]> git.proxmox.com Git - rustc.git/blob - src/llvm/lib/Target/X86/MCTargetDesc/X86MCCodeEmitter.cpp
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / lib / Target / X86 / MCTargetDesc / X86MCCodeEmitter.cpp
1 //===-- X86MCCodeEmitter.cpp - Convert X86 code to machine code -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the X86MCCodeEmitter class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "MCTargetDesc/X86MCTargetDesc.h"
15 #include "MCTargetDesc/X86BaseInfo.h"
16 #include "MCTargetDesc/X86FixupKinds.h"
17 #include "llvm/MC/MCCodeEmitter.h"
18 #include "llvm/MC/MCContext.h"
19 #include "llvm/MC/MCExpr.h"
20 #include "llvm/MC/MCInst.h"
21 #include "llvm/MC/MCInstrInfo.h"
22 #include "llvm/MC/MCRegisterInfo.h"
23 #include "llvm/MC/MCSubtargetInfo.h"
24 #include "llvm/MC/MCSymbol.h"
25 #include "llvm/Support/raw_ostream.h"
26
27 using namespace llvm;
28
29 #define DEBUG_TYPE "mccodeemitter"
30
31 namespace {
32 class X86MCCodeEmitter : public MCCodeEmitter {
33 X86MCCodeEmitter(const X86MCCodeEmitter &) LLVM_DELETED_FUNCTION;
34 void operator=(const X86MCCodeEmitter &) LLVM_DELETED_FUNCTION;
35 const MCInstrInfo &MCII;
36 MCContext &Ctx;
37 public:
38 X86MCCodeEmitter(const MCInstrInfo &mcii, MCContext &ctx)
39 : MCII(mcii), Ctx(ctx) {
40 }
41
42 ~X86MCCodeEmitter() {}
43
44 bool is64BitMode(const MCSubtargetInfo &STI) const {
45 return (STI.getFeatureBits() & X86::Mode64Bit) != 0;
46 }
47
48 bool is32BitMode(const MCSubtargetInfo &STI) const {
49 return (STI.getFeatureBits() & X86::Mode32Bit) != 0;
50 }
51
52 bool is16BitMode(const MCSubtargetInfo &STI) const {
53 return (STI.getFeatureBits() & X86::Mode16Bit) != 0;
54 }
55
56 /// Is16BitMemOperand - Return true if the specified instruction has
57 /// a 16-bit memory operand. Op specifies the operand # of the memoperand.
58 bool Is16BitMemOperand(const MCInst &MI, unsigned Op,
59 const MCSubtargetInfo &STI) const {
60 const MCOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg);
61 const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
62 const MCOperand &Disp = MI.getOperand(Op+X86::AddrDisp);
63
64 if (is16BitMode(STI) && BaseReg.getReg() == 0 &&
65 Disp.isImm() && Disp.getImm() < 0x10000)
66 return true;
67 if ((BaseReg.getReg() != 0 &&
68 X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg.getReg())) ||
69 (IndexReg.getReg() != 0 &&
70 X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg.getReg())))
71 return true;
72 return false;
73 }
74
75 unsigned GetX86RegNum(const MCOperand &MO) const {
76 return Ctx.getRegisterInfo()->getEncodingValue(MO.getReg()) & 0x7;
77 }
78
79 // On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range
80 // 0-7 and the difference between the 2 groups is given by the REX prefix.
81 // In the VEX prefix, registers are seen sequencially from 0-15 and encoded
82 // in 1's complement form, example:
83 //
84 // ModRM field => XMM9 => 1
85 // VEX.VVVV => XMM9 => ~9
86 //
87 // See table 4-35 of Intel AVX Programming Reference for details.
88 unsigned char getVEXRegisterEncoding(const MCInst &MI,
89 unsigned OpNum) const {
90 unsigned SrcReg = MI.getOperand(OpNum).getReg();
91 unsigned SrcRegNum = GetX86RegNum(MI.getOperand(OpNum));
92 if (X86II::isX86_64ExtendedReg(SrcReg))
93 SrcRegNum |= 8;
94
95 // The registers represented through VEX_VVVV should
96 // be encoded in 1's complement form.
97 return (~SrcRegNum) & 0xf;
98 }
99
100 unsigned char getWriteMaskRegisterEncoding(const MCInst &MI,
101 unsigned OpNum) const {
102 assert(X86::K0 != MI.getOperand(OpNum).getReg() &&
103 "Invalid mask register as write-mask!");
104 unsigned MaskRegNum = GetX86RegNum(MI.getOperand(OpNum));
105 return MaskRegNum;
106 }
107
108 void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
109 OS << (char)C;
110 ++CurByte;
111 }
112
113 void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
114 raw_ostream &OS) const {
115 // Output the constant in little endian byte order.
116 for (unsigned i = 0; i != Size; ++i) {
117 EmitByte(Val & 255, CurByte, OS);
118 Val >>= 8;
119 }
120 }
121
122 void EmitImmediate(const MCOperand &Disp, SMLoc Loc,
123 unsigned ImmSize, MCFixupKind FixupKind,
124 unsigned &CurByte, raw_ostream &OS,
125 SmallVectorImpl<MCFixup> &Fixups,
126 int ImmOffset = 0) const;
127
128 inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
129 unsigned RM) {
130 assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
131 return RM | (RegOpcode << 3) | (Mod << 6);
132 }
133
134 void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
135 unsigned &CurByte, raw_ostream &OS) const {
136 EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
137 }
138
139 void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
140 unsigned &CurByte, raw_ostream &OS) const {
141 // SIB byte is in the same format as the ModRMByte.
142 EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
143 }
144
145
146 void EmitMemModRMByte(const MCInst &MI, unsigned Op,
147 unsigned RegOpcodeField,
148 uint64_t TSFlags, unsigned &CurByte, raw_ostream &OS,
149 SmallVectorImpl<MCFixup> &Fixups,
150 const MCSubtargetInfo &STI) const;
151
152 void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
153 SmallVectorImpl<MCFixup> &Fixups,
154 const MCSubtargetInfo &STI) const override;
155
156 void EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
157 const MCInst &MI, const MCInstrDesc &Desc,
158 raw_ostream &OS) const;
159
160 void EmitSegmentOverridePrefix(unsigned &CurByte, unsigned SegOperand,
161 const MCInst &MI, raw_ostream &OS) const;
162
163 void EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
164 const MCInst &MI, const MCInstrDesc &Desc,
165 const MCSubtargetInfo &STI,
166 raw_ostream &OS) const;
167 };
168
169 } // end anonymous namespace
170
171
172 MCCodeEmitter *llvm::createX86MCCodeEmitter(const MCInstrInfo &MCII,
173 const MCRegisterInfo &MRI,
174 const MCSubtargetInfo &STI,
175 MCContext &Ctx) {
176 return new X86MCCodeEmitter(MCII, Ctx);
177 }
178
179 /// isDisp8 - Return true if this signed displacement fits in a 8-bit
180 /// sign-extended field.
181 static bool isDisp8(int Value) {
182 return Value == (signed char)Value;
183 }
184
185 /// isCDisp8 - Return true if this signed displacement fits in a 8-bit
186 /// compressed dispacement field.
187 static bool isCDisp8(uint64_t TSFlags, int Value, int& CValue) {
188 assert(((TSFlags & X86II::EncodingMask) == X86II::EVEX) &&
189 "Compressed 8-bit displacement is only valid for EVEX inst.");
190
191 unsigned CD8_Scale =
192 (TSFlags & X86II::CD8_Scale_Mask) >> X86II::CD8_Scale_Shift;
193 if (CD8_Scale == 0) {
194 CValue = Value;
195 return isDisp8(Value);
196 }
197
198 unsigned Mask = CD8_Scale - 1;
199 assert((CD8_Scale & Mask) == 0 && "Invalid memory object size.");
200 if (Value & Mask) // Unaligned offset
201 return false;
202 Value /= (int)CD8_Scale;
203 bool Ret = (Value == (signed char)Value);
204
205 if (Ret)
206 CValue = Value;
207 return Ret;
208 }
209
210 /// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
211 /// in an instruction with the specified TSFlags.
