]> git.proxmox.com Git - rustc.git/blob - src/llvm/lib/Target/X86/MCTargetDesc/X86BaseInfo.h
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / lib / Target / X86 / MCTargetDesc / X86BaseInfo.h
1 //===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains small standalone helper functions and enum definitions for
11 // the X86 target useful for the compiler back-end and the MC libraries.
12 // As such, it deliberately does not include references to LLVM core
13 // code gen types, passes, etc..
14 //
15 //===----------------------------------------------------------------------===//
16
17 #ifndef LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
18 #define LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
19
20 #include "X86MCTargetDesc.h"
21 #include "llvm/MC/MCInstrDesc.h"
22 #include "llvm/Support/DataTypes.h"
23 #include "llvm/Support/ErrorHandling.h"
24
25 namespace llvm {
26
27 namespace X86 {
28 // Enums for memory operand decoding. Each memory operand is represented with
29 // a 5 operand sequence in the form:
30 // [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
31 // These enums help decode this.
32 enum {
33 AddrBaseReg = 0,
34 AddrScaleAmt = 1,
35 AddrIndexReg = 2,
36 AddrDisp = 3,
37
38 /// AddrSegmentReg - The operand # of the segment in the memory operand.
39 AddrSegmentReg = 4,
40
41 /// AddrNumOperands - Total number of operands in a memory reference.
42 AddrNumOperands = 5
43 };
44 } // end namespace X86;
45
46 /// X86II - This namespace holds all of the target specific flags that
47 /// instruction info tracks.
48 ///
49 namespace X86II {
50 /// Target Operand Flag enum.
51 enum TOF {
52 //===------------------------------------------------------------------===//
53 // X86 Specific MachineOperand flags.
54
55 MO_NO_FLAG,
56
57 /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
58 /// relocation of:
59 /// SYMBOL_LABEL + [. - PICBASELABEL]
60 MO_GOT_ABSOLUTE_ADDRESS,
61
62 /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
63 /// immediate should get the value of the symbol minus the PIC base label:
64 /// SYMBOL_LABEL - PICBASELABEL
65 MO_PIC_BASE_OFFSET,
66
67 /// MO_GOT - On a symbol operand this indicates that the immediate is the
68 /// offset to the GOT entry for the symbol name from the base of the GOT.
69 ///
70 /// See the X86-64 ELF ABI supplement for more details.
71 /// SYMBOL_LABEL @GOT
72 MO_GOT,
73
74 /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
75 /// the offset to the location of the symbol name from the base of the GOT.
76 ///
77 /// See the X86-64 ELF ABI supplement for more details.
78 /// SYMBOL_LABEL @GOTOFF
79 MO_GOTOFF,
80
81 /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
82 /// offset to the GOT entry for the symbol name from the current code
83 /// location.
84 ///
85 /// See the X86-64 ELF ABI supplement for more details.
86 /// SYMBOL_LABEL @GOTPCREL
87 MO_GOTPCREL,
88
89 /// MO_PLT - On a symbol operand this indicates that the immediate is
90 /// offset to the PLT entry of symbol name from the current code location.
91 ///
92 /// See the X86-64 ELF ABI supplement for more details.
93 /// SYMBOL_LABEL @PLT
94 MO_PLT,
95
96 /// MO_TLSGD - On a symbol operand this indicates that the immediate is
97 /// the offset of the GOT entry with the TLS index structure that contains
98 /// the module number and variable offset for the symbol. Used in the
99 /// general dynamic TLS access model.
100 ///
101 /// See 'ELF Handling for Thread-Local Storage' for more details.
102 /// SYMBOL_LABEL @TLSGD
103 MO_TLSGD,
104
105 /// MO_TLSLD - On a symbol operand this indicates that the immediate is
106 /// the offset of the GOT entry with the TLS index for the module that
107 /// contains the symbol. When this index is passed to a call to
108 /// __tls_get_addr, the function will return the base address of the TLS
109 /// block for the symbol. Used in the x86-64 local dynamic TLS access model.
110 ///
111 /// See 'ELF Handling for Thread-Local Storage' for more details.
