]> git.proxmox.com Git - rustc.git/blob - src/llvm/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / lib / Transforms / InstCombine / InstCombineSimplifyDemanded.cpp
1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains logic for simplifying instructions based on information
11 // about how they are used.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "InstCombine.h"
16 #include "llvm/IR/DataLayout.h"
17 #include "llvm/IR/IntrinsicInst.h"
18 #include "llvm/IR/PatternMatch.h"
19
20 using namespace llvm;
21 using namespace llvm::PatternMatch;
22
23 #define DEBUG_TYPE "instcombine"
24
25 /// ShrinkDemandedConstant - Check to see if the specified operand of the
26 /// specified instruction is a constant integer. If so, check to see if there
27 /// are any bits set in the constant that are not demanded. If so, shrink the
28 /// constant and return true.
29 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
30 APInt Demanded) {
31 assert(I && "No instruction?");
32 assert(OpNo < I->getNumOperands() && "Operand index too large");
33
34 // If the operand is not a constant integer, nothing to do.
35 ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
36 if (!OpC) return false;
37
38 // If there are no bits set that aren't demanded, nothing to do.
39 Demanded = Demanded.zextOrTrunc(OpC->getValue().getBitWidth());
40 if ((~Demanded & OpC->getValue()) == 0)
41 return false;
42
43 // This instruction is producing bits that are not demanded. Shrink the RHS.
44 Demanded &= OpC->getValue();
45 I->setOperand(OpNo, ConstantInt::get(OpC->getType(), Demanded));
46
47 // If either 'nsw' or 'nuw' is set and the constant is negative,
48 // removing *any* bits from the constant could make overflow occur.
49 // Remove 'nsw' and 'nuw' from the instruction in this case.
50 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(I)) {
51 assert(OBO->getOpcode() == Instruction::Add);
52 if (OBO->hasNoSignedWrap() || OBO->hasNoUnsignedWrap()) {
53 if (OpC->getValue().isNegative()) {
54 cast<BinaryOperator>(OBO)->setHasNoSignedWrap(false);
55 cast<BinaryOperator>(OBO)->setHasNoUnsignedWrap(false);
56 }
57 }
58 }
59
60 return true;
61 }
62
63
64
65 /// SimplifyDemandedInstructionBits - Inst is an integer instruction that
66 /// SimplifyDemandedBits knows about. See if the instruction has any
67 /// properties that allow us to simplify its operands.
68 bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
69 unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
70 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
71 APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
72
73 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask,
74 KnownZero, KnownOne, 0, &Inst);
75 if (!V) return false;
76 if (V == &Inst) return true;
77 ReplaceInstUsesWith(Inst, V);
78 return true;
79 }
80
81 /// SimplifyDemandedBits - This form of SimplifyDemandedBits simplifies the
82 /// specified instruction operand if possible, updating it in place. It returns
83 /// true if it made any change and false otherwise.
84 bool InstCombiner::SimplifyDemandedBits(Use &U, APInt DemandedMask,
85 APInt &KnownZero, APInt &KnownOne,
86 unsigned Depth) {
87 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask,
88 KnownZero, KnownOne, Depth,
89 dyn_cast<Instruction>(U.getUser()));
90 if (!NewVal) return false;
91 U = NewVal;
92 return true;
93 }
94
95
96 /// SimplifyDemandedUseBits - This function attempts to replace V with a simpler
97 /// value based on the demanded bits. When this function is called, it is known
98 /// that only the bits set in DemandedMask of the result of V are ever used
99 /// downstream. Consequently, depending on the mask and V, it may be possible
100 /// to replace V with a constant or one of its operands. In such cases, this
101 /// function does the replacement and returns true. In all other cases, it
102 /// returns false after analyzing the expression and setting KnownOne and known
103 /// to be one in the expression. KnownZero contains all the bits that are known
104 /// to be zero in the expression. These are provided to potentially allow the
105 /// caller (which might recursively be SimplifyDemandedBits itself) to simplify
106 /// the expression. KnownOne and KnownZero always follow the invariant that
107 /// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that
108 /// the bits in KnownOne and KnownZero may only be accurate for those bits set
109 /// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero
110 /// and KnownOne must all be the same.
111 ///
112 /// This returns null if it did not change anything and it permits no
113 /// simplification. This returns V itself if it did some simplification of V's
114 /// operands based on the information about what bits are demanded. This returns
115 /// some other non-null value if it found out that V is equal to another value
116 /// in the context where the specified bits are demanded, but not for all users.