212 static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
213 unsigned Size = X86II::getSizeOfImm(TSFlags);
214 bool isPCRel = X86II::isImmPCRel(TSFlags);
215
216 if (X86II::isImmSigned(TSFlags)) {
217 switch (Size) {
218 default: llvm_unreachable("Unsupported signed fixup size!");
219 case 4: return MCFixupKind(X86::reloc_signed_4byte);
220 }
221 }
222 return MCFixup::getKindForSize(Size, isPCRel);
223 }
224
225 /// Is32BitMemOperand - Return true if the specified instruction has
226 /// a 32-bit memory operand. Op specifies the operand # of the memoperand.
227 static bool Is32BitMemOperand(const MCInst &MI, unsigned Op) {
228 const MCOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg);
229 const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
230
231 if ((BaseReg.getReg() != 0 &&
232 X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg.getReg())) ||
233 (IndexReg.getReg() != 0 &&
234 X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg.getReg())))
235 return true;
236 return false;
237 }
238
239 /// Is64BitMemOperand - Return true if the specified instruction has
240 /// a 64-bit memory operand. Op specifies the operand # of the memoperand.
241 #ifndef NDEBUG
242 static bool Is64BitMemOperand(const MCInst &MI, unsigned Op) {
243 const MCOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg);
244 const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
245
246 if ((BaseReg.getReg() != 0 &&
247 X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg.getReg())) ||
248 (IndexReg.getReg() != 0 &&
249 X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg.getReg())))
250 return true;
251 return false;
252 }
253 #endif
254
255 /// StartsWithGlobalOffsetTable - Check if this expression starts with
256 /// _GLOBAL_OFFSET_TABLE_ and if it is of the form
257 /// _GLOBAL_OFFSET_TABLE_-symbol. This is needed to support PIC on ELF
258 /// i386 as _GLOBAL_OFFSET_TABLE_ is magical. We check only simple case that
259 /// are know to be used: _GLOBAL_OFFSET_TABLE_ by itself or at the start
260 /// of a binary expression.
261 enum GlobalOffsetTableExprKind {
262 GOT_None,
263 GOT_Normal,
264 GOT_SymDiff
265 };
266 static GlobalOffsetTableExprKind
267 StartsWithGlobalOffsetTable(const MCExpr *Expr) {
268 const MCExpr *RHS = nullptr;
269 if (Expr->getKind() == MCExpr::Binary) {
270 const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Expr);
271 Expr = BE->getLHS();
272 RHS = BE->getRHS();
273 }
274
275 if (Expr->getKind() != MCExpr::SymbolRef)
276 return GOT_None;
277
278 const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
279 const MCSymbol &S = Ref->getSymbol();
280 if (S.getName() != "_GLOBAL_OFFSET_TABLE_")
281 return GOT_None;
282 if (RHS && RHS->getKind() == MCExpr::SymbolRef)
283 return GOT_SymDiff;
284 return GOT_Normal;
285 }
286
287 static bool HasSecRelSymbolRef(const MCExpr *Expr) {
288 if (Expr->getKind() == MCExpr::SymbolRef) {
289 const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
290 return Ref->getKind() == MCSymbolRefExpr::VK_SECREL;
291 }
292 return false;
293 }
294
295 void X86MCCodeEmitter::
296 EmitImmediate(const MCOperand &DispOp, SMLoc Loc, unsigned Size,
297 MCFixupKind FixupKind, unsigned &CurByte, raw_ostream &OS,
298 SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const {
299 const MCExpr *Expr = nullptr;
300 if (DispOp.isImm()) {
301 // If this is a simple integer displacement that doesn't require a
302 // relocation, emit it now.
303 if (FixupKind != FK_PCRel_1 &&
304 FixupKind != FK_PCRel_2 &&
305 FixupKind != FK_PCRel_4) {
306 EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS);
307 return;
308 }
309 Expr = MCConstantExpr::Create(DispOp.getImm(), Ctx);
310 } else {
311 Expr = DispOp.getExpr();
312 }
313
314 // If we have an immoffset, add it to the expression.
315 if ((FixupKind == FK_Data_4 ||
316 FixupKind == FK_Data_8 ||
317 FixupKind == MCFixupKind(X86::reloc_signed_4byte))) {
318 GlobalOffsetTableExprKind Kind = StartsWithGlobalOffsetTable(Expr);
319 if (Kind != GOT_None) {
320 assert(ImmOffset == 0);
321
322 if (Size == 8) {
323 FixupKind = MCFixupKind(X86::reloc_global_offset_table8);
324 } else {
325 assert(Size == 4);
326 FixupKind = MCFixupKind(X86::reloc_global_offset_table);
327 }
328
329 if (Kind == GOT_Normal)
330 ImmOffset = CurByte;
331 } else if (Expr->getKind() == MCExpr::SymbolRef) {
332 if (HasSecRelSymbolRef(Expr)) {
333 FixupKind = MCFixupKind(FK_SecRel_4);
334 }
335 } else if (Expr->getKind() == MCExpr::Binary) {
336 const MCBinaryExpr *Bin = static_cast<const MCBinaryExpr*>(Expr);
337 if (HasSecRelSymbolRef(Bin->getLHS())
338 || HasSecRelSymbolRef(Bin->getRHS())) {
339 FixupKind = MCFixupKind(FK_SecRel_4);
340 }
341 }
342 }
343
344 // If the fixup is pc-relative, we need to bias the value to be relative to
345 // the start of the field, not the end of the field.
346 if (FixupKind == FK_PCRel_4 ||
347 FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
348 FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load))
349 ImmOffset -= 4;
350 if (FixupKind == FK_PCRel_2)
351 ImmOffset -= 2;
352 if (FixupKind == FK_PCRel_1)
353 ImmOffset -= 1;
354
355 if (ImmOffset)
356 Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(ImmOffset, Ctx),
357 Ctx);
358
359 // Emit a symbolic constant as a fixup and 4 zeros.
360 Fixups.push_back(MCFixup::Create(CurByte, Expr, FixupKind, Loc));
361 EmitConstant(0, Size, CurByte, OS);
362 }
363
364 void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
365 unsigned RegOpcodeField,
366 uint64_t TSFlags, unsigned &CurByte,
367 raw_ostream &OS,
368 SmallVectorImpl<MCFixup> &Fixups,
369 const MCSubtargetInfo &STI) const{
370 const MCOperand &Disp = MI.getOperand(Op+X86::AddrDisp);
371 const MCOperand &Base = MI.getOperand(Op+X86::AddrBaseReg);
372 const MCOperand &Scale = MI.getOperand(Op+X86::AddrScaleAmt);
373 const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
374 unsigned BaseReg = Base.getReg();
375 bool HasEVEX = (TSFlags & X86II::EncodingMask) == X86II::EVEX;
376
377 // Handle %rip relative addressing.
378 if (BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode
379 assert(is64BitMode(STI) && "Rip-relative addressing requires 64-bit mode");
380 assert(IndexReg.getReg() == 0 && "Invalid rip-relative address");
381 EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
382
383 unsigned FixupKind = X86::reloc_riprel_4byte;
384
385 // movq loads are handled with a special relocation form which allows the
386 // linker to eliminate some loads for GOT references which end up in the
387 // same linkage unit.
388 if (MI.getOpcode() == X86::MOV64rm)
389 FixupKind = X86::reloc_riprel_4byte_movq_load;
390
391 // rip-relative addressing is actually relative to the *next* instruction.
392 // Since an immediate can follow the mod/rm byte for an instruction, this
393 // means that we need to bias the immediate field of the instruction with
394 // the size of the immediate field. If we have this case, add it into the
395 // expression to emit.
396 int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0;
397
398 EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind),
399 CurByte, OS, Fixups, -ImmSize);
400 return;
401 }
402
403 unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U;
404
405 // 16-bit addressing forms of the ModR/M byte have a different encoding for
406 // the R/M field and are far more limited in which registers can be used.