112 /// SYMBOL_LABEL @TLSLD
113 MO_TLSLD,
114
115 /// MO_TLSLDM - On a symbol operand this indicates that the immediate is
116 /// the offset of the GOT entry with the TLS index for the module that
117 /// contains the symbol. When this index is passed to a call to
118 /// ___tls_get_addr, the function will return the base address of the TLS
119 /// block for the symbol. Used in the IA32 local dynamic TLS access model.
120 ///
121 /// See 'ELF Handling for Thread-Local Storage' for more details.
122 /// SYMBOL_LABEL @TLSLDM
123 MO_TLSLDM,
124
125 /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
126 /// the offset of the GOT entry with the thread-pointer offset for the
127 /// symbol. Used in the x86-64 initial exec TLS access model.
128 ///
129 /// See 'ELF Handling for Thread-Local Storage' for more details.
130 /// SYMBOL_LABEL @GOTTPOFF
131 MO_GOTTPOFF,
132
133 /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
134 /// the absolute address of the GOT entry with the negative thread-pointer
135 /// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access
136 /// model.
137 ///
138 /// See 'ELF Handling for Thread-Local Storage' for more details.
139 /// SYMBOL_LABEL @INDNTPOFF
140 MO_INDNTPOFF,
141
142 /// MO_TPOFF - On a symbol operand this indicates that the immediate is
143 /// the thread-pointer offset for the symbol. Used in the x86-64 local
144 /// exec TLS access model.
145 ///
146 /// See 'ELF Handling for Thread-Local Storage' for more details.
147 /// SYMBOL_LABEL @TPOFF
148 MO_TPOFF,
149
150 /// MO_DTPOFF - On a symbol operand this indicates that the immediate is
151 /// the offset of the GOT entry with the TLS offset of the symbol. Used
152 /// in the local dynamic TLS access model.
153 ///
154 /// See 'ELF Handling for Thread-Local Storage' for more details.
155 /// SYMBOL_LABEL @DTPOFF
156 MO_DTPOFF,
157
158 /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
159 /// the negative thread-pointer offset for the symbol. Used in the IA32
160 /// local exec TLS access model.
161 ///
162 /// See 'ELF Handling for Thread-Local Storage' for more details.
163 /// SYMBOL_LABEL @NTPOFF
164 MO_NTPOFF,
165
166 /// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is
167 /// the offset of the GOT entry with the negative thread-pointer offset for
168 /// the symbol. Used in the PIC IA32 initial exec TLS access model.
169 ///
170 /// See 'ELF Handling for Thread-Local Storage' for more details.
171 /// SYMBOL_LABEL @GOTNTPOFF
172 MO_GOTNTPOFF,
173
174 /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
175 /// reference is actually to the "__imp_FOO" symbol. This is used for
176 /// dllimport linkage on windows.
177 MO_DLLIMPORT,
178
179 /// MO_DARWIN_STUB - On a symbol operand "FOO", this indicates that the
180 /// reference is actually to the "FOO$stub" symbol. This is used for calls
181 /// and jumps to external functions on Tiger and earlier.
182 MO_DARWIN_STUB,
183
184 /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
185 /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
186 /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
187 MO_DARWIN_NONLAZY,
188
189 /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
190 /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
191 /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
192 MO_DARWIN_NONLAZY_PIC_BASE,
193
194 /// MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this
195 /// indicates that the reference is actually to "FOO$non_lazy_ptr -PICBASE",
196 /// which is a PIC-base-relative reference to a hidden dyld lazy pointer
197 /// stub.
198 MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE,
199
200 /// MO_TLVP - On a symbol operand this indicates that the immediate is
201 /// some TLS offset.
202 ///
203 /// This is the TLS offset for the Darwin TLS mechanism.
204 MO_TLVP,
205
206 /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
207 /// is some TLS offset from the picbase.
208 ///
209 /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
210 MO_TLVP_PIC_BASE,
211
212 /// MO_SECREL - On a symbol operand this indicates that the immediate is
213 /// the offset from beginning of section.
214 ///
215 /// This is the TLS offset for the COFF/Windows TLS mechanism.
216 MO_SECREL
217 };
218
219 enum : uint64_t {
220 //===------------------------------------------------------------------===//
221 // Instruction encodings. These are the standard/most common forms for X86
222 // instructions.