117 Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
118 APInt &KnownZero, APInt &KnownOne,
119 unsigned Depth,
120 Instruction *CxtI) {
121 assert(V != nullptr && "Null pointer of Value???");
122 assert(Depth <= 6 && "Limit Search Depth");
123 uint32_t BitWidth = DemandedMask.getBitWidth();
124 Type *VTy = V->getType();
125 assert((DL || !VTy->isPointerTy()) &&
126 "SimplifyDemandedBits needs to know bit widths!");
127 assert((!DL || DL->getTypeSizeInBits(VTy->getScalarType()) == BitWidth) &&
128 (!VTy->isIntOrIntVectorTy() ||
129 VTy->getScalarSizeInBits() == BitWidth) &&
130 KnownZero.getBitWidth() == BitWidth &&
131 KnownOne.getBitWidth() == BitWidth &&
132 "Value *V, DemandedMask, KnownZero and KnownOne "
133 "must have same BitWidth");
134 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
135 // We know all of the bits for a constant!
136 KnownOne = CI->getValue() & DemandedMask;
137 KnownZero = ~KnownOne & DemandedMask;
138 return nullptr;
139 }
140 if (isa<ConstantPointerNull>(V)) {
141 // We know all of the bits for a constant!
142 KnownOne.clearAllBits();
143 KnownZero = DemandedMask;
144 return nullptr;
145 }
146
147 KnownZero.clearAllBits();
148 KnownOne.clearAllBits();
149 if (DemandedMask == 0) { // Not demanding any bits from V.
150 if (isa<UndefValue>(V))
151 return nullptr;
152 return UndefValue::get(VTy);
153 }
154
155 if (Depth == 6) // Limit search depth.
156 return nullptr;
157
158 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
159 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
160
161 Instruction *I = dyn_cast<Instruction>(V);
162 if (!I) {
163 computeKnownBits(V, KnownZero, KnownOne, Depth, CxtI);
164 return nullptr; // Only analyze instructions.
165 }
166
167 // If there are multiple uses of this value and we aren't at the root, then
168 // we can't do any simplifications of the operands, because DemandedMask
169 // only reflects the bits demanded by *one* of the users.
170 if (Depth != 0 && !I->hasOneUse()) {
171 // Despite the fact that we can't simplify this instruction in all User's
172 // context, we can at least compute the knownzero/knownone bits, and we can
173 // do simplifications that apply to *just* the one user if we know that
174 // this instruction has a simpler value in that context.
175 if (I->getOpcode() == Instruction::And) {
176 // If either the LHS or the RHS are Zero, the result is zero.
177 computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1,
178 CxtI);
179 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1,
180 CxtI);
181
182 // If all of the demanded bits are known 1 on one side, return the other.
183 // These bits cannot contribute to the result of the 'and' in this
184 // context.
185 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
186 (DemandedMask & ~LHSKnownZero))
187 return I->getOperand(0);
188 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
189 (DemandedMask & ~RHSKnownZero))
190 return I->getOperand(1);
191
192 // If all of the demanded bits in the inputs are known zeros, return zero.
193 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
194 return Constant::getNullValue(VTy);
195
196 } else if (I->getOpcode() == Instruction::Or) {
197 // We can simplify (X|Y) -> X or Y in the user's context if we know that
198 // only bits from X or Y are demanded.
199
200 // If either the LHS or the RHS are One, the result is One.
201 computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1,
202 CxtI);
203 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1,
204 CxtI);
205
206 // If all of the demanded bits are known zero on one side, return the
207 // other. These bits cannot contribute to the result of the 'or' in this
208 // context.
209 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
210 (DemandedMask & ~LHSKnownOne))
211 return I->getOperand(0);
212 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
213 (DemandedMask & ~RHSKnownOne))
214 return I->getOperand(1);
215
216 // If all of the potentially set bits on one side are known to be set on
217 // the other side, just use the 'other' side.
218 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
219 (DemandedMask & (~RHSKnownZero)))
220 return I->getOperand(0);
221 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
222 (DemandedMask & (~LHSKnownZero)))
223 return I->getOperand(1);
224 } else if (I->getOpcode() == Instruction::Xor) {
225 // We can simplify (X^Y) -> X or Y in the user's context if we know that
226 // only bits from X or Y are demanded.
