]> git.proxmox.com Git - rustc.git/blob - src/llvm/lib/Transforms/IPO/FunctionAttrs.cpp
Imported Upstream version 0.6
[rustc.git] / src / llvm / lib / Transforms / IPO / FunctionAttrs.cpp
1 //===- FunctionAttrs.cpp - Pass which marks functions readnone or readonly ===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a simple interprocedural pass which walks the
11 // call-graph, looking for functions which do not access or only read
12 // non-local memory, and marking them readnone/readonly. In addition,
13 // it marks function arguments (of pointer type) 'nocapture' if a call
14 // to the function does not create any copies of the pointer value that
15 // outlive the call. This more or less means that the pointer is only
16 // dereferenced, and not returned from the function or stored in a global.
17 // This pass is implemented as a bottom-up traversal of the call-graph.
18 //
19 //===----------------------------------------------------------------------===//
20
21 #define DEBUG_TYPE "functionattrs"
22 #include "llvm/Transforms/IPO.h"
23 #include "llvm/CallGraphSCCPass.h"
24 #include "llvm/GlobalVariable.h"
25 #include "llvm/IntrinsicInst.h"
26 #include "llvm/LLVMContext.h"
27 #include "llvm/Analysis/AliasAnalysis.h"
28 #include "llvm/Analysis/CallGraph.h"
29 #include "llvm/Analysis/CaptureTracking.h"
30 #include "llvm/ADT/SCCIterator.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/ADT/UniqueVector.h"
34 #include "llvm/Support/InstIterator.h"
35 using namespace llvm;
36
37 STATISTIC(NumReadNone, "Number of functions marked readnone");
38 STATISTIC(NumReadOnly, "Number of functions marked readonly");
39 STATISTIC(NumNoCapture, "Number of arguments marked nocapture");
40 STATISTIC(NumNoAlias, "Number of function returns marked noalias");
41
42 namespace {
43 struct FunctionAttrs : public CallGraphSCCPass {
44 static char ID; // Pass identification, replacement for typeid
45 FunctionAttrs() : CallGraphSCCPass(ID), AA(0) {
46 initializeFunctionAttrsPass(*PassRegistry::getPassRegistry());
47 }
48
49 // runOnSCC - Analyze the SCC, performing the transformation if possible.
50 bool runOnSCC(CallGraphSCC &SCC);
51
52 // AddReadAttrs - Deduce readonly/readnone attributes for the SCC.
53 bool AddReadAttrs(const CallGraphSCC &SCC);
54
55 // AddNoCaptureAttrs - Deduce nocapture attributes for the SCC.
56 bool AddNoCaptureAttrs(const CallGraphSCC &SCC);
57
58 // IsFunctionMallocLike - Does this function allocate new memory?
59 bool IsFunctionMallocLike(Function *F,
60 SmallPtrSet<Function*, 8> &) const;
61
62 // AddNoAliasAttrs - Deduce noalias attributes for the SCC.
63 bool AddNoAliasAttrs(const CallGraphSCC &SCC);
64
65 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
66 AU.setPreservesCFG();
67 AU.addRequired<AliasAnalysis>();
68 CallGraphSCCPass::getAnalysisUsage(AU);
69 }
70
71 private:
72 AliasAnalysis *AA;
73 };
74 }
75
76 char FunctionAttrs::ID = 0;
77 INITIALIZE_PASS_BEGIN(FunctionAttrs, "functionattrs",
78 "Deduce function attributes", false, false)
79 INITIALIZE_AG_DEPENDENCY(CallGraph)
80 INITIALIZE_PASS_END(FunctionAttrs, "functionattrs",
81 "Deduce function attributes", false, false)
82
83 Pass *llvm::createFunctionAttrsPass() { return new FunctionAttrs(); }
84
85
86 /// AddReadAttrs - Deduce readonly/readnone attributes for the SCC.