407 if (Is16BitMemOperand(MI, Op, STI)) {
408 if (BaseReg) {
409 // For 32-bit addressing, the row and column values in Table 2-2 are
410 // basically the same. It's AX/CX/DX/BX/SP/BP/SI/DI in that order, with
411 // some special cases. And GetX86RegNum reflects that numbering.
412 // For 16-bit addressing it's more fun, as shown in the SDM Vol 2A,
413 // Table 2-1 "16-Bit Addressing Forms with the ModR/M byte". We can only
414 // use SI/DI/BP/BX, which have "row" values 4-7 in no particular order,
415 // while values 0-3 indicate the allowed combinations (base+index) of
416 // those: 0 for BX+SI, 1 for BX+DI, 2 for BP+SI, 3 for BP+DI.
417 //
418 // R16Table[] is a lookup from the normal RegNo, to the row values from
419 // Table 2-1 for 16-bit addressing modes. Where zero means disallowed.
420 static const unsigned R16Table[] = { 0, 0, 0, 7, 0, 6, 4, 5 };
421 unsigned RMfield = R16Table[BaseRegNo];
422
423 assert(RMfield && "invalid 16-bit base register");
424
425 if (IndexReg.getReg()) {
426 unsigned IndexReg16 = R16Table[GetX86RegNum(IndexReg)];
427
428 assert(IndexReg16 && "invalid 16-bit index register");
429 // We must have one of SI/DI (4,5), and one of BP/BX (6,7).
430 assert(((IndexReg16 ^ RMfield) & 2) &&
431 "invalid 16-bit base/index register combination");
432 assert(Scale.getImm() == 1 &&
433 "invalid scale for 16-bit memory reference");
434
435 // Allow base/index to appear in either order (although GAS doesn't).
436 if (IndexReg16 & 2)
437 RMfield = (RMfield & 1) | ((7 - IndexReg16) << 1);
438 else
439 RMfield = (IndexReg16 & 1) | ((7 - RMfield) << 1);
440 }
441
442 if (Disp.isImm() && isDisp8(Disp.getImm())) {
443 if (Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
444 // There is no displacement; just the register.
445 EmitByte(ModRMByte(0, RegOpcodeField, RMfield), CurByte, OS);
446 return;
447 }
448 // Use the [REG]+disp8 form, including for [BP] which cannot be encoded.
449 EmitByte(ModRMByte(1, RegOpcodeField, RMfield), CurByte, OS);
450 EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups);
451 return;
452 }
453 // This is the [REG]+disp16 case.
454 EmitByte(ModRMByte(2, RegOpcodeField, RMfield), CurByte, OS);
455 } else {
456 // There is no BaseReg; this is the plain [disp16] case.
457 EmitByte(ModRMByte(0, RegOpcodeField, 6), CurByte, OS);
458 }
459
460 // Emit 16-bit displacement for plain disp16 or [REG]+disp16 cases.
461 EmitImmediate(Disp, MI.getLoc(), 2, FK_Data_2, CurByte, OS, Fixups);
462 return;
463 }
464
465 // Determine whether a SIB byte is needed.
466 // If no BaseReg, issue a RIP relative instruction only if the MCE can
467 // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
468 // 2-7) and absolute references.
469
470 if (// The SIB byte must be used if there is an index register.
471 IndexReg.getReg() == 0 &&
472 // The SIB byte must be used if the base is ESP/RSP/R12, all of which
473 // encode to an R/M value of 4, which indicates that a SIB byte is
474 // present.
475 BaseRegNo != N86::ESP &&
476 // If there is no base register and we're in 64-bit mode, we need a SIB
477 // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
478 (!is64BitMode(STI) || BaseReg != 0)) {
479
480 if (BaseReg == 0) { // [disp32] in X86-32 mode
481 EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
482 EmitImmediate(Disp, MI.getLoc(), 4, FK_Data_4, CurByte, OS, Fixups);
483 return;
484 }
485
486 // If the base is not EBP/ESP and there is no displacement, use simple
487 // indirect register encoding, this handles addresses like [EAX]. The
488 // encoding for [EBP] with no displacement means [disp32] so we handle it
489 // by emitting a displacement of 0 below.
490 if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
491 EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
492 return;
493 }
494
495 // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
496 if (Disp.isImm()) {
497 if (!HasEVEX && isDisp8(Disp.getImm())) {
498 EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
499 EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups);
500 return;
501 }
502 // Try EVEX compressed 8-bit displacement first; if failed, fall back to
503 // 32-bit displacement.
504 int CDisp8 = 0;
505 if (HasEVEX && isCDisp8(TSFlags, Disp.getImm(), CDisp8)) {
506 EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
507 EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups,
508 CDisp8 - Disp.getImm());
509 return;
510 }
511 }
512
513 // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
514 EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
515 EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte), CurByte, OS,
516 Fixups);
517 return;
518 }
519
520 // We need a SIB byte, so start by outputting the ModR/M byte first
521 assert(IndexReg.getReg() != X86::ESP &&
522 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
523
524 bool ForceDisp32 = false;
525 bool ForceDisp8 = false;
526 int CDisp8 = 0;
527 int ImmOffset = 0;
528 if (BaseReg == 0) {
529 // If there is no base register, we emit the special case SIB byte with
530 // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
531 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
532 ForceDisp32 = true;
533 } else if (!Disp.isImm()) {
534 // Emit the normal disp32 encoding.
535 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
536 ForceDisp32 = true;
537 } else if (Disp.getImm() == 0 &&
538 // Base reg can't be anything that ends up with '5' as the base
539 // reg, it is the magic [*] nomenclature that indicates no base.
540 BaseRegNo != N86::EBP) {
541 // Emit no displacement ModR/M byte
542 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
543 } else if (!HasEVEX && isDisp8(Disp.getImm())) {
544 // Emit the disp8 encoding.
545 EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
546 ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
547 } else if (HasEVEX && isCDisp8(TSFlags, Disp.getImm(), CDisp8)) {
548 // Emit the disp8 encoding.
549 EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
550 ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
551 ImmOffset = CDisp8 - Disp.getImm();
552 } else {
553 // Emit the normal disp32 encoding.
554 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
555 }
556
557 // Calculate what the SS field value should be...
558 static const unsigned SSTable[] = { ~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3 };
559 unsigned SS = SSTable[Scale.getImm()];
560
561 if (BaseReg == 0) {
562 // Handle the SIB byte for the case where there is no base, see Intel
563 // Manual 2A, table 2-7. The displacement has already been output.
564 unsigned IndexRegNo;
565 if (IndexReg.getReg())
566 IndexRegNo = GetX86RegNum(IndexReg);
567 else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
568 IndexRegNo = 4;
569 EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
570 } else {
571 unsigned IndexRegNo;
572 if (IndexReg.getReg())
573 IndexRegNo = GetX86RegNum(IndexReg);
574 else
575 IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
576 EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
577 }
578
579 // Do we need to output a displacement?
580 if (ForceDisp8)
581 EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups, ImmOffset);
582 else if (ForceDisp32 || Disp.getImm() != 0)
583 EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte),
584 CurByte, OS, Fixups);
585 }
586
587 /// EmitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix
588 /// called VEX.
589 void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
590 int MemOperand, const MCInst &MI,
591 const MCInstrDesc &Desc,
592 raw_ostream &OS) const {
593 assert(!(TSFlags & X86II::LOCK) && "Can't have LOCK VEX.");
594
595 uint64_t Encoding = TSFlags & X86II::EncodingMask;
596 bool HasEVEX_K = TSFlags & X86II::EVEX_K;
597 bool HasVEX_4V = TSFlags & X86II::VEX_4V;
598 bool HasVEX_4VOp3 = TSFlags & X86II::VEX_4VOp3;
599 bool HasMemOp4 = TSFlags & X86II::MemOp4;
600 bool HasEVEX_RC = TSFlags & X86II::EVEX_RC;
601
602 // VEX_R: opcode externsion equivalent to REX.R in
603 // 1's complement (inverted) form
604 //
605 // 1: Same as REX_R=0 (must be 1 in 32-bit mode)
606 // 0: Same as REX_R=1 (64 bit mode only)
607 //
608 unsigned char VEX_R = 0x1;
609 unsigned char EVEX_R2 = 0x1;
610
611 // VEX_X: equivalent to REX.X, only used when a
612 // register is used for index in SIB Byte.
