]> git.proxmox.com Git - rustc.git/blob - src/llvm/lib/Target/X86/X86FrameLowering.cpp
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / lib / Target / X86 / X86FrameLowering.cpp
1 //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the X86 implementation of TargetFrameLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "X86FrameLowering.h"
15 #include "X86InstrBuilder.h"
16 #include "X86InstrInfo.h"
17 #include "X86MachineFunctionInfo.h"
18 #include "X86Subtarget.h"
19 #include "X86TargetMachine.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineModuleInfo.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCSymbol.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Target/TargetOptions.h"
32 #include "llvm/Support/Debug.h"
33 #include <cstdlib>
34
35 using namespace llvm;
36
37 // FIXME: completely move here.
38 extern cl::opt<bool> ForceStackAlign;
39
40 bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
41 return !MF.getFrameInfo()->hasVarSizedObjects();
42 }
43
44 /// hasFP - Return true if the specified function should have a dedicated frame
45 /// pointer register. This is true if the function has variable sized allocas
46 /// or if frame pointer elimination is disabled.
47 bool X86FrameLowering::hasFP(const MachineFunction &MF) const {
48 const MachineFrameInfo *MFI = MF.getFrameInfo();
49 const MachineModuleInfo &MMI = MF.getMMI();
50 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
51
52 return (MF.getTarget().Options.DisableFramePointerElim(MF) ||
53 RegInfo->needsStackRealignment(MF) ||
54 MFI->hasVarSizedObjects() ||
55 MFI->isFrameAddressTaken() || MFI->hasInlineAsmWithSPAdjust() ||
56 MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
57 MMI.callsUnwindInit() || MMI.callsEHReturn() ||
58 MFI->hasStackMap() || MFI->hasPatchPoint());
59 }
60
61 static unsigned getSUBriOpcode(unsigned IsLP64, int64_t Imm) {
62 if (IsLP64) {
63 if (isInt<8>(Imm))
64 return X86::SUB64ri8;
65 return X86::SUB64ri32;
66 } else {
67 if (isInt<8>(Imm))
68 return X86::SUB32ri8;
69 return X86::SUB32ri;
70 }
71 }
72
73 static unsigned getADDriOpcode(unsigned IsLP64, int64_t Imm) {
74 if (IsLP64) {
75 if (isInt<8>(Imm))
76 return X86::ADD64ri8;
77 return X86::ADD64ri32;
78 } else {
79 if (isInt<8>(Imm))
80 return X86::ADD32ri8;
81 return X86::ADD32ri;
82 }
83 }
84
85 static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) {
86 if (IsLP64) {
87 if (isInt<8>(Imm))
88 return X86::AND64ri8;
89 return X86::AND64ri32;
90 }
91 if (isInt<8>(Imm))
92 return X86::AND32ri8;
93 return X86::AND32ri;
94 }
95
96 static unsigned getPUSHiOpcode(bool IsLP64, MachineOperand MO) {
97 // We don't support LP64 for now.
98 assert(!IsLP64);
99
100 if (MO.isImm() && isInt<8>(MO.getImm()))
101 return X86::PUSH32i8;
102
103 return X86::PUSHi32;;
104 }
105
106 static unsigned getLEArOpcode(unsigned IsLP64) {
107 return IsLP64 ? X86::LEA64r : X86::LEA32r;
108 }
109
110 /// findDeadCallerSavedReg - Return a caller-saved register that isn't live
111 /// when it reaches the "return" instruction. We can then pop a stack object
112 /// to this register without worry about clobbering it.
113 static unsigned findDeadCallerSavedReg(MachineBasicBlock &MBB,
114 MachineBasicBlock::iterator &MBBI,
115 const TargetRegisterInfo &TRI,
116 bool Is64Bit) {
117 const MachineFunction *MF = MBB.getParent();
118 const Function *F = MF->getFunction();
119 if (!F || MF->getMMI().callsEHReturn())
120 return 0;
121
122 static const uint16_t CallerSavedRegs32Bit[] = {
123 X86::EAX, X86::EDX, X86::ECX, 0
124 };
125
126 static const uint16_t CallerSavedRegs64Bit[] = {
127 X86::RAX, X86::RDX, X86::RCX, X86::RSI, X86::RDI,
128 X86::R8, X86::R9, X86::R10, X86::R11, 0
129 };
130
131 unsigned Opc = MBBI->getOpcode();
132 switch (Opc) {
133 default: return 0;
134 case X86::RETL:
135 case X86::RETQ:
136 case X86::RETIL:
137 case X86::RETIQ:
138 case X86::TCRETURNdi:
139 case X86::TCRETURNri:
140 case X86::TCRETURNmi:
141 case X86::TCRETURNdi64:
142 case X86::TCRETURNri64:
143 case X86::TCRETURNmi64:
144 case X86::EH_RETURN:
145 case X86::EH_RETURN64: {
146 SmallSet<uint16_t, 8> Uses;
147 for (unsigned i = 0, e = MBBI->getNumOperands(); i != e; ++i) {
148 MachineOperand &MO = MBBI->getOperand(i);
149 if (!MO.isReg() || MO.isDef())
150 continue;
151 unsigned Reg = MO.getReg();
152 if (!Reg)
153 continue;
154 for (MCRegAliasIterator AI(Reg, &TRI, true); AI.isValid(); ++AI)
155 Uses.insert(*AI);
156 }
157
158 const uint16_t *CS = Is64Bit ? CallerSavedRegs64Bit : CallerSavedRegs32Bit;
159 for (; *CS; ++CS)
160 if (!Uses.count(*CS))
161 return *CS;
162 }
163 }
164
165 return 0;
166 }
167
168
169 /// emitSPUpdate - Emit a series of instructions to increment / decrement the
170 /// stack pointer by a constant value.
171 static
172 void emitSPUpdate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
173 unsigned StackPtr, int64_t NumBytes,
174 bool Is64BitTarget, bool Is64BitStackPtr, bool UseLEA,
175 const TargetInstrInfo &TII, const TargetRegisterInfo &TRI) {
176 bool isSub = NumBytes < 0;
177 uint64_t Offset = isSub ? -NumBytes : NumBytes;
178 unsigned Opc;
179 if (UseLEA)
180 Opc = getLEArOpcode(Is64BitStackPtr);
181 else
182 Opc = isSub
183 ? getSUBriOpcode(Is64BitStackPtr, Offset)
184 : getADDriOpcode(Is64BitStackPtr, Offset);
185
186 uint64_t Chunk = (1LL << 31) - 1;
187 DebugLoc DL = MBB.findDebugLoc(MBBI);
188
189 while (Offset) {
190 uint64_t ThisVal = (Offset > Chunk) ? Chunk : Offset;
191 if (ThisVal == (Is64BitTarget ? 8 : 4)) {
192 // Use push / pop instead.
193 unsigned Reg = isSub
194 ? (unsigned)(Is64BitTarget ? X86::RAX : X86::EAX)
195 : findDeadCallerSavedReg(MBB, MBBI, TRI, Is64BitTarget);
196 if (Reg) {
197 Opc = isSub
198 ? (Is64BitTarget ? X86::PUSH64r : X86::PUSH32r)
199 : (Is64BitTarget ? X86::POP64r : X86::POP32r);
200 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc))
201 .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub));
202 if (isSub)
203 MI->setFlag(MachineInstr::FrameSetup);
204 Offset -= ThisVal;
205 continue;
206 }
207 }
208
209 MachineInstr *MI = nullptr;
210
211 if (UseLEA) {
212 MI = addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr),
213 StackPtr, false, isSub ? -ThisVal : ThisVal);
214 } else {
215 MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
216 .addReg(StackPtr)
217 .addImm(ThisVal);
218 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
219 }
220
221 if (isSub)
222 MI->setFlag(MachineInstr::FrameSetup);
223
224 Offset -= ThisVal;
225 }
226 }
227
228 /// mergeSPUpdatesUp - Merge two stack-manipulating instructions upper iterator.
229 static
230 void mergeSPUpdatesUp(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
231 unsigned StackPtr, uint64_t *NumBytes = nullptr) {
232 if (MBBI == MBB.begin()) return;
233
234 MachineBasicBlock::iterator PI = std::prev(MBBI);
235 unsigned Opc = PI->getOpcode();
236 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
237 Opc == X86::ADD32ri || Opc == X86::ADD32ri8 ||
238 Opc == X86::LEA32r || Opc == X86::LEA64_32r) &&
239 PI->getOperand(0).getReg() == StackPtr) {
240 if (NumBytes)
241 *NumBytes += PI->getOperand(2).getImm();
242 MBB.erase(PI);
243 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
244 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
245 PI->getOperand(0).getReg() == StackPtr) {
246 if (NumBytes)
247 *NumBytes -= PI->getOperand(2).getImm();
248 MBB.erase(PI);
249 }
250 }
251
252 /// mergeSPUpdatesDown - Merge two stack-manipulating instructions lower
253 /// iterator.
254 static
255 void mergeSPUpdatesDown(MachineBasicBlock &MBB,
256 MachineBasicBlock::iterator &MBBI,
257 unsigned StackPtr, uint64_t *NumBytes = nullptr) {
258 // FIXME: THIS ISN'T RUN!!!
259 return;
260
261 if (MBBI == MBB.end()) return;
262
263 MachineBasicBlock::iterator NI = std::next(MBBI);
264 if (NI == MBB.end()) return;
265
266 unsigned Opc = NI->getOpcode();
267 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
268 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
269 NI->getOperand(0).getReg() == StackPtr) {
270 if (NumBytes)
271 *NumBytes -= NI->getOperand(2).getImm();
272 MBB.erase(NI);
273 MBBI = NI;
274 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
275 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
276 NI->getOperand(0).getReg() == StackPtr) {
277 if (NumBytes)
278 *NumBytes += NI->getOperand(2).getImm();
279 MBB.erase(NI);
280 MBBI = NI;
281 }
282 }
283
284 /// mergeSPUpdates - Checks the instruction before/after the passed
285 /// instruction. If it is an ADD/SUB/LEA instruction it is deleted argument and
286 /// the stack adjustment is returned as a positive value for ADD/LEA and a
287 /// negative for SUB.