87 bool FunctionAttrs::AddReadAttrs(const CallGraphSCC &SCC) {
88 SmallPtrSet<Function*, 8> SCCNodes;
89
90 // Fill SCCNodes with the elements of the SCC. Used for quickly
91 // looking up whether a given CallGraphNode is in this SCC.
92 for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I)
93 SCCNodes.insert((*I)->getFunction());
94
95 // Check if any of the functions in the SCC read or write memory. If they
96 // write memory then they can't be marked readnone or readonly.
97 bool ReadsMemory = false;
98 for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
99 Function *F = (*I)->getFunction();
100
101 if (F == 0)
102 // External node - may write memory. Just give up.
103 return false;
104
105 AliasAnalysis::ModRefBehavior MRB = AA->getModRefBehavior(F);
106 if (MRB == AliasAnalysis::DoesNotAccessMemory)
107 // Already perfect!
108 continue;
109
110 // Definitions with weak linkage may be overridden at linktime with
111 // something that writes memory, so treat them like declarations.
112 if (F->isDeclaration() || F->mayBeOverridden()) {
113 if (!AliasAnalysis::onlyReadsMemory(MRB))
114 // May write memory. Just give up.
115 return false;
116
117 ReadsMemory = true;
118 continue;
119 }
120
121 // Scan the function body for instructions that may read or write memory.
122 for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
123 Instruction *I = &*II;
124
125 // Some instructions can be ignored even if they read or write memory.
126 // Detect these now, skipping to the next instruction if one is found.
127 CallSite CS(cast<Value>(I));
128 if (CS) {
129 // Ignore calls to functions in the same SCC.
130 if (CS.getCalledFunction() && SCCNodes.count(CS.getCalledFunction()))
131 continue;
132 AliasAnalysis::ModRefBehavior MRB = AA->getModRefBehavior(CS);
133 // If the call doesn't access arbitrary memory, we may be able to
134 // figure out something.
135 if (AliasAnalysis::onlyAccessesArgPointees(MRB)) {
136 // If the call does access argument pointees, check each argument.
137 if (AliasAnalysis::doesAccessArgPointees(MRB))
138 // Check whether all pointer arguments point to local memory, and
139 // ignore calls that only access local memory.
140 for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
141 CI != CE; ++CI) {
142 Value *Arg = *CI;
143 if (Arg->getType()->isPointerTy()) {
144 AliasAnalysis::Location Loc(Arg,
145 AliasAnalysis::UnknownSize,
146 I->getMetadata(LLVMContext::MD_tbaa));
147 if (!AA->pointsToConstantMemory(Loc, /*OrLocal=*/true)) {
148 if (MRB & AliasAnalysis::Mod)
149 // Writes non-local memory. Give up.
150 return false;
151 if (MRB & AliasAnalysis::Ref)
152 // Ok, it reads non-local memory.
153 ReadsMemory = true;
154 }
155 }
156 }
157 continue;
158 }
159 // The call could access any memory. If that includes writes, give up.
160 if (MRB & AliasAnalysis::Mod)
161 return false;
162 // If it reads, note it.
163 if (MRB & AliasAnalysis::Ref)
164 ReadsMemory = true;
165 continue;
166 } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
167 // Ignore non-volatile loads from local memory. (Atomic is okay here.)
168 if (!LI->isVolatile()) {
169 AliasAnalysis::Location Loc = AA->getLocation(LI);
170 if (AA->pointsToConstantMemory(Loc, /*OrLocal=*/true))
171 continue;
172 }
173 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
174 // Ignore non-volatile stores to local memory. (Atomic is okay here.)
175 if (!SI->isVolatile()) {
176 AliasAnalysis::Location Loc = AA->getLocation(SI);
177 if (AA->pointsToConstantMemory(Loc, /*OrLocal=*/true))
178 continue;
179 }
180 } else if (VAArgInst *VI = dyn_cast<VAArgInst>(I)) {
181 // Ignore vaargs on local memory.