223 //
224
225 // PseudoFrm - This represents an instruction that is a pseudo instruction
226 // or one that has not been implemented yet. It is illegal to code generate
227 // it, but tolerated for intermediate implementation stages.
228 Pseudo = 0,
229
230 /// Raw - This form is for instructions that don't have any operands, so
231 /// they are just a fixed opcode value, like 'leave'.
232 RawFrm = 1,
233
234 /// AddRegFrm - This form is used for instructions like 'push r32' that have
235 /// their one register operand added to their opcode.
236 AddRegFrm = 2,
237
238 /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
239 /// to specify a destination, which in this case is a register.
240 ///
241 MRMDestReg = 3,
242
243 /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
244 /// to specify a destination, which in this case is memory.
245 ///
246 MRMDestMem = 4,
247
248 /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
249 /// to specify a source, which in this case is a register.
250 ///
251 MRMSrcReg = 5,
252
253 /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
254 /// to specify a source, which in this case is memory.
255 ///
256 MRMSrcMem = 6,
257
258 /// RawFrmMemOffs - This form is for instructions that store an absolute
259 /// memory offset as an immediate with a possible segment override.
260 RawFrmMemOffs = 7,
261
262 /// RawFrmSrc - This form is for instructions that use the source index
263 /// register SI/ESI/RSI with a possible segment override.
264 RawFrmSrc = 8,
265
266 /// RawFrmDst - This form is for instructions that use the destination index
267 /// register DI/EDI/ESI.
268 RawFrmDst = 9,
269
270 /// RawFrmSrc - This form is for instructions that use the the source index
271 /// register SI/ESI/ERI with a possible segment override, and also the
272 /// destination index register DI/ESI/RDI.
273 RawFrmDstSrc = 10,
274
275 /// RawFrmImm8 - This is used for the ENTER instruction, which has two
276 /// immediates, the first of which is a 16-bit immediate (specified by
277 /// the imm encoding) and the second is a 8-bit fixed value.
278 RawFrmImm8 = 11,
279
280 /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
281 /// immediates, the first of which is a 16 or 32-bit immediate (specified by
282 /// the imm encoding) and the second is a 16-bit fixed value. In the AMD
283 /// manual, this operand is described as pntr16:32 and pntr16:16
284 RawFrmImm16 = 12,
285
286 /// MRMX[rm] - The forms are used to represent instructions that use a
287 /// Mod/RM byte, and don't use the middle field for anything.
288 MRMXr = 14, MRMXm = 15,
289
290 /// MRM[0-7][rm] - These forms are used to represent instructions that use
291 /// a Mod/RM byte, and use the middle field to hold extended opcode
292 /// information. In the intel manual these are represented as /0, /1, ...
293 ///
294
295 // First, instructions that operate on a register r/m operand...
296 MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19, // Format /0 /1 /2 /3
297 MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23, // Format /4 /5 /6 /7
298
299 // Next, instructions that operate on a memory r/m operand...
300 MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27, // Format /0 /1 /2 /3
301 MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31, // Format /4 /5 /6 /7
302
303 //// MRM_XX - A mod/rm byte of exactly 0xXX.
304 MRM_C0 = 32, MRM_C1 = 33, MRM_C2 = 34, MRM_C3 = 35,
305 MRM_C4 = 36, MRM_C8 = 37, MRM_C9 = 38, MRM_CA = 39,
306 MRM_CB = 40, MRM_CF = 41, MRM_D0 = 42, MRM_D1 = 43,
307 MRM_D4 = 44, MRM_D5 = 45, MRM_D6 = 46, MRM_D7 = 47,
308 MRM_D8 = 48, MRM_D9 = 49, MRM_DA = 50, MRM_DB = 51,
309 MRM_DC = 52, MRM_DD = 53, MRM_DE = 54, MRM_DF = 55,
310 MRM_E0 = 56, MRM_E1 = 57, MRM_E2 = 58, MRM_E3 = 59,
311 MRM_E4 = 60, MRM_E5 = 61, MRM_E8 = 62, MRM_E9 = 63,
312 MRM_EA = 64, MRM_EB = 65, MRM_EC = 66, MRM_ED = 67,
313 MRM_EE = 68, MRM_F0 = 69, MRM_F1 = 70, MRM_F2 = 71,
314 MRM_F3 = 72, MRM_F4 = 73, MRM_F5 = 74, MRM_F6 = 75,
315 MRM_F7 = 76, MRM_F8 = 77, MRM_F9 = 78, MRM_FA = 79,
316 MRM_FB = 80, MRM_FC = 81, MRM_FD = 82, MRM_FE = 83,
317 MRM_FF = 84,
318
319 FormMask = 127,
320
321 //===------------------------------------------------------------------===//
322 // Actual flags...