613 //
614 // 1: Same as REX.X=0 (must be 1 in 32-bit mode)
615 // 0: Same as REX.X=1 (64-bit mode only)
616 unsigned char VEX_X = 0x1;
617
618 // VEX_B:
619 //
620 // 1: Same as REX_B=0 (ignored in 32-bit mode)
621 // 0: Same as REX_B=1 (64 bit mode only)
622 //
623 unsigned char VEX_B = 0x1;
624
625 // VEX_W: opcode specific (use like REX.W, or used for
626 // opcode extension, or ignored, depending on the opcode byte)
627 unsigned char VEX_W = 0;
628
629 // VEX_5M (VEX m-mmmmm field):
630 //
631 // 0b00000: Reserved for future use
632 // 0b00001: implied 0F leading opcode
633 // 0b00010: implied 0F 38 leading opcode bytes
634 // 0b00011: implied 0F 3A leading opcode bytes
635 // 0b00100-0b11111: Reserved for future use
636 // 0b01000: XOP map select - 08h instructions with imm byte
637 // 0b01001: XOP map select - 09h instructions with no imm byte
638 // 0b01010: XOP map select - 0Ah instructions with imm dword
639 unsigned char VEX_5M = 0;
640
641 // VEX_4V (VEX vvvv field): a register specifier
642 // (in 1's complement form) or 1111 if unused.
643 unsigned char VEX_4V = 0xf;
644 unsigned char EVEX_V2 = 0x1;
645
646 // VEX_L (Vector Length):
647 //
648 // 0: scalar or 128-bit vector
649 // 1: 256-bit vector
650 //
651 unsigned char VEX_L = 0;
652 unsigned char EVEX_L2 = 0;
653
654 // VEX_PP: opcode extension providing equivalent
655 // functionality of a SIMD prefix
656 //
657 // 0b00: None
658 // 0b01: 66
659 // 0b10: F3
660 // 0b11: F2
661 //
662 unsigned char VEX_PP = 0;
663
664 // EVEX_U
665 unsigned char EVEX_U = 1; // Always '1' so far
666
667 // EVEX_z
668 unsigned char EVEX_z = 0;
669
670 // EVEX_b
671 unsigned char EVEX_b = 0;
672
673 // EVEX_rc
674 unsigned char EVEX_rc = 0;
675
676 // EVEX_aaa
677 unsigned char EVEX_aaa = 0;
678
679 bool EncodeRC = false;
680
681 if (TSFlags & X86II::VEX_W)
682 VEX_W = 1;
683
684 if (TSFlags & X86II::VEX_L)
685 VEX_L = 1;
686 if (TSFlags & X86II::EVEX_L2)
687 EVEX_L2 = 1;
688
689 if (HasEVEX_K && (TSFlags & X86II::EVEX_Z))
690 EVEX_z = 1;
691
692 if ((TSFlags & X86II::EVEX_B))
693 EVEX_b = 1;
694
695 switch (TSFlags & X86II::OpPrefixMask) {
696 default: break; // VEX_PP already correct
697 case X86II::PD: VEX_PP = 0x1; break; // 66
698 case X86II::XS: VEX_PP = 0x2; break; // F3
699 case X86II::XD: VEX_PP = 0x3; break; // F2
700 }
701
702 switch (TSFlags & X86II::OpMapMask) {
703 default: llvm_unreachable("Invalid prefix!");
704 case X86II::TB: VEX_5M = 0x1; break; // 0F
705 case X86II::T8: VEX_5M = 0x2; break; // 0F 38
706 case X86II::TA: VEX_5M = 0x3; break; // 0F 3A
707 case X86II::XOP8: VEX_5M = 0x8; break;
708 case X86II::XOP9: VEX_5M = 0x9; break;
709 case X86II::XOPA: VEX_5M = 0xA; break;
710 }
711
712 // Classify VEX_B, VEX_4V, VEX_R, VEX_X
713 unsigned NumOps = Desc.getNumOperands();
714 unsigned CurOp = X86II::getOperandBias(Desc);
715
716 switch (TSFlags & X86II::FormMask) {
717 default: llvm_unreachable("Unexpected form in EmitVEXOpcodePrefix!");
718 case X86II::RawFrm:
719 break;
720 case X86II::MRMDestMem: {
721 // MRMDestMem instructions forms:
722 // MemAddr, src1(ModR/M)
723 // MemAddr, src1(VEX_4V), src2(ModR/M)
724 // MemAddr, src1(ModR/M), imm8
725 //
726 if (X86II::isX86_64ExtendedReg(MI.getOperand(MemOperand +
727 X86::AddrBaseReg).getReg()))
728 VEX_B = 0x0;
729 if (X86II::isX86_64ExtendedReg(MI.getOperand(MemOperand +
730 X86::AddrIndexReg).getReg()))
731 VEX_X = 0x0;
732 if (X86II::is32ExtendedReg(MI.getOperand(MemOperand +
733 X86::AddrIndexReg).getReg()))
734 EVEX_V2 = 0x0;
735
736 CurOp += X86::AddrNumOperands;
737
738 if (HasEVEX_K)
739 EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
740
741 if (HasVEX_4V) {
742 VEX_4V = getVEXRegisterEncoding(MI, CurOp);
743 if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
744 EVEX_V2 = 0x0;
745 CurOp++;
746 }
747
748 const MCOperand &MO = MI.getOperand(CurOp);
749 if (MO.isReg()) {
750 if (X86II::isX86_64ExtendedReg(MO.getReg()))
751 VEX_R = 0x0;
752 if (X86II::is32ExtendedReg(MO.getReg()))
753 EVEX_R2 = 0x0;
754 }
755 break;
756 }
757 case X86II::MRMSrcMem:
758 // MRMSrcMem instructions forms:
759 // src1(ModR/M), MemAddr
760 // src1(ModR/M), src2(VEX_4V), MemAddr
761 // src1(ModR/M), MemAddr, imm8
762 // src1(ModR/M), MemAddr, src2(VEX_I8IMM)
763 //
764 // FMA4:
765 // dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
766 // dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M),
767 if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
768 VEX_R = 0x0;
769 if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
770 EVEX_R2 = 0x0;
771 CurOp++;
772
773 if (HasEVEX_K)
774 EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
775
776 if (HasVEX_4V) {
777 VEX_4V = getVEXRegisterEncoding(MI, CurOp);
778 if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
779 EVEX_V2 = 0x0;
780 CurOp++;
781 }
782
783 if (X86II::isX86_64ExtendedReg(
784 MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
785 VEX_B = 0x0;
786 if (X86II::isX86_64ExtendedReg(
787 MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
788 VEX_X = 0x0;
789 if (X86II::is32ExtendedReg(MI.getOperand(MemOperand +
790 X86::AddrIndexReg).getReg()))
791 EVEX_V2 = 0x0;
792
793 if (HasVEX_4VOp3)
794 // Instruction format for 4VOp3:
795 // src1(ModR/M), MemAddr, src3(VEX_4V)
796 // CurOp points to start of the MemoryOperand,
797 // it skips TIED_TO operands if exist, then increments past src1.
798 // CurOp + X86::AddrNumOperands will point to src3.
