]> git.proxmox.com Git - rustc.git/blob - src/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / lib / Transforms / InstCombine / InstCombineMulDivRem.cpp
1 //===- InstCombineMulDivRem.cpp -------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
11 // srem, urem, frem.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "InstCombine.h"
16 #include "llvm/Analysis/InstructionSimplify.h"
17 #include "llvm/IR/IntrinsicInst.h"
18 #include "llvm/IR/PatternMatch.h"
19 using namespace llvm;
20 using namespace PatternMatch;
21
22 #define DEBUG_TYPE "instcombine"
23
24
25 /// simplifyValueKnownNonZero - The specific integer value is used in a context
26 /// where it is known to be non-zero. If this allows us to simplify the
27 /// computation, do so and return the new operand, otherwise return null.
28 static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC,
29 Instruction *CxtI) {
30 // If V has multiple uses, then we would have to do more analysis to determine
31 // if this is safe. For example, the use could be in dynamically unreached
32 // code.
33 if (!V->hasOneUse()) return nullptr;
34
35 bool MadeChange = false;
36
37 // ((1 << A) >>u B) --> (1 << (A-B))
38 // Because V cannot be zero, we know that B is less than A.
39 Value *A = nullptr, *B = nullptr, *One = nullptr;
40 if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(One), m_Value(A))), m_Value(B))) &&
41 match(One, m_One())) {
42 A = IC.Builder->CreateSub(A, B);
43 return IC.Builder->CreateShl(One, A);
44 }
45
46 // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
47 // inexact. Similarly for <<.
48 if (BinaryOperator *I = dyn_cast<BinaryOperator>(V))
49 if (I->isLogicalShift() &&
50 isKnownToBeAPowerOfTwo(I->getOperand(0), false, 0,
51 IC.getAssumptionCache(), CxtI,
52 IC.getDominatorTree())) {
53 // We know that this is an exact/nuw shift and that the input is a
54 // non-zero context as well.
55 if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC, CxtI)) {
56 I->setOperand(0, V2);
57 MadeChange = true;
58 }
59
60 if (I->getOpcode() == Instruction::LShr && !I->isExact()) {
61 I->setIsExact();
62 MadeChange = true;
63 }
64
65 if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) {
66 I->setHasNoUnsignedWrap();
67 MadeChange = true;
68 }
69 }
70
71 // TODO: Lots more we could do here:
72 // If V is a phi node, we can call this on each of its operands.
73 // "select cond, X, 0" can simplify to "X".
74
75 return MadeChange ? V : nullptr;
76 }
77
78
79 /// MultiplyOverflows - True if the multiply can not be expressed in an int
80 /// this size.
81 static bool MultiplyOverflows(const APInt &C1, const APInt &C2, APInt &Product,
82 bool IsSigned) {
83 bool Overflow;
84 if (IsSigned)
85 Product = C1.smul_ov(C2, Overflow);
86 else
87 Product = C1.umul_ov(C2, Overflow);
88
89 return Overflow;
90 }
91
92 /// \brief True if C2 is a multiple of C1. Quotient contains C2/C1.
93 static bool IsMultiple(const APInt &C1, const APInt &C2, APInt &Quotient,
94 bool IsSigned) {
95 assert(C1.getBitWidth() == C2.getBitWidth() &&
96 "Inconsistent width of constants!");
97
98 APInt Remainder(C1.getBitWidth(), /*Val=*/0ULL, IsSigned);
99 if (IsSigned)
100 APInt::sdivrem(C1, C2, Quotient, Remainder);
101 else
102 APInt::udivrem(C1, C2, Quotient, Remainder);
103
104 return Remainder.isMinValue();
105 }
106
107 /// \brief A helper routine of InstCombiner::visitMul().
108 ///
109 /// If C is a vector of known powers of 2, then this function returns
110 /// a new vector obtained from C replacing each element with its logBase2.
111 /// Return a null pointer otherwise.
112 static Constant *getLogBase2Vector(ConstantDataVector *CV) {
113 const APInt *IVal;
114 SmallVector<Constant *, 4> Elts;
115
116 for (unsigned I = 0, E = CV->getNumElements(); I != E; ++I) {
117 Constant *Elt = CV->getElementAsConstant(I);
118 if (!match(Elt, m_APInt(IVal)) || !IVal->isPowerOf2())
119 return nullptr;
120 Elts.push_back(ConstantInt::get(Elt->getType(), IVal->logBase2()));
121 }
122
123 return ConstantVector::get(Elts);
124 }
125
126 /// \brief Return true if we can prove that:
127 /// (mul LHS, RHS) === (mul nsw LHS, RHS)
128 bool InstCombiner::WillNotOverflowSignedMul(Value *LHS, Value *RHS,
129 Instruction *CxtI) {
130 // Multiplying n * m significant bits yields a result of n + m significant
131 // bits. If the total number of significant bits does not exceed the
132 // result bit width (minus 1), there is no overflow.
133 // This means if we have enough leading sign bits in the operands
134 // we can guarantee that the result does not overflow.
135 // Ref: "Hacker's Delight" by Henry Warren
136 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
137
138 // Note that underestimating the number of sign bits gives a more
139 // conservative answer.
140 unsigned SignBits = ComputeNumSignBits(LHS, 0, CxtI) +
141 ComputeNumSignBits(RHS, 0, CxtI);
142
143 // First handle the easy case: if we have enough sign bits there's
144 // definitely no overflow.
145 if (SignBits > BitWidth + 1)
146 return true;
147
148 // There are two ambiguous cases where there can be no overflow:
149 // SignBits == BitWidth + 1 and
150 // SignBits == BitWidth
151 // The second case is difficult to check, therefore we only handle the
152 // first case.
153 if (SignBits == BitWidth + 1) {
154 // It overflows only when both arguments are negative and the true
155 // product is exactly the minimum negative number.
156 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
157 // For simplicity we just check if at least one side is not negative.
158 bool LHSNonNegative, LHSNegative;
159 bool RHSNonNegative, RHSNegative;
160 ComputeSignBit(LHS, LHSNonNegative, LHSNegative, /*Depth=*/0, CxtI);
161 ComputeSignBit(RHS, RHSNonNegative, RHSNegative, /*Depth=*/0, CxtI);
162 if (LHSNonNegative || RHSNonNegative)
163 return true;
164 }
165 return false;
166 }
167
168 Instruction *InstCombiner::visitMul(BinaryOperator &I) {
169 bool Changed = SimplifyAssociativeOrCommutative(I);
170 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
171
172 if (Value *V = SimplifyVectorOp(I))
173 return ReplaceInstUsesWith(I, V);
174
175 if (Value *V = SimplifyMulInst(Op0, Op1, DL, TLI, DT, AC))
176 return ReplaceInstUsesWith(I, V);
177
178 if (Value *V = SimplifyUsingDistributiveLaws(I))
179 return ReplaceInstUsesWith(I, V);
180
181 // X * -1 == 0 - X
182 if (match(Op1, m_AllOnes())) {
183 BinaryOperator *BO = BinaryOperator::CreateNeg(Op0, I.getName());
184 if (I.hasNoSignedWrap())
185 BO->setHasNoSignedWrap();
186 return BO;
187 }
188
189 // Also allow combining multiply instructions on vectors.
