte = 0;
334 uint8_t nextByte;
335
336 bool hasAdSize = false;
337 bool hasOpSize = false;
338
339 dbgprintf(insn, "readPrefixes()");
340
341 while (isPrefix) {
342 prefixLocation = insn->readerCursor;
343
344 /* If we fail reading prefixes, just stop here and let the opcode reader deal with it */
345 if (consumeByte(insn, &byte))
346 break;
347
348 /*
349 * If the byte is a LOCK/REP/REPNE prefix and not a part of the opcode, then
350 * break and let it be disassembled as a normal "instruction".
351 */
352 if (insn->readerCursor - 1 == insn->startLocation && byte == 0xf0)
353 break;
354
355 if (insn->readerCursor - 1 == insn->startLocation
356 && (byte == 0xf2 || byte == 0xf3)
357 && !lookAtByte(insn, &nextByte))
358 {
359 /*
360 * If the byte is 0xf2 or 0xf3, and any of the following conditions are
361 * met:
362 * - it is followed by a LOCK (0xf0) prefix
363 * - it is followed by an xchg instruction
364 * then it should be disassembled as a xacquire/xrelease not repne/rep.
365 */
366 if ((byte == 0xf2 || byte == 0xf3) &&
367 ((nextByte == 0xf0) |
368 ((nextByte & 0xfe) == 0x86 || (nextByte & 0xf8) == 0x90)))
369 insn->xAcquireRelease = true;
370 /*
371 * Also if the byte is 0xf3, and the following condition is met:
372 * - it is followed by a "mov mem, reg" (opcode 0x88/0x89) or
373 * "mov mem, imm" (opcode 0xc6/0xc7) instructions.
374 * then it should be disassembled as an xrelease not rep.
375 */
376 if (byte == 0xf3 &&
377 (nextByte == 0x88 || nextByte == 0x89 ||
378 nextByte == 0xc6 || nextByte == 0xc7))
379 insn->xAcquireRelease = true;
380 if (insn->mode == MODE_64BIT && (nextByte & 0xf0) == 0x40) {
381 if (consumeByte(insn, &nextByte))
382 return -1;
383 if (lookAtByte(insn, &nextByte))
384 return -1;
385 unconsumeByte(insn);
386 }
387 if (nextByte != 0x0f && nextByte != 0x90)
388 break;
389 }
390
391 switch (byte) {
392 case 0xf0: /* LOCK */
393 case 0xf2: /* REPNE/REPNZ */
394 case 0xf3: /* REP or REPE/REPZ */
395 if (prefixGroups[0])
396 dbgprintf(insn, "Redundant Group 1 prefix");
397 prefixGroups[0] = true;
398 setPrefixPresent(insn, byte, prefixLocation);
399 break;
400 case 0x2e: /* CS segment override -OR- Branch not taken */
401 case 0x36: /* SS segment override -OR- Branch taken */
402 case 0x3e: /* DS segment override */
403 case 0x26: /* ES segment override */
404 case 0x64: /* FS segment override */
405 case 0x65: /* GS segment override */
406 switch (byte) {
407 case 0x2e:
408 insn->segmentOverride = SEG_OVERRIDE_CS;
409 break;
410 case 0x36:
411 insn->segmentOverride = SEG_OVERRIDE_SS;
412 break;
413 case 0x3e:
414 insn->segmentOverride = SEG_OVERRIDE_DS;
415 break;
416 case 0x26:
417 insn->segmentOverride = SEG_OVERRIDE_ES;
418 break;
419 case 0x64:
420 insn->segmentOverride = SEG_OVERRIDE_FS;
421 break;
422 case 0x65:
423 insn->segmentOverride = SEG_OVERRIDE_GS;
424 break;
425 default:
426 debug("Unhandled override");
427 return -1;
428 }
429 if (prefixGroups[1])
430 dbgprintf(insn, "Redundant Group 2 prefix");
431 prefixGroups[1] = true;
432 setPrefixPresent(insn, byte, prefixLocation);
433 break;
434 case 0x66: /* Operand-size override */
435 if (prefixGroups[2])
436 dbgprintf(insn, "Redundant Group 3 prefix");
437 prefixGroups[2] = true;
438 hasOpSize = true;
439 setPrefixPresent(insn, byte, prefixLocation);
440 break;
441 case 0x67: /* Address-size override */
442 if (prefixGroups[3])
443 dbgprintf(insn, "Redundant Group 4 prefix");
444 prefixGroups[3] = true;
445 hasAdSize = true;
446 setPrefixPresent(insn, byte, prefixLocation);
447 break;
448 default: /* Not a prefix byte */
449 isPrefix = false;
450 break;
451 }
452
453 if (isPrefix)
454 dbgprintf(insn, "Found prefix 0x%hhx", byte);
455 }
456
457 insn->vectorExtensionType = TYPE_NO_VEX_XOP;
458
459 if (byte == 0x62) {
460 uint8_t byte1, byte2;
461
462 if (consumeByte(insn, &byte1)) {
463 dbgprintf(insn, "Couldn't read second byte of EVEX prefix");
464 return -1;
465 }
466
467 if (lookAtByte(insn, &byte2)) {
468 dbgprintf(insn, "Couldn't read third byte of EVEX prefix");
469 return -1;
470 }
471
472 if ((insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) &&
473 ((~byte1 & 0xc) == 0xc) && ((byte2 & 0x4) == 0x4)) {
474 insn->vectorExtensionType = TYPE_EVEX;
475 } else {
476 unconsumeByte(insn); /* unconsume byte1 */
477 unconsumeByte(insn); /* unconsume byte */
478 insn->necessaryPrefixLocation = insn->readerCursor - 2;
479 }
480
481 if (insn->vectorExtensionType == TYPE_EVEX) {
482 insn->vectorExtensionPrefix[0] = byte;
483 insn->vectorExtensionPrefix[1] = byte1;
484 if (consumeByte(insn, &insn->vectorExtensionPrefix[2])) {
485 dbgprintf(insn, "Couldn't read third byte of EVEX prefix");
486 return -1;
487 }
488 if (consumeByte(insn, &insn->vectorExtensionPrefix[3])) {
489 dbgprintf(insn, "Couldn't read fourth byte of EVEX prefix");
490 return -1;
491 }
492
493 /* We simulate the REX prefix for simplicity's sake */
494 if (insn->mode == MODE_64BIT) {
495 insn->rexPrefix = 0x40
496 | (wFromEVEX3of4(insn->vectorExtensionPrefix[2]) << 3)
497 | (rFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 2)
498 | (xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 1)
499 | (bFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 0);
500 }
501
502 dbgprintf(insn, "Found EVEX prefix 0x%hhx 0x%hhx 0x%hhx 0x%hhx",
503 insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
504 insn->vectorExtensionPrefix[2], insn->vectorExtensionPrefix[3]);
505 }
506 } else if (byte == 0xc4) {