799 VEX_4V = getVEXRegisterEncoding(MI, CurOp+X86::AddrNumOperands);
800 break;
801 case X86II::MRM0m: case X86II::MRM1m:
802 case X86II::MRM2m: case X86II::MRM3m:
803 case X86II::MRM4m: case X86II::MRM5m:
804 case X86II::MRM6m: case X86II::MRM7m: {
805 // MRM[0-9]m instructions forms:
806 // MemAddr
807 // src1(VEX_4V), MemAddr
808 if (HasVEX_4V) {
809 VEX_4V = getVEXRegisterEncoding(MI, CurOp);
810 if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
811 EVEX_V2 = 0x0;
812 CurOp++;
813 }
814
815 if (HasEVEX_K)
816 EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
817
818 if (X86II::isX86_64ExtendedReg(
819 MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
820 VEX_B = 0x0;
821 if (X86II::isX86_64ExtendedReg(
822 MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
823 VEX_X = 0x0;
824 break;
825 }
826 case X86II::MRMSrcReg:
827 // MRMSrcReg instructions forms:
828 // dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
829 // dst(ModR/M), src1(ModR/M)
830 // dst(ModR/M), src1(ModR/M), imm8
831 //
832 // FMA4:
833 // dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
834 // dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M),
835 if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
836 VEX_R = 0x0;
837 if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
838 EVEX_R2 = 0x0;
839 CurOp++;
840
841 if (HasEVEX_K)
842 EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
843
844 if (HasVEX_4V) {
845 VEX_4V = getVEXRegisterEncoding(MI, CurOp);
846 if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
847 EVEX_V2 = 0x0;
848 CurOp++;
849 }
850
851 if (HasMemOp4) // Skip second register source (encoded in I8IMM)
852 CurOp++;
853
854 if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
855 VEX_B = 0x0;
856 if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
857 VEX_X = 0x0;
858 CurOp++;
859 if (HasVEX_4VOp3)
860 VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
861 if (EVEX_b) {
862 if (HasEVEX_RC) {
863 unsigned RcOperand = NumOps-1;
864 assert(RcOperand >= CurOp);
865 EVEX_rc = MI.getOperand(RcOperand).getImm() & 0x3;
866 }
867 EncodeRC = true;
868 }
869 break;
870 case X86II::MRMDestReg:
871 // MRMDestReg instructions forms:
872 // dst(ModR/M), src(ModR/M)
873 // dst(ModR/M), src(ModR/M), imm8
874 // dst(ModR/M), src1(VEX_4V), src2(ModR/M)
875 if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
876 VEX_B = 0x0;
877 if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
878 VEX_X = 0x0;
879 CurOp++;
880
881 if (HasEVEX_K)
882 EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
883
884 if (HasVEX_4V) {
885 VEX_4V = getVEXRegisterEncoding(MI, CurOp);
886 if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
887 EVEX_V2 = 0x0;
888 CurOp++;
889 }
890
891 if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
892 VEX_R = 0x0;
893 if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
894 EVEX_R2 = 0x0;
895 if (EVEX_b)
896 EncodeRC = true;
897 break;
898 case X86II::MRM0r: case X86II::MRM1r:
899 case X86II::MRM2r: case X86II::MRM3r:
900 case X86II::MRM4r: case X86II::MRM5r:
901 case X86II::MRM6r: case X86II::MRM7r:
902 // MRM0r-MRM7r instructions forms:
903 // dst(VEX_4V), src(ModR/M), imm8
904 if (HasVEX_4V) {
905 VEX_4V = getVEXRegisterEncoding(MI, CurOp);
906 if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
907 EVEX_V2 = 0x0;
908 CurOp++;
909 }
910 if (HasEVEX_K)
911 EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
912
913 if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
914 VEX_B = 0x0;
915 if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
916 VEX_X = 0x0;
917 break;
918 }
919
920 if (Encoding == X86II::VEX || Encoding == X86II::XOP) {
921 // VEX opcode prefix can have 2 or 3 bytes
922 //
923 // 3 bytes:
924 // +-----+ +--------------+ +-------------------+
925 // | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
926 // +-----+ +--------------+ +-------------------+
927 // 2 bytes:
928 // +-----+ +-------------------+
929 // | C5h | | R | vvvv | L | pp |
930 // +-----+ +-------------------+
931 //
932 // XOP uses a similar prefix:
933 // +-----+ +--------------+ +-------------------+
934 // | 8Fh | | RXB | m-mmmm | | W | vvvv | L | pp |
935 // +-----+ +--------------+ +-------------------+
936 unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
937
938 // Can we use the 2 byte VEX prefix?
939 if (Encoding == X86II::VEX && VEX_B && VEX_X && !VEX_W && (VEX_5M == 1)) {
940 EmitByte(0xC5, CurByte, OS);
941 EmitByte(LastByte | (VEX_R << 7), CurByte, OS);
942 return;
943 }
944
945 // 3 byte VEX prefix
946 EmitByte(Encoding == X86II::XOP ? 0x8F : 0xC4, CurByte, OS);
947 EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, CurByte, OS);
948 EmitByte(LastByte | (VEX_W << 7), CurByte, OS);
949 } else {
950 assert(Encoding == X86II::EVEX && "unknown encoding!");
951 // EVEX opcode prefix can have 4 bytes
952 //
953 // +-----+ +--------------+ +-------------------+ +------------------------+
954 // | 62h | | RXBR' | 00mm | | W | vvvv | U | pp | | z | L'L | b | v' | aaa |
955 // +-----+ +--------------+ +-------------------+ +------------------------+
956 assert((VEX_5M & 0x3) == VEX_5M
957 && "More than 2 significant bits in VEX.m-mmmm fields for EVEX!");
958
959 VEX_5M &= 0x3;
960
961 EmitByte(0x62, CurByte, OS);
962 EmitByte((VEX_R << 7) |
963 (VEX_X << 6) |
964 (VEX_B << 5) |
965 (EVEX_R2 << 4) |
966 VEX_5M, CurByte, OS);
967 EmitByte((VEX_W << 7) |
968 (VEX_4V << 3) |
969 (EVEX_U << 2) |
970 VEX_PP, CurByte, OS);
971 if (EncodeRC)
972 EmitByte((EVEX_z << 7) |
973 (EVEX_rc << 5) |
974 (EVEX_b << 4) |
975 (EVEX_V2 << 3) |
976 EVEX_aaa, CurByte, OS);
977 else
978 EmitByte((EVEX_z << 7) |
979 (EVEX_L2 << 6) |
980 (VEX_L << 5) |
981 (EVEX_b << 4) |
982 (EVEX_V2 << 3) |
983 EVEX_aaa, CurByte, OS);
984 }
985 }
986
987 /// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
988 /// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
989 /// size, and 3) use of X86-64 extended registers.
990 static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
991 const MCInstrDesc &Desc) {
992 unsigned REX = 0;
993 if (TSFlags & X86II::REX_W)
994 REX |= 1 << 3; // set REX.W
995
996 if (MI.getNumOperands() == 0) return REX;
997
998 unsigned NumOps = MI.getNumOperands();
999 // FIXME: MCInst should explicitize the two-addrness.
1000 bool isTwoAddr = NumOps > 1 &&
1001 Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1;
1002
1003 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
1004 unsigned i = isTwoAddr ? 1 : 0;
1005 for (; i != NumOps; ++i) {
1006 const MCOperand &MO = MI.getOperand(i);
1007 if (!MO.isReg()) continue;
1008 unsigned Reg = MO.getReg();
1009 if (!X86II::isX86_64NonExtLowByteReg(Reg)) continue;
1010 // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
1011 // that returns non-zero.