190 {
191 Value *NewOp;
192 Constant *C1, *C2;
193 const APInt *IVal;
194 if (match(&I, m_Mul(m_Shl(m_Value(NewOp), m_Constant(C2)),
195 m_Constant(C1))) &&
196 match(C1, m_APInt(IVal))) {
197 // ((X << C2)*C1) == (X * (C1 << C2))
198 Constant *Shl = ConstantExpr::getShl(C1, C2);
199 BinaryOperator *Mul = cast<BinaryOperator>(I.getOperand(0));
200 BinaryOperator *BO = BinaryOperator::CreateMul(NewOp, Shl);
201 if (I.hasNoUnsignedWrap() && Mul->hasNoUnsignedWrap())
202 BO->setHasNoUnsignedWrap();
203 if (I.hasNoSignedWrap() && Mul->hasNoSignedWrap() &&
204 Shl->isNotMinSignedValue())
205 BO->setHasNoSignedWrap();
206 return BO;
207 }
208
209 if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) {
210 Constant *NewCst = nullptr;
211 if (match(C1, m_APInt(IVal)) && IVal->isPowerOf2())
212 // Replace X*(2^C) with X << C, where C is either a scalar or a splat.
213 NewCst = ConstantInt::get(NewOp->getType(), IVal->logBase2());
214 else if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(C1))
215 // Replace X*(2^C) with X << C, where C is a vector of known
216 // constant powers of 2.
217 NewCst = getLogBase2Vector(CV);
218
219 if (NewCst) {
220 BinaryOperator *Shl = BinaryOperator::CreateShl(NewOp, NewCst);
221
222 if (I.hasNoUnsignedWrap())
223 Shl->setHasNoUnsignedWrap();
224 if (I.hasNoSignedWrap() && NewCst->isNotMinSignedValue())
225 Shl->setHasNoSignedWrap();
226
227 return Shl;
228 }
229 }
230 }
231
232 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
233 // (Y - X) * (-(2**n)) -> (X - Y) * (2**n), for positive nonzero n
234 // (Y + const) * (-(2**n)) -> (-constY) * (2**n), for positive nonzero n
235 // The "* (2**n)" thus becomes a potential shifting opportunity.
236 {
237 const APInt & Val = CI->getValue();
238 const APInt &PosVal = Val.abs();
239 if (Val.isNegative() && PosVal.isPowerOf2()) {
240 Value *X = nullptr, *Y = nullptr;
241 if (Op0->hasOneUse()) {
242 ConstantInt *C1;
243 Value *Sub = nullptr;
244 if (match(Op0, m_Sub(m_Value(Y), m_Value(X))))
245 Sub = Builder->CreateSub(X, Y, "suba");
246 else if (match(Op0, m_Add(m_Value(Y), m_ConstantInt(C1))))
247 Sub = Builder->CreateSub(Builder->CreateNeg(C1), Y, "subc");
248 if (Sub)
249 return
250 BinaryOperator::CreateMul(Sub,
251 ConstantInt::get(Y->getType(), PosVal));
252 }
253 }
254 }
255 }
256
257 // Simplify mul instructions with a constant RHS.
258 if (isa<Constant>(Op1)) {
259 // Try to fold constant mul into select arguments.
260 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
261 if (Instruction *R = FoldOpIntoSelect(I, SI))
262 return R;
263
264 if (isa<PHINode>(Op0))
265 if (Instruction *NV = FoldOpIntoPhi(I))
266 return NV;
267
268 // Canonicalize (X+C1)*CI -> X*CI+C1*CI.
269 {
270 Value *X;
271 Constant *C1;
272 if (match(Op0, m_OneUse(m_Add(m_Value(X), m_Constant(C1))))) {
273 Value *Mul = Builder->CreateMul(C1, Op1);
274 // Only go forward with the transform if C1*CI simplifies to a tidier
275 // constant.
276 if (!match(Mul, m_Mul(m_Value(), m_Value())))
277 return BinaryOperator::CreateAdd(Builder->CreateMul(X, Op1), Mul);
278 }
279 }
280 }
281
282 if (Value *Op0v = dyn_castNegVal(Op0)) { // -X * -Y = X*Y
283 if (Value *Op1v = dyn_castNegVal(Op1)) {
284 BinaryOperator *BO = BinaryOperator::CreateMul(Op0v, Op1v);
285 if (I.hasNoSignedWrap() &&
286 match(Op0, m_NSWSub(m_Value(), m_Value())) &&
287 match(Op1, m_NSWSub(m_Value(), m_Value())))
288 BO->setHasNoSignedWrap();
289 return BO;
290 }
291 }
292
293 // (X / Y) * Y = X - (X % Y)
294 // (X / Y) * -Y = (X % Y) - X
295 {
296 Value *Op1C = Op1;
297 BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0);
298 if (!BO ||
299 (BO->getOpcode() != Instruction::UDiv &&
300 BO->getOpcode() != Instruction::SDiv)) {
301 Op1C = Op0;
302 BO = dyn_cast<BinaryOperator>(Op1);
303 }
304 Value *Neg = dyn_castNegVal(Op1C);
305 if (BO && BO->hasOneUse() &&
306 (BO->getOperand(1) == Op1C || BO->getOperand(1) == Neg) &&
307 (BO->getOpcode() == Instruction::UDiv ||
308 BO->getOpcode() == Instruction::SDiv)) {
309 Value *Op0BO = BO->getOperand(0), *Op1BO = BO->getOperand(1);
310
311 // If the division is exact, X % Y is zero, so we end up with X or -X.
312 if (PossiblyExactOperator *SDiv = dyn_cast<PossiblyExactOperator>(BO))
313 if (SDiv->isExact()) {
314 if (Op1BO == Op1C)
315 return ReplaceInstUsesWith(I, Op0BO);
316 return BinaryOperator::CreateNeg(Op0BO);
317 }
318
319 Value *Rem;
320 if (BO->getOpcode() == Instruction::UDiv)
321 Rem = Builder->CreateURem(Op0BO, Op1BO);
322 else
323 Rem = Builder->CreateSRem(Op0BO, Op1BO);
324 Rem->takeName(BO);
325
326 if (Op1BO == Op1C)
327 return BinaryOperator::CreateSub(Op0BO, Rem);
328 return BinaryOperator::CreateSub(Rem, Op0BO);
329 }
330 }
331
332 /// i1 mul -> i1 and.
333 if (I.getType()->getScalarType()->isIntegerTy(1))
334 return BinaryOperator::CreateAnd(Op0, Op1);
335
336 // X*(1 << Y) --> X << Y
337 // (1 << Y)*X --> X << Y
338 {
339 Value *Y;
340 BinaryOperator *BO = nullptr;
341 bool ShlNSW = false;
342 if (match(Op0, m_Shl(m_One(), m_Value(Y)))) {
343 BO = BinaryOperator::CreateShl(Op1, Y);
344 ShlNSW = cast<ShlOperator>(Op0)->hasNoSignedWrap();
345 } else if (match(Op1, m_Shl(m_One(), m_Value(Y)))) {
346 BO = BinaryOperator::CreateShl(Op0, Y);
347 ShlNSW = cast<ShlOperator>(Op1)->hasNoSignedWrap();
348 }
349 if (BO) {
350 if (I.hasNoUnsignedWrap())
351 BO->setHasNoUnsignedWrap();
352 if (I.hasNoSignedWrap() && ShlNSW)
353 BO->setHasNoSignedWrap();
354 return BO;
355 }
356 }
357
358 // If one of the operands of the multiply is a cast from a boolean value, then
359 // we know the bool is either zero or one, so this is a 'masking' multiply.
360 // X * Y (where Y is 0 or 1) -> X & (0-Y)
361 if (!I.getType()->isVectorTy()) {
362 // -2 is "-1 << 1" so it is all bits set except the low one.