227
228 computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1,
229 CxtI);
230 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1,
231 CxtI);
232
233 // If all of the demanded bits are known zero on one side, return the
234 // other.
235 if ((DemandedMask & RHSKnownZero) == DemandedMask)
236 return I->getOperand(0);
237 if ((DemandedMask & LHSKnownZero) == DemandedMask)
238 return I->getOperand(1);
239 }
240
241 // Compute the KnownZero/KnownOne bits to simplify things downstream.
242 computeKnownBits(I, KnownZero, KnownOne, Depth, CxtI);
243 return nullptr;
244 }
245
246 // If this is the root being simplified, allow it to have multiple uses,
247 // just set the DemandedMask to all bits so that we can try to simplify the
248 // operands. This allows visitTruncInst (for example) to simplify the
249 // operand of a trunc without duplicating all the logic below.
250 if (Depth == 0 && !V->hasOneUse())
251 DemandedMask = APInt::getAllOnesValue(BitWidth);
252
253 switch (I->getOpcode()) {
254 default:
255 computeKnownBits(I, KnownZero, KnownOne, Depth, CxtI);
256 break;
257 case Instruction::And:
258 // If either the LHS or the RHS are Zero, the result is zero.
259 if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
260 RHSKnownZero, RHSKnownOne, Depth+1) ||
261 SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownZero,
262 LHSKnownZero, LHSKnownOne, Depth+1))
263 return I;
264 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
265 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
266
267 // If the client is only demanding bits that we know, return the known
268 // constant.
269 if ((DemandedMask & ((RHSKnownZero | LHSKnownZero)|
270 (RHSKnownOne & LHSKnownOne))) == DemandedMask)
271 return Constant::getIntegerValue(VTy, RHSKnownOne & LHSKnownOne);
272
273 // If all of the demanded bits are known 1 on one side, return the other.
274 // These bits cannot contribute to the result of the 'and'.
275 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
276 (DemandedMask & ~LHSKnownZero))
277 return I->getOperand(0);
278 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
279 (DemandedMask & ~RHSKnownZero))
280 return I->getOperand(1);
281
282 // If all of the demanded bits in the inputs are known zeros, return zero.
283 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
284 return Constant::getNullValue(VTy);
285
286 // If the RHS is a constant, see if we can simplify it.
287 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
288 return I;
289
290 // Output known-1 bits are only known if set in both the LHS & RHS.
291 KnownOne = RHSKnownOne & LHSKnownOne;
292 // Output known-0 are known to be clear if zero in either the LHS | RHS.
293 KnownZero = RHSKnownZero | LHSKnownZero;
294 break;
295 case Instruction::Or:
296 // If either the LHS or the RHS are One, the result is One.
297 if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
298 RHSKnownZero, RHSKnownOne, Depth+1) ||
299 SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownOne,
300 LHSKnownZero, LHSKnownOne, Depth+1))
301 return I;
302 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
303 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
304
305 // If the client is only demanding bits that we know, return the known
306 // constant.
307 if ((DemandedMask & ((RHSKnownZero & LHSKnownZero)|
308 (RHSKnownOne | LHSKnownOne))) == DemandedMask)
309 return Constant::getIntegerValue(VTy, RHSKnownOne | LHSKnownOne);
310
311 // If all of the demanded bits are known zero on one side, return the other.
312 // These bits cannot contribute to the result of the 'or'.
313 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
314 (DemandedMask & ~LHSKnownOne))
315 return I->getOperand(0);
316 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
317 (DemandedMask & ~RHSKnownOne))
318 return I->getOperand(1);
319
320 // If all of the potentially set bits on one side are known to be set on
321 // the other side, just use the 'other' side.
322 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
323 (DemandedMask & (~RHSKnownZero)))
324 return I->getOperand(0);
325 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
326 (DemandedMask & (~LHSKnownZero)))
327 return I->getOperand(1);
328
329 // If the RHS is a constant, see if we can simplify it.
330 if (ShrinkDemandedConstant(I, 1, DemandedMask))
331 return I;
332
333 // Output known-0 bits are only known if clear in both the LHS & RHS.
334 KnownZero = RHSKnownZero & LHSKnownZero;
335 // Output known-1 are known to be set if set in either the LHS | RHS.