507 uint8_t byte1;
508
509 if (lookAtByte(insn, &byte1)) {
510 dbgprintf(insn, "Couldn't read second byte of VEX");
511 return -1;
512 }
513
514 if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) {
515 insn->vectorExtensionType = TYPE_VEX_3B;
516 insn->necessaryPrefixLocation = insn->readerCursor - 1;
517 } else {
518 unconsumeByte(insn);
519 insn->necessaryPrefixLocation = insn->readerCursor - 1;
520 }
521
522 if (insn->vectorExtensionType == TYPE_VEX_3B) {
523 insn->vectorExtensionPrefix[0] = byte;
524 consumeByte(insn, &insn->vectorExtensionPrefix[1]);
525 consumeByte(insn, &insn->vectorExtensionPrefix[2]);
526
527 /* We simulate the REX prefix for simplicity's sake */
528
529 if (insn->mode == MODE_64BIT) {
530 insn->rexPrefix = 0x40
531 | (wFromVEX3of3(insn->vectorExtensionPrefix[2]) << 3)
532 | (rFromVEX2of3(insn->vectorExtensionPrefix[1]) << 2)
533 | (xFromVEX2of3(insn->vectorExtensionPrefix[1]) << 1)
534 | (bFromVEX2of3(insn->vectorExtensionPrefix[1]) << 0);
535 }
536
537 dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx 0x%hhx",
538 insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
539 insn->vectorExtensionPrefix[2]);
540 }
541 } else if (byte == 0xc5) {
542 uint8_t byte1;
543
544 if (lookAtByte(insn, &byte1)) {
545 dbgprintf(insn, "Couldn't read second byte of VEX");
546 return -1;
547 }
548
549 if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) {
550 insn->vectorExtensionType = TYPE_VEX_2B;
551 } else {
552 unconsumeByte(insn);
553 }
554
555 if (insn->vectorExtensionType == TYPE_VEX_2B) {
556 insn->vectorExtensionPrefix[0] = byte;
557 consumeByte(insn, &insn->vectorExtensionPrefix[1]);
558
559 if (insn->mode == MODE_64BIT) {
560 insn->rexPrefix = 0x40
561 | (rFromVEX2of2(insn->vectorExtensionPrefix[1]) << 2);
562 }
563
564 switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
565 default:
566 break;
567 case VEX_PREFIX_66:
568 hasOpSize = true;
569 break;
570 }
571
572 dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx",
573 insn->vectorExtensionPrefix[0],
574 insn->vectorExtensionPrefix[1]);
575 }
576 } else if (byte == 0x8f) {
577 uint8_t byte1;
578
579 if (lookAtByte(insn, &byte1)) {
580 dbgprintf(insn, "Couldn't read second byte of XOP");
581 return -1;
582 }
583
584 if ((byte1 & 0x38) != 0x0) { /* 0 in these 3 bits is a POP instruction. */
585 insn->vectorExtensionType = TYPE_XOP;
586 insn->necessaryPrefixLocation = insn->readerCursor - 1;
587 } else {
588 unconsumeByte(insn);
589 insn->necessaryPrefixLocation = insn->readerCursor - 1;
590 }
591
592 if (insn->vectorExtensionType == TYPE_XOP) {
593 insn->vectorExtensionPrefix[0] = byte;
594 consumeByte(insn, &insn->vectorExtensionPrefix[1]);
595 consumeByte(insn, &insn->vectorExtensionPrefix[2]);
596
597 /* We simulate the REX prefix for simplicity's sake */
598
599 if (insn->mode == MODE_64BIT) {
600 insn->rexPrefix = 0x40
601 | (wFromXOP3of3(insn->vectorExtensionPrefix[2]) << 3)
602 | (rFromXOP2of3(insn->vectorExtensionPrefix[1]) << 2)
603 | (xFromXOP2of3(insn->vectorExtensionPrefix[1]) << 1)
604 | (bFromXOP2of3(insn->vectorExtensionPrefix[1]) << 0);
605 }
606
607 switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
608 default:
609 break;
610 case VEX_PREFIX_66:
611 hasOpSize = true;
612 break;
613 }
614
615 dbgprintf(insn, "Found XOP prefix 0x%hhx 0x%hhx 0x%hhx",
616 insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
617 insn->vectorExtensionPrefix[2]);
618 }
619 } else {
620 if (insn->mode == MODE_64BIT) {
621 if ((byte & 0xf0) == 0x40) {
622 uint8_t opcodeByte;
623
624 if (lookAtByte(insn, &opcodeByte) || ((opcodeByte & 0xf0) == 0x40)) {
625 dbgprintf(insn, "Redundant REX prefix");
626 return -1;
627 }
628
629 insn->rexPrefix = byte;
630 insn->necessaryPrefixLocation = insn->readerCursor - 2;
631
632 dbgprintf(insn, "Found REX prefix 0x%hhx", byte);
633 } else {
634 unconsumeByte(insn);
635 insn->necessaryPrefixLocation = insn->readerCursor - 1;
636 }
637 } else {
638 unconsumeByte(insn);
639 insn->necessaryPrefixLocation = insn->readerCursor - 1;
640 }
641 }
642
643 if (insn->mode == MODE_16BIT) {
644 insn->registerSize = (hasOpSize ? 4 : 2);
645 insn->addressSize = (hasAdSize ? 4 : 2);
646 insn->displacementSize = (hasAdSize ? 4 : 2);
647 insn->immediateSize = (hasOpSize ? 4 : 2);
648 } else if (insn->mode == MODE_32BIT) {
649 insn->registerSize = (hasOpSize ? 2 : 4);
650 insn->addressSize = (hasAdSize ? 2 : 4);
651 insn->displacementSize = (hasAdSize ? 2 : 4);
652 insn->immediateSize = (hasOpSize ? 2 : 4);
653 } else if (insn->mode == MODE_64BIT) {
654 if (insn->rexPrefix && wFromREX(insn->rexPrefix)) {
655 insn->registerSize = 8;
656 insn->addressSize = (hasAdSize ? 4 : 8);
657 insn->displacementSize = 4;
658 insn->immediateSize = 4;
659 } else if (insn->rexPrefix) {
660 insn->registerSize = (hasOpSize ? 2 : 4);
661 insn->addressSize = (hasAdSize ? 4 : 8);
662 insn->displacementSize = (hasOpSize ? 2 : 4);
663 insn->immediateSize = (hasOpSize ? 2 : 4);
664 } else {
665 insn->registerSize = (hasOpSize ? 2 : 4);
666 insn->addressSize = (hasAdSize ? 4 : 8);
667 insn->displacementSize = (hasOpSize ? 2 : 4);
668 insn->immediateSize = (hasOpSize ? 2 : 4);
669 }
670 }
671
672 return 0;
673 }
674
675 /*
676 * readOpcode - Reads the opcode (excepting the ModR/M byte in the case of
677 * extended or escape opcodes).
678 *
679 * @param insn - The instruction whose opcode is to be read.
680 * @return - 0 if the opcode could be read successfully; nonzero otherwise.