363 APInt Negative2(I.getType()->getPrimitiveSizeInBits(), (uint64_t)-2, true);
364
365 Value *BoolCast = nullptr, *OtherOp = nullptr;
366 if (MaskedValueIsZero(Op0, Negative2, 0, &I))
367 BoolCast = Op0, OtherOp = Op1;
368 else if (MaskedValueIsZero(Op1, Negative2, 0, &I))
369 BoolCast = Op1, OtherOp = Op0;
370
371 if (BoolCast) {
372 Value *V = Builder->CreateSub(Constant::getNullValue(I.getType()),
373 BoolCast);
374 return BinaryOperator::CreateAnd(V, OtherOp);
375 }
376 }
377
378 if (!I.hasNoSignedWrap() && WillNotOverflowSignedMul(Op0, Op1, &I)) {
379 Changed = true;
380 I.setHasNoSignedWrap(true);
381 }
382
383 if (!I.hasNoUnsignedWrap() &&
384 computeOverflowForUnsignedMul(Op0, Op1, &I) ==
385 OverflowResult::NeverOverflows) {
386 Changed = true;
387 I.setHasNoUnsignedWrap(true);
388 }
389
390 return Changed ? &I : nullptr;
391 }
392
393 /// Detect pattern log2(Y * 0.5) with corresponding fast math flags.
394 static void detectLog2OfHalf(Value *&Op, Value *&Y, IntrinsicInst *&Log2) {
395 if (!Op->hasOneUse())
396 return;
397
398 IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op);
399 if (!II)
400 return;
401 if (II->getIntrinsicID() != Intrinsic::log2 || !II->hasUnsafeAlgebra())
402 return;
403 Log2 = II;
404
405 Value *OpLog2Of = II->getArgOperand(0);
406 if (!OpLog2Of->hasOneUse())
407 return;
408
409 Instruction *I = dyn_cast<Instruction>(OpLog2Of);
410 if (!I)
411 return;
412 if (I->getOpcode() != Instruction::FMul || !I->hasUnsafeAlgebra())
413 return;
414
415 if (match(I->getOperand(0), m_SpecificFP(0.5)))
416 Y = I->getOperand(1);
417 else if (match(I->getOperand(1), m_SpecificFP(0.5)))
418 Y = I->getOperand(0);
419 }
420
421 static bool isFiniteNonZeroFp(Constant *C) {
422 if (C->getType()->isVectorTy()) {
423 for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E;
424 ++I) {
425 ConstantFP *CFP = dyn_cast<ConstantFP>(C->getAggregateElement(I));
426 if (!CFP || !CFP->getValueAPF().isFiniteNonZero())
427 return false;
428 }
429 return true;
430 }
431
432 return isa<ConstantFP>(C) &&
433 cast<ConstantFP>(C)->getValueAPF().isFiniteNonZero();
434 }
435
436 static bool isNormalFp(Constant *C) {
437 if (C->getType()->isVectorTy()) {
438 for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E;
439 ++I) {
440 ConstantFP *CFP = dyn_cast<ConstantFP>(C->getAggregateElement(I));
441 if (!CFP || !CFP->getValueAPF().isNormal())
442 return false;
443 }
444 return true;
445 }
446
447 return isa<ConstantFP>(C) && cast<ConstantFP>(C)->getValueAPF().isNormal();
448 }
449
450 /// Helper function of InstCombiner::visitFMul(BinaryOperator(). It returns
451 /// true iff the given value is FMul or FDiv with one and only one operand
452 /// being a normal constant (i.e. not Zero/NaN/Infinity).
453 static bool isFMulOrFDivWithConstant(Value *V) {
454 Instruction *I = dyn_cast<Instruction>(V);
455 if (!I || (I->getOpcode() != Instruction::FMul &&
456 I->getOpcode() != Instruction::FDiv))
457 return false;
458
459 Constant *C0 = dyn_cast<Constant>(I->getOperand(0));
460 Constant *C1 = dyn_cast<Constant>(I->getOperand(1));
461
462 if (C0 && C1)
463 return false;
464
465 return (C0 && isFiniteNonZeroFp(C0)) || (C1 && isFiniteNonZeroFp(C1));
466 }
467
468 /// foldFMulConst() is a helper routine of InstCombiner::visitFMul().
469 /// The input \p FMulOrDiv is a FMul/FDiv with one and only one operand
470 /// being a constant (i.e. isFMulOrFDivWithConstant(FMulOrDiv) == true).
471 /// This function is to simplify "FMulOrDiv * C" and returns the
472 /// resulting expression. Note that this function could return NULL in
473 /// case the constants cannot be folded into a normal floating-point.
474 ///
475 Value *InstCombiner::foldFMulConst(Instruction *FMulOrDiv, Constant *C,
476 Instruction *InsertBefore) {
477 assert(isFMulOrFDivWithConstant(FMulOrDiv) && "V is invalid");
478
479 Value *Opnd0 = FMulOrDiv->getOperand(0);
480 Value *Opnd1 = FMulOrDiv->getOperand(1);
481
482 Constant *C0 = dyn_cast<Constant>(Opnd0);
483 Constant *C1 = dyn_cast<Constant>(Opnd1);
484
485 BinaryOperator *R = nullptr;
486
487 // (X * C0) * C => X * (C0*C)
488 if (FMulOrDiv->getOpcode() == Instruction::FMul) {
489 Constant *F = ConstantExpr::getFMul(C1 ? C1 : C0, C);
490 if (isNormalFp(F))
491 R = BinaryOperator::CreateFMul(C1 ? Opnd0 : Opnd1, F);
492 } else {
493 if (C0) {
494 // (C0 / X) * C => (C0 * C) / X
495 if (FMulOrDiv->hasOneUse()) {
496 // It would otherwise introduce another div.
497 Constant *F = ConstantExpr::getFMul(C0, C);
498 if (isNormalFp(F))
499 R = BinaryOperator::CreateFDiv(F, Opnd1);
500 }
501 } else {
502 // (X / C1) * C => X * (C/C1) if C/C1 is not a denormal
503 Constant *F = ConstantExpr::getFDiv(C, C1);
504 if (isNormalFp(F)) {
505 R = BinaryOperator::CreateFMul(Opnd0, F);
506 } else {
507 // (X / C1) * C => X / (C1/C)
508 Constant *F = ConstantExpr::getFDiv(C1, C);
509 if (isNormalFp(F))
510 R = BinaryOperator::CreateFDiv(Opnd0, F);
511 }
512 }
513 }
514
515 if (R) {
516 R->setHasUnsafeAlgebra(true);
517 InsertNewInstWith(R, *InsertBefore);
518 }
519
520 return R;
521 }
522
523 Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
524 bool Changed = SimplifyAssociativeOrCommutative(I);
525 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
526
527 if (Value *V = SimplifyVectorOp(I))
528 return ReplaceInstUsesWith(I, V);
529
530 if (isa<Constant>(Op0))
531 std::swap(Op0, Op1);
532
533 if (Value *V =
534 SimplifyFMulInst(Op0, Op1, I.getFastMathFlags(), DL, TLI, DT, AC))
535 return ReplaceInstUsesWith(I, V);
536
537 bool AllowReassociate = I.hasUnsafeAlgebra();
538
539 // Simplify mul instructions with a constant RHS.
540 if (isa<Constant>(Op1)) {
541 // Try to fold constant mul into select arguments.
542 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
543 if (Instruction *R = FoldOpIntoSelect(I, SI))
544 return R;
545
546 if (isa<PHINode>(Op0))
547 if (Instruction *NV = FoldOpIntoPhi(I))
548 return NV;
549
550 // (fmul X, -1.0) --> (fsub -0.0, X)
551 if (match(Op1, m_SpecificFP(-1.0))) {
552 Constant *NegZero = ConstantFP::getNegativeZero(Op1->getType());
553 Instruction *RI = BinaryOperator::CreateFSub(NegZero, Op0);
554 RI->copyFastMathFlags(&I);
555 return RI;
556 }
557
558 Constant *C = cast<Constant>(Op1);
559 if (AllowReassociate && isFiniteNonZeroFp(C)) {
560 // Let MDC denote an expression in one of these forms:
561 // X * C, C/X, X/C, where C is a constant.