288 static int mergeSPUpdates(MachineBasicBlock &MBB,
289 MachineBasicBlock::iterator &MBBI, unsigned StackPtr,
290 bool doMergeWithPrevious) {
291 if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
292 (!doMergeWithPrevious && MBBI == MBB.end()))
293 return 0;
294
295 MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI;
296 MachineBasicBlock::iterator NI = doMergeWithPrevious ? nullptr
297 : std::next(MBBI);
298 unsigned Opc = PI->getOpcode();
299 int Offset = 0;
300
301 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
302 Opc == X86::ADD32ri || Opc == X86::ADD32ri8 ||
303 Opc == X86::LEA32r || Opc == X86::LEA64_32r) &&
304 PI->getOperand(0).getReg() == StackPtr){
305 Offset += PI->getOperand(2).getImm();
306 MBB.erase(PI);
307 if (!doMergeWithPrevious) MBBI = NI;
308 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
309 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
310 PI->getOperand(0).getReg() == StackPtr) {
311 Offset -= PI->getOperand(2).getImm();
312 MBB.erase(PI);
313 if (!doMergeWithPrevious) MBBI = NI;
314 }
315
316 return Offset;
317 }
318
319 static bool isEAXLiveIn(MachineFunction &MF) {
320 for (MachineRegisterInfo::livein_iterator II = MF.getRegInfo().livein_begin(),
321 EE = MF.getRegInfo().livein_end(); II != EE; ++II) {
322 unsigned Reg = II->first;
323
324 if (Reg == X86::EAX || Reg == X86::AX ||
325 Reg == X86::AH || Reg == X86::AL)
326 return true;
327 }
328
329 return false;
330 }
331
332 void
333 X86FrameLowering::emitCalleeSavedFrameMoves(MachineBasicBlock &MBB,
334 MachineBasicBlock::iterator MBBI,
335 DebugLoc DL) const {
336 MachineFunction &MF = *MBB.getParent();
337 MachineFrameInfo *MFI = MF.getFrameInfo();
338 MachineModuleInfo &MMI = MF.getMMI();
339 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
340 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
341
342 // Add callee saved registers to move list.
343 const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
344 if (CSI.empty()) return;
345
346 // Calculate offsets.
347 for (std::vector<CalleeSavedInfo>::const_iterator
348 I = CSI.begin(), E = CSI.end(); I != E; ++I) {
349 int64_t Offset = MFI->getObjectOffset(I->getFrameIdx());
350 unsigned Reg = I->getReg();
351
352 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
353 unsigned CFIIndex =
354 MMI.addFrameInst(MCCFIInstruction::createOffset(nullptr, DwarfReg,
355 Offset));
356 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
357 .addCFIIndex(CFIIndex);
358 }
359 }
360
361 /// usesTheStack - This function checks if any of the users of EFLAGS
362 /// copies the EFLAGS. We know that the code that lowers COPY of EFLAGS has
363 /// to use the stack, and if we don't adjust the stack we clobber the first
364 /// frame index.
365 /// See X86InstrInfo::copyPhysReg.
366 static bool usesTheStack(const MachineFunction &MF) {
367 const MachineRegisterInfo &MRI = MF.getRegInfo();
368
369 for (MachineRegisterInfo::reg_instr_iterator
370 ri = MRI.reg_instr_begin(X86::EFLAGS), re = MRI.reg_instr_end();
371 ri != re; ++ri)
372 if (ri->isCopy())
373 return true;
374
375 return false;
376 }
377
378 void X86FrameLowering::getStackProbeFunction(const X86Subtarget &STI,
379 unsigned &CallOp,
380 const char *&Symbol) {
381 CallOp = STI.is64Bit() ? X86::W64ALLOCA : X86::CALLpcrel32;
382
383 if (STI.is64Bit()) {
384 if (STI.isTargetCygMing()) {
385 Symbol = "___chkstk_ms";
386 } else {
387 Symbol = "__chkstk";
388 }
389 } else if (STI.isTargetCygMing())
390 Symbol = "_alloca";
391 else
392 Symbol = "_chkstk";
393 }
394
395 /// emitPrologue - Push callee-saved registers onto the stack, which
396 /// automatically adjust the stack pointer. Adjust the stack pointer to allocate
397 /// space for local variables. Also emit labels used by the exception handler to
398 /// generate the exception handling frames.
399
400 /*
401 Here's a gist of what gets emitted:
402
403 ; Establish frame pointer, if needed
404 [if needs FP]
405 push %rbp
406 .cfi_def_cfa_offset 16
407 .cfi_offset %rbp, -16
408 .seh_pushreg %rpb
409 mov %rsp, %rbp
410 .cfi_def_cfa_register %rbp
411
412 ; Spill general-purpose registers
413 [for all callee-saved GPRs]
414 pushq %<reg>
415 [if not needs FP]
416 .cfi_def_cfa_offset (offset from RETADDR)
417 .seh_pushreg %<reg>
418
419 ; If the required stack alignment > default stack alignment
420 ; rsp needs to be re-aligned. This creates a "re-alignment gap"
421 ; of unknown size in the stack frame.
422 [if stack needs re-alignment]
423 and $MASK, %rsp
424
425 ; Allocate space for locals
426 [if target is Windows and allocated space > 4096 bytes]
427 ; Windows needs special care for allocations larger
428 ; than one page.
429 mov $NNN, %rax
430 call ___chkstk_ms/___chkstk
431 sub %rax, %rsp
432 [else]
433 sub $NNN, %rsp
434
435 [if needs FP]
436 .seh_stackalloc (size of XMM spill slots)
437 .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots
438 [else]
439 .seh_stackalloc NNN
440
441 ; Spill XMMs
442 ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved,
443 ; they may get spilled on any platform, if the current function
444 ; calls @llvm.eh.unwind.init
445 [if needs FP]
446 [for all callee-saved XMM registers]
447 movaps %<xmm reg>, -MMM(%rbp)
448 [for all callee-saved XMM registers]
449 .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset)
450 ; i.e. the offset relative to (%rbp - SEHFrameOffset)
451 [else]
452 [for all callee-saved XMM registers]
453 movaps %<xmm reg>, KKK(%rsp)
454 [for all callee-saved XMM registers]
455 .seh_savexmm %<xmm reg>, KKK
456
457 .seh_endprologue
458
459 [if needs base pointer]
460 mov %rsp, %rbx
461 [if needs to restore base pointer]
462 mov %rsp, -MMM(%rbp)
463
464 ; Emit CFI info
465 [if needs FP]
466 [for all callee-saved registers]
467 .cfi_offset %<reg>, (offset from %rbp)
468 [else]
469 .cfi_def_cfa_offset (offset from RETADDR)
470 [for all callee-saved registers]
471 .cfi_offset %<reg>, (offset from %rsp)
472
473 Notes:
474 - .seh directives are emitted only for Windows 64 ABI
475 - .cfi directives are emitted for all other ABIs
476 - for 32-bit code, substitute %e?? registers for %r??
477 */
478
479 void X86FrameLowering::emitPrologue(MachineFunction &MF) const {
480 MachineBasicBlock &MBB = MF.front(); // Prologue goes in entry BB.
481 MachineBasicBlock::iterator MBBI = MBB.begin();
482 MachineFrameInfo *MFI = MF.getFrameInfo();
483 const Function *Fn = MF.getFunction();
484 const X86RegisterInfo *RegInfo =
485 static_cast<const X86RegisterInfo *>(MF.getSubtarget().getRegisterInfo());
486 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
487 MachineModuleInfo &MMI = MF.getMMI();
488 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
489 uint64_t MaxAlign = MFI->getMaxAlignment(); // Desired stack alignment.
490 uint64_t StackSize = MFI->getStackSize(); // Number of bytes to allocate.
491 bool HasFP = hasFP(MF);
492 const X86Subtarget &STI = MF.getTarget().getSubtarget<X86Subtarget>();
493 bool Is64Bit = STI.is64Bit();
494 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
495 const bool Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64();
496 bool IsWin64 = STI.isTargetWin64();
497 // Not necessarily synonymous with IsWin64.
498 bool IsWinEH = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
499 bool NeedsWinEH = IsWinEH && Fn->needsUnwindTableEntry();
500 bool NeedsDwarfCFI =
501 !IsWinEH && (MMI.hasDebugInfo() || Fn->needsUnwindTableEntry());
502 bool UseLEA = STI.useLeaForSP();
503 unsigned StackAlign = getStackAlignment();
504 unsigned SlotSize = RegInfo->getSlotSize();
505 unsigned FramePtr = RegInfo->getFrameRegister(MF);
506 const unsigned MachineFramePtr = STI.isTarget64BitILP32() ?
507 getX86SubSuperRegister(FramePtr, MVT::i64, false) : FramePtr;
508 unsigned StackPtr = RegInfo->getStackRegister();
509 unsigned BasePtr = RegInfo->getBaseRegister();
510 DebugLoc DL;
511
512 // If we're forcing a stack realignment we can't rely on just the frame
513 // info, we need to know the ABI stack alignment as well in case we
514 // have a call out. Otherwise just make sure we have some alignment - we'll
515 // go with the minimum SlotSize.
516 if (ForceStackAlign) {
517 if (MFI->hasCalls())
518 MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
519 else if (MaxAlign < SlotSize)
520 MaxAlign = SlotSize;
521 }
522
523 // Add RETADDR move area to callee saved frame size.
524 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
525 if (TailCallReturnAddrDelta < 0)
526 X86FI->setCalleeSavedFrameSize(
527 X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta);
528
529 bool UseStackProbe = (STI.isOSWindows() && !STI.isTargetMachO());
530
531 // The default stack probe size is 4096 if the function has no stackprobesize
532 // attribute.
533 unsigned StackProbeSize = 4096;
534 if (Fn->hasFnAttribute("stack-probe-size"))
535 Fn->getFnAttribute("stack-probe-size")
536 .getValueAsString()
537 .getAsInteger(0, StackProbeSize);
538
539 // If this is x86-64 and the Red Zone is not disabled, if we are a leaf
540 // function, and use up to 128 bytes of stack space, don't have a frame
541 // pointer, calls, or dynamic alloca then we do not need to adjust the
542 // stack pointer (we fit in the Red Zone). We also check that we don't
543 // push and pop from the stack.
544 if (Is64Bit && !Fn->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
545 Attribute::NoRedZone) &&
546 !RegInfo->needsStackRealignment(MF) &&
547 !MFI->hasVarSizedObjects() && // No dynamic alloca.
548 !MFI->adjustsStack() && // No calls.
549 !IsWin64 && // Win64 has no Red Zone
550 !usesTheStack(MF) && // Don't push and pop.