323
324 // OpSize - OpSizeFixed implies instruction never needs a 0x66 prefix.
325 // OpSize16 means this is a 16-bit instruction and needs 0x66 prefix in
326 // 32-bit mode. OpSize32 means this is a 32-bit instruction needs a 0x66
327 // prefix in 16-bit mode.
328 OpSizeShift = 7,
329 OpSizeMask = 0x3 << OpSizeShift,
330
331 OpSizeFixed = 0 << OpSizeShift,
332 OpSize16 = 1 << OpSizeShift,
333 OpSize32 = 2 << OpSizeShift,
334
335 // AsSize - AdSizeX implies this instruction determines its need of 0x67
336 // prefix from a normal ModRM memory operand. The other types indicate that
337 // an operand is encoded with a specific width and a prefix is needed if
338 // it differs from the current mode.
339 AdSizeShift = OpSizeShift + 2,
340 AdSizeMask = 0x3 << AdSizeShift,
341
342 AdSizeX = 1 << AdSizeShift,
343 AdSize16 = 1 << AdSizeShift,
344 AdSize32 = 2 << AdSizeShift,
345 AdSize64 = 3 << AdSizeShift,
346
347 //===------------------------------------------------------------------===//
348 // OpPrefix - There are several prefix bytes that are used as opcode
349 // extensions. These are 0x66, 0xF3, and 0xF2. If this field is 0 there is
350 // no prefix.
351 //
352 OpPrefixShift = AdSizeShift + 2,
353 OpPrefixMask = 0x7 << OpPrefixShift,
354
355 // PS, PD - Prefix code for packed single and double precision vector
356 // floating point operations performed in the SSE registers.
357 PS = 1 << OpPrefixShift, PD = 2 << OpPrefixShift,
358
359 // XS, XD - These prefix codes are for single and double precision scalar
360 // floating point operations performed in the SSE registers.
361 XS = 3 << OpPrefixShift, XD = 4 << OpPrefixShift,
362
363 //===------------------------------------------------------------------===//
364 // OpMap - This field determines which opcode map this instruction
365 // belongs to. i.e. one-byte, two-byte, 0x0f 0x38, 0x0f 0x3a, etc.
366 //
367 OpMapShift = OpPrefixShift + 3,
368 OpMapMask = 0x7 << OpMapShift,
369
370 // OB - OneByte - Set if this instruction has a one byte opcode.
371 OB = 0 << OpMapShift,
372
373 // TB - TwoByte - Set if this instruction has a two byte opcode, which
374 // starts with a 0x0F byte before the real opcode.
375 TB = 1 << OpMapShift,
376
377 // T8, TA - Prefix after the 0x0F prefix.
378 T8 = 2 << OpMapShift, TA = 3 << OpMapShift,
379
380 // XOP8 - Prefix to include use of imm byte.
381 XOP8 = 4 << OpMapShift,
382
383 // XOP9 - Prefix to exclude use of imm byte.
384 XOP9 = 5 << OpMapShift,
385
386 // XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions.
387 XOPA = 6 << OpMapShift,
388
389 //===------------------------------------------------------------------===//
390 // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
391 // They are used to specify GPRs and SSE registers, 64-bit operand size,
392 // etc. We only cares about REX.W and REX.R bits and only the former is
393 // statically determined.
394 //
395 REXShift = OpMapShift + 3,
396 REX_W = 1 << REXShift,
397
398 //===------------------------------------------------------------------===//
399 // This three-bit field describes the size of an immediate operand. Zero is
400 // unused so that we can tell if we forgot to set a value.