562 //
563 // Try to simplify "MDC * Constant"
564 if (isFMulOrFDivWithConstant(Op0))
565 if (Value *V = foldFMulConst(cast<Instruction>(Op0), C, &I))
566 return ReplaceInstUsesWith(I, V);
567
568 // (MDC +/- C1) * C => (MDC * C) +/- (C1 * C)
569 Instruction *FAddSub = dyn_cast<Instruction>(Op0);
570 if (FAddSub &&
571 (FAddSub->getOpcode() == Instruction::FAdd ||
572 FAddSub->getOpcode() == Instruction::FSub)) {
573 Value *Opnd0 = FAddSub->getOperand(0);
574 Value *Opnd1 = FAddSub->getOperand(1);
575 Constant *C0 = dyn_cast<Constant>(Opnd0);
576 Constant *C1 = dyn_cast<Constant>(Opnd1);
577 bool Swap = false;
578 if (C0) {
579 std::swap(C0, C1);
580 std::swap(Opnd0, Opnd1);
581 Swap = true;
582 }
583
584 if (C1 && isFiniteNonZeroFp(C1) && isFMulOrFDivWithConstant(Opnd0)) {
585 Value *M1 = ConstantExpr::getFMul(C1, C);
586 Value *M0 = isNormalFp(cast<Constant>(M1)) ?
587 foldFMulConst(cast<Instruction>(Opnd0), C, &I) :
588 nullptr;
589 if (M0 && M1) {
590 if (Swap && FAddSub->getOpcode() == Instruction::FSub)
591 std::swap(M0, M1);
592
593 Instruction *RI = (FAddSub->getOpcode() == Instruction::FAdd)
594 ? BinaryOperator::CreateFAdd(M0, M1)
595 : BinaryOperator::CreateFSub(M0, M1);
596 RI->copyFastMathFlags(&I);
597 return RI;
598 }
599 }
600 }
601 }
602 }
603
604 // sqrt(X) * sqrt(X) -> X
605 if (AllowReassociate && (Op0 == Op1))
606 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op0))
607 if (II->getIntrinsicID() == Intrinsic::sqrt)
608 return ReplaceInstUsesWith(I, II->getOperand(0));
609
610 // Under unsafe algebra do:
611 // X * log2(0.5*Y) = X*log2(Y) - X
612 if (AllowReassociate) {
613 Value *OpX = nullptr;
614 Value *OpY = nullptr;
615 IntrinsicInst *Log2;
616 detectLog2OfHalf(Op0, OpY, Log2);
617 if (OpY) {
618 OpX = Op1;
619 } else {
620 detectLog2OfHalf(Op1, OpY, Log2);
621 if (OpY) {
622 OpX = Op0;
623 }
624 }
625 // if pattern detected emit alternate sequence
626 if (OpX && OpY) {
627 BuilderTy::FastMathFlagGuard Guard(*Builder);
628 Builder->SetFastMathFlags(Log2->getFastMathFlags());
629 Log2->setArgOperand(0, OpY);
630 Value *FMulVal = Builder->CreateFMul(OpX, Log2);
631 Value *FSub = Builder->CreateFSub(FMulVal, OpX);
632 FSub->takeName(&I);
633 return ReplaceInstUsesWith(I, FSub);
634 }
635 }
636
637 // Handle symmetric situation in a 2-iteration loop
638 Value *Opnd0 = Op0;
639 Value *Opnd1 = Op1;
640 for (int i = 0; i < 2; i++) {
641 bool IgnoreZeroSign = I.hasNoSignedZeros();
642 if (BinaryOperator::isFNeg(Opnd0, IgnoreZeroSign)) {
643 BuilderTy::FastMathFlagGuard Guard(*Builder);
644 Builder->SetFastMathFlags(I.getFastMathFlags());
645
646 Value *N0 = dyn_castFNegVal(Opnd0, IgnoreZeroSign);
647 Value *N1 = dyn_castFNegVal(Opnd1, IgnoreZeroSign);
648
649 // -X * -Y => X*Y
650 if (N1) {
651 Value *FMul = Builder->CreateFMul(N0, N1);
652 FMul->takeName(&I);
653 return ReplaceInstUsesWith(I, FMul);
654 }
655
656 if (Opnd0->hasOneUse()) {
657 // -X * Y => -(X*Y) (Promote negation as high as possible)
658 Value *T = Builder->CreateFMul(N0, Opnd1);
659 Value *Neg = Builder->CreateFNeg(T);
660 Neg->takeName(&I);
661 return ReplaceInstUsesWith(I, Neg);
662 }
663 }
664
665 // (X*Y) * X => (X*X) * Y where Y != X
666 // The purpose is two-fold:
667 // 1) to form a power expression (of X).
668 // 2) potentially shorten the critical path: After transformation, the
669 // latency of the instruction Y is amortized by the expression of X*X,
670 // and therefore Y is in a "less critical" position compared to what it
671 // was before the transformation.
672 //
673 if (AllowReassociate) {
674 Value *Opnd0_0, *Opnd0_1;
675 if (Opnd0->hasOneUse() &&
676 match(Opnd0, m_FMul(m_Value(Opnd0_0), m_Value(Opnd0_1)))) {
677 Value *Y = nullptr;
678 if (Opnd0_0 == Opnd1 && Opnd0_1 != Opnd1)
679 Y = Opnd0_1;
680 else if (Opnd0_1 == Opnd1 && Opnd0_0 != Opnd1)
681 Y = Opnd0_0;
682
683 if (Y) {
684 BuilderTy::FastMathFlagGuard Guard(*Builder);
685 Builder->SetFastMathFlags(I.getFastMathFlags());
686 Value *T = Builder->CreateFMul(Opnd1, Opnd1);
687
688 Value *R = Builder->CreateFMul(T, Y);
689 R->takeName(&I);
690 return ReplaceInstUsesWith(I, R);
691 }
692 }
693 }
694
695 if (!isa<Constant>(Op1))
696 std::swap(Opnd0, Opnd1);
697 else
698 break;
699 }
700
701 return Changed ? &I : nullptr;
702 }
703
704 /// SimplifyDivRemOfSelect - Try to fold a divide or remainder of a select
705 /// instruction.
706 bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) {
707 SelectInst *SI = cast<SelectInst>(I.getOperand(1));
708
709 // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
710 int NonNullOperand = -1;
711 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
712 if (ST->isNullValue())
713 NonNullOperand = 2;
714 // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
715 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
716 if (ST->isNullValue())
717 NonNullOperand = 1;
718
719 if (NonNullOperand == -1)
720 return false;
721
722 Value *SelectCond = SI->getOperand(0);
723
724 // Change the div/rem to use 'Y' instead of the select.
725 I.setOperand(1, SI->getOperand(NonNullOperand));
726
727 // Okay, we know we replace the operand of the div/rem with 'Y' with no
728 // problem. However, the select, or the condition of the select may have
729 // multiple uses. Based on our knowledge that the operand must be non-zero,
730 // propagate the known value for the select into other uses of it, and
731 // propagate a known value of the condition into its other users.
732
733 // If the select and condition only have a single use, don't bother with this,
734 // early exit.
735 if (SI->use_empty() && SelectCond->hasOneUse())
736 return true;
737
738 // Scan the current block backward, looking for other uses of SI.
739 BasicBlock::iterator BBI = &I, BBFront = I.getParent()->begin();
740
741 while (BBI != BBFront) {
742 --BBI;
743 // If we found a call to a function, we can't assume it will return, so
744 // information from below it cannot be propagated above it.
745 if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI))
746 break;
747
748 // Replace uses of the select or its condition with the known values.