182 AliasAnalysis::Location Loc = AA->getLocation(VI);
183 if (AA->pointsToConstantMemory(Loc, /*OrLocal=*/true))
184 continue;
185 }
186
187 // Any remaining instructions need to be taken seriously! Check if they
188 // read or write memory.
189 if (I->mayWriteToMemory())
190 // Writes memory. Just give up.
191 return false;
192
193 // If this instruction may read memory, remember that.
194 ReadsMemory |= I->mayReadFromMemory();
195 }
196 }
197
198 // Success! Functions in this SCC do not access memory, or only read memory.
199 // Give them the appropriate attribute.
200 bool MadeChange = false;
201 for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
202 Function *F = (*I)->getFunction();
203
204 if (F->doesNotAccessMemory())
205 // Already perfect!
206 continue;
207
208 if (F->onlyReadsMemory() && ReadsMemory)
209 // No change.
210 continue;
211
212 MadeChange = true;
213
214 // Clear out any existing attributes.
215 F->removeAttribute(~0, Attribute::ReadOnly | Attribute::ReadNone);
216
217 // Add in the new attribute.
218 F->addAttribute(~0, ReadsMemory? Attribute::ReadOnly : Attribute::ReadNone);
219
220 if (ReadsMemory)
221 ++NumReadOnly;
222 else
223 ++NumReadNone;
224 }
225
226 return MadeChange;
227 }
228
229 namespace {
230 // For a given pointer Argument, this retains a list of Arguments of functions
231 // in the same SCC that the pointer data flows into. We use this to build an
232 // SCC of the arguments.
233 struct ArgumentGraphNode {
234 Argument *Definition;
235 SmallVector<ArgumentGraphNode*, 4> Uses;
236 };
237
238 class ArgumentGraph {
239 // We store pointers to ArgumentGraphNode objects, so it's important that
240 // that they not move around upon insert.
241 typedef std::map<Argument*, ArgumentGraphNode> ArgumentMapTy;
242
243 ArgumentMapTy ArgumentMap;
244
245 // There is no root node for the argument graph, in fact:
246 // void f(int *x, int *y) { if (...) f(x, y); }
247 // is an example where the graph is disconnected. The SCCIterator requires a
248 // single entry point, so we maintain a fake ("synthetic") root node that
249 // uses every node. Because the graph is directed and nothing points into
250 // the root, it will not participate in any SCCs (except for its own).
251 ArgumentGraphNode SyntheticRoot;
252
253 public:
254 ArgumentGraph() { SyntheticRoot.Definition = 0; }
255
256 typedef SmallVectorImpl<ArgumentGraphNode*>::iterator iterator;
257
258 iterator begin() { return SyntheticRoot.Uses.begin(); }
259 iterator end() { return SyntheticRoot.Uses.end(); }
260 ArgumentGraphNode *getEntryNode() { return &SyntheticRoot; }
261
262 ArgumentGraphNode *operator[](Argument *A) {
263 ArgumentGraphNode &Node = ArgumentMap[A];
264 Node.Definition = A;
265 SyntheticRoot.Uses.push_back(&Node);
266 return &Node;
267 }
268 };
269
270 // This tracker checks whether callees are in the SCC, and if so it does not
271 // consider that a capture, instead adding it to the "Uses" list and
272 // continuing with the analysis.
273 struct ArgumentUsesTracker : public CaptureTracker {
274 ArgumentUsesTracker(const SmallPtrSet<Function*, 8> &SCCNodes)
275 : Captured(false), SCCNodes(SCCNodes) {}
276
277 void tooManyUses() { Captured = true; }
278
279 bool shouldExplore(Use *U) { return true; }
280
281 bool captured(Use *U) {
282 CallSite CS(U->getUser());
283 if (!CS.getInstruction()) { Captured = true; return true; }
284
285 Function *F = CS.getCalledFunction();
286 if (!F || !SCCNodes.count(F)) { Captured = true; return true; }
287
288 Function::arg_iterator AI = F->arg_begin(), AE = F->arg_end();
289 for (CallSite::arg_iterator PI = CS.arg_begin(), PE = CS.arg_end();
290 PI != PE; ++PI, ++AI) {
291 if (AI == AE) {
292 assert(F->isVarArg() && "More params than args in non-varargs call");
293 Captured = true;
294 return true;
295 }
296 if (PI == U) {
297 Uses.push_back(AI);
298 break;
299 }
300 }
301 assert(!Uses.empty() && "Capturing call-site captured nothing?");
302 return false;
303 }
304
305 bool Captured; // True only if certainly captured (used outside our SCC).