401 ImmShift = REXShift + 1,
402 ImmMask = 15 << ImmShift,
403 Imm8 = 1 << ImmShift,
404 Imm8PCRel = 2 << ImmShift,
405 Imm16 = 3 << ImmShift,
406 Imm16PCRel = 4 << ImmShift,
407 Imm32 = 5 << ImmShift,
408 Imm32PCRel = 6 << ImmShift,
409 Imm32S = 7 << ImmShift,
410 Imm64 = 8 << ImmShift,
411
412 //===------------------------------------------------------------------===//
413 // FP Instruction Classification... Zero is non-fp instruction.
414
415 // FPTypeMask - Mask for all of the FP types...
416 FPTypeShift = ImmShift + 4,
417 FPTypeMask = 7 << FPTypeShift,
418
419 // NotFP - The default, set for instructions that do not use FP registers.
420 NotFP = 0 << FPTypeShift,
421
422 // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
423 ZeroArgFP = 1 << FPTypeShift,
424
425 // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
426 OneArgFP = 2 << FPTypeShift,
427
428 // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
429 // result back to ST(0). For example, fcos, fsqrt, etc.
430 //
431 OneArgFPRW = 3 << FPTypeShift,
432
433 // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
434 // explicit argument, storing the result to either ST(0) or the implicit
435 // argument. For example: fadd, fsub, fmul, etc...
436 TwoArgFP = 4 << FPTypeShift,
437
438 // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
439 // explicit argument, but have no destination. Example: fucom, fucomi, ...
440 CompareFP = 5 << FPTypeShift,
441
442 // CondMovFP - "2 operand" floating point conditional move instructions.
443 CondMovFP = 6 << FPTypeShift,
444
445 // SpecialFP - Special instruction forms. Dispatch by opcode explicitly.
446 SpecialFP = 7 << FPTypeShift,
447
448 // Lock prefix
449 LOCKShift = FPTypeShift + 3,
450 LOCK = 1 << LOCKShift,
451
452 // REP prefix
453 REPShift = LOCKShift + 1,
454 REP = 1 << REPShift,
455
456 // Execution domain for SSE instructions.
457 // 0 means normal, non-SSE instruction.
458 SSEDomainShift = REPShift + 1,
459
460 // Encoding
461 EncodingShift = SSEDomainShift + 2,
462 EncodingMask = 0x3 << EncodingShift,
463
464 // VEX - encoding using 0xC4/0xC5
465 VEX = 1 << EncodingShift,
466
467 /// XOP - Opcode prefix used by XOP instructions.
468 XOP = 2 << EncodingShift,
469
470 // VEX_EVEX - Specifies that this instruction use EVEX form which provides
471 // syntax support up to 32 512-bit register operands and up to 7 16-bit
472 // mask operands as well as source operand data swizzling/memory operand
473 // conversion, eviction hint, and rounding mode.
474 EVEX = 3 << EncodingShift,
475
476 // Opcode
477 OpcodeShift = EncodingShift + 2,
478
479 /// VEX_W - Has a opcode specific functionality, but is used in the same
480 /// way as REX_W is for regular SSE instructions.
481 VEX_WShift = OpcodeShift + 8,
482 VEX_W = 1ULL << VEX_WShift,
483
484 /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
485 /// address instructions in SSE are represented as 3 address ones in AVX
486 /// and the additional register is encoded in VEX_VVVV prefix.
487 VEX_4VShift = VEX_WShift + 1,
488 VEX_4V = 1ULL << VEX_4VShift,
489
490 /// VEX_4VOp3 - Similar to VEX_4V, but used on instructions that encode
491 /// operand 3 with VEX.vvvv.
492 VEX_4VOp3Shift = VEX_4VShift + 1,
493 VEX_4VOp3 = 1ULL << VEX_4VOp3Shift,
494
495 /// VEX_I8IMM - Specifies that the last register used in a AVX instruction,
496 /// must be encoded in the i8 immediate field. This usually happens in
497 /// instructions with 4 operands.