551 !MF.shouldSplitStack()) { // Regular stack
552 uint64_t MinSize = X86FI->getCalleeSavedFrameSize();
553 if (HasFP) MinSize += SlotSize;
554 StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0);
555 MFI->setStackSize(StackSize);
556 }
557
558 // Insert stack pointer adjustment for later moving of return addr. Only
559 // applies to tail call optimized functions where the callee argument stack
560 // size is bigger than the callers.
561 if (TailCallReturnAddrDelta < 0) {
562 MachineInstr *MI =
563 BuildMI(MBB, MBBI, DL,
564 TII.get(getSUBriOpcode(Uses64BitFramePtr, -TailCallReturnAddrDelta)),
565 StackPtr)
566 .addReg(StackPtr)
567 .addImm(-TailCallReturnAddrDelta)
568 .setMIFlag(MachineInstr::FrameSetup);
569 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
570 }
571
572 // Mapping for machine moves:
573 //
574 // DST: VirtualFP AND
575 // SRC: VirtualFP => DW_CFA_def_cfa_offset
576 // ELSE => DW_CFA_def_cfa
577 //
578 // SRC: VirtualFP AND
579 // DST: Register => DW_CFA_def_cfa_register
580 //
581 // ELSE
582 // OFFSET < 0 => DW_CFA_offset_extended_sf
583 // REG < 64 => DW_CFA_offset + Reg
584 // ELSE => DW_CFA_offset_extended
585
586 uint64_t NumBytes = 0;
587 int stackGrowth = -SlotSize;
588
589 if (HasFP) {
590 // Calculate required stack adjustment.
591 uint64_t FrameSize = StackSize - SlotSize;
592 // If required, include space for extra hidden slot for stashing base pointer.
593 if (X86FI->getRestoreBasePointer())
594 FrameSize += SlotSize;
595 if (RegInfo->needsStackRealignment(MF)) {
596 // Callee-saved registers are pushed on stack before the stack
597 // is realigned.
598 FrameSize -= X86FI->getCalleeSavedFrameSize();
599 NumBytes = (FrameSize + MaxAlign - 1) / MaxAlign * MaxAlign;
600 } else {
601 NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize();
602 }
603
604 // Get the offset of the stack slot for the EBP register, which is
605 // guaranteed to be the last slot by processFunctionBeforeFrameFinalized.
606 // Update the frame offset adjustment.
607 MFI->setOffsetAdjustment(-NumBytes);
608
609 // Save EBP/RBP into the appropriate stack slot.
610 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
611 .addReg(MachineFramePtr, RegState::Kill)
612 .setMIFlag(MachineInstr::FrameSetup);
613
614 if (NeedsDwarfCFI) {
615 // Mark the place where EBP/RBP was saved.
616 // Define the current CFA rule to use the provided offset.
617 assert(StackSize);
618 unsigned CFIIndex = MMI.addFrameInst(
619 MCCFIInstruction::createDefCfaOffset(nullptr, 2 * stackGrowth));
620 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
621 .addCFIIndex(CFIIndex);
622
623 // Change the rule for the FramePtr to be an "offset" rule.
624 unsigned DwarfFramePtr = RegInfo->getDwarfRegNum(MachineFramePtr, true);
625 CFIIndex = MMI.addFrameInst(
626 MCCFIInstruction::createOffset(nullptr,
627 DwarfFramePtr, 2 * stackGrowth));
628 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
629 .addCFIIndex(CFIIndex);
630 }
631
632 if (NeedsWinEH) {
633 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
634 .addImm(FramePtr)
635 .setMIFlag(MachineInstr::FrameSetup);
636 }
637
638 // Update EBP with the new base value.
639 BuildMI(MBB, MBBI, DL,
640 TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), FramePtr)
641 .addReg(StackPtr)
642 .setMIFlag(MachineInstr::FrameSetup);
643
644 if (NeedsDwarfCFI) {
645 // Mark effective beginning of when frame pointer becomes valid.
646 // Define the current CFA to use the EBP/RBP register.
647 unsigned DwarfFramePtr = RegInfo->getDwarfRegNum(MachineFramePtr, true);
648 unsigned CFIIndex = MMI.addFrameInst(
649 MCCFIInstruction::createDefCfaRegister(nullptr, DwarfFramePtr));
650 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
651 .addCFIIndex(CFIIndex);
652 }
653
654 // Mark the FramePtr as live-in in every block.
655 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
656 I->addLiveIn(MachineFramePtr);
657 } else {
658 NumBytes = StackSize - X86FI->getCalleeSavedFrameSize();
659 }
660
661 // Skip the callee-saved push instructions.
662 bool PushedRegs = false;
663 int StackOffset = 2 * stackGrowth;
664
665 while (MBBI != MBB.end() &&
666 (MBBI->getOpcode() == X86::PUSH32r ||
667 MBBI->getOpcode() == X86::PUSH64r)) {
668 PushedRegs = true;
669 unsigned Reg = MBBI->getOperand(0).getReg();
670 ++MBBI;
671
672 if (!HasFP && NeedsDwarfCFI) {
673 // Mark callee-saved push instruction.
674 // Define the current CFA rule to use the provided offset.
675 assert(StackSize);
676 unsigned CFIIndex = MMI.addFrameInst(
677 MCCFIInstruction::createDefCfaOffset(nullptr, StackOffset));
678 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
679 .addCFIIndex(CFIIndex);
680 StackOffset += stackGrowth;
681 }
682
683 if (NeedsWinEH) {
684 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)).addImm(Reg).setMIFlag(
685 MachineInstr::FrameSetup);
686 }
687 }
688
689 // Realign stack after we pushed callee-saved registers (so that we'll be
690 // able to calculate their offsets from the frame pointer).
691 if (RegInfo->needsStackRealignment(MF)) {
692 assert(HasFP && "There should be a frame pointer if stack is realigned.");
693 uint64_t Val = -MaxAlign;
694 MachineInstr *MI =
695 BuildMI(MBB, MBBI, DL,
696 TII.get(getANDriOpcode(Uses64BitFramePtr, Val)), StackPtr)
697 .addReg(StackPtr)
698 .addImm(Val)
699 .setMIFlag(MachineInstr::FrameSetup);
700
701 // The EFLAGS implicit def is dead.
702 MI->getOperand(3).setIsDead();
703 }
704
705 // If there is an SUB32ri of ESP immediately before this instruction, merge
706 // the two. This can be the case when tail call elimination is enabled and
707 // the callee has more arguments then the caller.
708 NumBytes -= mergeSPUpdates(MBB, MBBI, StackPtr, true);
709
710 // If there is an ADD32ri or SUB32ri of ESP immediately after this
711 // instruction, merge the two instructions.
712 mergeSPUpdatesDown(MBB, MBBI, StackPtr, &NumBytes);
713
714 // Adjust stack pointer: ESP -= numbytes.
715
716 // Windows and cygwin/mingw require a prologue helper routine when allocating
717 // more than 4K bytes on the stack. Windows uses __chkstk and cygwin/mingw
718 // uses __alloca. __alloca and the 32-bit version of __chkstk will probe the
719 // stack and adjust the stack pointer in one go. The 64-bit version of
720 // __chkstk is only responsible for probing the stack. The 64-bit prologue is
721 // responsible for adjusting the stack pointer. Touching the stack at 4K
722 // increments is necessary to ensure that the guard pages used by the OS
723 // virtual memory manager are allocated in correct sequence.
724 if (NumBytes >= StackProbeSize && UseStackProbe) {
725 const char *StackProbeSymbol;
726 unsigned CallOp;
727
728 getStackProbeFunction(STI, CallOp, StackProbeSymbol);
729
730 // Check whether EAX is livein for this function.
731 bool isEAXAlive = isEAXLiveIn(MF);
732
733 if (isEAXAlive) {
734 // Sanity check that EAX is not livein for this function.
735 // It should not be, so throw an assert.
736 assert(!Is64Bit && "EAX is livein in x64 case!");
737
738 // Save EAX
739 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r))
740 .addReg(X86::EAX, RegState::Kill)
741 .setMIFlag(MachineInstr::FrameSetup);
742 }
743
744 if (Is64Bit) {
745 // Handle the 64-bit Windows ABI case where we need to call __chkstk.
746 // Function prologue is responsible for adjusting the stack pointer.
747 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX)
748 .addImm(NumBytes)
749 .setMIFlag(MachineInstr::FrameSetup);
750 } else {
751 // Allocate NumBytes-4 bytes on stack in case of isEAXAlive.
752 // We'll also use 4 already allocated bytes for EAX.
753 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
754 .addImm(isEAXAlive ? NumBytes - 4 : NumBytes)
755 .setMIFlag(MachineInstr::FrameSetup);
756 }
757
758 BuildMI(MBB, MBBI, DL,
759 TII.get(CallOp))
760 .addExternalSymbol(StackProbeSymbol)
761 .addReg(StackPtr, RegState::Define | RegState::Implicit)
762 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit)
763 .setMIFlag(MachineInstr::FrameSetup);
764
765 if (Is64Bit) {
766 // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp
767 // themself. It also does not clobber %rax so we can reuse it when
768 // adjusting %rsp.
769 BuildMI(MBB, MBBI, DL, TII.get(X86::SUB64rr), StackPtr)
770 .addReg(StackPtr)
771 .addReg(X86::RAX)
772 .setMIFlag(MachineInstr::FrameSetup);
773 }
774 if (isEAXAlive) {
775 // Restore EAX
776 MachineInstr *MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm),
777 X86::EAX),
778 StackPtr, false, NumBytes - 4);
779 MI->setFlag(MachineInstr::FrameSetup);
780 MBB.insert(MBBI, MI);
781 }
782 } else if (NumBytes) {
783 emitSPUpdate(MBB, MBBI, StackPtr, -(int64_t)NumBytes, Is64Bit, Uses64BitFramePtr,
784 UseLEA, TII, *RegInfo);
785 }
786
787 int SEHFrameOffset = 0;
788 if (NeedsWinEH) {
789 if (HasFP) {
790 // We need to set frame base offset low enough such that all saved
791 // register offsets would be positive relative to it, but we can't
792 // just use NumBytes, because .seh_setframe offset must be <=240.
793 // So we pretend to have only allocated enough space to spill the
794 // non-volatile registers.