306 SmallVector<Argument*, 4> Uses; // Uses within our SCC.
307
308 const SmallPtrSet<Function*, 8> &SCCNodes;
309 };
310 }
311
312 namespace llvm {
313 template<> struct GraphTraits<ArgumentGraphNode*> {
314 typedef ArgumentGraphNode NodeType;
315 typedef SmallVectorImpl<ArgumentGraphNode*>::iterator ChildIteratorType;
316
317 static inline NodeType *getEntryNode(NodeType *A) { return A; }
318 static inline ChildIteratorType child_begin(NodeType *N) {
319 return N->Uses.begin();
320 }
321 static inline ChildIteratorType child_end(NodeType *N) {
322 return N->Uses.end();
323 }
324 };
325 template<> struct GraphTraits<ArgumentGraph*>
326 : public GraphTraits<ArgumentGraphNode*> {
327 static NodeType *getEntryNode(ArgumentGraph *AG) {
328 return AG->getEntryNode();
329 }
330 static ChildIteratorType nodes_begin(ArgumentGraph *AG) {
331 return AG->begin();
332 }
333 static ChildIteratorType nodes_end(ArgumentGraph *AG) {
334 return AG->end();
335 }
336 };
337 }
338
339 /// AddNoCaptureAttrs - Deduce nocapture attributes for the SCC.
340 bool FunctionAttrs::AddNoCaptureAttrs(const CallGraphSCC &SCC) {
341 bool Changed = false;
342
343 SmallPtrSet<Function*, 8> SCCNodes;
344
345 // Fill SCCNodes with the elements of the SCC. Used for quickly
346 // looking up whether a given CallGraphNode is in this SCC.
347 for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
348 Function *F = (*I)->getFunction();
349 if (F && !F->isDeclaration() && !F->mayBeOverridden())
350 SCCNodes.insert(F);
351 }
352
353 ArgumentGraph AG;
354
355 // Check each function in turn, determining which pointer arguments are not
356 // captured.
357 for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
358 Function *F = (*I)->getFunction();
359
360 if (F == 0)
361 // External node - only a problem for arguments that we pass to it.
362 continue;
363
364 // Definitions with weak linkage may be overridden at linktime with
365 // something that captures pointers, so treat them like declarations.
366 if (F->isDeclaration() || F->mayBeOverridden())
367 continue;
368
369 // Functions that are readonly (or readnone) and nounwind and don't return
370 // a value can't capture arguments. Don't analyze them.
371 if (F->onlyReadsMemory() && F->doesNotThrow() &&
372 F->getReturnType()->isVoidTy()) {
373 for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end();
374 A != E; ++A) {
375 if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) {
376 A->addAttr(Attribute::NoCapture);
377 ++NumNoCapture;
378 Changed = true;
379 }
380 }
381 continue;
382 }
383
384 for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A!=E; ++A)
385 if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) {
386 ArgumentUsesTracker Tracker(SCCNodes);
387 PointerMayBeCaptured(A, &Tracker);
388 if (!Tracker.Captured) {
389 if (Tracker.Uses.empty()) {
390 // If it's trivially not captured, mark it nocapture now.
391 A->addAttr(Attribute::NoCapture);
392 ++NumNoCapture;
393 Changed = true;
394 } else {
395 // If it's not trivially captured and not trivially not captured,
396 // then it must be calling into another function in our SCC. Save
397 // its particulars for Argument-SCC analysis later.