498 VEX_I8IMMShift = VEX_4VOp3Shift + 1,
499 VEX_I8IMM = 1ULL << VEX_I8IMMShift,
500
501 /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
502 /// instruction uses 256-bit wide registers. This is usually auto detected
503 /// if a VR256 register is used, but some AVX instructions also have this
504 /// field marked when using a f256 memory references.
505 VEX_LShift = VEX_I8IMMShift + 1,
506 VEX_L = 1ULL << VEX_LShift,
507
508 // VEX_LIG - Specifies that this instruction ignores the L-bit in the VEX
509 // prefix. Usually used for scalar instructions. Needed by disassembler.
510 VEX_LIGShift = VEX_LShift + 1,
511 VEX_LIG = 1ULL << VEX_LIGShift,
512
513 // TODO: we should combine VEX_L and VEX_LIG together to form a 2-bit field
514 // with following encoding:
515 // - 00 V128
516 // - 01 V256
517 // - 10 V512
518 // - 11 LIG (but, in insn encoding, leave VEX.L and EVEX.L in zeros.
519 // this will save 1 tsflag bit
520
521 // EVEX_K - Set if this instruction requires masking
522 EVEX_KShift = VEX_LIGShift + 1,
523 EVEX_K = 1ULL << EVEX_KShift,
524
525 // EVEX_Z - Set if this instruction has EVEX.Z field set.
526 EVEX_ZShift = EVEX_KShift + 1,
527 EVEX_Z = 1ULL << EVEX_ZShift,
528
529 // EVEX_L2 - Set if this instruction has EVEX.L' field set.
530 EVEX_L2Shift = EVEX_ZShift + 1,
531 EVEX_L2 = 1ULL << EVEX_L2Shift,
532
533 // EVEX_B - Set if this instruction has EVEX.B field set.
534 EVEX_BShift = EVEX_L2Shift + 1,
535 EVEX_B = 1ULL << EVEX_BShift,
536
537 // The scaling factor for the AVX512's 8-bit compressed displacement.
538 CD8_Scale_Shift = EVEX_BShift + 1,
539 CD8_Scale_Mask = 127ULL << CD8_Scale_Shift,
540
541 /// Has3DNow0F0FOpcode - This flag indicates that the instruction uses the
542 /// wacky 0x0F 0x0F prefix for 3DNow! instructions. The manual documents
543 /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
544 /// storing a classifier in the imm8 field. To simplify our implementation,
545 /// we handle this by storeing the classifier in the opcode field and using
546 /// this flag to indicate that the encoder should do the wacky 3DNow! thing.
547 Has3DNow0F0FOpcodeShift = CD8_Scale_Shift + 7,
548 Has3DNow0F0FOpcode = 1ULL << Has3DNow0F0FOpcodeShift,
549
550 /// MemOp4 - Used to indicate swapping of operand 3 and 4 to be encoded in
551 /// ModRM or I8IMM. This is used for FMA4 and XOP instructions.
552 MemOp4Shift = Has3DNow0F0FOpcodeShift + 1,
553 MemOp4 = 1ULL << MemOp4Shift,
554
555 /// Explicitly specified rounding control
556 EVEX_RCShift = MemOp4Shift + 1,
557 EVEX_RC = 1ULL << EVEX_RCShift
558 };
559
560 // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
561 // specified machine instruction.
562 //
563 inline unsigned char getBaseOpcodeFor(uint64_t TSFlags) {
564 return TSFlags >> X86II::OpcodeShift;
565 }
566
567 inline bool hasImm(uint64_t TSFlags) {
568 return (TSFlags & X86II::ImmMask) != 0;
569 }
570
571 /// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field
572 /// of the specified instruction.
573 inline unsigned getSizeOfImm(uint64_t TSFlags) {
574 switch (TSFlags & X86II::ImmMask) {
575 default: llvm_unreachable("Unknown immediate size");
576 case X86II::Imm8:
577 case X86II::Imm8PCRel: return 1;
578 case X86II::Imm16:
579 case X86II::Imm16PCRel: return 2;
580 case X86II::Imm32:
581 case X86II::Imm32S:
582 case X86II::Imm32PCRel: return 4;
583 case X86II::Imm64: return 8;
584 }
585 }
586
587 /// isImmPCRel - Return true if the immediate of the specified instruction's
588 /// TSFlags indicates that it is pc relative.