795 // We don't care about the rest of stack allocation, because unwinder
796 // will restore SP to (BP - SEHFrameOffset)
797 for (const CalleeSavedInfo &Info : MFI->getCalleeSavedInfo()) {
798 int offset = MFI->getObjectOffset(Info.getFrameIdx());
799 SEHFrameOffset = std::max(SEHFrameOffset, std::abs(offset));
800 }
801 SEHFrameOffset += SEHFrameOffset % 16; // ensure alignmant
802
803 // This only needs to account for XMM spill slots, GPR slots
804 // are covered by the .seh_pushreg's emitted above.
805 unsigned Size = SEHFrameOffset - X86FI->getCalleeSavedFrameSize();
806 if (Size) {
807 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc))
808 .addImm(Size)
809 .setMIFlag(MachineInstr::FrameSetup);
810 }
811
812 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
813 .addImm(FramePtr)
814 .addImm(SEHFrameOffset)
815 .setMIFlag(MachineInstr::FrameSetup);
816 } else {
817 // SP will be the base register for restoring XMMs
818 if (NumBytes) {
819 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc))
820 .addImm(NumBytes)
821 .setMIFlag(MachineInstr::FrameSetup);
822 }
823 }
824 }
825
826 // Skip the rest of register spilling code
827 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
828 ++MBBI;
829
830 // Emit SEH info for non-GPRs
831 if (NeedsWinEH) {
832 for (const CalleeSavedInfo &Info : MFI->getCalleeSavedInfo()) {
833 unsigned Reg = Info.getReg();
834 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
835 continue;
836 assert(X86::FR64RegClass.contains(Reg) && "Unexpected register class");
837
838 int Offset = getFrameIndexOffset(MF, Info.getFrameIdx());
839 Offset += SEHFrameOffset;
840
841 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM))
842 .addImm(Reg)
843 .addImm(Offset)
844 .setMIFlag(MachineInstr::FrameSetup);
845 }
846
847 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue))
848 .setMIFlag(MachineInstr::FrameSetup);
849 }
850
851 // If we need a base pointer, set it up here. It's whatever the value
852 // of the stack pointer is at this point. Any variable size objects
853 // will be allocated after this, so we can still use the base pointer
854 // to reference locals.
855 if (RegInfo->hasBasePointer(MF)) {
856 // Update the base pointer with the current stack pointer.
857 unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr;
858 BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr)
859 .addReg(StackPtr)
860 .setMIFlag(MachineInstr::FrameSetup);
861 if (X86FI->getRestoreBasePointer()) {
862 // Stash value of base pointer. Saving RSP instead of EBP shortens dependence chain.
863 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
864 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)),
865 FramePtr, true, X86FI->getRestoreBasePointerOffset())
866 .addReg(StackPtr)
867 .setMIFlag(MachineInstr::FrameSetup);
868 }
869 }
870
871 if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) {
872 // Mark end of stack pointer adjustment.
873 if (!HasFP && NumBytes) {
874 // Define the current CFA rule to use the provided offset.
875 assert(StackSize);
876 unsigned CFIIndex = MMI.addFrameInst(
877 MCCFIInstruction::createDefCfaOffset(nullptr,
878 -StackSize + stackGrowth));
879
880 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
881 .addCFIIndex(CFIIndex);
882 }
883
884 // Emit DWARF info specifying the offsets of the callee-saved registers.
885 if (PushedRegs)
886 emitCalleeSavedFrameMoves(MBB, MBBI, DL);
887 }
888 }
889
890 void X86FrameLowering::emitEpilogue(MachineFunction &MF,
891 MachineBasicBlock &MBB) const {
892 const MachineFrameInfo *MFI = MF.getFrameInfo();
893 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
894 const X86RegisterInfo *RegInfo =
895 static_cast<const X86RegisterInfo *>(MF.getSubtarget().getRegisterInfo());
896 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
897 MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
898 assert(MBBI != MBB.end() && "Returning block has no instructions");
899 unsigned RetOpcode = MBBI->getOpcode();
900 DebugLoc DL = MBBI->getDebugLoc();
901 const X86Subtarget &STI = MF.getTarget().getSubtarget<X86Subtarget>();
902 bool Is64Bit = STI.is64Bit();
903 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
904 const bool Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64();
905 const bool Is64BitILP32 = STI.isTarget64BitILP32();
906 bool UseLEA = STI.useLeaForSP();
907 unsigned StackAlign = getStackAlignment();
908 unsigned SlotSize = RegInfo->getSlotSize();
909 unsigned FramePtr = RegInfo->getFrameRegister(MF);
910 unsigned MachineFramePtr = Is64BitILP32 ?
911 getX86SubSuperRegister(FramePtr, MVT::i64, false) : FramePtr;
912 unsigned StackPtr = RegInfo->getStackRegister();
913
914 bool IsWinEH = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
915 bool NeedsWinEH = IsWinEH && MF.getFunction()->needsUnwindTableEntry();
916
917 switch (RetOpcode) {
918 default:
919 llvm_unreachable("Can only insert epilog into returning blocks");
920 case X86::RETQ:
921 case X86::RETL:
922 case X86::RETIL:
923 case X86::RETIQ:
924 case X86::TCRETURNdi:
925 case X86::TCRETURNri:
926 case X86::TCRETURNmi:
927 case X86::TCRETURNdi64:
928 case X86::TCRETURNri64:
929 case X86::TCRETURNmi64:
930 case X86::EH_RETURN:
931 case X86::EH_RETURN64:
932 break; // These are ok
933 }
934
935 // Get the number of bytes to allocate from the FrameInfo.
936 uint64_t StackSize = MFI->getStackSize();
937 uint64_t MaxAlign = MFI->getMaxAlignment();
938 unsigned CSSize = X86FI->getCalleeSavedFrameSize();
939 uint64_t NumBytes = 0;
940
941 // If we're forcing a stack realignment we can't rely on just the frame
942 // info, we need to know the ABI stack alignment as well in case we
943 // have a call out. Otherwise just make sure we have some alignment - we'll
944 // go with the minimum.
945 if (ForceStackAlign) {
946 if (MFI->hasCalls())
947 MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
948 else
949 MaxAlign = MaxAlign ? MaxAlign : 4;
950 }
951
952 if (hasFP(MF)) {
953 // Calculate required stack adjustment.
954 uint64_t FrameSize = StackSize - SlotSize;
955 if (RegInfo->needsStackRealignment(MF)) {
956 // Callee-saved registers were pushed on stack before the stack
957 // was realigned.
958 FrameSize -= CSSize;
959 NumBytes = (FrameSize + MaxAlign - 1) / MaxAlign * MaxAlign;
960 } else {
961 NumBytes = FrameSize - CSSize;
962 }
963
964 // Pop EBP.
965 BuildMI(MBB, MBBI, DL,
966 TII.get(Is64Bit ? X86::POP64r : X86::POP32r), MachineFramePtr);
967 } else {
968 NumBytes = StackSize - CSSize;
969 }
970
971 // Skip the callee-saved pop instructions.
972 while (MBBI != MBB.begin()) {
973 MachineBasicBlock::iterator PI = std::prev(MBBI);
974 unsigned Opc = PI->getOpcode();
975
976 if (Opc != X86::POP32r && Opc != X86::POP64r && Opc != X86::DBG_VALUE &&
977 !PI->isTerminator())
978 break;
979
980 --MBBI;
981 }
982 MachineBasicBlock::iterator FirstCSPop = MBBI;
983
984 DL = MBBI->getDebugLoc();
985
986 // If there is an ADD32ri or SUB32ri of ESP immediately before this
987 // instruction, merge the two instructions.
988 if (NumBytes || MFI->hasVarSizedObjects())
989 mergeSPUpdatesUp(MBB, MBBI, StackPtr, &NumBytes);
990
991 // If dynamic alloca is used, then reset esp to point to the last callee-saved
992 // slot before popping them off! Same applies for the case, when stack was
993 // realigned.
994 if (RegInfo->needsStackRealignment(MF) || MFI->hasVarSizedObjects()) {
995 if (RegInfo->needsStackRealignment(MF))
996 MBBI = FirstCSPop;
997 if (CSSize != 0) {
998 unsigned Opc = getLEArOpcode(Uses64BitFramePtr);
999 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr),
1000 FramePtr, false, -CSSize);
1001 --MBBI;
1002 } else {
1003 unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr);
1004 BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
1005 .addReg(FramePtr);
1006 --MBBI;
1007 }
1008 } else if (NumBytes) {
1009 // Adjust stack pointer back: ESP += numbytes.
1010 emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, Uses64BitFramePtr, UseLEA,
1011 TII, *RegInfo);
1012 --MBBI;
1013 }
1014
1015 // Windows unwinder will not invoke function's exception handler if IP is
1016 // either in prologue or in epilogue. This behavior causes a problem when a
1017 // call immediately precedes an epilogue, because the return address points
1018 // into the epilogue. To cope with that, we insert an epilogue marker here,
1019 // then replace it with a 'nop' if it ends up immediately after a CALL in the
1020 // final emitted code.
1021 if (NeedsWinEH)
1022 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue));
1023
1024 // We're returning from function via eh_return.
1025 if (RetOpcode == X86::EH_RETURN || RetOpcode == X86::EH_RETURN64) {
1026 MBBI = MBB.getLastNonDebugInstr();
1027 MachineOperand &DestAddr = MBBI->getOperand(0);
1028 assert(DestAddr.isReg() && "Offset should be in register!");
1029 BuildMI(MBB, MBBI, DL,
1030 TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr),
1031 StackPtr).addReg(DestAddr.getReg());
1032 } else if (RetOpcode == X86::TCRETURNri || RetOpcode == X86::TCRETURNdi ||
1033 RetOpcode == X86::TCRETURNmi ||
1034 RetOpcode == X86::TCRETURNri64 || RetOpcode == X86::TCRETURNdi64 ||
1035 RetOpcode == X86::TCRETURNmi64) {
1036 bool isMem = RetOpcode == X86::TCRETURNmi || RetOpcode == X86::TCRETURNmi64;
1037 // Tail call return: adjust the stack pointer and jump to callee.
1038 MBBI = MBB.getLastNonDebugInstr();
1039 MachineOperand &JumpTarget = MBBI->getOperand(0);
1040 MachineOperand &StackAdjust = MBBI->getOperand(isMem ? 5 : 1);
1041 assert(StackAdjust.isImm() && "Expecting immediate value.");
1042
1043 // Adjust stack pointer.
1044 int StackAdj = StackAdjust.getImm();
1045 int MaxTCDelta = X86FI->getTCReturnAddrDelta();
1046 int Offset = 0;
1047 assert(MaxTCDelta <= 0 && "MaxTCDelta should never be positive");
1048
1049 // Incoporate the retaddr area.