681 */
682 static int readOpcode(struct InternalInstruction* insn) {
683 /* Determine the length of the primary opcode */
684
685 uint8_t current;
686
687 dbgprintf(insn, "readOpcode()");
688
689 insn->opcodeType = ONEBYTE;
690
691 if (insn->vectorExtensionType == TYPE_EVEX) {
692 switch (mmFromEVEX2of4(insn->vectorExtensionPrefix[1])) {
693 default:
694 dbgprintf(insn, "Unhandled mm field for instruction (0x%hhx)",
695 mmFromEVEX2of4(insn->vectorExtensionPrefix[1]));
696 return -1;
697 case VEX_LOB_0F:
698 insn->opcodeType = TWOBYTE;
699 return consumeByte(insn, &insn->opcode);
700 case VEX_LOB_0F38:
701 insn->opcodeType = THREEBYTE_38;
702 return consumeByte(insn, &insn->opcode);
703 case VEX_LOB_0F3A:
704 insn->opcodeType = THREEBYTE_3A;
705 return consumeByte(insn, &insn->opcode);
706 }
707 } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
708 switch (mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])) {
709 default:
710 dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)",
711 mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1]));
712 return -1;
713 case VEX_LOB_0F:
714 insn->opcodeType = TWOBYTE;
715 return consumeByte(insn, &insn->opcode);
716 case VEX_LOB_0F38:
717 insn->opcodeType = THREEBYTE_38;
718 return consumeByte(insn, &insn->opcode);
719 case VEX_LOB_0F3A:
720 insn->opcodeType = THREEBYTE_3A;
721 return consumeByte(insn, &insn->opcode);
722 }
723 } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
724 insn->opcodeType = TWOBYTE;
725 return consumeByte(insn, &insn->opcode);
726 } else if (insn->vectorExtensionType == TYPE_XOP) {
727 switch (mmmmmFromXOP2of3(insn->vectorExtensionPrefix[1])) {
728 default:
729 dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)",
730 mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1]));
731 return -1;
732 case XOP_MAP_SELECT_8:
733 insn->opcodeType = XOP8_MAP;
734 return consumeByte(insn, &insn->opcode);
735 case XOP_MAP_SELECT_9:
736 insn->opcodeType = XOP9_MAP;
737 return consumeByte(insn, &insn->opcode);
738 case XOP_MAP_SELECT_A:
739 insn->opcodeType = XOPA_MAP;
740 return consumeByte(insn, &insn->opcode);
741 }
742 }
743
744 if (consumeByte(insn, &current))
745 return -1;
746
747 if (current == 0x0f) {
748 dbgprintf(insn, "Found a two-byte escape prefix (0x%hhx)", current);
749
750 if (consumeByte(insn, &current))
751 return -1;
752
753 if (current == 0x38) {
754 dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
755
756 if (consumeByte(insn, &current))
757 return -1;
758
759 insn->opcodeType = THREEBYTE_38;
760 } else if (current == 0x3a) {
761 dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
762
763 if (consumeByte(insn, &current))
764 return -1;
765
766 insn->opcodeType = THREEBYTE_3A;
767 } else {
768 dbgprintf(insn, "Didn't find a three-byte escape prefix");
769
770 insn->opcodeType = TWOBYTE;
771 }
772 }
773
774 /*
775 * At this point we have consumed the full opcode.
776 * Anything we consume from here on must be unconsumed.
777 */
778
779 insn->opcode = current;
780
781 return 0;
782 }
783
784 static int readModRM(struct InternalInstruction* insn);
785
786 /*
787 * getIDWithAttrMask - Determines the ID of an instruction, consuming
788 * the ModR/M byte as appropriate for extended and escape opcodes,
789 * and using a supplied attribute mask.
790 *
791 * @param instructionID - A pointer whose target is filled in with the ID of the
792 * instruction.
793 * @param insn - The instruction whose ID is to be determined.
794 * @param attrMask - The attribute mask to search.
795 * @return - 0 if the ModR/M could be read when needed or was not
796 * needed; nonzero otherwise.
797 */
798 static int getIDWithAttrMask(uint16_t* instructionID,
799 struct InternalInstruction* insn,
800 uint16_t attrMask) {
801 bool hasModRMExtension;
802
803 InstructionContext instructionClass = contextForAttrs(attrMask);
804
805 hasModRMExtension = modRMRequired(insn->opcodeType,
806 instructionClass,
807 insn->opcode);
808
809 if (hasModRMExtension) {
810 if (readModRM(insn))
811 return -1;
812
813 *instructionID = decode(insn->opcodeType,
814 instructionClass,
815 insn->opcode,
816 insn->modRM);
817 } else {
818 *instructionID = decode(insn->opcodeType,
819 instructionClass,
820 insn->opcode,
821 0);
822 }
823
824 return 0;
825 }
826
827 /*
828 * is16BitEquivalent - Determines whether two instruction names refer to
829 * equivalent instructions but one is 16-bit whereas the other is not.
830 *
831 * @param orig - The instruction that is not 16-bit
832 * @param equiv - The instruction that is 16-bit
833 */
834 static bool is16BitEquivalent(const char* orig, const char* equiv) {
835 off_t i;
836
837 for (i = 0;; i++) {
838 if (orig[i] == '\0' && equiv[i] == '\0')
839 return true;
840 if (orig[i] == '\0' || equiv[i] == '\0')
841 return false;
842 if (orig[i] != equiv[i]) {
843 if ((orig[i] == 'Q' || orig[i] == 'L') && equiv[i] == 'W')
844 continue;
845 if ((orig[i] == '6' || orig[i] == '3') && equiv[i] == '1')
846 continue;
847 if ((orig[i] == '4' || orig[i] == '2') && equiv[i] == '6')
848 continue;
849 return false;
850 }
851 }
852 }
853
854 /*
855 * is64Bit - Determines whether this instruction is a 64-bit instruction.
856 *
857 * @param name - The instruction that is not 16-bit
858 */
859 static bool is64Bit(const char* name) {
860 off_t i;
861
862 for (i = 0;; ++i) {
863 if (name[i] == '\0')
864 return false;
865 if (name[i] == '6' && name[i+1] == '4')
866 return true;
867 }
868 }
869
870 /*
871 * getID - Determines the ID of an instruction, consuming the ModR/M byte as
872 * appropriate for extended and escape opcodes. Determines the attributes and
873 * context for the instruction before doing so.
874 *
875 * @param insn - The instruction whose ID is to be determined.
876 * @return - 0 if the ModR/M could be read when needed or was not needed;
877 * nonzero otherwise.