398 ArgumentGraphNode *Node = AG[A];
399 for (SmallVectorImpl<Argument*>::iterator UI = Tracker.Uses.begin(),
400 UE = Tracker.Uses.end(); UI != UE; ++UI)
401 Node->Uses.push_back(AG[*UI]);
402 }
403 }
404 // Otherwise, it's captured. Don't bother doing SCC analysis on it.
405 }
406 }
407
408 // The graph we've collected is partial because we stopped scanning for
409 // argument uses once we solved the argument trivially. These partial nodes
410 // show up as ArgumentGraphNode objects with an empty Uses list, and for
411 // these nodes the final decision about whether they capture has already been
412 // made. If the definition doesn't have a 'nocapture' attribute by now, it
413 // captures.
414
415 for (scc_iterator<ArgumentGraph*> I = scc_begin(&AG), E = scc_end(&AG);
416 I != E; ++I) {
417 std::vector<ArgumentGraphNode*> &ArgumentSCC = *I;
418 if (ArgumentSCC.size() == 1) {
419 if (!ArgumentSCC[0]->Definition) continue; // synthetic root node
420
421 // eg. "void f(int* x) { if (...) f(x); }"
422 if (ArgumentSCC[0]->Uses.size() == 1 &&
423 ArgumentSCC[0]->Uses[0] == ArgumentSCC[0]) {
424 ArgumentSCC[0]->Definition->addAttr(Attribute::NoCapture);
425 ++NumNoCapture;
426 Changed = true;
427 }
428 continue;
429 }
430
431 bool SCCCaptured = false;
432 for (std::vector<ArgumentGraphNode*>::iterator I = ArgumentSCC.begin(),
433 E = ArgumentSCC.end(); I != E && !SCCCaptured; ++I) {
434 ArgumentGraphNode *Node = *I;
435 if (Node->Uses.empty()) {
436 if (!Node->Definition->hasNoCaptureAttr())
437 SCCCaptured = true;
438 }
439 }
440 if (SCCCaptured) continue;
441
442 SmallPtrSet<Argument*, 8> ArgumentSCCNodes;
443 // Fill ArgumentSCCNodes with the elements of the ArgumentSCC. Used for
444 // quickly looking up whether a given Argument is in this ArgumentSCC.
445 for (std::vector<ArgumentGraphNode*>::iterator I = ArgumentSCC.begin(),
446 E = ArgumentSCC.end(); I != E; ++I) {
447 ArgumentSCCNodes.insert((*I)->Definition);
448 }
449
450 for (std::vector<ArgumentGraphNode*>::iterator I = ArgumentSCC.begin(),
451 E = ArgumentSCC.end(); I != E && !SCCCaptured; ++I) {
452 ArgumentGraphNode *N = *I;
453 for (SmallVectorImpl<ArgumentGraphNode*>::iterator UI = N->Uses.begin(),
454 UE = N->Uses.end(); UI != UE; ++UI) {
455 Argument *A = (*UI)->Definition;
456 if (A->hasNoCaptureAttr() || ArgumentSCCNodes.count(A))
457 continue;
458 SCCCaptured = true;
459 break;
460 }
461 }
462 if (SCCCaptured) continue;
463
464 for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
465 Argument *A = ArgumentSCC[i]->Definition;
466 A->addAttr(Attribute::NoCapture);
467 ++NumNoCapture;
468 Changed = true;
469 }
470 }
471
472 return Changed;
473 }
474
475 /// IsFunctionMallocLike - A function is malloc-like if it returns either null
476 /// or a pointer that doesn't alias any other pointer visible to the caller.