749 for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
750 I != E; ++I) {
751 if (*I == SI) {
752 *I = SI->getOperand(NonNullOperand);
753 Worklist.Add(BBI);
754 } else if (*I == SelectCond) {
755 *I = Builder->getInt1(NonNullOperand == 1);
756 Worklist.Add(BBI);
757 }
758 }
759
760 // If we past the instruction, quit looking for it.
761 if (&*BBI == SI)
762 SI = nullptr;
763 if (&*BBI == SelectCond)
764 SelectCond = nullptr;
765
766 // If we ran out of things to eliminate, break out of the loop.
767 if (!SelectCond && !SI)
768 break;
769
770 }
771 return true;
772 }
773
774
775 /// This function implements the transforms common to both integer division
776 /// instructions (udiv and sdiv). It is called by the visitors to those integer
777 /// division instructions.
778 /// @brief Common integer divide transforms
779 Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
780 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
781
782 // The RHS is known non-zero.
783 if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, &I)) {
784 I.setOperand(1, V);
785 return &I;
786 }
787
788 // Handle cases involving: [su]div X, (select Cond, Y, Z)
789 // This does not apply for fdiv.
790 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
791 return &I;
792
793 if (Instruction *LHS = dyn_cast<Instruction>(Op0)) {
794 const APInt *C2;
795 if (match(Op1, m_APInt(C2))) {
796 Value *X;
797 const APInt *C1;
798 bool IsSigned = I.getOpcode() == Instruction::SDiv;
799
800 // (X / C1) / C2 -> X / (C1*C2)
801 if ((IsSigned && match(LHS, m_SDiv(m_Value(X), m_APInt(C1)))) ||
802 (!IsSigned && match(LHS, m_UDiv(m_Value(X), m_APInt(C1))))) {
803 APInt Product(C1->getBitWidth(), /*Val=*/0ULL, IsSigned);
804 if (!MultiplyOverflows(*C1, *C2, Product, IsSigned))
805 return BinaryOperator::Create(I.getOpcode(), X,
806 ConstantInt::get(I.getType(), Product));
807 }
808
809 if ((IsSigned && match(LHS, m_NSWMul(m_Value(X), m_APInt(C1)))) ||
810 (!IsSigned && match(LHS, m_NUWMul(m_Value(X), m_APInt(C1))))) {
811 APInt Quotient(C1->getBitWidth(), /*Val=*/0ULL, IsSigned);
812
813 // (X * C1) / C2 -> X / (C2 / C1) if C2 is a multiple of C1.
814 if (IsMultiple(*C2, *C1, Quotient, IsSigned)) {
815 BinaryOperator *BO = BinaryOperator::Create(
816 I.getOpcode(), X, ConstantInt::get(X->getType(), Quotient));
817 BO->setIsExact(I.isExact());
818 return BO;
819 }
820
821 // (X * C1) / C2 -> X * (C1 / C2) if C1 is a multiple of C2.
822 if (IsMultiple(*C1, *C2, Quotient, IsSigned)) {
823 BinaryOperator *BO = BinaryOperator::Create(
824 Instruction::Mul, X, ConstantInt::get(X->getType(), Quotient));
825 BO->setHasNoUnsignedWrap(
826 !IsSigned &&
827 cast<OverflowingBinaryOperator>(LHS)->hasNoUnsignedWrap());
828 BO->setHasNoSignedWrap(
829 cast<OverflowingBinaryOperator>(LHS)->hasNoSignedWrap());
830 return BO;
831 }
832 }
833
834 if ((IsSigned && match(LHS, m_NSWShl(m_Value(X), m_APInt(C1))) &&
835 *C1 != C1->getBitWidth() - 1) ||
836 (!IsSigned && match(LHS, m_NUWShl(m_Value(X), m_APInt(C1))))) {
837 APInt Quotient(C1->getBitWidth(), /*Val=*/0ULL, IsSigned);
838 APInt C1Shifted = APInt::getOneBitSet(
839 C1->getBitWidth(), static_cast<unsigned>(C1->getLimitedValue()));
840
841 // (X << C1) / C2 -> X / (C2 >> C1) if C2 is a multiple of C1.
842 if (IsMultiple(*C2, C1Shifted, Quotient, IsSigned)) {
843 BinaryOperator *BO = BinaryOperator::Create(
844 I.getOpcode(), X, ConstantInt::get(X->getType(), Quotient));
845 BO->setIsExact(I.isExact());
846 return BO;
847 }
848
849 // (X << C1) / C2 -> X * (C2 >> C1) if C1 is a multiple of C2.
850 if (IsMultiple(C1Shifted, *C2, Quotient, IsSigned)) {
851 BinaryOperator *BO = BinaryOperator::Create(
852 Instruction::Mul, X, ConstantInt::get(X->getType(), Quotient));
853 BO->setHasNoUnsignedWrap(
854 !IsSigned &&
855 cast<OverflowingBinaryOperator>(LHS)->hasNoUnsignedWrap());
856 BO->setHasNoSignedWrap(
857 cast<OverflowingBinaryOperator>(LHS)->hasNoSignedWrap());
858 return BO;
859 }
860 }
861
862 if (*C2 != 0) { // avoid X udiv 0
863 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
864 if (Instruction *R = FoldOpIntoSelect(I, SI))
865 return R;
866 if (isa<PHINode>(Op0))
867 if (Instruction *NV = FoldOpIntoPhi(I))
868 return NV;
869 }
870 }
871 }
872
873 if (ConstantInt *One = dyn_cast<ConstantInt>(Op0)) {
874 if (One->isOne() && !I.getType()->isIntegerTy(1)) {
875 bool isSigned = I.getOpcode() == Instruction::SDiv;
876 if (isSigned) {
877 // If Op1 is 0 then it's undefined behaviour, if Op1 is 1 then the
878 // result is one, if Op1 is -1 then the result is minus one, otherwise
879 // it's zero.
880 Value *Inc = Builder->CreateAdd(Op1, One);
881 Value *Cmp = Builder->CreateICmpULT(
882 Inc, ConstantInt::get(I.getType(), 3));
883 return SelectInst::Create(Cmp, Op1, ConstantInt::get(I.getType(), 0));
884 } else {
885 // If Op1 is 0 then it's undefined behaviour. If Op1 is 1 then the
886 // result is one, otherwise it's zero.
887 return new ZExtInst(Builder->CreateICmpEQ(Op1, One), I.getType());
888 }
889 }
890 }
891
892 // See if we can fold away this div instruction.
893 if (SimplifyDemandedInstructionBits(I))
894 return &I;
895
896 // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
897 Value *X = nullptr, *Z = nullptr;
898 if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) { // (X - Z) / Y; Y = Op1
899 bool isSigned = I.getOpcode() == Instruction::SDiv;
900 if ((isSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
901 (!isSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
902 return BinaryOperator::Create(I.getOpcode(), X, Op1);
903 }
904
905 return nullptr;
906 }
907
908 /// dyn_castZExtVal - Checks if V is a zext or constant that can
909 /// be truncated to Ty without losing bits.
910 static Value *dyn_castZExtVal(Value *V, Type *Ty) {
911 if (ZExtInst *Z = dyn_cast<ZExtInst>(V)) {
912 if (Z->getSrcTy() == Ty)
913 return Z->getOperand(0);
914 } else if (ConstantInt *C = dyn_cast<ConstantInt>(V)) {
915 if (C->getValue().getActiveBits() <= cast<IntegerType>(Ty)->getBitWidth())
916 return ConstantExpr::getTrunc(C, Ty);
917 }
918 return nullptr;
919 }
920
921 namespace {
922 const unsigned MaxDepth = 6;
923 typedef Instruction *(*FoldUDivOperandCb)(Value *Op0, Value *Op1,
924 const BinaryOperator &I,
925 InstCombiner &IC);
926
927 /// \brief Used to maintain state for visitUDivOperand().