1050 Offset = StackAdj-MaxTCDelta;
1051 assert(Offset >= 0 && "Offset should never be negative");
1052
1053 if (Offset) {
1054 // Check for possible merge with preceding ADD instruction.
1055 Offset += mergeSPUpdates(MBB, MBBI, StackPtr, true);
1056 emitSPUpdate(MBB, MBBI, StackPtr, Offset, Is64Bit, Uses64BitFramePtr,
1057 UseLEA, TII, *RegInfo);
1058 }
1059
1060 // Jump to label or value in register.
1061 if (RetOpcode == X86::TCRETURNdi || RetOpcode == X86::TCRETURNdi64) {
1062 MachineInstrBuilder MIB =
1063 BuildMI(MBB, MBBI, DL, TII.get((RetOpcode == X86::TCRETURNdi)
1064 ? X86::TAILJMPd : X86::TAILJMPd64));
1065 if (JumpTarget.isGlobal())
1066 MIB.addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset(),
1067 JumpTarget.getTargetFlags());
1068 else {
1069 assert(JumpTarget.isSymbol());
1070 MIB.addExternalSymbol(JumpTarget.getSymbolName(),
1071 JumpTarget.getTargetFlags());
1072 }
1073 } else if (RetOpcode == X86::TCRETURNmi || RetOpcode == X86::TCRETURNmi64) {
1074 MachineInstrBuilder MIB =
1075 BuildMI(MBB, MBBI, DL, TII.get((RetOpcode == X86::TCRETURNmi)
1076 ? X86::TAILJMPm : X86::TAILJMPm64));
1077 for (unsigned i = 0; i != 5; ++i)
1078 MIB.addOperand(MBBI->getOperand(i));
1079 } else if (RetOpcode == X86::TCRETURNri64) {
1080 BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr64)).
1081 addReg(JumpTarget.getReg(), RegState::Kill);
1082 } else {
1083 BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr)).
1084 addReg(JumpTarget.getReg(), RegState::Kill);
1085 }
1086
1087 MachineInstr *NewMI = std::prev(MBBI);
1088 NewMI->copyImplicitOps(MF, MBBI);
1089
1090 // Delete the pseudo instruction TCRETURN.
1091 MBB.erase(MBBI);
1092 } else if ((RetOpcode == X86::RETQ || RetOpcode == X86::RETL ||
1093 RetOpcode == X86::RETIQ || RetOpcode == X86::RETIL) &&
1094 (X86FI->getTCReturnAddrDelta() < 0)) {
1095 // Add the return addr area delta back since we are not tail calling.
1096 int delta = -1*X86FI->getTCReturnAddrDelta();
1097 MBBI = MBB.getLastNonDebugInstr();
1098
1099 // Check for possible merge with preceding ADD instruction.
1100 delta += mergeSPUpdates(MBB, MBBI, StackPtr, true);
1101 emitSPUpdate(MBB, MBBI, StackPtr, delta, Is64Bit, Uses64BitFramePtr, UseLEA, TII,
1102 *RegInfo);
1103 }
1104 }
1105
1106 int X86FrameLowering::getFrameIndexOffset(const MachineFunction &MF,
1107 int FI) const {
1108 const X86RegisterInfo *RegInfo =
1109 static_cast<const X86RegisterInfo *>(MF.getSubtarget().getRegisterInfo());
1110 const MachineFrameInfo *MFI = MF.getFrameInfo();
1111 int Offset = MFI->getObjectOffset(FI) - getOffsetOfLocalArea();
1112 uint64_t StackSize = MFI->getStackSize();
1113
1114 if (RegInfo->hasBasePointer(MF)) {
1115 assert (hasFP(MF) && "VLAs and dynamic stack realign, but no FP?!");
1116 if (FI < 0) {
1117 // Skip the saved EBP.
1118 return Offset + RegInfo->getSlotSize();
1119 } else {
1120 assert((-(Offset + StackSize)) % MFI->getObjectAlignment(FI) == 0);
1121 return Offset + StackSize;
1122 }
1123 } else if (RegInfo->needsStackRealignment(MF)) {
1124 if (FI < 0) {
1125 // Skip the saved EBP.
1126 return Offset + RegInfo->getSlotSize();
1127 } else {
1128 assert((-(Offset + StackSize)) % MFI->getObjectAlignment(FI) == 0);
1129 return Offset + StackSize;
1130 }
1131 // FIXME: Support tail calls
1132 } else {
1133 if (!hasFP(MF))
1134 return Offset + StackSize;
1135
1136 // Skip the saved EBP.
1137 Offset += RegInfo->getSlotSize();
1138
1139 // Skip the RETADDR move area
1140 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1141 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1142 if (TailCallReturnAddrDelta < 0)
1143 Offset -= TailCallReturnAddrDelta;
1144 }
1145
1146 return Offset;
1147 }
1148
1149 int X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
1150 unsigned &FrameReg) const {
1151 const X86RegisterInfo *RegInfo =
1152 static_cast<const X86RegisterInfo *>(MF.getSubtarget().getRegisterInfo());
1153 // We can't calculate offset from frame pointer if the stack is realigned,
1154 // so enforce usage of stack/base pointer. The base pointer is used when we
1155 // have dynamic allocas in addition to dynamic realignment.
1156 if (RegInfo->hasBasePointer(MF))
1157 FrameReg = RegInfo->getBaseRegister();
1158 else if (RegInfo->needsStackRealignment(MF))
1159 FrameReg = RegInfo->getStackRegister();
1160 else
1161 FrameReg = RegInfo->getFrameRegister(MF);
1162 return getFrameIndexOffset(MF, FI);
1163 }
1164
1165 // Simplified from getFrameIndexOffset keeping only StackPointer cases
1166 int X86FrameLowering::getFrameIndexOffsetFromSP(const MachineFunction &MF, int FI) const {
1167 const MachineFrameInfo *MFI = MF.getFrameInfo();
1168 // Does not include any dynamic realign.
1169 const uint64_t StackSize = MFI->getStackSize();
1170 {
1171 #ifndef NDEBUG
1172 const X86RegisterInfo *RegInfo =
1173 static_cast<const X86RegisterInfo*>(MF.getSubtarget().getRegisterInfo());
1174 // Note: LLVM arranges the stack as:
1175 // Args > Saved RetPC (<--FP) > CSRs > dynamic alignment (<--BP)
1176 // > "Stack Slots" (<--SP)
1177 // We can always address StackSlots from RSP. We can usually (unless
1178 // needsStackRealignment) address CSRs from RSP, but sometimes need to
1179 // address them from RBP. FixedObjects can be placed anywhere in the stack
1180 // frame depending on their specific requirements (i.e. we can actually
1181 // refer to arguments to the function which are stored in the *callers*
1182 // frame). As a result, THE RESULT OF THIS CALL IS MEANINGLESS FOR CSRs
1183 // AND FixedObjects IFF needsStackRealignment or hasVarSizedObject.
1184
1185 assert(!RegInfo->hasBasePointer(MF) && "we don't handle this case");
1186
1187 // We don't handle tail calls, and shouldn't be seeing them
1188 // either.
1189 int TailCallReturnAddrDelta =
1190 MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta();
1191 assert(!(TailCallReturnAddrDelta < 0) && "we don't handle this case!");
1192 #endif
1193 }
1194
1195 // This is how the math works out:
1196 //
1197 // %rsp grows (i.e. gets lower) left to right. Each box below is
1198 // one word (eight bytes). Obj0 is the stack slot we're trying to
1199 // get to.
1200 //
1201 // ----------------------------------
1202 // | BP | Obj0 | Obj1 | ... | ObjN |
1203 // ----------------------------------
1204 // ^ ^ ^ ^
1205 // A B C E
1206 //
1207 // A is the incoming stack pointer.
1208 // (B - A) is the local area offset (-8 for x86-64) [1]
1209 // (C - A) is the Offset returned by MFI->getObjectOffset for Obj0 [2]
1210 //
1211 // |(E - B)| is the StackSize (absolute value, positive). For a
1212 // stack that grown down, this works out to be (B - E). [3]
1213 //
1214 // E is also the value of %rsp after stack has been set up, and we
1215 // want (C - E) -- the value we can add to %rsp to get to Obj0. Now
1216 // (C - E) == (C - A) - (B - A) + (B - E)
1217 // { Using [1], [2] and [3] above }
1218 // == getObjectOffset - LocalAreaOffset + StackSize
1219 //
1220
1221 // Get the Offset from the StackPointer
1222 int Offset = MFI->getObjectOffset(FI) - getOffsetOfLocalArea();
1223
1224 return Offset + StackSize;
1225 }
1226 // Simplified from getFrameIndexReference keeping only StackPointer cases
1227 int X86FrameLowering::getFrameIndexReferenceFromSP(const MachineFunction &MF, int FI,
1228 unsigned &FrameReg) const {
1229 const X86RegisterInfo *RegInfo =
1230 static_cast<const X86RegisterInfo*>(MF.getSubtarget().getRegisterInfo());
1231
1232 assert(!RegInfo->hasBasePointer(MF) && "we don't handle this case");
1233
1234 FrameReg = RegInfo->getStackRegister();
1235 return getFrameIndexOffsetFromSP(MF, FI);
1236 }
1237
1238 bool X86FrameLowering::assignCalleeSavedSpillSlots(
1239 MachineFunction &MF, const TargetRegisterInfo *TRI,
1240 std::vector<CalleeSavedInfo> &CSI) const {
1241 MachineFrameInfo *MFI = MF.getFrameInfo();
1242 const X86RegisterInfo *RegInfo =
1243 static_cast<const X86RegisterInfo *>(MF.getSubtarget().getRegisterInfo());
1244 unsigned SlotSize = RegInfo->getSlotSize();
1245 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1246
1247 unsigned CalleeSavedFrameSize = 0;
1248 int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta();
1249
1250 if (hasFP(MF)) {
1251 // emitPrologue always spills frame register the first thing.
1252 SpillSlotOffset -= SlotSize;
1253 MFI->CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
1254
1255 // Since emitPrologue and emitEpilogue will handle spilling and restoring of
1256 // the frame register, we can delete it from CSI list and not have to worry
1257 // about avoiding it later.
1258 unsigned FPReg = RegInfo->getFrameRegister(MF);
1259 for (unsigned i = 0; i < CSI.size(); ++i) {
1260 if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) {
1261 CSI.erase(CSI.begin() + i);
1262 break;
1263 }
1264 }
1265 }
1266
1267 // Assign slots for GPRs. It increases frame size.