589 inline unsigned isImmPCRel(uint64_t TSFlags) {
590 switch (TSFlags & X86II::ImmMask) {
591 default: llvm_unreachable("Unknown immediate size");
592 case X86II::Imm8PCRel:
593 case X86II::Imm16PCRel:
594 case X86II::Imm32PCRel:
595 return true;
596 case X86II::Imm8:
597 case X86II::Imm16:
598 case X86II::Imm32:
599 case X86II::Imm32S:
600 case X86II::Imm64:
601 return false;
602 }
603 }
604
605 /// isImmSigned - Return true if the immediate of the specified instruction's
606 /// TSFlags indicates that it is signed.
607 inline unsigned isImmSigned(uint64_t TSFlags) {
608 switch (TSFlags & X86II::ImmMask) {
609 default: llvm_unreachable("Unknown immediate signedness");
610 case X86II::Imm32S:
611 return true;
612 case X86II::Imm8:
613 case X86II::Imm8PCRel:
614 case X86II::Imm16:
615 case X86II::Imm16PCRel:
616 case X86II::Imm32:
617 case X86II::Imm32PCRel:
618 case X86II::Imm64:
619 return false;
620 }
621 }
622
623 /// getOperandBias - compute any additional adjustment needed to
624 /// the offset to the start of the memory operand
625 /// in this instruction.
626 /// If this is a two-address instruction,skip one of the register operands.
627 /// FIXME: This should be handled during MCInst lowering.
628 inline int getOperandBias(const MCInstrDesc& Desc)
629 {
630 unsigned NumOps = Desc.getNumOperands();
631 unsigned CurOp = 0;
632 if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0)
633 ++CurOp;
634 else if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
635 Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1)
636 // Special case for AVX-512 GATHER with 2 TIED_TO operands
637 // Skip the first 2 operands: dst, mask_wb
638 CurOp += 2;
639 else if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
640 Desc.getOperandConstraint(NumOps - 1, MCOI::TIED_TO) == 1)
641 // Special case for GATHER with 2 TIED_TO operands
642 // Skip the first 2 operands: dst, mask_wb
643 CurOp += 2;
644 else if (NumOps > 2 && Desc.getOperandConstraint(NumOps - 2, MCOI::TIED_TO) == 0)
645 // SCATTER
646 ++CurOp;
647 return CurOp;
648 }
649
650 /// getMemoryOperandNo - The function returns the MCInst operand # for the
651 /// first field of the memory operand. If the instruction doesn't have a
652 /// memory operand, this returns -1.
653 ///
654 /// Note that this ignores tied operands. If there is a tied register which
655 /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
656 /// counted as one operand.
657 ///
658 inline int getMemoryOperandNo(uint64_t TSFlags, unsigned Opcode) {
659 bool HasVEX_4V = TSFlags & X86II::VEX_4V;
660 bool HasMemOp4 = TSFlags & X86II::MemOp4;
661 bool HasEVEX_K = TSFlags & X86II::EVEX_K;
662
663 switch (TSFlags & X86II::FormMask) {
664 default: llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!");
665 case X86II::Pseudo:
666 case X86II::RawFrm:
667 case X86II::AddRegFrm:
668 case X86II::MRMDestReg:
669 case X86II::MRMSrcReg:
670 case X86II::RawFrmImm8:
671 case X86II::RawFrmImm16:
672 case X86II::RawFrmMemOffs:
673 case X86II::RawFrmSrc:
674 case X86II::RawFrmDst:
675 case X86II::RawFrmDstSrc:
676 return -1;
677 case X86II::MRMDestMem:
678 return 0;
679 case X86II::MRMSrcMem:
680 // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
681 // mask register.
