]> git.proxmox.com Git - rustc.git/blob - src/llvm/lib/Target/X86/X86InstrInfo.h
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / lib / Target / X86 / X86InstrInfo.h
1 //===-- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the X86 implementation of the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_LIB_TARGET_X86_X86INSTRINFO_H
15 #define LLVM_LIB_TARGET_X86_X86INSTRINFO_H
16
17 #include "MCTargetDesc/X86BaseInfo.h"
18 #include "X86RegisterInfo.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/Target/TargetInstrInfo.h"
21
22 #define GET_INSTRINFO_HEADER
23 #include "X86GenInstrInfo.inc"
24
25 namespace llvm {
26 class X86RegisterInfo;
27 class X86Subtarget;
28
29 namespace X86 {
30 // X86 specific condition code. These correspond to X86_*_COND in
31 // X86InstrInfo.td. They must be kept in synch.
32 enum CondCode {
33 COND_A = 0,
34 COND_AE = 1,
35 COND_B = 2,
36 COND_BE = 3,
37 COND_E = 4,
38 COND_G = 5,
39 COND_GE = 6,
40 COND_L = 7,
41 COND_LE = 8,
42 COND_NE = 9,
43 COND_NO = 10,
44 COND_NP = 11,
45 COND_NS = 12,
46 COND_O = 13,
47 COND_P = 14,
48 COND_S = 15,
49 LAST_VALID_COND = COND_S,
50
51 // Artificial condition codes. These are used by AnalyzeBranch
52 // to indicate a block terminated with two conditional branches to
53 // the same location. This occurs in code using FCMP_OEQ or FCMP_UNE,
54 // which can't be represented on x86 with a single condition. These
55 // are never used in MachineInstrs.
56 COND_NE_OR_P,
57 COND_NP_OR_E,
58
59 COND_INVALID
60 };
61
62 // Turn condition code into conditional branch opcode.
63 unsigned GetCondBranchFromCond(CondCode CC);
64
65 /// \brief Return a set opcode for the given condition and whether it has
66 /// a memory operand.
67 unsigned getSETFromCond(CondCode CC, bool HasMemoryOperand = false);
68
69 /// \brief Return a cmov opcode for the given condition, register size in
70 /// bytes, and operand type.
71 unsigned getCMovFromCond(CondCode CC, unsigned RegBytes,
72 bool HasMemoryOperand = false);
73
74 // Turn CMov opcode into condition code.
75 CondCode getCondFromCMovOpc(unsigned Opc);
76
77 /// GetOppositeBranchCondition - Return the inverse of the specified cond,
78 /// e.g. turning COND_E to COND_NE.
79 CondCode GetOppositeBranchCondition(CondCode CC);
80 } // end namespace X86;
81
82
83 /// isGlobalStubReference - Return true if the specified TargetFlag operand is
84 /// a reference to a stub for a global, not the global itself.
85 inline static bool isGlobalStubReference(unsigned char TargetFlag) {
86 switch (TargetFlag) {
87 case X86II::MO_DLLIMPORT: // dllimport stub.
88 case X86II::MO_GOTPCREL: // rip-relative GOT reference.
89 case X86II::MO_GOT: // normal GOT reference.
90 case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Normal $non_lazy_ptr ref.
91 case X86II::MO_DARWIN_NONLAZY: // Normal $non_lazy_ptr ref.
92 case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Hidden $non_lazy_ptr ref.
93 return true;
94 default:
95 return false;
96 }
97 }
98
99 /// isGlobalRelativeToPICBase - Return true if the specified global value
100 /// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg). If this
101 /// is true, the addressing mode has the PIC base register added in (e.g. EBX).
102 inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) {
103 switch (TargetFlag) {
104 case X86II::MO_GOTOFF: // isPICStyleGOT: local global.
105 case X86II::MO_GOT: // isPICStyleGOT: other global.