1268 for (unsigned i = CSI.size(); i != 0; --i) {
1269 unsigned Reg = CSI[i - 1].getReg();
1270
1271 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
1272 continue;
1273
1274 SpillSlotOffset -= SlotSize;
1275 CalleeSavedFrameSize += SlotSize;
1276
1277 int SlotIndex = MFI->CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
1278 CSI[i - 1].setFrameIdx(SlotIndex);
1279 }
1280
1281 X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize);
1282
1283 // Assign slots for XMMs.
1284 for (unsigned i = CSI.size(); i != 0; --i) {
1285 unsigned Reg = CSI[i - 1].getReg();
1286 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
1287 continue;
1288
1289 const TargetRegisterClass *RC = RegInfo->getMinimalPhysRegClass(Reg);
1290 // ensure alignment
1291 SpillSlotOffset -= std::abs(SpillSlotOffset) % RC->getAlignment();
1292 // spill into slot
1293 SpillSlotOffset -= RC->getSize();
1294 int SlotIndex =
1295 MFI->CreateFixedSpillStackObject(RC->getSize(), SpillSlotOffset);
1296 CSI[i - 1].setFrameIdx(SlotIndex);
1297 MFI->ensureMaxAlignment(RC->getAlignment());
1298 }
1299
1300 return true;
1301 }
1302
1303 bool X86FrameLowering::spillCalleeSavedRegisters(
1304 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
1305 const std::vector<CalleeSavedInfo> &CSI,
1306 const TargetRegisterInfo *TRI) const {
1307 DebugLoc DL = MBB.findDebugLoc(MI);
1308
1309 MachineFunction &MF = *MBB.getParent();
1310 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1311 const X86Subtarget &STI = MF.getTarget().getSubtarget<X86Subtarget>();
1312
1313 // Push GPRs. It increases frame size.
1314 unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r;
1315 for (unsigned i = CSI.size(); i != 0; --i) {
1316 unsigned Reg = CSI[i - 1].getReg();
1317
1318 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
1319 continue;
1320 // Add the callee-saved register as live-in. It's killed at the spill.
1321 MBB.addLiveIn(Reg);
1322
1323 BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, RegState::Kill)
1324 .setMIFlag(MachineInstr::FrameSetup);
1325 }
1326
1327 // Make XMM regs spilled. X86 does not have ability of push/pop XMM.
1328 // It can be done by spilling XMMs to stack frame.
1329 for (unsigned i = CSI.size(); i != 0; --i) {
1330 unsigned Reg = CSI[i-1].getReg();
1331 if (X86::GR64RegClass.contains(Reg) ||
1332 X86::GR32RegClass.contains(Reg))
1333 continue;
1334 // Add the callee-saved register as live-in. It's killed at the spill.
1335 MBB.addLiveIn(Reg);
1336 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
1337
1338 TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i - 1].getFrameIdx(), RC,
1339 TRI);
1340 --MI;
1341 MI->setFlag(MachineInstr::FrameSetup);
1342 ++MI;
1343 }
1344
1345 return true;
1346 }
1347
1348 bool X86FrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
1349 MachineBasicBlock::iterator MI,
1350 const std::vector<CalleeSavedInfo> &CSI,
1351 const TargetRegisterInfo *TRI) const {
1352 if (CSI.empty())
1353 return false;
1354
1355 DebugLoc DL = MBB.findDebugLoc(MI);
1356
1357 MachineFunction &MF = *MBB.getParent();
1358 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1359 const X86Subtarget &STI = MF.getTarget().getSubtarget<X86Subtarget>();
1360
1361 // Reload XMMs from stack frame.
1362 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1363 unsigned Reg = CSI[i].getReg();
1364 if (X86::GR64RegClass.contains(Reg) ||
1365 X86::GR32RegClass.contains(Reg))
1366 continue;
1367
1368 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
1369 TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RC, TRI);
1370 }
1371
1372 // POP GPRs.
1373 unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r;
1374 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1375 unsigned Reg = CSI[i].getReg();
1376 if (!X86::GR64RegClass.contains(Reg) &&
1377 !X86::GR32RegClass.contains(Reg))
1378 continue;
1379
1380 BuildMI(MBB, MI, DL, TII.get(Opc), Reg);
1381 }
1382 return true;
1383 }
1384
1385 void
1386 X86FrameLowering::processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
1387 RegScavenger *RS) const {
1388 MachineFrameInfo *MFI = MF.getFrameInfo();
1389 const X86RegisterInfo *RegInfo =
1390 static_cast<const X86RegisterInfo *>(MF.getSubtarget().getRegisterInfo());
1391 unsigned SlotSize = RegInfo->getSlotSize();
1392
1393 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1394 int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1395
1396 if (TailCallReturnAddrDelta < 0) {
1397 // create RETURNADDR area
1398 // arg
1399 // arg
1400 // RETADDR
1401 // { ...
1402 // RETADDR area
1403 // ...
1404 // }
1405 // [EBP]
1406 MFI->CreateFixedObject(-TailCallReturnAddrDelta,
1407 TailCallReturnAddrDelta - SlotSize, true);
1408 }
1409
1410 // Spill the BasePtr if it's used.
1411 if (RegInfo->hasBasePointer(MF))
1412 MF.getRegInfo().setPhysRegUsed(RegInfo->getBaseRegister());
1413 }
1414
1415 static bool
1416 HasNestArgument(const MachineFunction *MF) {
1417 const Function *F = MF->getFunction();
1418 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
1419 I != E; I++) {
1420 if (I->hasNestAttr())
1421 return true;
1422 }
1423 return false;
1424 }
1425
1426 /// GetScratchRegister - Get a temp register for performing work in the
1427 /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform
1428 /// and the properties of the function either one or two registers will be
1429 /// needed. Set primary to true for the first register, false for the second.
1430 static unsigned
1431 GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) {
1432 CallingConv::ID CallingConvention = MF.getFunction()->getCallingConv();
1433
1434 // Erlang stuff.
1435 if (CallingConvention == CallingConv::HiPE) {
1436 if (Is64Bit)
1437 return Primary ? X86::R14 : X86::R13;
1438 else
1439 return Primary ? X86::EBX : X86::EDI;
1440 }
1441
1442 if (Is64Bit) {
1443 if (IsLP64)
1444 return Primary ? X86::R11 : X86::R12;
1445 else
1446 return Primary ? X86::R11D : X86::R12D;
1447 }
1448
1449 bool IsNested = HasNestArgument(&MF);
1450
1451 if (CallingConvention == CallingConv::X86_FastCall ||
1452 CallingConvention == CallingConv::Fast) {
1453 if (IsNested)
1454 report_fatal_error("Segmented stacks does not support fastcall with "
1455 "nested function.");
1456 return Primary ? X86::EAX : X86::ECX;
1457 }
1458 if (IsNested)
1459 return Primary ? X86::EDX : X86::EAX;
1460 return Primary ? X86::ECX : X86::EAX;
1461 }
1462
1463 // The stack limit in the TCB is set to this many bytes above the actual stack
1464 // limit.
1465 static const uint64_t kSplitStackAvailable = 256;
1466
1467 void
1468 X86FrameLowering::adjustForSegmentedStacks(MachineFunction &MF) const {
1469 MachineBasicBlock &prologueMBB = MF.front();
1470 MachineFrameInfo *MFI = MF.getFrameInfo();
1471 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1472 uint64_t StackSize;
1473 const X86Subtarget &STI = MF.getTarget().getSubtarget<X86Subtarget>();
1474 bool Is64Bit = STI.is64Bit();
1475 const bool IsLP64 = STI.isTarget64BitLP64();
1476 unsigned TlsReg, TlsOffset;
1477 DebugLoc DL;
1478
1479 unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
1480 assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
1481 "Scratch register is live-in");
1482
1483 if (MF.getFunction()->isVarArg())
1484 report_fatal_error("Segmented stacks do not support vararg functions.");
1485 if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() &&
1486 !STI.isTargetWin64() && !STI.isTargetFreeBSD() &&
1487 !STI.isTargetDragonFly())
1488 report_fatal_error("Segmented stacks not supported on this platform.");
1489
1490 // Eventually StackSize will be calculated by a link-time pass; which will
1491 // also decide whether checking code needs to be injected into this particular
1492 // prologue.
1493 StackSize = MFI->getStackSize();
1494
1495 // Do not generate a prologue for functions with a stack of size zero
1496 if (StackSize == 0)
1497 return;
1498
1499 MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock();
1500 MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock();
1501 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1502 bool IsNested = false;
1503
1504 // We need to know if the function has a nest argument only in 64 bit mode.
1505 if (Is64Bit)
1506 IsNested = HasNestArgument(&MF);
1507
1508 // The MOV R10, RAX needs to be in a different block, since the RET we emit in
1509 // allocMBB needs to be last (terminating) instruction.
1510
1511 for (MachineBasicBlock::livein_iterator i = prologueMBB.livein_begin(),
1512 e = prologueMBB.livein_end(); i != e; i++) {
1513 allocMBB->addLiveIn(*i);
1514 checkMBB->addLiveIn(*i);
1515 }
1516
1517 if (IsNested)
1518 allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D);
1519
1520 MF.push_front(allocMBB);
1521 MF.push_front(checkMBB);
1522
1523 // When the frame size is less than 256 we just compare the stack
1524 // boundary directly to the value of the stack pointer, per gcc.
1525 bool CompareStackPointer = StackSize < kSplitStackAvailable;
1526
1527 // Read the limit off the current stacklet off the stack_guard location.