477 bool FunctionAttrs::IsFunctionMallocLike(Function *F,
478 SmallPtrSet<Function*, 8> &SCCNodes) const {
479 UniqueVector<Value *> FlowsToReturn;
480 for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)
481 if (ReturnInst *Ret = dyn_cast<ReturnInst>(I->getTerminator()))
482 FlowsToReturn.insert(Ret->getReturnValue());
483
484 for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
485 Value *RetVal = FlowsToReturn[i+1]; // UniqueVector[0] is reserved.
486
487 if (Constant *C = dyn_cast<Constant>(RetVal)) {
488 if (!C->isNullValue() && !isa<UndefValue>(C))
489 return false;
490
491 continue;
492 }
493
494 if (isa<Argument>(RetVal))
495 return false;
496
497 if (Instruction *RVI = dyn_cast<Instruction>(RetVal))
498 switch (RVI->getOpcode()) {
499 // Extend the analysis by looking upwards.
500 case Instruction::BitCast:
501 case Instruction::GetElementPtr:
502 FlowsToReturn.insert(RVI->getOperand(0));
503 continue;
504 case Instruction::Select: {
505 SelectInst *SI = cast<SelectInst>(RVI);
506 FlowsToReturn.insert(SI->getTrueValue());
507 FlowsToReturn.insert(SI->getFalseValue());
508 continue;
509 }
510 case Instruction::PHI: {
511 PHINode *PN = cast<PHINode>(RVI);
512 for (int i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
513 FlowsToReturn.insert(PN->getIncomingValue(i));
514 continue;
515 }
516
517 // Check whether the pointer came from an allocation.
518 case Instruction::Alloca:
519 break;
520 case Instruction::Call:
521 case Instruction::Invoke: {
522 CallSite CS(RVI);
523 if (CS.paramHasAttr(0, Attribute::NoAlias))
524 break;
525 if (CS.getCalledFunction() &&
526 SCCNodes.count(CS.getCalledFunction()))
527 break;
528 } // fall-through
529 default:
530 return false; // Did not come from an allocation.
531 }
532
533 if (PointerMayBeCaptured(RetVal, false, /*StoreCaptures=*/false))
534 return false;
535 }
536
537 return true;
538 }
539
540 /// AddNoAliasAttrs - Deduce noalias attributes for the SCC.
541 bool FunctionAttrs::AddNoAliasAttrs(const CallGraphSCC &SCC) {
542 SmallPtrSet<Function*, 8> SCCNodes;
543
544 // Fill SCCNodes with the elements of the SCC. Used for quickly
545 // looking up whether a given CallGraphNode is in this SCC.
546 for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I)
547 SCCNodes.insert((*I)->getFunction());
548
549 // Check each function in turn, determining which functions return noalias
550 // pointers.
551 for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
552 Function *F = (*I)->getFunction();
553
554 if (F == 0)
555 // External node - skip it;
556 return false;
557
558 // Already noalias.
559 if (F->doesNotAlias(0))
560 continue;
561
562 // Definitions with weak linkage may be overridden at linktime, so
563 // treat them like declarations.
564 if (F->isDeclaration() || F->mayBeOverridden())
565 return false;
566
567 // We annotate noalias return values, which are only applicable to
568 // pointer types.
569 if (!F->getReturnType()->isPointerTy())
570 continue;
571
572 if (!IsFunctionMallocLike(F, SCCNodes))
573 return false;
574 }
575
576 bool MadeChange = false;
577 for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
578 Function *F = (*I)->getFunction();
579 if (F->doesNotAlias(0) || !F->getReturnType()->isPointerTy())
580 continue;
581
582 F->setDoesNotAlias(0);
583 ++NumNoAlias;
584 MadeChange = true;
585 }
586
587 return MadeChange;
588 }
589
590 bool FunctionAttrs::runOnSCC(CallGraphSCC &SCC) {
591 AA = &getAnalysis<AliasAnalysis>();
592
593 bool Changed = AddReadAttrs(SCC);
594 Changed |= AddNoCaptureAttrs(SCC);
595 Changed |= AddNoAliasAttrs(SCC);
596 return Changed;
597 }