928 struct UDivFoldAction {
929 FoldUDivOperandCb FoldAction; ///< Informs visitUDiv() how to fold this
930 ///< operand. This can be zero if this action
931 ///< joins two actions together.
932
933 Value *OperandToFold; ///< Which operand to fold.
934 union {
935 Instruction *FoldResult; ///< The instruction returned when FoldAction is
936 ///< invoked.
937
938 size_t SelectLHSIdx; ///< Stores the LHS action index if this action
939 ///< joins two actions together.
940 };
941
942 UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand)
943 : FoldAction(FA), OperandToFold(InputOperand), FoldResult(nullptr) {}
944 UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand, size_t SLHS)
945 : FoldAction(FA), OperandToFold(InputOperand), SelectLHSIdx(SLHS) {}
946 };
947 }
948
949 // X udiv 2^C -> X >> C
950 static Instruction *foldUDivPow2Cst(Value *Op0, Value *Op1,
951 const BinaryOperator &I, InstCombiner &IC) {
952 const APInt &C = cast<Constant>(Op1)->getUniqueInteger();
953 BinaryOperator *LShr = BinaryOperator::CreateLShr(
954 Op0, ConstantInt::get(Op0->getType(), C.logBase2()));
955 if (I.isExact())
956 LShr->setIsExact();
957 return LShr;
958 }
959
960 // X udiv C, where C >= signbit
961 static Instruction *foldUDivNegCst(Value *Op0, Value *Op1,
962 const BinaryOperator &I, InstCombiner &IC) {
963 Value *ICI = IC.Builder->CreateICmpULT(Op0, cast<ConstantInt>(Op1));
964
965 return SelectInst::Create(ICI, Constant::getNullValue(I.getType()),
966 ConstantInt::get(I.getType(), 1));
967 }
968
969 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
970 static Instruction *foldUDivShl(Value *Op0, Value *Op1, const BinaryOperator &I,
971 InstCombiner &IC) {
972 Instruction *ShiftLeft = cast<Instruction>(Op1);
973 if (isa<ZExtInst>(ShiftLeft))
974 ShiftLeft = cast<Instruction>(ShiftLeft->getOperand(0));
975
976 const APInt &CI =
977 cast<Constant>(ShiftLeft->getOperand(0))->getUniqueInteger();
978 Value *N = ShiftLeft->getOperand(1);
979 if (CI != 1)
980 N = IC.Builder->CreateAdd(N, ConstantInt::get(N->getType(), CI.logBase2()));
981 if (ZExtInst *Z = dyn_cast<ZExtInst>(Op1))
982 N = IC.Builder->CreateZExt(N, Z->getDestTy());
983 BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, N);
984 if (I.isExact())
985 LShr->setIsExact();
986 return LShr;
987 }
988
989 // \brief Recursively visits the possible right hand operands of a udiv
990 // instruction, seeing through select instructions, to determine if we can
991 // replace the udiv with something simpler. If we find that an operand is not
992 // able to simplify the udiv, we abort the entire transformation.
993 static size_t visitUDivOperand(Value *Op0, Value *Op1, const BinaryOperator &I,
994 SmallVectorImpl<UDivFoldAction> &Actions,
995 unsigned Depth = 0) {
996 // Check to see if this is an unsigned division with an exact power of 2,
997 // if so, convert to a right shift.
998 if (match(Op1, m_Power2())) {
999 Actions.push_back(UDivFoldAction(foldUDivPow2Cst, Op1));
1000 return Actions.size();
1001 }
1002
1003 if (ConstantInt *C = dyn_cast<ConstantInt>(Op1))
1004 // X udiv C, where C >= signbit
1005 if (C->getValue().isNegative()) {
1006 Actions.push_back(UDivFoldAction(foldUDivNegCst, C));
1007 return Actions.size();
1008 }
1009
1010 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
1011 if (match(Op1, m_Shl(m_Power2(), m_Value())) ||
1012 match(Op1, m_ZExt(m_Shl(m_Power2(), m_Value())))) {
1013 Actions.push_back(UDivFoldAction(foldUDivShl, Op1));
1014 return Actions.size();
1015 }
1016
1017 // The remaining tests are all recursive, so bail out if we hit the limit.
1018 if (Depth++ == MaxDepth)
1019 return 0;
1020
1021 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1022 if (size_t LHSIdx =
1023 visitUDivOperand(Op0, SI->getOperand(1), I, Actions, Depth))
1024 if (visitUDivOperand(Op0, SI->getOperand(2), I, Actions, Depth)) {
1025 Actions.push_back(UDivFoldAction(nullptr, Op1, LHSIdx - 1));
1026 return Actions.size();
1027 }
1028
1029 return 0;
1030 }
1031
1032 Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
1033 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1034
1035 if (Value *V = SimplifyVectorOp(I))
1036 return ReplaceInstUsesWith(I, V);
1037
1038 if (Value *V = SimplifyUDivInst(Op0, Op1, DL, TLI, DT, AC))
1039 return ReplaceInstUsesWith(I, V);
1040
1041 // Handle the integer div common cases
1042 if (Instruction *Common = commonIDivTransforms(I))
1043 return Common;
1044
1045 // (x lshr C1) udiv C2 --> x udiv (C2 << C1)
1046 {
1047 Value *X;
1048 const APInt *C1, *C2;
1049 if (match(Op0, m_LShr(m_Value(X), m_APInt(C1))) &&
1050 match(Op1, m_APInt(C2))) {
1051 bool Overflow;
1052 APInt C2ShlC1 = C2->ushl_ov(*C1, Overflow);
1053 if (!Overflow) {
1054 bool IsExact = I.isExact() && match(Op0, m_Exact(m_Value()));
1055 BinaryOperator *BO = BinaryOperator::CreateUDiv(
1056 X, ConstantInt::get(X->getType(), C2ShlC1));
1057 if (IsExact)
1058 BO->setIsExact();
1059 return BO;
1060 }
1061 }
1062 }
1063
1064 // (zext A) udiv (zext B) --> zext (A udiv B)
1065 if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0))
1066 if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy()))
1067 return new ZExtInst(
1068 Builder->CreateUDiv(ZOp0->getOperand(0), ZOp1, "div", I.isExact()),
1069 I.getType());
1070
1071 // (LHS udiv (select (select (...)))) -> (LHS >> (select (select (...))))
1072 SmallVector<UDivFoldAction, 6> UDivActions;
1073 if (visitUDivOperand(Op0, Op1, I, UDivActions))
1074 for (unsigned i = 0, e = UDivActions.size(); i != e; ++i) {
1075 FoldUDivOperandCb Action = UDivActions[i].FoldAction;
1076 Value *ActionOp1 = UDivActions[i].OperandToFold;
1077 Instruction *Inst;
1078 if (Action)
1079 Inst = Action(Op0, ActionOp1, I, *this);
1080 else {
1081 // This action joins two actions together. The RHS of this action is
1082 // simply the last action we processed, we saved the LHS action index in
1083 // the joining action.
1084 size_t SelectRHSIdx = i - 1;
1085 Value *SelectRHS = UDivActions[SelectRHSIdx].FoldResult;
1086 size_t SelectLHSIdx = UDivActions[i].SelectLHSIdx;
1087 Value *SelectLHS = UDivActions[SelectLHSIdx].FoldResult;
1088 Inst = SelectInst::Create(cast<SelectInst>(ActionOp1)->getCondition(),
1089 SelectLHS, SelectRHS);
1090 }
1091
1092 // If this is the last action to process, return it to the InstCombiner.
1093 // Otherwise, we insert it before the UDiv and record it so that we may
1094 // use it as part of a joining action (i.e., a SelectInst).