106 case X86II::MO_PIC_BASE_OFFSET: // Darwin local global.
107 case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Darwin/32 external global.
108 case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Darwin/32 hidden global.
109 case X86II::MO_TLVP: // ??? Pretty sure..
110 return true;
111 default:
112 return false;
113 }
114 }
115
116 inline static bool isScale(const MachineOperand &MO) {
117 return MO.isImm() &&
118 (MO.getImm() == 1 || MO.getImm() == 2 ||
119 MO.getImm() == 4 || MO.getImm() == 8);
120 }
121
122 inline static bool isLeaMem(const MachineInstr *MI, unsigned Op) {
123 if (MI->getOperand(Op).isFI()) return true;
124 return Op+X86::AddrSegmentReg <= MI->getNumOperands() &&
125 MI->getOperand(Op+X86::AddrBaseReg).isReg() &&
126 isScale(MI->getOperand(Op+X86::AddrScaleAmt)) &&
127 MI->getOperand(Op+X86::AddrIndexReg).isReg() &&
128 (MI->getOperand(Op+X86::AddrDisp).isImm() ||
129 MI->getOperand(Op+X86::AddrDisp).isGlobal() ||
130 MI->getOperand(Op+X86::AddrDisp).isCPI() ||
131 MI->getOperand(Op+X86::AddrDisp).isJTI());
132 }
133
134 inline static bool isMem(const MachineInstr *MI, unsigned Op) {
135 if (MI->getOperand(Op).isFI()) return true;
136 return Op+X86::AddrNumOperands <= MI->getNumOperands() &&
137 MI->getOperand(Op+X86::AddrSegmentReg).isReg() &&
138 isLeaMem(MI, Op);
139 }
140
141 class X86InstrInfo final : public X86GenInstrInfo {
142 X86Subtarget &Subtarget;
143 const X86RegisterInfo RI;
144
145 /// RegOp2MemOpTable3Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
146 /// RegOp2MemOpTable2, RegOp2MemOpTable3 - Load / store folding opcode maps.
147 ///
148 typedef DenseMap<unsigned,
149 std::pair<unsigned, unsigned> > RegOp2MemOpTableType;
150 RegOp2MemOpTableType RegOp2MemOpTable2Addr;
151 RegOp2MemOpTableType RegOp2MemOpTable0;
152 RegOp2MemOpTableType RegOp2MemOpTable1;
153 RegOp2MemOpTableType RegOp2MemOpTable2;
154 RegOp2MemOpTableType RegOp2MemOpTable3;
155 RegOp2MemOpTableType RegOp2MemOpTable4;
156
157 /// MemOp2RegOpTable - Load / store unfolding opcode map.
158 ///
159 typedef DenseMap<unsigned,
160 std::pair<unsigned, unsigned> > MemOp2RegOpTableType;
161 MemOp2RegOpTableType MemOp2RegOpTable;
162
163 static void AddTableEntry(RegOp2MemOpTableType &R2MTable,
164 MemOp2RegOpTableType &M2RTable,
165 unsigned RegOp, unsigned MemOp, unsigned Flags);
166
167 virtual void anchor();
168
169 public:
170 explicit X86InstrInfo(X86Subtarget &STI);
171
172 /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
173 /// such, whenever a client has an instance of instruction info, it should
174 /// always be able to get register info as well (through this method).
175 ///
176 const X86RegisterInfo &getRegisterInfo() const { return RI; }
177
178 /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
179 /// extension instruction. That is, it's like a copy where it's legal for the
180 /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
181 /// true, then it's expected the pre-extension value is available as a subreg
182 /// of the result register. This also returns the sub-register index in
183 /// SubIdx.
184 bool isCoalescableExtInstr(const MachineInstr &MI,
185 unsigned &SrcReg, unsigned &DstReg,
186 unsigned &SubIdx) const override;
187
188 unsigned isLoadFromStackSlot(const MachineInstr *MI,
189 int &FrameIndex) const override;
190 /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
191 /// stack locations as well. This uses a heuristic so it isn't
192 /// reliable for correctness.