878 */
879 static int getID(struct InternalInstruction* insn, const void *miiArg) {
880 uint16_t attrMask;
881 uint16_t instructionID;
882
883 dbgprintf(insn, "getID()");
884
885 attrMask = ATTR_NONE;
886
887 if (insn->mode == MODE_64BIT)
888 attrMask |= ATTR_64BIT;
889
890 if (insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
891 attrMask |= (insn->vectorExtensionType == TYPE_EVEX) ? ATTR_EVEX : ATTR_VEX;
892
893 if (insn->vectorExtensionType == TYPE_EVEX) {
894 switch (ppFromEVEX3of4(insn->vectorExtensionPrefix[2])) {
895 case VEX_PREFIX_66:
896 attrMask |= ATTR_OPSIZE;
897 break;
898 case VEX_PREFIX_F3:
899 attrMask |= ATTR_XS;
900 break;
901 case VEX_PREFIX_F2:
902 attrMask |= ATTR_XD;
903 break;
904 }
905
906 if (zFromEVEX4of4(insn->vectorExtensionPrefix[3]))
907 attrMask |= ATTR_EVEXKZ;
908 if (bFromEVEX4of4(insn->vectorExtensionPrefix[3]))
909 attrMask |= ATTR_EVEXB;
910 if (aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]))
911 attrMask |= ATTR_EVEXK;
912 if (lFromEVEX4of4(insn->vectorExtensionPrefix[3]))
913 attrMask |= ATTR_EVEXL;
914 if (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]))
915 attrMask |= ATTR_EVEXL2;
916 } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
917 switch (ppFromVEX3of3(insn->vectorExtensionPrefix[2])) {
918 case VEX_PREFIX_66:
919 attrMask |= ATTR_OPSIZE;
920 break;
921 case VEX_PREFIX_F3:
922 attrMask |= ATTR_XS;
923 break;
924 case VEX_PREFIX_F2:
925 attrMask |= ATTR_XD;
926 break;
927 }
928
929 if (lFromVEX3of3(insn->vectorExtensionPrefix[2]))
930 attrMask |= ATTR_VEXL;
931 } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
932 switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
933 case VEX_PREFIX_66:
934 attrMask |= ATTR_OPSIZE;
935 break;
936 case VEX_PREFIX_F3:
937 attrMask |= ATTR_XS;
938 break;
939 case VEX_PREFIX_F2:
940 attrMask |= ATTR_XD;
941 break;
942 }
943
944 if (lFromVEX2of2(insn->vectorExtensionPrefix[1]))
945 attrMask |= ATTR_VEXL;
946 } else if (insn->vectorExtensionType == TYPE_XOP) {
947 switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
948 case VEX_PREFIX_66:
949 attrMask |= ATTR_OPSIZE;
950 break;
951 case VEX_PREFIX_F3:
952 attrMask |= ATTR_XS;
953 break;
954 case VEX_PREFIX_F2:
955 attrMask |= ATTR_XD;
956 break;
957 }
958
959 if (lFromXOP3of3(insn->vectorExtensionPrefix[2]))
960 attrMask |= ATTR_VEXL;
961 } else {
962 return -1;
963 }
964 } else {
965 if (insn->mode != MODE_16BIT && isPrefixAtLocation(insn, 0x66, insn->necessaryPrefixLocation))
966 attrMask |= ATTR_OPSIZE;
967 else if (isPrefixAtLocation(insn, 0x67, insn->necessaryPrefixLocation))
968 attrMask |= ATTR_ADSIZE;
969 else if (isPrefixAtLocation(insn, 0xf3, insn->necessaryPrefixLocation))
970 attrMask |= ATTR_XS;
971 else if (isPrefixAtLocation(insn, 0xf2, insn->necessaryPrefixLocation))
972 attrMask |= ATTR_XD;
973 }
974
975 if (insn->rexPrefix & 0x08)
976 attrMask |= ATTR_REXW;
977
978 /*
979 * JCXZ/JECXZ need special handling for 16-bit mode because the meaning
980 * of the AdSize prefix is inverted w.r.t. 32-bit mode.
981 */
982 if (insn->mode == MODE_16BIT && insn->opcodeType == ONEBYTE &&
983 insn->opcode == 0xE3)
984 attrMask ^= ATTR_ADSIZE;
985
986 if (getIDWithAttrMask(&instructionID, insn, attrMask))
987 return -1;
988
989 /* The following clauses compensate for limitations of the tables. */
990
991 if (insn->mode != MODE_64BIT &&
992 insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
993 /*
994 * The tables can't distinquish between cases where the W-bit is used to
995 * select register size and cases where its a required part of the opcode.
996 */
997 if ((insn->vectorExtensionType == TYPE_EVEX &&
998 wFromEVEX3of4(insn->vectorExtensionPrefix[2])) ||
999 (insn->vectorExtensionType == TYPE_VEX_3B &&
1000 wFromVEX3of3(insn->vectorExtensionPrefix[2])) ||
1001 (insn->vectorExtensionType == TYPE_XOP &&
1002 wFromXOP3of3(insn->vectorExtensionPrefix[2]))) {
1003
1004 uint16_t instructionIDWithREXW;
1005 if (getIDWithAttrMask(&instructionIDWithREXW,
1006 insn, attrMask | ATTR_REXW)) {
1007 insn->instructionID = instructionID;
1008 insn->spec = specifierForUID(instructionID);
1009 return 0;
1010 }
1011
1012 const char *SpecName = GetInstrName(instructionIDWithREXW, miiArg);
1013 // If not a 64-bit instruction. Switch the opcode.
1014 if (!is64Bit(SpecName)) {
1015 insn->instructionID = instructionIDWithREXW;
1016 insn->spec = specifierForUID(instructionIDWithREXW);
1017 return 0;
1018 }
1019 }
1020 }
1021
1022 /*
1023 * Absolute moves need special handling.
1024 * -For 16-bit mode because the meaning of the AdSize and OpSize prefixes are
1025 * inverted w.r.t.
1026 * -For 32-bit mode we need to ensure the ADSIZE prefix is observed in
1027 * any position.
1028 */
1029 if (insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0)) {
1030 /* Make sure we observed the prefixes in any position. */
1031 if (insn->prefixPresent[0x67])
1032 attrMask |= ATTR_ADSIZE;
1033 if (insn->prefixPresent[0x66])
1034 attrMask |= ATTR_OPSIZE;
1035
1036 /* In 16-bit, invert the attributes. */
1037 if (insn->mode == MODE_16BIT)
1038 attrMask ^= ATTR_ADSIZE | ATTR_OPSIZE;
1039
1040 if (getIDWithAttrMask(&instructionID, insn, attrMask))
1041 return -1;
1042
1043 insn->instructionID = instructionID;
1044 insn->spec = specifierForUID(instructionID);
1045 return 0;
1046 }
1047
1048 if ((insn->mode == MODE_16BIT || insn->prefixPresent[0x66]) &&
1049 !(attrMask & ATTR_OPSIZE)) {
1050 /*
1051 * The instruction tables make no distinction between instructions that
1052 * allow OpSize anywhere (i.e., 16-bit operations) and that need it in a
1053 * particular spot (i.e., many MMX operations). In general we're
1054 * conservative, but in the specific case where OpSize is present but not
1055 * in the right place we check if there's a 16-bit operation.