1012 REX |= 0x40; // REX fixed encoding prefix
1013 break;
1014 }
1015
1016 switch (TSFlags & X86II::FormMask) {
1017 case X86II::MRMSrcReg:
1018 if (MI.getOperand(0).isReg() &&
1019 X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
1020 REX |= 1 << 2; // set REX.R
1021 i = isTwoAddr ? 2 : 1;
1022 for (; i != NumOps; ++i) {
1023 const MCOperand &MO = MI.getOperand(i);
1024 if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
1025 REX |= 1 << 0; // set REX.B
1026 }
1027 break;
1028 case X86II::MRMSrcMem: {
1029 if (MI.getOperand(0).isReg() &&
1030 X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
1031 REX |= 1 << 2; // set REX.R
1032 unsigned Bit = 0;
1033 i = isTwoAddr ? 2 : 1;
1034 for (; i != NumOps; ++i) {
1035 const MCOperand &MO = MI.getOperand(i);
1036 if (MO.isReg()) {
1037 if (X86II::isX86_64ExtendedReg(MO.getReg()))
1038 REX |= 1 << Bit; // set REX.B (Bit=0) and REX.X (Bit=1)
1039 Bit++;
1040 }
1041 }
1042 break;
1043 }
1044 case X86II::MRMXm:
1045 case X86II::MRM0m: case X86II::MRM1m:
1046 case X86II::MRM2m: case X86II::MRM3m:
1047 case X86II::MRM4m: case X86II::MRM5m:
1048 case X86II::MRM6m: case X86II::MRM7m:
1049 case X86II::MRMDestMem: {
1050 unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands);
1051 i = isTwoAddr ? 1 : 0;
1052 if (NumOps > e && MI.getOperand(e).isReg() &&
1053 X86II::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
1054 REX |= 1 << 2; // set REX.R
1055 unsigned Bit = 0;
1056 for (; i != e; ++i) {
1057 const MCOperand &MO = MI.getOperand(i);
1058 if (MO.isReg()) {
1059 if (X86II::isX86_64ExtendedReg(MO.getReg()))
1060 REX |= 1 << Bit; // REX.B (Bit=0) and REX.X (Bit=1)
1061 Bit++;
1062 }
1063 }
1064 break;
1065 }
1066 default:
1067 if (MI.getOperand(0).isReg() &&
1068 X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
1069 REX |= 1 << 0; // set REX.B
1070 i = isTwoAddr ? 2 : 1;
1071 for (unsigned e = NumOps; i != e; ++i) {
1072 const MCOperand &MO = MI.getOperand(i);
1073 if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
1074 REX |= 1 << 2; // set REX.R
1075 }
1076 break;
1077 }
1078 return REX;
1079 }
1080
1081 /// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed
1082 void X86MCCodeEmitter::EmitSegmentOverridePrefix(unsigned &CurByte,
1083 unsigned SegOperand,
1084 const MCInst &MI,
1085 raw_ostream &OS) const {
1086 // Check for explicit segment override on memory operand.
1087 switch (MI.getOperand(SegOperand).getReg()) {
1088 default: llvm_unreachable("Unknown segment register!");
1089 case 0: break;
1090 case X86::CS: EmitByte(0x2E, CurByte, OS); break;
1091 case X86::SS: EmitByte(0x36, CurByte, OS); break;
1092 case X86::DS: EmitByte(0x3E, CurByte, OS); break;
1093 case X86::ES: EmitByte(0x26, CurByte, OS); break;
1094 case X86::FS: EmitByte(0x64, CurByte, OS); break;
1095 case X86::GS: EmitByte(0x65, CurByte, OS); break;
1096 }
1097 }
1098
1099 /// EmitOpcodePrefix - Emit all instruction prefixes prior to the opcode.
1100 ///
1101 /// MemOperand is the operand # of the start of a memory operand if present. If
1102 /// Not present, it is -1.
1103 void X86MCCodeEmitter::EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
1104 int MemOperand, const MCInst &MI,
1105 const MCInstrDesc &Desc,
1106 const MCSubtargetInfo &STI,
1107 raw_ostream &OS) const {
1108
1109 // Emit the operand size opcode prefix as needed.
1110 if ((TSFlags & X86II::OpSizeMask) == (is16BitMode(STI) ? X86II::OpSize32
1111 : X86II::OpSize16))
1112 EmitByte(0x66, CurByte, OS);
1113
1114 // Emit the LOCK opcode prefix.
1115 if (TSFlags & X86II::LOCK)
1116 EmitByte(0xF0, CurByte, OS);
1117
1118 switch (TSFlags & X86II::OpPrefixMask) {
1119 case X86II::PD: // 66
1120 EmitByte(0x66, CurByte, OS);
1121 break;
1122 case X86II::XS: // F3
1123 EmitByte(0xF3, CurByte, OS);
1124 break;
1125 case X86II::XD: // F2
1126 EmitByte(0xF2, CurByte, OS);
1127 break;
1128 }
1129
1130 // Handle REX prefix.
1131 // FIXME: Can this come before F2 etc to simplify emission?
1132 if (is64BitMode(STI)) {
1133 if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
1134 EmitByte(0x40 | REX, CurByte, OS);
1135 }
1136
1137 // 0x0F escape code must be emitted just before the opcode.
1138 switch (TSFlags & X86II::OpMapMask) {
1139 case X86II::TB: // Two-byte opcode map
1140 case X86II::T8: // 0F 38
1141 case X86II::TA: // 0F 3A
1142 EmitByte(0x0F, CurByte, OS);
1143 break;
1144 }
1145
1146 switch (TSFlags & X86II::OpMapMask) {
1147 case X86II::T8: // 0F 38
1148 EmitByte(0x38, CurByte, OS);
1149 break;
1150 case X86II::TA: // 0F 3A
1151 EmitByte(0x3A, CurByte, OS);
1152 break;
1153 }
1154 }
1155
1156 void X86MCCodeEmitter::
1157 EncodeInstruction(const MCInst &MI, raw_ostream &OS,
1158 SmallVectorImpl<MCFixup> &Fixups,
1159 const MCSubtargetInfo &STI) const {
1160 unsigned Opcode = MI.getOpcode();
1161 const MCInstrDesc &Desc = MCII.get(Opcode);
1162 uint64_t TSFlags = Desc.TSFlags;
1163
1164 // Pseudo instructions don't get encoded.
1165 if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
1166 return;
1167
1168 unsigned NumOps = Desc.getNumOperands();
1169 unsigned CurOp = X86II::getOperandBias(Desc);
1170
1171 // Keep track of the current byte being emitted.
1172 unsigned CurByte = 0;
1173
1174 // Encoding type for this instruction.
1175 uint64_t Encoding = TSFlags & X86II::EncodingMask;
1176
1177 // It uses the VEX.VVVV field?
1178 bool HasVEX_4V = TSFlags & X86II::VEX_4V;
1179 bool HasVEX_4VOp3 = TSFlags & X86II::VEX_4VOp3;
1180 bool HasMemOp4 = TSFlags & X86II::MemOp4;
1181 const unsigned MemOp4_I8IMMOperand = 2;
1182
1183 // It uses the EVEX.aaa field?
1184 bool HasEVEX_K = TSFlags & X86II::EVEX_K;
1185 bool HasEVEX_RC = TSFlags & X86II::EVEX_RC;
1186
1187 // Determine where the memory operand starts, if present.
1188 int MemoryOperand = X86II::getMemoryOperandNo(TSFlags, Opcode);
1189 if (MemoryOperand != -1) MemoryOperand += CurOp;
1190
1191 // Emit segment override opcode prefix as needed.
1192 if (MemoryOperand >= 0)
1193 EmitSegmentOverridePrefix(CurByte, MemoryOperand+X86::AddrSegmentReg,
1194 MI, OS);
1195
1196 // Emit the repeat opcode prefix as needed.
1197 if (TSFlags & X86II::REP)
1198 EmitByte(0xF3, CurByte, OS);
1199
1200 // Emit the address size opcode prefix as needed.