193 unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
194 int &FrameIndex) const override;
195
196 unsigned isStoreToStackSlot(const MachineInstr *MI,
197 int &FrameIndex) const override;
198 /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
199 /// stack locations as well. This uses a heuristic so it isn't
200 /// reliable for correctness.
201 unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
202 int &FrameIndex) const override;
203
204 bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
205 AliasAnalysis *AA) const override;
206 void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
207 unsigned DestReg, unsigned SubIdx,
208 const MachineInstr *Orig,
209 const TargetRegisterInfo &TRI) const override;
210
211 /// Given an operand within a MachineInstr, insert preceding code to put it
212 /// into the right format for a particular kind of LEA instruction. This may
213 /// involve using an appropriate super-register instead (with an implicit use
214 /// of the original) or creating a new virtual register and inserting COPY
215 /// instructions to get the data into the right class.
216 ///
217 /// Reference parameters are set to indicate how caller should add this
218 /// operand to the LEA instruction.
219 bool classifyLEAReg(MachineInstr *MI, const MachineOperand &Src,
220 unsigned LEAOpcode, bool AllowSP,
221 unsigned &NewSrc, bool &isKill,
222 bool &isUndef, MachineOperand &ImplicitOp) const;
223
224 /// convertToThreeAddress - This method must be implemented by targets that
225 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
226 /// may be able to convert a two-address instruction into a true
227 /// three-address instruction on demand. This allows the X86 target (for
228 /// example) to convert ADD and SHL instructions into LEA instructions if they
229 /// would require register copies due to two-addressness.
230 ///
231 /// This method returns a null pointer if the transformation cannot be
232 /// performed, otherwise it returns the new instruction.
233 ///
234 MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
235 MachineBasicBlock::iterator &MBBI,
236 LiveVariables *LV) const override;
237
238 /// commuteInstruction - We have a few instructions that must be hacked on to
239 /// commute them.
240 ///
241 MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const override;
242
243 bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
244 unsigned &SrcOpIdx2) const override;
245
246 // Branch analysis.
247 bool isUnpredicatedTerminator(const MachineInstr* MI) const override;
248 bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
249 MachineBasicBlock *&FBB,
250 SmallVectorImpl<MachineOperand> &Cond,
251 bool AllowModify) const override;
252 unsigned RemoveBranch(MachineBasicBlock &MBB) const override;
253 unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
254 MachineBasicBlock *FBB,
255 const SmallVectorImpl<MachineOperand> &Cond,
256 DebugLoc DL) const override;
257 bool canInsertSelect(const MachineBasicBlock&,
258 const SmallVectorImpl<MachineOperand> &Cond,
259 unsigned, unsigned, int&, int&, int&) const override;
260 void insertSelect(MachineBasicBlock &MBB,
261 MachineBasicBlock::iterator MI, DebugLoc DL,
262 unsigned DstReg,
263 const SmallVectorImpl<MachineOperand> &Cond,
264 unsigned TrueReg, unsigned FalseReg) const override;
265 void copyPhysReg(MachineBasicBlock &MBB,
266 MachineBasicBlock::iterator MI, DebugLoc DL,
267 unsigned DestReg, unsigned SrcReg,
268 bool KillSrc) const override;
269 void storeRegToStackSlot(MachineBasicBlock &MBB,
270 MachineBasicBlock::iterator MI,
271 unsigned SrcReg, bool isKill, int FrameIndex,
272 const TargetRegisterClass *RC,
273 const TargetRegisterInfo *TRI) const override;
274
275 void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
276 SmallVectorImpl<MachineOperand> &Addr,
277 const TargetRegisterClass *RC,
278 MachineInstr::mmo_iterator MMOBegin,
279 MachineInstr::mmo_iterator MMOEnd,
280 SmallVectorImpl<MachineInstr*> &NewMIs) const;
281
282 void loadRegFromStackSlot(MachineBasicBlock &MBB,
283 MachineBasicBlock::iterator MI,
284 unsigned DestReg, int FrameIndex,
285 const TargetRegisterClass *RC,
286 const TargetRegisterInfo *TRI) const override;
287
288 void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
289 SmallVectorImpl<MachineOperand> &Addr,
290 const TargetRegisterClass *RC,
291 MachineInstr::mmo_iterator MMOBegin,
292 MachineInstr::mmo_iterator MMOEnd,
293 SmallVectorImpl<MachineInstr*> &NewMIs) const;
294
295 bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const override;
296
297 /// foldMemoryOperand - If this target supports it, fold a load or store of
298 /// the specified stack slot into the specified machine instruction for the
299 /// specified operand(s). If this is possible, the target should perform the
300 /// folding and return true, otherwise it should return false. If it folds
301 /// the instruction, it is likely that the MachineInstruction the iterator
302 /// references has been changed.