1528 if (Is64Bit) {
1529 if (STI.isTargetLinux()) {
1530 TlsReg = X86::FS;
1531 TlsOffset = IsLP64 ? 0x70 : 0x40;
1532 } else if (STI.isTargetDarwin()) {
1533 TlsReg = X86::GS;
1534 TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90.
1535 } else if (STI.isTargetWin64()) {
1536 TlsReg = X86::GS;
1537 TlsOffset = 0x28; // pvArbitrary, reserved for application use
1538 } else if (STI.isTargetFreeBSD()) {
1539 TlsReg = X86::FS;
1540 TlsOffset = 0x18;
1541 } else if (STI.isTargetDragonFly()) {
1542 TlsReg = X86::FS;
1543 TlsOffset = 0x20; // use tls_tcb.tcb_segstack
1544 } else {
1545 report_fatal_error("Segmented stacks not supported on this platform.");
1546 }
1547
1548 if (CompareStackPointer)
1549 ScratchReg = IsLP64 ? X86::RSP : X86::ESP;
1550 else
1551 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP)
1552 .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
1553
1554 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg)
1555 .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg);
1556 } else {
1557 if (STI.isTargetLinux()) {
1558 TlsReg = X86::GS;
1559 TlsOffset = 0x30;
1560 } else if (STI.isTargetDarwin()) {
1561 TlsReg = X86::GS;
1562 TlsOffset = 0x48 + 90*4;
1563 } else if (STI.isTargetWin32()) {
1564 TlsReg = X86::FS;
1565 TlsOffset = 0x14; // pvArbitrary, reserved for application use
1566 } else if (STI.isTargetDragonFly()) {
1567 TlsReg = X86::FS;
1568 TlsOffset = 0x10; // use tls_tcb.tcb_segstack
1569 } else if (STI.isTargetFreeBSD()) {
1570 report_fatal_error("Segmented stacks not supported on FreeBSD i386.");
1571 } else {
1572 report_fatal_error("Segmented stacks not supported on this platform.");
1573 }
1574
1575 if (CompareStackPointer)
1576 ScratchReg = X86::ESP;
1577 else
1578 BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP)
1579 .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
1580
1581 if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() ||
1582 STI.isTargetDragonFly()) {
1583 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg)
1584 .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg);
1585 } else if (STI.isTargetDarwin()) {
1586
1587 // TlsOffset doesn't fit into a mod r/m byte so we need an extra register.
1588 unsigned ScratchReg2;
1589 bool SaveScratch2;
1590 if (CompareStackPointer) {
1591 // The primary scratch register is available for holding the TLS offset.
1592 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true);
1593 SaveScratch2 = false;
1594 } else {
1595 // Need to use a second register to hold the TLS offset
1596 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false);
1597
1598 // Unfortunately, with fastcc the second scratch register may hold an
1599 // argument.
1600 SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2);
1601 }
1602
1603 // If Scratch2 is live-in then it needs to be saved.
1604 assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) &&
1605 "Scratch register is live-in and not saved");
1606
1607 if (SaveScratch2)
1608 BuildMI(checkMBB, DL, TII.get(X86::PUSH32r))
1609 .addReg(ScratchReg2, RegState::Kill);
1610
1611 BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2)
1612 .addImm(TlsOffset);
1613 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm))
1614 .addReg(ScratchReg)
1615 .addReg(ScratchReg2).addImm(1).addReg(0)
1616 .addImm(0)
1617 .addReg(TlsReg);
1618
1619 if (SaveScratch2)
1620 BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2);
1621 }
1622 }
1623
1624 // This jump is taken if SP >= (Stacklet Limit + Stack Space required).
1625 // It jumps to normal execution of the function body.
1626 BuildMI(checkMBB, DL, TII.get(X86::JA_1)).addMBB(&prologueMBB);
1627
1628 // On 32 bit we first push the arguments size and then the frame size. On 64
1629 // bit, we pass the stack frame size in r10 and the argument size in r11.
1630 if (Is64Bit) {
1631 // Functions with nested arguments use R10, so it needs to be saved across
1632 // the call to _morestack
1633
1634 const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX;
1635 const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D;
1636 const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D;
1637 const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr;
1638 const unsigned MOVri = IsLP64 ? X86::MOV64ri : X86::MOV32ri;
1639
1640 if (IsNested)
1641 BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10);
1642
1643 BuildMI(allocMBB, DL, TII.get(MOVri), Reg10)
1644 .addImm(StackSize);
1645 BuildMI(allocMBB, DL, TII.get(MOVri), Reg11)
1646 .addImm(X86FI->getArgumentStackSize());
1647 MF.getRegInfo().setPhysRegUsed(Reg10);
1648 MF.getRegInfo().setPhysRegUsed(Reg11);
1649 } else {
1650 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
1651 .addImm(X86FI->getArgumentStackSize());
1652 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
1653 .addImm(StackSize);
1654 }
1655
1656 // __morestack is in libgcc
1657 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
1658 // Under the large code model, we cannot assume that __morestack lives
1659 // within 2^31 bytes of the call site, so we cannot use pc-relative
1660 // addressing. We cannot perform the call via a temporary register,
1661 // as the rax register may be used to store the static chain, and all
1662 // other suitable registers may be either callee-save or used for
1663 // parameter passing. We cannot use the stack at this point either
1664 // because __morestack manipulates the stack directly.
1665 //
1666 // To avoid these issues, perform an indirect call via a read-only memory
1667 // location containing the address.
1668 //
1669 // This solution is not perfect, as it assumes that the .rodata section
1670 // is laid out within 2^31 bytes of each function body, but this seems
1671 // to be sufficient for JIT.
1672 BuildMI(allocMBB, DL, TII.get(X86::CALL64m))
1673 .addReg(X86::RIP)
1674 .addImm(0)
1675 .addReg(0)
1676 .addExternalSymbol("__morestack_addr")
1677 .addReg(0);
1678 MF.getMMI().setUsesMorestackAddr(true);
1679 } else {
1680 if (Is64Bit)
1681 BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32))
1682 .addExternalSymbol("__morestack");
1683 else
1684 BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32))
1685 .addExternalSymbol("__morestack");
1686 }
1687
1688 if (IsNested)
1689 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10));
1690 else
1691 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET));
1692
1693 allocMBB->addSuccessor(&prologueMBB);
1694
1695 checkMBB->addSuccessor(allocMBB);
1696 checkMBB->addSuccessor(&prologueMBB);
1697
1698 #ifdef XDEBUG
1699 MF.verify();
1700 #endif
1701 }
1702
1703 /// Erlang programs may need a special prologue to handle the stack size they
1704 /// might need at runtime. That is because Erlang/OTP does not implement a C
1705 /// stack but uses a custom implementation of hybrid stack/heap architecture.
1706 /// (for more information see Eric Stenman's Ph.D. thesis:
1707 /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf)
1708 ///
1709 /// CheckStack:
1710 /// temp0 = sp - MaxStack
1711 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
1712 /// OldStart:
1713 /// ...
1714 /// IncStack:
1715 /// call inc_stack # doubles the stack space
1716 /// temp0 = sp - MaxStack
1717 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
1718 void X86FrameLowering::adjustForHiPEPrologue(MachineFunction &MF) const {
1719 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1720 MachineFrameInfo *MFI = MF.getFrameInfo();
1721 const unsigned SlotSize =
1722 static_cast<const X86RegisterInfo *>(MF.getSubtarget().getRegisterInfo())
1723 ->getSlotSize();
1724 const X86Subtarget &STI = MF.getTarget().getSubtarget<X86Subtarget>();
1725 const bool Is64Bit = STI.is64Bit();
1726 const bool IsLP64 = STI.isTarget64BitLP64();
1727 DebugLoc DL;
1728 // HiPE-specific values
1729 const unsigned HipeLeafWords = 24;
1730 const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5;
1731 const unsigned Guaranteed = HipeLeafWords * SlotSize;
1732 unsigned CallerStkArity = MF.getFunction()->arg_size() > CCRegisteredArgs ?
1733 MF.getFunction()->arg_size() - CCRegisteredArgs : 0;
1734 unsigned MaxStack = MFI->getStackSize() + CallerStkArity*SlotSize + SlotSize;
1735
1736 assert(STI.isTargetLinux() &&
1737 "HiPE prologue is only supported on Linux operating systems.");
1738
1739 // Compute the largest caller's frame that is needed to fit the callees'
1740 // frames. This 'MaxStack' is computed from:
1741 //
1742 // a) the fixed frame size, which is the space needed for all spilled temps,
1743 // b) outgoing on-stack parameter areas, and
1744 // c) the minimum stack space this function needs to make available for the
1745 // functions it calls (a tunable ABI property).
1746 if (MFI->hasCalls()) {
1747 unsigned MoreStackForCalls = 0;
1748
1749 for (MachineFunction::iterator MBBI = MF.begin(), MBBE = MF.end();
1750 MBBI != MBBE; ++MBBI)
1751 for (MachineBasicBlock::iterator MI = MBBI->begin(), ME = MBBI->end();
1752 MI != ME; ++MI) {
1753 if (!MI->isCall())
1754 continue;
1755
1756 // Get callee operand.
1757 const MachineOperand &MO = MI->getOperand(0);
1758
1759 // Only take account of global function calls (no closures etc.).
1760 if (!MO.isGlobal())
1761 continue;
1762
1763 const Function *F = dyn_cast<Function>(MO.getGlobal());
1764 if (!F)
1765 continue;
1766
1767 // Do not update 'MaxStack' for primitive and built-in functions
1768 // (encoded with names either starting with "erlang."/"bif_" or not
1769 // having a ".", such as a simple <Module>.<Function>.<Arity>, or an
1770 // "_", such as the BIF "suspend_0") as they are executed on another
1771 // stack.
1772 if (F->getName().find("erlang.") != StringRef::npos ||
1773 F->getName().find("bif_") != StringRef::npos ||
1774 F->getName().find_first_of("._") == StringRef::npos)
1775 continue;
1776
1777 unsigned CalleeStkArity =
1778 F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0;
1779 if (HipeLeafWords - 1 > CalleeStkArity)
1780 MoreStackForCalls = std::max(MoreStackForCalls,
1781 (HipeLeafWords - 1 - CalleeStkArity) * SlotSize);
1782 }
1783 MaxStack += MoreStackForCalls;
1784 }
1785
1786 // If the stack frame needed is larger than the guaranteed then runtime checks
1787 // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue.
1788 if (MaxStack > Guaranteed) {
1789 MachineBasicBlock &prologueMBB = MF.front();
1790 MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock();
1791 MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock();
1792
1793 for (MachineBasicBlock::livein_iterator I = prologueMBB.livein_begin(),
1794 E = prologueMBB.livein_end(); I != E; I++) {
1795 stackCheckMBB->addLiveIn(*I);
1796 incStackMBB->addLiveIn(*I);
1797 }
1798
1799 MF.push_front(incStackMBB);
1800 MF.push_front(stackCheckMBB);
1801
1802 unsigned ScratchReg, SPReg, PReg, SPLimitOffset;
1803 unsigned LEAop, CMPop, CALLop;
1804 if (Is64Bit) {
1805 SPReg = X86::RSP;
1806 PReg = X86::RBP;
1807 LEAop = X86::LEA64r;
1808 CMPop = X86::CMP64rm;
1809 CALLop = X86::CALL64pcrel32;
1810 SPLimitOffset = 0x90;
1811 } else {
1812 SPReg = X86::ESP;
1813 PReg = X86::EBP;
1814 LEAop = X86::LEA32r;
1815 CMPop = X86::CMP32rm;
1816 CALLop = X86::CALLpcrel32;
1817 SPLimitOffset = 0x4c;
1818 }
1819
1820 ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
1821 assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
1822 "HiPE prologue scratch register is live-in");
1823
1824 // Create new MBB for StackCheck:
1825 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg),
1826 SPReg, false, -MaxStack);
1827 // SPLimitOffset is in a fixed heap location (pointed by BP).