1201 bool need_address_override;
1202 uint64_t AdSize = TSFlags & X86II::AdSizeMask;
1203 if ((is16BitMode(STI) && AdSize == X86II::AdSize32) ||
1204 (is32BitMode(STI) && AdSize == X86II::AdSize16) ||
1205 (is64BitMode(STI) && AdSize == X86II::AdSize32)) {
1206 need_address_override = true;
1207 } else if (MemoryOperand < 0) {
1208 need_address_override = false;
1209 } else if (is64BitMode(STI)) {
1210 assert(!Is16BitMemOperand(MI, MemoryOperand, STI));
1211 need_address_override = Is32BitMemOperand(MI, MemoryOperand);
1212 } else if (is32BitMode(STI)) {
1213 assert(!Is64BitMemOperand(MI, MemoryOperand));
1214 need_address_override = Is16BitMemOperand(MI, MemoryOperand, STI);
1215 } else {
1216 assert(is16BitMode(STI));
1217 assert(!Is64BitMemOperand(MI, MemoryOperand));
1218 need_address_override = !Is16BitMemOperand(MI, MemoryOperand, STI);
1219 }
1220
1221 if (need_address_override)
1222 EmitByte(0x67, CurByte, OS);
1223
1224 if (Encoding == 0)
1225 EmitOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, STI, OS);
1226 else
1227 EmitVEXOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
1228
1229 unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
1230
1231 if (TSFlags & X86II::Has3DNow0F0FOpcode)
1232 BaseOpcode = 0x0F; // Weird 3DNow! encoding.
1233
1234 unsigned SrcRegNum = 0;
1235 switch (TSFlags & X86II::FormMask) {
1236 default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
1237 llvm_unreachable("Unknown FormMask value in X86MCCodeEmitter!");
1238 case X86II::Pseudo:
1239 llvm_unreachable("Pseudo instruction shouldn't be emitted");
1240 case X86II::RawFrmDstSrc: {
1241 unsigned siReg = MI.getOperand(1).getReg();
1242 assert(((siReg == X86::SI && MI.getOperand(0).getReg() == X86::DI) ||
1243 (siReg == X86::ESI && MI.getOperand(0).getReg() == X86::EDI) ||
1244 (siReg == X86::RSI && MI.getOperand(0).getReg() == X86::RDI)) &&
1245 "SI and DI register sizes do not match");
1246 // Emit segment override opcode prefix as needed (not for %ds).
1247 if (MI.getOperand(2).getReg() != X86::DS)
1248 EmitSegmentOverridePrefix(CurByte, 2, MI, OS);
1249 // Emit AdSize prefix as needed.
1250 if ((!is32BitMode(STI) && siReg == X86::ESI) ||
1251 (is32BitMode(STI) && siReg == X86::SI))
1252 EmitByte(0x67, CurByte, OS);
1253 CurOp += 3; // Consume operands.
1254 EmitByte(BaseOpcode, CurByte, OS);
1255 break;
1256 }
1257 case X86II::RawFrmSrc: {
1258 unsigned siReg = MI.getOperand(0).getReg();
1259 // Emit segment override opcode prefix as needed (not for %ds).
1260 if (MI.getOperand(1).getReg() != X86::DS)
1261 EmitSegmentOverridePrefix(CurByte, 1, MI, OS);
1262 // Emit AdSize prefix as needed.
1263 if ((!is32BitMode(STI) && siReg == X86::ESI) ||
1264 (is32BitMode(STI) && siReg == X86::SI))
1265 EmitByte(0x67, CurByte, OS);
1266 CurOp += 2; // Consume operands.
1267 EmitByte(BaseOpcode, CurByte, OS);
1268 break;
1269 }
1270 case X86II::RawFrmDst: {
1271 unsigned siReg = MI.getOperand(0).getReg();
1272 // Emit AdSize prefix as needed.
1273 if ((!is32BitMode(STI) && siReg == X86::EDI) ||
1274 (is32BitMode(STI) && siReg == X86::DI))
1275 EmitByte(0x67, CurByte, OS);
1276 ++CurOp; // Consume operand.
1277 EmitByte(BaseOpcode, CurByte, OS);
1278 break;
1279 }
1280 case X86II::RawFrm:
1281 EmitByte(BaseOpcode, CurByte, OS);
1282 break;
1283 case X86II::RawFrmMemOffs:
1284 // Emit segment override opcode prefix as needed.
1285 EmitSegmentOverridePrefix(CurByte, 1, MI, OS);
1286 EmitByte(BaseOpcode, CurByte, OS);
1287 EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1288 X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1289 CurByte, OS, Fixups);
1290 ++CurOp; // skip segment operand
1291 break;
1292 case X86II::RawFrmImm8:
1293 EmitByte(BaseOpcode, CurByte, OS);
1294 EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1295 X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1296 CurByte, OS, Fixups);
1297 EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 1, FK_Data_1, CurByte,
1298 OS, Fixups);
1299 break;
1300 case X86II::RawFrmImm16:
1301 EmitByte(BaseOpcode, CurByte, OS);
1302 EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1303 X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1304 CurByte, OS, Fixups);
1305 EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 2, FK_Data_2, CurByte,
1306 OS, Fixups);
1307 break;
1308
1309 case X86II::AddRegFrm:
1310 EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
1311 break;
1312
1313 case X86II::MRMDestReg:
1314 EmitByte(BaseOpcode, CurByte, OS);
1315 SrcRegNum = CurOp + 1;
1316
1317 if (HasEVEX_K) // Skip writemask
1318 SrcRegNum++;
1319
1320 if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1321 ++SrcRegNum;
1322
1323 EmitRegModRMByte(MI.getOperand(CurOp),
1324 GetX86RegNum(MI.getOperand(SrcRegNum)), CurByte, OS);
1325 CurOp = SrcRegNum + 1;
1326 break;
1327
1328 case X86II::MRMDestMem:
1329 EmitByte(BaseOpcode, CurByte, OS);
1330 SrcRegNum = CurOp + X86::AddrNumOperands;
1331
1332 if (HasEVEX_K) // Skip writemask
1333 SrcRegNum++;
1334
1335 if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1336 ++SrcRegNum;
1337
1338 EmitMemModRMByte(MI, CurOp,
1339 GetX86RegNum(MI.getOperand(SrcRegNum)),
1340 TSFlags, CurByte, OS, Fixups, STI);
1341 CurOp = SrcRegNum + 1;
1342 break;
1343
1344 case X86II::MRMSrcReg:
1345 EmitByte(BaseOpcode, CurByte, OS);
1346 SrcRegNum = CurOp + 1;
1347
1348 if (HasEVEX_K) // Skip writemask
1349 SrcRegNum++;
1350
1351 if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1352 ++SrcRegNum;
1353
1354 if (HasMemOp4) // Skip 2nd src (which is encoded in I8IMM)
1355 ++SrcRegNum;
1356
1357 EmitRegModRMByte(MI.getOperand(SrcRegNum),
1358 GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
1359
1360 // 2 operands skipped with HasMemOp4, compensate accordingly
1361 CurOp = HasMemOp4 ? SrcRegNum : SrcRegNum + 1;
1362 if (HasVEX_4VOp3)
1363 ++CurOp;
1364 // do not count the rounding control operand
1365 if (HasEVEX_RC)
1366 NumOps--;
1367 break;
1368
1369 case X86II::MRMSrcMem: {
1370 int AddrOperands = X86::AddrNumOperands;
1371 unsigned FirstMemOp = CurOp+1;
1372
1373 if (HasEVEX_K) { // Skip writemask
1374 ++AddrOperands;
1375 ++FirstMemOp;
1376 }
1377
1378 if (HasVEX_4V) {
1379 ++AddrOperands;
1380 ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV).