303 MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
304 MachineInstr* MI,
305 const SmallVectorImpl<unsigned> &Ops,
306 int FrameIndex) const override;
307
308 /// foldMemoryOperand - Same as the previous version except it allows folding
309 /// of any load and store from / to any address, not just from a specific
310 /// stack slot.
311 MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
312 MachineInstr* MI,
313 const SmallVectorImpl<unsigned> &Ops,
314 MachineInstr* LoadMI) const override;
315
316 /// canFoldMemoryOperand - Returns true if the specified load / store is
317 /// folding is possible.
318 bool canFoldMemoryOperand(const MachineInstr*,
319 const SmallVectorImpl<unsigned> &) const override;
320
321 /// unfoldMemoryOperand - Separate a single instruction which folded a load or
322 /// a store or a load and a store into two or more instruction. If this is
323 /// possible, returns true as well as the new instructions by reference.
324 bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
325 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
326 SmallVectorImpl<MachineInstr*> &NewMIs) const override;
327
328 bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
329 SmallVectorImpl<SDNode*> &NewNodes) const override;
330
331 /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
332 /// instruction after load / store are unfolded from an instruction of the
333 /// specified opcode. It returns zero if the specified unfolding is not
334 /// possible. If LoadRegIndex is non-null, it is filled in with the operand
335 /// index of the operand which will hold the register holding the loaded
336 /// value.
337 unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
338 bool UnfoldLoad, bool UnfoldStore,
339 unsigned *LoadRegIndex = nullptr) const override;
340
341 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
342 /// to determine if two loads are loading from the same base address. It
343 /// should only return true if the base pointers are the same and the
344 /// only differences between the two addresses are the offset. It also returns
345 /// the offsets by reference.
346 bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, int64_t &Offset1,
347 int64_t &Offset2) const override;
348
349 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
350 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
351 /// be scheduled togther. On some targets if two loads are loading from
352 /// addresses in the same cache line, it's better if they are scheduled
353 /// together. This function takes two integers that represent the load offsets
354 /// from the common base address. It returns true if it decides it's desirable
355 /// to schedule the two loads together. "NumLoads" is the number of loads that
356 /// have already been scheduled after Load1.
357 bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
358 int64_t Offset1, int64_t Offset2,
359 unsigned NumLoads) const override;
360
361 bool shouldScheduleAdjacent(MachineInstr* First,
362 MachineInstr *Second) const override;
363
364 void getNoopForMachoTarget(MCInst &NopInst) const override;
365
366 bool
367 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const override;
368
369 /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
370 /// instruction that defines the specified register class.
371 bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const override;
372
373 /// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction tha
374 /// would clobber the EFLAGS condition register. Note the result may be
375 /// conservative. If it cannot definitely determine the safety after visiting
376 /// a few instructions in each direction it assumes it's not safe.