1056 */
1057
1058 const struct InstructionSpecifier *spec;
1059 uint16_t instructionIDWithOpsize;
1060 const char *specName, *specWithOpSizeName;
1061
1062 spec = specifierForUID(instructionID);
1063
1064 if (getIDWithAttrMask(&instructionIDWithOpsize,
1065 insn,
1066 attrMask | ATTR_OPSIZE)) {
1067 /*
1068 * ModRM required with OpSize but not present; give up and return version
1069 * without OpSize set
1070 */
1071
1072 insn->instructionID = instructionID;
1073 insn->spec = spec;
1074 return 0;
1075 }
1076
1077 specName = GetInstrName(instructionID, miiArg);
1078 specWithOpSizeName = GetInstrName(instructionIDWithOpsize, miiArg);
1079
1080 if (is16BitEquivalent(specName, specWithOpSizeName) &&
1081 (insn->mode == MODE_16BIT) ^ insn->prefixPresent[0x66]) {
1082 insn->instructionID = instructionIDWithOpsize;
1083 insn->spec = specifierForUID(instructionIDWithOpsize);
1084 } else {
1085 insn->instructionID = instructionID;
1086 insn->spec = spec;
1087 }
1088 return 0;
1089 }
1090
1091 if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 &&
1092 insn->rexPrefix & 0x01) {
1093 /*
1094 * NOOP shouldn't decode as NOOP if REX.b is set. Instead
1095 * it should decode as XCHG %r8, %eax.
1096 */
1097
1098 const struct InstructionSpecifier *spec;
1099 uint16_t instructionIDWithNewOpcode;
1100 const struct InstructionSpecifier *specWithNewOpcode;
1101
1102 spec = specifierForUID(instructionID);
1103
1104 /* Borrow opcode from one of the other XCHGar opcodes */
1105 insn->opcode = 0x91;
1106
1107 if (getIDWithAttrMask(&instructionIDWithNewOpcode,
1108 insn,
1109 attrMask)) {
1110 insn->opcode = 0x90;
1111
1112 insn->instructionID = instructionID;
1113 insn->spec = spec;
1114 return 0;
1115 }
1116
1117 specWithNewOpcode = specifierForUID(instructionIDWithNewOpcode);
1118
1119 /* Change back */
1120 insn->opcode = 0x90;
1121
1122 insn->instructionID = instructionIDWithNewOpcode;
1123 insn->spec = specWithNewOpcode;
1124
1125 return 0;
1126 }
1127
1128 insn->instructionID = instructionID;
1129 insn->spec = specifierForUID(insn->instructionID);
1130
1131 return 0;
1132 }
1133
1134 /*
1135 * readSIB - Consumes the SIB byte to determine addressing information for an
1136 * instruction.
1137 *
1138 * @param insn - The instruction whose SIB byte is to be read.
1139 * @return - 0 if the SIB byte was successfully read; nonzero otherwise.
1140 */
1141 static int readSIB(struct InternalInstruction* insn) {
1142 SIBIndex sibIndexBase = SIB_INDEX_NONE;
1143 SIBBase sibBaseBase = SIB_BASE_NONE;
1144 uint8_t index, base;
1145
1146 dbgprintf(insn, "readSIB()");
1147
1148 if (insn->consumedSIB)
1149 return 0;
1150
1151 insn->consumedSIB = true;
1152
1153 switch (insn->addressSize) {
1154 case 2:
1155 dbgprintf(insn, "SIB-based addressing doesn't work in 16-bit mode");
1156 return -1;
1157 case 4:
1158 sibIndexBase = SIB_INDEX_EAX;
1159 sibBaseBase = SIB_BASE_EAX;
1160 break;
1161 case 8:
1162 sibIndexBase = SIB_INDEX_RAX;
1163 sibBaseBase = SIB_BASE_RAX;
1164 break;
1165 }
1166
1167 if (consumeByte(insn, &insn->sib))
1168 return -1;
1169
1170 index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3);
1171 if (insn->vectorExtensionType == TYPE_EVEX)
1172 index |= v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4;
1173
1174 switch (index) {
1175 case 0x4:
1176 insn->sibIndex = SIB_INDEX_NONE;
1177 break;
1178 default:
1179 insn->sibIndex = (SIBIndex)(sibIndexBase + index);
1180 if (insn->sibIndex == SIB_INDEX_sib ||
1181 insn->sibIndex == SIB_INDEX_sib64)
1182 insn->sibIndex = SIB_INDEX_NONE;
1183 break;
1184 }
1185
1186 switch (scaleFromSIB(insn->sib)) {
1187 case 0:
1188 insn->sibScale = 1;
1189 break;
1190 case 1:
1191 insn->sibScale = 2;
1192 break;
1193 case 2:
1194 insn->sibScale = 4;
1195 break;
1196 case 3:
1197 insn->sibScale = 8;
1198 break;
1199 }
1200
1201 base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3);
1202
1203 switch (base) {
1204 case 0x5:
1205 case 0xd:
1206 switch (modFromModRM(insn->modRM)) {
1207 case 0x0:
1208 insn->eaDisplacement = EA_DISP_32;
1209 insn->sibBase = SIB_BASE_NONE;
1210 break;
1211 case 0x1:
1212 insn->eaDisplacement = EA_DISP_8;
1213 insn->sibBase = (SIBBase)(sibBaseBase + base);
1214 break;
1215 case 0x2:
1216 insn->eaDisplacement = EA_DISP_32;
1217 insn->sibBase = (SIBBase)(sibBaseBase + base);
1218 break;
1219 case 0x3:
1220 debug("Cannot have Mod = 0b11 and a SIB byte");
1221 return -1;
1222 }
1223 break;
1224 default:
1225 insn->sibBase = (SIBBase)(sibBaseBase + base);
1226 break;
1227 }
1228
1229 return 0;
1230 }
1231
1232 /*
1233 * readDisplacement - Consumes the displacement of an instruction.
1234 *
1235 * @param insn - The instruction whose displacement is to be read.
1236 * @return - 0 if the displacement byte was successfully read; nonzero
1237 * otherwise.
1238 */
1239 static int readDisplacement(struct InternalInstruction* insn) {
1240 int8_t d8;
1241 int16_t d16;
1242 int32_t d32;
1243
1244 dbgprintf(insn, "readDisplacement()");
1245
1246 if (insn->consumedDisplacement)
1247 return 0;
1248
1249 insn->consumedDisplacement = true;
1250 insn->displacementOffset = insn->readerCursor - insn->startLocation;
1251
1252 switch (insn->eaDisplacement) {
1253 case EA_DISP_NONE:
1254 insn->consumedDisplacement = false;
1255 break;
1256 case EA_DISP_8:
1257 if (consumeInt8(insn, &d8))
1258 return -1;
1259 insn->displacement = d8;
1260 break;
1261 case EA_DISP_16:
1262 if (consumeInt16(insn, &d16))
1263 return -1;
1264 insn->displacement = d16;
1265 break;
1266 case EA_DISP_32:
1267 if (consumeInt32(insn, &d32))
1268 return -1;
1269 insn->displacement = d32;
1270 break;
1271 }
1272
1273 insn->consumedDisplacement = true;
1274 return 0;
1275 }
1276
1277 /*
1278 * readModRM - Consumes all addressing information (ModR/M byte, SIB byte, and
1279 * displacement) for an instruction and interprets it.
1280 *
1281 * @param insn - The instruction whose addressing information is to be read.
1282 * @return - 0 if the information was successfully read; nonzero otherwise.