682 return 1 + HasVEX_4V + HasMemOp4 + HasEVEX_K;
683 case X86II::MRMXr:
684 case X86II::MRM0r: case X86II::MRM1r:
685 case X86II::MRM2r: case X86II::MRM3r:
686 case X86II::MRM4r: case X86II::MRM5r:
687 case X86II::MRM6r: case X86II::MRM7r:
688 return -1;
689 case X86II::MRMXm:
690 case X86II::MRM0m: case X86II::MRM1m:
691 case X86II::MRM2m: case X86II::MRM3m:
692 case X86II::MRM4m: case X86II::MRM5m:
693 case X86II::MRM6m: case X86II::MRM7m:
694 // Start from 0, skip registers encoded in VEX_VVVV or a mask register.
695 return 0 + HasVEX_4V + HasEVEX_K;
696 case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2:
697 case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C8:
698 case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB:
699 case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1:
700 case X86II::MRM_D4: case X86II::MRM_D5: case X86II::MRM_D6:
701 case X86II::MRM_D7: case X86II::MRM_D8: case X86II::MRM_D9:
702 case X86II::MRM_DA: case X86II::MRM_DB: case X86II::MRM_DC:
703 case X86II::MRM_DD: case X86II::MRM_DE: case X86II::MRM_DF:
704 case X86II::MRM_E0: case X86II::MRM_E1: case X86II::MRM_E2:
705 case X86II::MRM_E3: case X86II::MRM_E4: case X86II::MRM_E5:
706 case X86II::MRM_E8: case X86II::MRM_E9: case X86II::MRM_EA:
707 case X86II::MRM_EB: case X86II::MRM_EC: case X86II::MRM_ED:
708 case X86II::MRM_EE: case X86II::MRM_F0: case X86II::MRM_F1:
709 case X86II::MRM_F2: case X86II::MRM_F3: case X86II::MRM_F4:
710 case X86II::MRM_F5: case X86II::MRM_F6: case X86II::MRM_F7:
711 case X86II::MRM_F8: case X86II::MRM_F9: case X86II::MRM_FA:
712 case X86II::MRM_FB: case X86II::MRM_FC: case X86II::MRM_FD:
713 case X86II::MRM_FE: case X86II::MRM_FF:
714 return -1;
715 }
716 }
717
718 /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or
719 /// higher) register? e.g. r8, xmm8, xmm13, etc.
720 inline bool isX86_64ExtendedReg(unsigned RegNo) {
721 if ((RegNo > X86::XMM7 && RegNo <= X86::XMM15) ||
722 (RegNo > X86::XMM23 && RegNo <= X86::XMM31) ||
723 (RegNo > X86::YMM7 && RegNo <= X86::YMM15) ||
724 (RegNo > X86::YMM23 && RegNo <= X86::YMM31) ||
725 (RegNo > X86::ZMM7 && RegNo <= X86::ZMM15) ||
726 (RegNo > X86::ZMM23 && RegNo <= X86::ZMM31))
727 return true;
728
729 switch (RegNo) {
730 default: break;
731 case X86::R8: case X86::R9: case X86::R10: case X86::R11:
732 case X86::R12: case X86::R13: case X86::R14: case X86::R15:
733 case X86::R8D: case X86::R9D: case X86::R10D: case X86::R11D:
734 case X86::R12D: case X86::R13D: case X86::R14D: case X86::R15D:
735 case X86::R8W: case X86::R9W: case X86::R10W: case X86::R11W:
736 case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W:
737 case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B:
738 case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B:
739 case X86::CR8: case X86::CR9: case X86::CR10: case X86::CR11:
740 case X86::CR12: case X86::CR13: case X86::CR14: case X86::CR15:
741 return true;
742 }
743 return false;
744 }
745
746 /// is32ExtendedReg - Is the MemoryOperand a 32 extended (zmm16 or higher)
747 /// registers? e.g. zmm21, etc.
748 static inline bool is32ExtendedReg(unsigned RegNo) {
749 return ((RegNo > X86::XMM15 && RegNo <= X86::XMM31) ||
750 (RegNo > X86::YMM15 && RegNo <= X86::YMM31) ||
751 (RegNo > X86::ZMM15 && RegNo <= X86::ZMM31));
752 }
753
754
755 inline bool isX86_64NonExtLowByteReg(unsigned reg) {
756 return (reg == X86::SPL || reg == X86::BPL ||
757 reg == X86::SIL || reg == X86::DIL);
758 }
759 }
760
761 } // end namespace llvm;
762
763 #endif