1828 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop))
1829 .addReg(ScratchReg), PReg, false, SPLimitOffset);
1830 BuildMI(stackCheckMBB, DL, TII.get(X86::JAE_1)).addMBB(&prologueMBB);
1831
1832 // Create new MBB for IncStack:
1833 BuildMI(incStackMBB, DL, TII.get(CALLop)).
1834 addExternalSymbol("inc_stack_0");
1835 addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg),
1836 SPReg, false, -MaxStack);
1837 addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop))
1838 .addReg(ScratchReg), PReg, false, SPLimitOffset);
1839 BuildMI(incStackMBB, DL, TII.get(X86::JLE_1)).addMBB(incStackMBB);
1840
1841 stackCheckMBB->addSuccessor(&prologueMBB, 99);
1842 stackCheckMBB->addSuccessor(incStackMBB, 1);
1843 incStackMBB->addSuccessor(&prologueMBB, 99);
1844 incStackMBB->addSuccessor(incStackMBB, 1);
1845 }
1846 #ifdef XDEBUG
1847 MF.verify();
1848 #endif
1849 }
1850
1851 bool X86FrameLowering::
1852 convertArgMovsToPushes(MachineFunction &MF, MachineBasicBlock &MBB,
1853 MachineBasicBlock::iterator I, uint64_t Amount) const {
1854 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1855 const X86RegisterInfo &RegInfo = *static_cast<const X86RegisterInfo *>(
1856 MF.getSubtarget().getRegisterInfo());
1857 unsigned StackPtr = RegInfo.getStackRegister();
1858
1859 // Scan the call setup sequence for the pattern we're looking for.
1860 // We only handle a simple case now - a sequence of MOV32mi or MOV32mr
1861 // instructions, that push a sequence of 32-bit values onto the stack, with
1862 // no gaps.
1863 std::map<int64_t, MachineBasicBlock::iterator> MovMap;
1864 do {
1865 int Opcode = I->getOpcode();
1866 if (Opcode != X86::MOV32mi && Opcode != X86::MOV32mr)
1867 break;
1868
1869 // We only want movs of the form:
1870 // movl imm/r32, k(%ecx)
1871 // If we run into something else, bail
1872 // Note that AddrBaseReg may, counterintuitively, not be a register...
1873 if (!I->getOperand(X86::AddrBaseReg).isReg() ||
1874 (I->getOperand(X86::AddrBaseReg).getReg() != StackPtr) ||
1875 !I->getOperand(X86::AddrScaleAmt).isImm() ||
1876 (I->getOperand(X86::AddrScaleAmt).getImm() != 1) ||
1877 (I->getOperand(X86::AddrIndexReg).getReg() != X86::NoRegister) ||
1878 (I->getOperand(X86::AddrSegmentReg).getReg() != X86::NoRegister) ||
1879 !I->getOperand(X86::AddrDisp).isImm())
1880 return false;
1881
1882 int64_t StackDisp = I->getOperand(X86::AddrDisp).getImm();
1883
1884 // We don't want to consider the unaligned case.
1885 if (StackDisp % 4)
1886 return false;
1887
1888 // If the same stack slot is being filled twice, something's fishy.
1889 if (!MovMap.insert(std::pair<int64_t, MachineInstr*>(StackDisp, I)).second)
1890 return false;
1891
1892 ++I;
1893 } while (I != MBB.end());
1894
1895 // We now expect the end of the sequence - a call and a stack adjust.
1896 if (I == MBB.end())
1897 return false;
1898 if (!I->isCall())
1899 return false;
1900 MachineBasicBlock::iterator Call = I;
1901 if ((++I)->getOpcode() != TII.getCallFrameDestroyOpcode())
1902 return false;
1903
1904 // Now, go through the map, and see that we don't have any gaps,
1905 // but only a series of 32-bit MOVs.
1906 // Since std::map provides ordered iteration, the original order
1907 // of the MOVs doesn't matter.
1908 int64_t ExpectedDist = 0;
1909 for (auto MMI = MovMap.begin(), MME = MovMap.end(); MMI != MME;
1910 ++MMI, ExpectedDist += 4)
1911 if (MMI->first != ExpectedDist)
1912 return false;
1913
1914 // Ok, everything looks fine. Do the transformation.
1915 DebugLoc DL = I->getDebugLoc();
1916
1917 // It's possible the original stack adjustment amount was larger than
1918 // that done by the pushes. If so, we still need a SUB.
1919 Amount -= ExpectedDist;
1920 if (Amount) {
1921 MachineInstr* Sub = BuildMI(MBB, Call, DL,
1922 TII.get(getSUBriOpcode(false, Amount)), StackPtr)
1923 .addReg(StackPtr).addImm(Amount);
1924 Sub->getOperand(3).setIsDead();
1925 }
1926
1927 // Now, iterate through the map in reverse order, and replace the movs
1928 // with pushes. MOVmi/MOVmr doesn't have any defs, so need to replace uses.
1929 for (auto MMI = MovMap.rbegin(), MME = MovMap.rend(); MMI != MME; ++MMI) {
1930 MachineBasicBlock::iterator MOV = MMI->second;
1931 MachineOperand PushOp = MOV->getOperand(X86::AddrNumOperands);
1932
1933 // Replace MOVmr with PUSH32r, and MOVmi with PUSHi of appropriate size
1934 int PushOpcode = X86::PUSH32r;
1935 if (MOV->getOpcode() == X86::MOV32mi)
1936 PushOpcode = getPUSHiOpcode(false, PushOp);
1937
1938 BuildMI(MBB, Call, DL, TII.get(PushOpcode)).addOperand(PushOp);
1939 MBB.erase(MOV);
1940 }
1941
1942 return true;
1943 }
1944
1945 void X86FrameLowering::
1946 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
1947 MachineBasicBlock::iterator I) const {
1948 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1949 const X86RegisterInfo &RegInfo = *static_cast<const X86RegisterInfo *>(
1950 MF.getSubtarget().getRegisterInfo());
1951 unsigned StackPtr = RegInfo.getStackRegister();
1952 bool reserveCallFrame = hasReservedCallFrame(MF);
1953 int Opcode = I->getOpcode();
1954 bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode();
1955 const X86Subtarget &STI = MF.getTarget().getSubtarget<X86Subtarget>();
1956 bool IsLP64 = STI.isTarget64BitLP64();
1957 DebugLoc DL = I->getDebugLoc();
1958 uint64_t Amount = !reserveCallFrame ? I->getOperand(0).getImm() : 0;
1959 uint64_t CalleeAmt = isDestroy ? I->getOperand(1).getImm() : 0;
1960 I = MBB.erase(I);
1961
1962 if (!reserveCallFrame) {
1963 // If the stack pointer can be changed after prologue, turn the
1964 // adjcallstackup instruction into a 'sub ESP, <amt>' and the
1965 // adjcallstackdown instruction into 'add ESP, <amt>'
1966 if (Amount == 0)
1967 return;
1968
1969 // We need to keep the stack aligned properly. To do this, we round the
1970 // amount of space needed for the outgoing arguments up to the next
1971 // alignment boundary.
1972 unsigned StackAlign = MF.getTarget()
1973 .getSubtargetImpl()
1974 ->getFrameLowering()
1975 ->getStackAlignment();
1976 Amount = (Amount + StackAlign - 1) / StackAlign * StackAlign;
1977
1978 MachineInstr *New = nullptr;
1979 if (Opcode == TII.getCallFrameSetupOpcode()) {
1980 // Try to convert movs to the stack into pushes.
1981 // We currently only look for a pattern that appears in 32-bit
1982 // calling conventions.
1983 if (!IsLP64 && convertArgMovsToPushes(MF, MBB, I, Amount))
1984 return;
1985
1986 New = BuildMI(MF, DL, TII.get(getSUBriOpcode(IsLP64, Amount)),
1987 StackPtr)
1988 .addReg(StackPtr)
1989 .addImm(Amount);
1990 } else {
1991 assert(Opcode == TII.getCallFrameDestroyOpcode());
1992
1993 // Factor out the amount the callee already popped.
1994 Amount -= CalleeAmt;
1995
1996 if (Amount) {
1997 unsigned Opc = getADDriOpcode(IsLP64, Amount);
1998 New = BuildMI(MF, DL, TII.get(Opc), StackPtr)
1999 .addReg(StackPtr).addImm(Amount);
2000 }
2001 }
2002
2003 if (New) {
2004 // The EFLAGS implicit def is dead.
2005 New->getOperand(3).setIsDead();
2006
2007 // Replace the pseudo instruction with a new instruction.
2008 MBB.insert(I, New);
2009 }
2010
2011 return;
2012 }
2013
2014 if (Opcode == TII.getCallFrameDestroyOpcode() && CalleeAmt) {
2015 // If we are performing frame pointer elimination and if the callee pops
2016 // something off the stack pointer, add it back. We do this until we have
2017 // more advanced stack pointer tracking ability.
2018 unsigned Opc = getSUBriOpcode(IsLP64, CalleeAmt);
2019 MachineInstr *New = BuildMI(MF, DL, TII.get(Opc), StackPtr)
2020 .addReg(StackPtr).addImm(CalleeAmt);
2021
2022 // The EFLAGS implicit def is dead.
2023 New->getOperand(3).setIsDead();
2024
2025 // We are not tracking the stack pointer adjustment by the callee, so make
2026 // sure we restore the stack pointer immediately after the call, there may
2027 // be spill code inserted between the CALL and ADJCALLSTACKUP instructions.
2028 MachineBasicBlock::iterator B = MBB.begin();
2029 while (I != B && !std::prev(I)->isCall())
2030 --I;
2031 MBB.insert(I, New);
2032 }
2033 }
2034