1283 */
1284 static int readModRM(struct InternalInstruction* insn) {
1285 uint8_t mod, rm, reg;
1286
1287 dbgprintf(insn, "readModRM()");
1288
1289 if (insn->consumedModRM)
1290 return 0;
1291
1292 if (consumeByte(insn, &insn->modRM))
1293 return -1;
1294 insn->consumedModRM = true;
1295
1296 mod = modFromModRM(insn->modRM);
1297 rm = rmFromModRM(insn->modRM);
1298 reg = regFromModRM(insn->modRM);
1299
1300 /*
1301 * This goes by insn->registerSize to pick the correct register, which messes
1302 * up if we're using (say) XMM or 8-bit register operands. That gets fixed in
1303 * fixupReg().
1304 */
1305 switch (insn->registerSize) {
1306 case 2:
1307 insn->regBase = MODRM_REG_AX;
1308 insn->eaRegBase = EA_REG_AX;
1309 break;
1310 case 4:
1311 insn->regBase = MODRM_REG_EAX;
1312 insn->eaRegBase = EA_REG_EAX;
1313 break;
1314 case 8:
1315 insn->regBase = MODRM_REG_RAX;
1316 insn->eaRegBase = EA_REG_RAX;
1317 break;
1318 }
1319
1320 reg |= rFromREX(insn->rexPrefix) << 3;
1321 rm |= bFromREX(insn->rexPrefix) << 3;
1322 if (insn->vectorExtensionType == TYPE_EVEX) {
1323 reg |= r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
1324 rm |= xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
1325 }
1326
1327 insn->reg = (Reg)(insn->regBase + reg);
1328
1329 switch (insn->addressSize) {
1330 case 2:
1331 insn->eaBaseBase = EA_BASE_BX_SI;
1332
1333 switch (mod) {
1334 case 0x0:
1335 if (rm == 0x6) {
1336 insn->eaBase = EA_BASE_NONE;
1337 insn->eaDisplacement = EA_DISP_16;
1338 if (readDisplacement(insn))
1339 return -1;
1340 } else {
1341 insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1342 insn->eaDisplacement = EA_DISP_NONE;
1343 }
1344 break;
1345 case 0x1:
1346 insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1347 insn->eaDisplacement = EA_DISP_8;
1348 insn->displacementSize = 1;
1349 if (readDisplacement(insn))
1350 return -1;
1351 break;
1352 case 0x2:
1353 insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1354 insn->eaDisplacement = EA_DISP_16;
1355 if (readDisplacement(insn))
1356 return -1;
1357 break;
1358 case 0x3:
1359 insn->eaBase = (EABase)(insn->eaRegBase + rm);
1360 if (readDisplacement(insn))
1361 return -1;
1362 break;
1363 }
1364 break;
1365 case 4:
1366 case 8:
1367 insn->eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX);
1368
1369 switch (mod) {
1370 case 0x0:
1371 insn->eaDisplacement = EA_DISP_NONE; /* readSIB may override this */
1372 switch (rm) {
1373 case 0x14:
1374 case 0x4:
1375 case 0xc: /* in case REXW.b is set */
1376 insn->eaBase = (insn->addressSize == 4 ?
1377 EA_BASE_sib : EA_BASE_sib64);
1378 if (readSIB(insn) || readDisplacement(insn))
1379 return -1;
1380 break;
1381 case 0x5:
1382 insn->eaBase = EA_BASE_NONE;
1383 insn->eaDisplacement = EA_DISP_32;
1384 if (readDisplacement(insn))
1385 return -1;
1386 break;
1387 default:
1388 insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1389 break;
1390 }
1391 break;
1392 case 0x1:
1393 insn->displacementSize = 1;
1394 /* FALLTHROUGH */
1395 case 0x2:
1396 insn->eaDisplacement = (mod == 0x1 ? EA_DISP_8 : EA_DISP_32);
1397 switch (rm) {
1398 case 0x14:
1399 case 0x4:
1400 case 0xc: /* in case REXW.b is set */
1401 insn->eaBase = EA_BASE_sib;
1402 if (readSIB(insn) || readDisplacement(insn))
1403 return -1;
1404 break;
1405 default:
1406 insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1407 if (readDisplacement(insn))
1408 return -1;
1409 break;
1410 }
1411 break;
1412 case 0x3:
1413 insn->eaDisplacement = EA_DISP_NONE;
1414 insn->eaBase = (EABase)(insn->eaRegBase + rm);
1415 break;
1416 }
1417 break;
1418 } /* switch (insn->addressSize) */
1419
1420 return 0;
1421 }
1422
1423 #define GENERIC_FIXUP_FUNC(name, base, prefix) \
1424 static uint8_t name(struct InternalInstruction *insn, \
1425 OperandType type, \
1426 uint8_t index, \
1427 uint8_t *valid) { \
1428 *valid = 1; \
1429 switch (type) { \
1430 default: \
1431 debug("Unhandled register type"); \
1432 *valid = 0; \
1433 return 0; \
1434 case TYPE_Rv: \
1435 return base + index; \
1436 case TYPE_R8: \
1437 if (insn->rexPrefix && \
1438 index >= 4 && index <= 7) { \
1439 return prefix##_SPL + (index - 4); \
1440 } else { \
1441 return prefix##_AL + index; \
1442 } \
1443 case TYPE_R16: \
1444 return prefix##_AX + index; \
1445 case TYPE_R32: \
1446 return prefix##_EAX + index; \
1447 case TYPE_R64: \
1448 return prefix##_RAX + index; \
1449 case TYPE_XMM512: \
1450 return prefix##_ZMM0 + index; \
1451 case TYPE_XMM256: \
1452 return prefix##_YMM0 + index; \
1453 case TYPE_XMM128: \
1454 case TYPE_XMM64: \
1455 case TYPE_XMM32: \
1456 case TYPE_XMM: \
1457 return prefix##_XMM0 + index; \
1458 case TYPE_VK1: \
1459 case TYPE_VK8: \
1460 case TYPE_VK16: \
1461 return prefix##_K0 + index; \
1462 case TYPE_MM64: \
1463 return prefix##_MM0 + (index & 0x7); \
1464 case TYPE_SEGMENTREG: \
1465 if (index > 5) \
1466 *valid = 0; \
1467 return prefix##_ES + index; \
1468 case TYPE_DEBUGREG: \
1469 return prefix##_DR0 + index; \
1470 case TYPE_CONTROLREG: \
1471 return prefix##_CR0 + index; \
1472 } \
1473 }
1474
1475 /*
1476 * fixup*Value - Consults an operand type to determine the meaning of the
1477 * reg or R/M field. If the operand is an XMM operand, for example, an
1478 * operand would be XMM0 instead of AX, which readModRM() would otherwise
1479 * misinterpret it as.
1480 *
1481 * @param insn - The instruction containing the operand.
1482 * @param type - The operand type.
1483 * @param index - The existing value of the field as reported by readModRM().
1484 * @param valid - The address of a uint8_t. The target is set to 1 if the
1485 * field is valid for the register class; 0 if not.
1486 * @return - The proper value.