377 bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
378 MachineBasicBlock::iterator I) const;
379
380 static bool isX86_64ExtendedReg(const MachineOperand &MO) {
381 if (!MO.isReg()) return false;
382 return X86II::isX86_64ExtendedReg(MO.getReg());
383 }
384
385 /// getGlobalBaseReg - Return a virtual register initialized with the
386 /// the global base register value. Output instructions required to
387 /// initialize the register in the function entry block, if necessary.
388 ///
389 unsigned getGlobalBaseReg(MachineFunction *MF) const;
390
391 std::pair<uint16_t, uint16_t>
392 getExecutionDomain(const MachineInstr *MI) const override;
393
394 void setExecutionDomain(MachineInstr *MI, unsigned Domain) const override;
395
396 unsigned
397 getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
398 const TargetRegisterInfo *TRI) const override;
399 unsigned getUndefRegClearance(const MachineInstr *MI, unsigned &OpNum,
400 const TargetRegisterInfo *TRI) const override;
401 void breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
402 const TargetRegisterInfo *TRI) const override;
403
404 MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
405 MachineInstr* MI,
406 unsigned OpNum,
407 const SmallVectorImpl<MachineOperand> &MOs,
408 unsigned Size, unsigned Alignment,
409 bool AllowCommute) const;
410
411 void
412 getUnconditionalBranch(MCInst &Branch,
413 const MCSymbolRefExpr *BranchTarget) const override;
414
415 void getTrap(MCInst &MI) const override;
416
417 unsigned getJumpInstrTableEntryBound() const override;
418
419 bool isHighLatencyDef(int opc) const override;
420
421 bool hasHighOperandLatency(const InstrItineraryData *ItinData,
422 const MachineRegisterInfo *MRI,
423 const MachineInstr *DefMI, unsigned DefIdx,
424 const MachineInstr *UseMI,
425 unsigned UseIdx) const override;
426
427 /// analyzeCompare - For a comparison instruction, return the source registers
428 /// in SrcReg and SrcReg2 if having two register operands, and the value it
429 /// compares against in CmpValue. Return true if the comparison instruction
430 /// can be analyzed.
431 bool analyzeCompare(const MachineInstr *MI, unsigned &SrcReg,
432 unsigned &SrcReg2, int &CmpMask,
433 int &CmpValue) const override;
434
435 /// optimizeCompareInstr - Check if there exists an earlier instruction that
436 /// operates on the same source operands and sets flags in the same way as
437 /// Compare; remove Compare if possible.
438 bool optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg,
439 unsigned SrcReg2, int CmpMask, int CmpValue,
440 const MachineRegisterInfo *MRI) const override;
441
442 /// optimizeLoadInstr - Try to remove the load by folding it to a register
443 /// operand at the use. We fold the load instructions if and only if the
444 /// def and use are in the same BB. We only look at one load and see
445 /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
446 /// defined by the load we are trying to fold. DefMI returns the machine
447 /// instruction that defines FoldAsLoadDefReg, and the function returns
448 /// the machine instruction generated due to folding.
449 MachineInstr* optimizeLoadInstr(MachineInstr *MI,
450 const MachineRegisterInfo *MRI,
451 unsigned &FoldAsLoadDefReg,
452 MachineInstr *&DefMI) const override;
453
454 private:
455 MachineInstr * convertToThreeAddressWithLEA(unsigned MIOpc,
456 MachineFunction::iterator &MFI,
457 MachineBasicBlock::iterator &MBBI,
458 LiveVariables *LV) const;
459
460 /// isFrameOperand - Return true and the FrameIndex if the specified
461 /// operand and follow operands form a reference to the stack frame.
462 bool isFrameOperand(const MachineInstr *MI, unsigned int Op,
463 int &FrameIndex) const;
464 };
465
466 } // End llvm namespace
467
468 #endif