1381 }
1382 if (HasMemOp4) // Skip second register source (encoded in I8IMM)
1383 ++FirstMemOp;
1384
1385 EmitByte(BaseOpcode, CurByte, OS);
1386
1387 EmitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
1388 TSFlags, CurByte, OS, Fixups, STI);
1389 CurOp += AddrOperands + 1;
1390 if (HasVEX_4VOp3)
1391 ++CurOp;
1392 break;
1393 }
1394
1395 case X86II::MRMXr:
1396 case X86II::MRM0r: case X86II::MRM1r:
1397 case X86II::MRM2r: case X86II::MRM3r:
1398 case X86II::MRM4r: case X86II::MRM5r:
1399 case X86II::MRM6r: case X86II::MRM7r: {
1400 if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
1401 ++CurOp;
1402 if (HasEVEX_K) // Skip writemask
1403 ++CurOp;
1404 EmitByte(BaseOpcode, CurByte, OS);
1405 uint64_t Form = TSFlags & X86II::FormMask;
1406 EmitRegModRMByte(MI.getOperand(CurOp++),
1407 (Form == X86II::MRMXr) ? 0 : Form-X86II::MRM0r,
1408 CurByte, OS);
1409 break;
1410 }
1411
1412 case X86II::MRMXm:
1413 case X86II::MRM0m: case X86II::MRM1m:
1414 case X86II::MRM2m: case X86II::MRM3m:
1415 case X86II::MRM4m: case X86II::MRM5m:
1416 case X86II::MRM6m: case X86II::MRM7m: {
1417 if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
1418 ++CurOp;
1419 if (HasEVEX_K) // Skip writemask
1420 ++CurOp;
1421 EmitByte(BaseOpcode, CurByte, OS);
1422 uint64_t Form = TSFlags & X86II::FormMask;
1423 EmitMemModRMByte(MI, CurOp, (Form == X86II::MRMXm) ? 0 : Form-X86II::MRM0m,
1424 TSFlags, CurByte, OS, Fixups, STI);
1425 CurOp += X86::AddrNumOperands;
1426 break;
1427 }
1428 case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2:
1429 case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C8:
1430 case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB:
1431 case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1:
1432 case X86II::MRM_D4: case X86II::MRM_D5: case X86II::MRM_D6:
1433 case X86II::MRM_D7: case X86II::MRM_D8: case X86II::MRM_D9:
1434 case X86II::MRM_DA: case X86II::MRM_DB: case X86II::MRM_DC:
1435 case X86II::MRM_DD: case X86II::MRM_DE: case X86II::MRM_DF:
1436 case X86II::MRM_E0: case X86II::MRM_E1: case X86II::MRM_E2:
1437 case X86II::MRM_E3: case X86II::MRM_E4: case X86II::MRM_E5:
1438 case X86II::MRM_E8: case X86II::MRM_E9: case X86II::MRM_EA:
1439 case X86II::MRM_EB: case X86II::MRM_EC: case X86II::MRM_ED:
1440 case X86II::MRM_EE: case X86II::MRM_F0: case X86II::MRM_F1:
1441 case X86II::MRM_F2: case X86II::MRM_F3: case X86II::MRM_F4:
1442 case X86II::MRM_F5: case X86II::MRM_F6: case X86II::MRM_F7:
1443 case X86II::MRM_F8: case X86II::MRM_F9: case X86II::MRM_FA:
1444 case X86II::MRM_FB: case X86II::MRM_FC: case X86II::MRM_FD:
1445 case X86II::MRM_FE: case X86II::MRM_FF:
1446 EmitByte(BaseOpcode, CurByte, OS);
1447
1448 unsigned char MRM;
1449 switch (TSFlags & X86II::FormMask) {
1450 default: llvm_unreachable("Invalid Form");
1451 case X86II::MRM_C0: MRM = 0xC0; break;
1452 case X86II::MRM_C1: MRM = 0xC1; break;
1453 case X86II::MRM_C2: MRM = 0xC2; break;
1454 case X86II::MRM_C3: MRM = 0xC3; break;
1455 case X86II::MRM_C4: MRM = 0xC4; break;
1456 case X86II::MRM_C8: MRM = 0xC8; break;
1457 case X86II::MRM_C9: MRM = 0xC9; break;
1458 case X86II::MRM_CA: MRM = 0xCA; break;
1459 case X86II::MRM_CB: MRM = 0xCB; break;
1460 case X86II::MRM_CF: MRM = 0xCF; break;
1461 case X86II::MRM_D0: MRM = 0xD0; break;
1462 case X86II::MRM_D1: MRM = 0xD1; break;
1463 case X86II::MRM_D4: MRM = 0xD4; break;
1464 case X86II::MRM_D5: MRM = 0xD5; break;
1465 case X86II::MRM_D6: MRM = 0xD6; break;
1466 case X86II::MRM_D7: MRM = 0xD7; break;
1467 case X86II::MRM_D8: MRM = 0xD8; break;
1468 case X86II::MRM_D9: MRM = 0xD9; break;
1469 case X86II::MRM_DA: MRM = 0xDA; break;
1470 case X86II::MRM_DB: MRM = 0xDB; break;
1471 case X86II::MRM_DC: MRM = 0xDC; break;
1472 case X86II::MRM_DD: MRM = 0xDD; break;
1473 case X86II::MRM_DE: MRM = 0xDE; break;
1474 case X86II::MRM_DF: MRM = 0xDF; break;
1475 case X86II::MRM_E0: MRM = 0xE0; break;
1476 case X86II::MRM_E1: MRM = 0xE1; break;
1477 case X86II::MRM_E2: MRM = 0xE2; break;
1478 case X86II::MRM_E3: MRM = 0xE3; break;
1479 case X86II::MRM_E4: MRM = 0xE4; break;
1480 case X86II::MRM_E5: MRM = 0xE5; break;
1481 case X86II::MRM_E8: MRM = 0xE8; break;
1482 case X86II::MRM_E9: MRM = 0xE9; break;
1483 case X86II::MRM_EA: MRM = 0xEA; break;
1484 case X86II::MRM_EB: MRM = 0xEB; break;
1485 case X86II::MRM_EC: MRM = 0xEC; break;
1486 case X86II::MRM_ED: MRM = 0xED; break;
1487 case X86II::MRM_EE: MRM = 0xEE; break;
1488 case X86II::MRM_F0: MRM = 0xF0; break;
1489 case X86II::MRM_F1: MRM = 0xF1; break;
1490 case X86II::MRM_F2: MRM = 0xF2; break;
1491 case X86II::MRM_F3: MRM = 0xF3; break;
1492 case X86II::MRM_F4: MRM = 0xF4; break;
1493 case X86II::MRM_F5: MRM = 0xF5; break;
1494 case X86II::MRM_F6: MRM = 0xF6; break;
1495 case X86II::MRM_F7: MRM = 0xF7; break;
1496 case X86II::MRM_F8: MRM = 0xF8; break;
1497 case X86II::MRM_F9: MRM = 0xF9; break;
1498 case X86II::MRM_FA: MRM = 0xFA; break;
1499 case X86II::MRM_FB: MRM = 0xFB; break;
1500 case X86II::MRM_FC: MRM = 0xFC; break;
1501 case X86II::MRM_FD: MRM = 0xFD; break;
1502 case X86II::MRM_FE: MRM = 0xFE; break;
1503 case X86II::MRM_FF: MRM = 0xFF; break;
1504 }
1505 EmitByte(MRM, CurByte, OS);
1506 break;
1507 }
1508
1509 // If there is a remaining operand, it must be a trailing immediate. Emit it
1510 // according to the right size for the instruction. Some instructions
1511 // (SSE4a extrq and insertq) have two trailing immediates.
1512 while (CurOp != NumOps && NumOps - CurOp <= 2) {
1513 // The last source register of a 4 operand instruction in AVX is encoded
1514 // in bits[7:4] of a immediate byte.
1515 if (TSFlags & X86II::VEX_I8IMM) {
1516 const MCOperand &MO = MI.getOperand(HasMemOp4 ? MemOp4_I8IMMOperand
1517 : CurOp);
1518 ++CurOp;
1519 unsigned RegNum = GetX86RegNum(MO) << 4;
1520 if (X86II::isX86_64ExtendedReg(MO.getReg()))
1521 RegNum |= 1 << 7;
1522 // If there is an additional 5th operand it must be an immediate, which
1523 // is encoded in bits[3:0]
1524 if (CurOp != NumOps) {
1525 const MCOperand &MIMM = MI.getOperand(CurOp++);
1526 if (MIMM.isImm()) {
1527 unsigned Val = MIMM.getImm();
1528 assert(Val < 16 && "Immediate operand value out of range");
1529 RegNum |= Val;
1530 }
1531 }
1532 EmitImmediate(MCOperand::CreateImm(RegNum), MI.getLoc(), 1, FK_Data_1,
1533 CurByte, OS, Fixups);
1534 } else {
1535 EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1536 X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1537 CurByte, OS, Fixups);
1538 }
1539 }
1540
1541 if (TSFlags & X86II::Has3DNow0F0FOpcode)
1542 EmitByte(X86II::getBaseOpcodeFor(TSFlags), CurByte, OS);
1543
1544 #ifndef NDEBUG
1545 // FIXME: Verify.
1546 if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
1547 errs() << "Cannot encode all operands of: ";
1548 MI.dump();
1549 errs() << '\n';
1550 abort();
1551 }
1552 #endif
1553 }