1487 */
1488 GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase, MODRM_REG)
1489 GENERIC_FIXUP_FUNC(fixupRMValue, insn->eaRegBase, EA_REG)
1490
1491 /*
1492 * fixupReg - Consults an operand specifier to determine which of the
1493 * fixup*Value functions to use in correcting readModRM()'ss interpretation.
1494 *
1495 * @param insn - See fixup*Value().
1496 * @param op - The operand specifier.
1497 * @return - 0 if fixup was successful; -1 if the register returned was
1498 * invalid for its class.
1499 */
1500 static int fixupReg(struct InternalInstruction *insn,
1501 const struct OperandSpecifier *op) {
1502 uint8_t valid;
1503
1504 dbgprintf(insn, "fixupReg()");
1505
1506 switch ((OperandEncoding)op->encoding) {
1507 default:
1508 debug("Expected a REG or R/M encoding in fixupReg");
1509 return -1;
1510 case ENCODING_VVVV:
1511 insn->vvvv = (Reg)fixupRegValue(insn,
1512 (OperandType)op->type,
1513 insn->vvvv,
1514 &valid);
1515 if (!valid)
1516 return -1;
1517 break;
1518 case ENCODING_REG:
1519 insn->reg = (Reg)fixupRegValue(insn,
1520 (OperandType)op->type,
1521 insn->reg - insn->regBase,
1522 &valid);
1523 if (!valid)
1524 return -1;
1525 break;
1526 CASE_ENCODING_RM:
1527 if (insn->eaBase >= insn->eaRegBase) {
1528 insn->eaBase = (EABase)fixupRMValue(insn,
1529 (OperandType)op->type,
1530 insn->eaBase - insn->eaRegBase,
1531 &valid);
1532 if (!valid)
1533 return -1;
1534 }
1535 break;
1536 }
1537
1538 return 0;
1539 }
1540
1541 /*
1542 * readOpcodeRegister - Reads an operand from the opcode field of an
1543 * instruction and interprets it appropriately given the operand width.
1544 * Handles AddRegFrm instructions.
1545 *
1546 * @param insn - the instruction whose opcode field is to be read.
1547 * @param size - The width (in bytes) of the register being specified.
1548 * 1 means AL and friends, 2 means AX, 4 means EAX, and 8 means
1549 * RAX.
1550 * @return - 0 on success; nonzero otherwise.
1551 */
1552 static int readOpcodeRegister(struct InternalInstruction* insn, uint8_t size) {
1553 dbgprintf(insn, "readOpcodeRegister()");
1554
1555 if (size == 0)
1556 size = insn->registerSize;
1557
1558 switch (size) {
1559 case 1:
1560 insn->opcodeRegister = (Reg)(MODRM_REG_AL + ((bFromREX(insn->rexPrefix) << 3)
1561 | (insn->opcode & 7)));
1562 if (insn->rexPrefix &&
1563 insn->opcodeRegister >= MODRM_REG_AL + 0x4 &&
1564 insn->opcodeRegister < MODRM_REG_AL + 0x8) {
1565 insn->opcodeRegister = (Reg)(MODRM_REG_SPL
1566 + (insn->opcodeRegister - MODRM_REG_AL - 4));
1567 }
1568
1569 break;
1570 case 2:
1571 insn->opcodeRegister = (Reg)(MODRM_REG_AX
1572 + ((bFromREX(insn->rexPrefix) << 3)
1573 | (insn->opcode & 7)));
1574 break;
1575 case 4:
1576 insn->opcodeRegister = (Reg)(MODRM_REG_EAX
1577 + ((bFromREX(insn->rexPrefix) << 3)
1578 | (insn->opcode & 7)));
1579 break;
1580 case 8:
1581 insn->opcodeRegister = (Reg)(MODRM_REG_RAX
1582 + ((bFromREX(insn->rexPrefix) << 3)
1583 | (insn->opcode & 7)));
1584 break;
1585 }
1586
1587 return 0;
1588 }
1589
1590 /*
1591 * readImmediate - Consumes an immediate operand from an instruction, given the
1592 * desired operand size.
1593 *
1594 * @param insn - The instruction whose operand is to be read.
1595 * @param size - The width (in bytes) of the operand.
1596 * @return - 0 if the immediate was successfully consumed; nonzero
1597 * otherwise.
1598 */
1599 static int readImmediate(struct InternalInstruction* insn, uint8_t size) {
1600 uint8_t imm8;
1601 uint16_t imm16;
1602 uint32_t imm32;
1603 uint64_t imm64;
1604
1605 dbgprintf(insn, "readImmediate()");
1606
1607 if (insn->numImmediatesConsumed == 2) {
1608 debug("Already consumed two immediates");
1609 return -1;
1610 }
1611
1612 if (size == 0)
1613 size = insn->immediateSize;
1614 else
1615 insn->immediateSize = size;
1616 insn->immediateOffset = insn->readerCursor - insn->startLocation;
1617
1618 switch (size) {
1619 case 1:
1620 if (consumeByte(insn, &imm8))
1621 return -1;
1622 insn->immediates[insn->numImmediatesConsumed] = imm8;
1623 break;
1624 case 2:
1625 if (consumeUInt16(insn, &imm16))
1626 return -1;
1627 insn->immediates[insn->numImmediatesConsumed] = imm16;
1628 break;
1629 case 4:
1630 if (consumeUInt32(insn, &imm32))
1631 return -1;
1632 insn->immediates[insn->numImmediatesConsumed] = imm32;
1633 break;
1634 case 8:
1635 if (consumeUInt64(insn, &imm64))
1636 return -1;
1637 insn->immediates[insn->numImmediatesConsumed] = imm64;
1638 break;
1639 }
1640
1641 insn->numImmediatesConsumed++;
1642
1643 return 0;
1644 }
1645
1646 /*
1647 * readVVVV - Consumes vvvv from an instruction if it has a VEX prefix.
1648 *
1649 * @param insn - The instruction whose operand is to be read.
1650 * @return - 0 if the vvvv was successfully consumed; nonzero
1651 * otherwise.
1652 */
1653 static int readVVVV(struct InternalInstruction* insn) {
1654 dbgprintf(insn, "readVVVV()");
1655
1656 int vvvv;
1657 if (insn->vectorExtensionType == TYPE_EVEX)
1658 vvvv = (v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4 |
1659 vvvvFromEVEX3of4(insn->vectorExtensionPrefix[2]));
1660 else if (insn->vectorExtensionType == TYPE_VEX_3B)
1661 vvvv = vvvvFromVEX3of3(insn->vectorExtensionPrefix[2]);
1662 else if (insn->vectorExtensionType == TYPE_VEX_2B)
1663 vvvv = vvvvFromVEX2of2(insn->vectorExtensionPrefix[1]);
1664 else if (insn->vectorExtensionType == TYPE_XOP)
1665 vvvv = vvvvFromXOP3of3(insn->vectorExtensionPrefix[2]);
1666 else
1667 return -1;
1668
1669 if (insn->mode != MODE_64BIT)
1670 vvvv &= 0x7;
1671
1672 insn->vvvv = static_cast<Reg>(vvvv);
1673 return 0;
1674 }
1675
1676 /*
1677 * readMaskRegister - Reads an mask register from the opcode field of an
1678 * instruction.