1095 if (e - i != 1) {
1096 Inst->insertBefore(&I);
1097 UDivActions[i].FoldResult = Inst;
1098 } else
1099 return Inst;
1100 }
1101
1102 return nullptr;
1103 }
1104
1105 Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
1106 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1107
1108 if (Value *V = SimplifyVectorOp(I))
1109 return ReplaceInstUsesWith(I, V);
1110
1111 if (Value *V = SimplifySDivInst(Op0, Op1, DL, TLI, DT, AC))
1112 return ReplaceInstUsesWith(I, V);
1113
1114 // Handle the integer div common cases
1115 if (Instruction *Common = commonIDivTransforms(I))
1116 return Common;
1117
1118 // sdiv X, -1 == -X
1119 if (match(Op1, m_AllOnes()))
1120 return BinaryOperator::CreateNeg(Op0);
1121
1122 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
1123 // sdiv X, C --> ashr exact X, log2(C)
1124 if (I.isExact() && RHS->getValue().isNonNegative() &&
1125 RHS->getValue().isPowerOf2()) {
1126 Value *ShAmt = llvm::ConstantInt::get(RHS->getType(),
1127 RHS->getValue().exactLogBase2());
1128 return BinaryOperator::CreateExactAShr(Op0, ShAmt, I.getName());
1129 }
1130 }
1131
1132 if (Constant *RHS = dyn_cast<Constant>(Op1)) {
1133 // X/INT_MIN -> X == INT_MIN
1134 if (RHS->isMinSignedValue())
1135 return new ZExtInst(Builder->CreateICmpEQ(Op0, Op1), I.getType());
1136
1137 // -X/C --> X/-C provided the negation doesn't overflow.
1138 Value *X;
1139 if (match(Op0, m_NSWSub(m_Zero(), m_Value(X)))) {
1140 auto *BO = BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(RHS));
1141 BO->setIsExact(I.isExact());
1142 return BO;
1143 }
1144 }
1145
1146 // If the sign bits of both operands are zero (i.e. we can prove they are
1147 // unsigned inputs), turn this into a udiv.
1148 if (I.getType()->isIntegerTy()) {
1149 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
1150 if (MaskedValueIsZero(Op0, Mask, 0, &I)) {
1151 if (MaskedValueIsZero(Op1, Mask, 0, &I)) {
1152 // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
1153 auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
1154 BO->setIsExact(I.isExact());
1155 return BO;
1156 }
1157
1158 if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, AC, &I, DT)) {
1159 // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
1160 // Safe because the only negative value (1 << Y) can take on is
1161 // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
1162 // the sign bit set.
1163 auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
1164 BO->setIsExact(I.isExact());
1165 return BO;
1166 }
1167 }
1168 }
1169
1170 return nullptr;
1171 }
1172
1173 /// CvtFDivConstToReciprocal tries to convert X/C into X*1/C if C not a special
1174 /// FP value and:
1175 /// 1) 1/C is exact, or
1176 /// 2) reciprocal is allowed.
1177 /// If the conversion was successful, the simplified expression "X * 1/C" is
1178 /// returned; otherwise, NULL is returned.
1179 ///
1180 static Instruction *CvtFDivConstToReciprocal(Value *Dividend, Constant *Divisor,
1181 bool AllowReciprocal) {
1182 if (!isa<ConstantFP>(Divisor)) // TODO: handle vectors.
1183 return nullptr;
1184
1185 const APFloat &FpVal = cast<ConstantFP>(Divisor)->getValueAPF();
1186 APFloat Reciprocal(FpVal.getSemantics());
1187 bool Cvt = FpVal.getExactInverse(&Reciprocal);
1188
1189 if (!Cvt && AllowReciprocal && FpVal.isFiniteNonZero()) {
1190 Reciprocal = APFloat(FpVal.getSemantics(), 1.0f);
1191 (void)Reciprocal.divide(FpVal, APFloat::rmNearestTiesToEven);
1192 Cvt = !Reciprocal.isDenormal();
1193 }
1194
1195 if (!Cvt)
1196 return nullptr;
1197
1198 ConstantFP *R;
1199 R = ConstantFP::get(Dividend->getType()->getContext(), Reciprocal);
1200 return BinaryOperator::CreateFMul(Dividend, R);
1201 }
1202
1203 Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
1204 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1205
1206 if (Value *V = SimplifyVectorOp(I))
1207 return ReplaceInstUsesWith(I, V);
1208
1209 if (Value *V = SimplifyFDivInst(Op0, Op1, DL, TLI, DT, AC))
1210 return ReplaceInstUsesWith(I, V);
1211
1212 if (isa<Constant>(Op0))
1213 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1214 if (Instruction *R = FoldOpIntoSelect(I, SI))
1215 return R;
1216
1217 bool AllowReassociate = I.hasUnsafeAlgebra();
1218 bool AllowReciprocal = I.hasAllowReciprocal();
1219
1220 if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
1221 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
1222 if (Instruction *R = FoldOpIntoSelect(I, SI))
1223 return R;
1224
1225 if (AllowReassociate) {
1226 Constant *C1 = nullptr;
1227 Constant *C2 = Op1C;
1228 Value *X;
1229 Instruction *Res = nullptr;
1230
1231 if (match(Op0, m_FMul(m_Value(X), m_Constant(C1)))) {
1232 // (X*C1)/C2 => X * (C1/C2)
1233 //
1234 Constant *C = ConstantExpr::getFDiv(C1, C2);
1235 if (isNormalFp(C))
1236 Res = BinaryOperator::CreateFMul(X, C);
1237 } else if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) {
1238 // (X/C1)/C2 => X /(C2*C1) [=> X * 1/(C2*C1) if reciprocal is allowed]
1239 //
1240 Constant *C = ConstantExpr::getFMul(C1, C2);
1241 if (isNormalFp(C)) {
1242 Res = CvtFDivConstToReciprocal(X, C, AllowReciprocal);
1243 if (!Res)
1244 Res = BinaryOperator::CreateFDiv(X, C);
1245 }
1246 }
1247
1248 if (Res) {
1249 Res->setFastMathFlags(I.getFastMathFlags());
1250 return Res;
1251 }
1252 }
1253
1254 // X / C => X * 1/C
1255 if (Instruction *T = CvtFDivConstToReciprocal(Op0, Op1C, AllowReciprocal)) {
1256 T->copyFastMathFlags(&I);
1257 return T;
1258 }
1259
1260 return nullptr;
1261 }
1262
1263 if (AllowReassociate && isa<Constant>(Op0)) {
1264 Constant *C1 = cast<Constant>(Op0), *C2;
1265 Constant *Fold = nullptr;
1266 Value *X;
1267 bool CreateDiv = true;
1268
1269 // C1 / (X*C2) => (C1/C2) / X
1270 if (match(Op1, m_FMul(m_Value(X), m_Constant(C2))))
1271 Fold = ConstantExpr::getFDiv(C1, C2);
1272 else if (match(Op1, m_FDiv(m_Value(X), m_Constant(C2)))) {
1273 // C1 / (X/C2) => (C1*C2) / X
1274 Fold = ConstantExpr::getFMul(C1, C2);
1275 } else if (match(Op1, m_FDiv(m_Constant(C2), m_Value(X)))) {
1276 // C1 / (C2/X) => (C1/C2) * X
1277 Fold = ConstantExpr::getFDiv(C1, C2);
1278 CreateDiv = false;
1279 }
1280
1281 if (Fold && isNormalFp(Fold)) {
1282 Instruction *R = CreateDiv ? BinaryOperator::CreateFDiv(Fold, X)
1283 : BinaryOperator::CreateFMul(X, Fold);
1284 R->setFastMathFlags(I.getFastMathFlags());
1285 return R;
1286 }
1287 return nullptr;
1288 }
1289
1290 if (AllowReassociate) {
1291 Value *X, *Y;
1292 Value *NewInst = nullptr;
1293 Instruction *SimpR = nullptr;
1294
1295 if (Op0->hasOneUse() && match(Op0, m_FDiv(m_Value(X), m_Value(Y)))) {
1296 // (X/Y) / Z => X / (Y*Z)
1297 //
1298 if (!isa<Constant>(Y) || !isa<Constant>(Op1)) {
1299 NewInst = Builder->CreateFMul(Y, Op1);
1300 if (Instruction *RI = dyn_cast<Instruction>(NewInst)) {
1301 FastMathFlags Flags = I.getFastMathFlags();
1302 Flags &= cast<Instruction>(Op0)->getFastMathFlags();
1303 RI->setFastMathFlags(Flags);
1304 }
1305 SimpR = BinaryOperator::CreateFDiv(X, NewInst);
1306 }
1307 } else if (Op1->hasOneUse() && match(Op1, m_FDiv(m_Value(X), m_Value(Y)))) {
1308 // Z / (X/Y) => Z*Y / X
1309 //
1310 if (!isa<Constant>(Y) || !isa<Constant>(Op0)) {
1311 NewInst = Builder->CreateFMul(Op0, Y);
1312 if (Instruction *RI = dyn_cast<Instruction>(NewInst)) {
1313 FastMathFlags Flags = I.getFastMathFlags();
1314 Flags &= cast<Instruction>(Op1)->getFastMathFlags();
1315 RI->setFastMathFlags(Flags);
1316 }
1317 SimpR = BinaryOperator::CreateFDiv(NewInst, X);
1318 }
1319 }
1320
1321 if (NewInst) {
1322 if (Instruction *T = dyn_cast<Instruction>(NewInst))
1323 T->setDebugLoc(I.getDebugLoc());
1324 SimpR->setFastMathFlags(I.getFastMathFlags());
1325 return SimpR;
1326 }
1327 }
1328
1329 return nullptr;
1330 }
1331
1332 /// This function implements the transforms common to both integer remainder
1333 /// instructions (urem and srem). It is called by the visitors to those integer
1334 /// remainder instructions.
1335 /// @brief Common integer remainder transforms
1336 Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
1337 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1338
1339 // The RHS is known non-zero.
1340 if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, &I)) {
1341 I.setOperand(1, V);
1342 return &I;
1343 }
1344
1345 // Handle cases involving: rem X, (select Cond, Y, Z)
1346 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
1347 return &I;
1348
1349 if (isa<Constant>(Op1)) {
1350 if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
1351 if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
1352 if (Instruction *R = FoldOpIntoSelect(I, SI))
1353 return R;
1354 } else if (isa<PHINode>(Op0I)) {
1355 if (Instruction *NV = FoldOpIntoPhi(I))
1356 return NV;
1357 }
1358
1359 // See if we can fold away this rem instruction.
1360 if (SimplifyDemandedInstructionBits(I))
1361 return &I;
1362 }
1363 }
1364
1365 return nullptr;
1366 }
1367
1368 Instruction *InstCombiner::visitURem(BinaryOperator &I) {
1369 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1370
1371 if (Value *V = SimplifyVectorOp(I))
1372 return ReplaceInstUsesWith(I, V);
1373
1374 if (Value *V = SimplifyURemInst(Op0, Op1, DL, TLI, DT, AC))
1375 return ReplaceInstUsesWith(I, V);
1376
1377 if (Instruction *common = commonIRemTransforms(I))
1378 return common;
1379
1380 // (zext A) urem (zext B) --> zext (A urem B)
1381 if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0))
1382 if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy()))
1383 return new ZExtInst(Builder->CreateURem(ZOp0->getOperand(0), ZOp1),
1384 I.getType());
1385
1386 // X urem Y -> X and Y-1, where Y is a power of 2,
1387 if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, AC, &I, DT)) {
1388 Constant *N1 = Constant::getAllOnesValue(I.getType());
1389 Value *Add = Builder->CreateAdd(Op1, N1);
1390 return BinaryOperator::CreateAnd(Op0, Add);
1391 }
1392
1393 // 1 urem X -> zext(X != 1)
1394 if (match(Op0, m_One())) {
1395 Value *Cmp = Builder->CreateICmpNE(Op1, Op0);
1396 Value *Ext = Builder->CreateZExt(Cmp, I.getType());
1397 return ReplaceInstUsesWith(I, Ext);
1398 }
1399
1400 return nullptr;
1401 }
1402
1403 Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
1404 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1405
1406 if (Value *V = SimplifyVectorOp(I))
1407 return ReplaceInstUsesWith(I, V);
1408
1409 if (Value *V = SimplifySRemInst(Op0, Op1, DL, TLI, DT, AC))
1410 return ReplaceInstUsesWith(I, V);
1411
1412 // Handle the integer rem common cases
1413 if (Instruction *Common = commonIRemTransforms(I))
1414 return Common;
1415
1416 {
1417 const APInt *Y;
1418 // X % -Y -> X % Y
1419 if (match(Op1, m_APInt(Y)) && Y->isNegative() && !Y->isMinSignedValue()) {
1420 Worklist.AddValue(I.getOperand(1));
1421 I.setOperand(1, ConstantInt::get(I.getType(), -*Y));
1422 return &I;
1423 }
1424 }
1425
1426 // If the sign bits of both operands are zero (i.e. we can prove they are
1427 // unsigned inputs), turn this into a urem.
1428 if (I.getType()->isIntegerTy()) {
1429 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
1430 if (MaskedValueIsZero(Op1, Mask, 0, &I) &&
1431 MaskedValueIsZero(Op0, Mask, 0, &I)) {
1432 // X srem Y -> X urem Y, iff X and Y don't have sign bit set
1433 return BinaryOperator::CreateURem(Op0, Op1, I.getName());
1434 }
1435 }
1436
1437 // If it's a constant vector, flip any negative values positive.
1438 if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) {
1439 Constant *C = cast<Constant>(Op1);
1440 unsigned VWidth = C->getType()->getVectorNumElements();
1441
1442 bool hasNegative = false;
1443 bool hasMissing = false;
1444 for (unsigned i = 0; i != VWidth; ++i) {
1445 Constant *Elt = C->getAggregateElement(i);
1446 if (!Elt) {
1447 hasMissing = true;
1448 break;
1449 }
1450
1451 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt))
1452 if (RHS->isNegative())
1453 hasNegative = true;
1454 }
1455
1456 if (hasNegative && !hasMissing) {
1457 SmallVector<Constant *, 16> Elts(VWidth);
1458 for (unsigned i = 0; i != VWidth; ++i) {
1459 Elts[i] = C->getAggregateElement(i); // Handle undef, etc.
1460 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) {
1461 if (RHS->isNegative())
1462 Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
1463 }
1464 }
1465
1466 Constant *NewRHSV = ConstantVector::get(Elts);
1467 if (NewRHSV != C) { // Don't loop on -MININT
1468 Worklist.AddValue(I.getOperand(1));
1469 I.setOperand(1, NewRHSV);
1470 return &I;
1471 }
1472 }
1473 }
1474
1475 return nullptr;
1476 }
1477
1478 Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
1479 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1480
1481 if (Value *V = SimplifyVectorOp(I))
1482 return ReplaceInstUsesWith(I, V);
1483
1484 if (Value *V = SimplifyFRemInst(Op0, Op1, DL, TLI, DT, AC))
1485 return ReplaceInstUsesWith(I, V);
1486
1487 // Handle cases involving: rem X, (select Cond, Y, Z)
1488 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
1489 return &I;
1490
1491 return nullptr;
1492 }