1679 *
1680 * @param insn - The instruction whose opcode field is to be read.
1681 * @return - 0 on success; nonzero otherwise.
1682 */
1683 static int readMaskRegister(struct InternalInstruction* insn) {
1684 dbgprintf(insn, "readMaskRegister()");
1685
1686 if (insn->vectorExtensionType != TYPE_EVEX)
1687 return -1;
1688
1689 insn->writemask =
1690 static_cast<Reg>(aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]));
1691 return 0;
1692 }
1693
1694 /*
1695 * readOperands - Consults the specifier for an instruction and consumes all
1696 * operands for that instruction, interpreting them as it goes.
1697 *
1698 * @param insn - The instruction whose operands are to be read and interpreted.
1699 * @return - 0 if all operands could be read; nonzero otherwise.
1700 */
1701 static int readOperands(struct InternalInstruction* insn) {
1702 int hasVVVV, needVVVV;
1703 int sawRegImm = 0;
1704
1705 dbgprintf(insn, "readOperands()");
1706
1707 /* If non-zero vvvv specified, need to make sure one of the operands
1708 uses it. */
1709 hasVVVV = !readVVVV(insn);
1710 needVVVV = hasVVVV && (insn->vvvv != 0);
1711
1712 for (const auto &Op : x86OperandSets[insn->spec->operands]) {
1713 switch (Op.encoding) {
1714 case ENCODING_NONE:
1715 case ENCODING_SI:
1716 case ENCODING_DI:
1717 break;
1718 case ENCODING_REG:
1719 CASE_ENCODING_RM:
1720 if (readModRM(insn))
1721 return -1;
1722 if (fixupReg(insn, &Op))
1723 return -1;
1724 // Apply the AVX512 compressed displacement scaling factor.
1725 if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8)
1726 insn->displacement *= 1 << (Op.encoding - ENCODING_RM);
1727 break;
1728 case ENCODING_CB:
1729 case ENCODING_CW:
1730 case ENCODING_CD:
1731 case ENCODING_CP:
1732 case ENCODING_CO:
1733 case ENCODING_CT:
1734 dbgprintf(insn, "We currently don't hande code-offset encodings");
1735 return -1;
1736 case ENCODING_IB:
1737 if (sawRegImm) {
1738 /* Saw a register immediate so don't read again and instead split the
1739 previous immediate. FIXME: This is a hack. */
1740 insn->immediates[insn->numImmediatesConsumed] =
1741 insn->immediates[insn->numImmediatesConsumed - 1] & 0xf;
1742 ++insn->numImmediatesConsumed;
1743 break;
1744 }
1745 if (readImmediate(insn, 1))
1746 return -1;
1747 if (Op.type == TYPE_XMM128 ||
1748 Op.type == TYPE_XMM256)
1749 sawRegImm = 1;
1750 break;
1751 case ENCODING_IW:
1752 if (readImmediate(insn, 2))
1753 return -1;
1754 break;
1755 case ENCODING_ID:
1756 if (readImmediate(insn, 4))
1757 return -1;
1758 break;
1759 case ENCODING_IO:
1760 if (readImmediate(insn, 8))
1761 return -1;
1762 break;
1763 case ENCODING_Iv:
1764 if (readImmediate(insn, insn->immediateSize))
1765 return -1;
1766 break;
1767 case ENCODING_Ia:
1768 if (readImmediate(insn, insn->addressSize))
1769 return -1;
1770 break;
1771 case ENCODING_RB:
1772 if (readOpcodeRegister(insn, 1))
1773 return -1;
1774 break;
1775 case ENCODING_RW:
1776 if (readOpcodeRegister(insn, 2))
1777 return -1;
1778 break;
1779 case ENCODING_RD:
1780 if (readOpcodeRegister(insn, 4))
1781 return -1;
1782 break;
1783 case ENCODING_RO:
1784 if (readOpcodeRegister(insn, 8))
1785 return -1;
1786 break;
1787 case ENCODING_Rv:
1788 if (readOpcodeRegister(insn, 0))
1789 return -1;
1790 break;
1791 case ENCODING_FP:
1792 break;
1793 case ENCODING_VVVV:
1794 needVVVV = 0; /* Mark that we have found a VVVV operand. */
1795 if (!hasVVVV)
1796 return -1;
1797 if (fixupReg(insn, &Op))
1798 return -1;
1799 break;
1800 case ENCODING_WRITEMASK:
1801 if (readMaskRegister(insn))
1802 return -1;
1803 break;
1804 case ENCODING_DUP:
1805 break;
1806 default:
1807 dbgprintf(insn, "Encountered an operand with an unknown encoding.");
1808 return -1;
1809 }
1810 }
1811
1812 /* If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail */
1813 if (needVVVV) return -1;
1814
1815 return 0;
1816 }
1817
1818 /*
1819 * decodeInstruction - Reads and interprets a full instruction provided by the
1820 * user.
1821 *
1822 * @param insn - A pointer to the instruction to be populated. Must be
1823 * pre-allocated.
1824 * @param reader - The function to be used to read the instruction's bytes.
1825 * @param readerArg - A generic argument to be passed to the reader to store
1826 * any internal state.
1827 * @param logger - If non-NULL, the function to be used to write log messages
1828 * and warnings.
1829 * @param loggerArg - A generic argument to be passed to the logger to store
1830 * any internal state.
1831 * @param startLoc - The address (in the reader's address space) of the first
1832 * byte in the instruction.
1833 * @param mode - The mode (real mode, IA-32e, or IA-32e in 64-bit mode) to
1834 * decode the instruction in.
1835 * @return - 0 if the instruction's memory could be read; nonzero if
1836 * not.
1837 */
1838 int llvm::X86Disassembler::decodeInstruction(
1839 struct InternalInstruction *insn, byteReader_t reader,
1840 const void *readerArg, dlog_t logger, void *loggerArg, const void *miiArg,
1841 uint64_t startLoc, DisassemblerMode mode) {
1842 memset(insn, 0, sizeof(struct InternalInstruction));
1843
1844 insn->reader = reader;
1845 insn->readerArg = readerArg;
1846 insn->dlog = logger;
1847 insn->dlogArg = loggerArg;
1848 insn->startLocation = startLoc;
1849 insn->readerCursor = startLoc;
1850 insn->mode = mode;
1851 insn->numImmediatesConsumed = 0;
1852
1853 if (readPrefixes(insn) ||
1854 readOpcode(insn) ||
1855 getID(insn, miiArg) ||
1856 insn->instructionID == 0 ||
1857 readOperands(insn))
1858 return -1;
1859
1860 insn->operands = x86OperandSets[insn->spec->operands];
1861
1862 insn->length = insn->readerCursor - insn->startLocation;
1863
1864 dbgprintf(insn, "Read from 0x%llx to 0x%llx: length %zu",
1865 startLoc, insn->readerCursor, insn->length);
1866
1867 if (insn->length > 15)
1868 dbgprintf(insn, "Instruction exceeds 15-byte limit");
1869
1870 return 0;
1871 }