336 KnownOne = RHSKnownOne | LHSKnownOne;
337 break;
338 case Instruction::Xor: {
339 if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
340 RHSKnownZero, RHSKnownOne, Depth+1) ||
341 SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
342 LHSKnownZero, LHSKnownOne, Depth+1))
343 return I;
344 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
345 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
346
347 // Output known-0 bits are known if clear or set in both the LHS & RHS.
348 APInt IKnownZero = (RHSKnownZero & LHSKnownZero) |
349 (RHSKnownOne & LHSKnownOne);
350 // Output known-1 are known to be set if set in only one of the LHS, RHS.
351 APInt IKnownOne = (RHSKnownZero & LHSKnownOne) |
352 (RHSKnownOne & LHSKnownZero);
353
354 // If the client is only demanding bits that we know, return the known
355 // constant.
356 if ((DemandedMask & (IKnownZero|IKnownOne)) == DemandedMask)
357 return Constant::getIntegerValue(VTy, IKnownOne);
358
359 // If all of the demanded bits are known zero on one side, return the other.
360 // These bits cannot contribute to the result of the 'xor'.
361 if ((DemandedMask & RHSKnownZero) == DemandedMask)
362 return I->getOperand(0);
363 if ((DemandedMask & LHSKnownZero) == DemandedMask)
364 return I->getOperand(1);
365
366 // If all of the demanded bits are known to be zero on one side or the
367 // other, turn this into an *inclusive* or.
368 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
369 if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
370 Instruction *Or =
371 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
372 I->getName());
373 return InsertNewInstWith(Or, *I);
374 }
375
376 // If all of the demanded bits on one side are known, and all of the set
377 // bits on that side are also known to be set on the other side, turn this
378 // into an AND, as we know the bits will be cleared.
379 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
380 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
381 // all known
382 if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
383 Constant *AndC = Constant::getIntegerValue(VTy,
384 ~RHSKnownOne & DemandedMask);
385 Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
386 return InsertNewInstWith(And, *I);
387 }
388 }
389
390 // If the RHS is a constant, see if we can simplify it.
391 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
392 if (ShrinkDemandedConstant(I, 1, DemandedMask))
393 return I;
394
395 // If our LHS is an 'and' and if it has one use, and if any of the bits we
396 // are flipping are known to be set, then the xor is just resetting those
397 // bits to zero. We can just knock out bits from the 'and' and the 'xor',
398 // simplifying both of them.
399 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0)))
400 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
401 isa<ConstantInt>(I->getOperand(1)) &&
402 isa<ConstantInt>(LHSInst->getOperand(1)) &&
403 (LHSKnownOne & RHSKnownOne & DemandedMask) != 0) {
404 ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
405 ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
406 APInt NewMask = ~(LHSKnownOne & RHSKnownOne & DemandedMask);
407
408 Constant *AndC =
409 ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
410 Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
411 InsertNewInstWith(NewAnd, *I);
412
413 Constant *XorC =
414 ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
415 Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
416 return InsertNewInstWith(NewXor, *I);
417 }
418
419 // Output known-0 bits are known if clear or set in both the LHS & RHS.
420 KnownZero= (RHSKnownZero & LHSKnownZero) | (RHSKnownOne & LHSKnownOne);
421 // Output known-1 are known to be set if set in only one of the LHS, RHS.
422 KnownOne = (RHSKnownZero & LHSKnownOne) | (RHSKnownOne & LHSKnownZero);
423 break;
424 }
425 case Instruction::Select:
426 if (SimplifyDemandedBits(I->getOperandUse(2), DemandedMask,
427 RHSKnownZero, RHSKnownOne, Depth+1) ||
428 SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
429 LHSKnownZero, LHSKnownOne, Depth+1))
430 return I;
431 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
432 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
433
434 // If the operands are constants, see if we can simplify them.
435 if (ShrinkDemandedConstant(I, 1, DemandedMask) ||
436 ShrinkDemandedConstant(I, 2, DemandedMask))
437 return I;
438
439 // Only known if known in both the LHS and RHS.
440 KnownOne = RHSKnownOne & LHSKnownOne;
441 KnownZero = RHSKnownZero & LHSKnownZero;
442 break;
443 case Instruction::Trunc: {
444 unsigned truncBf = I->getOperand(0)->getType()->getScalarSizeInBits();
445 DemandedMask = DemandedMask.zext(truncBf);
446 KnownZero = KnownZero.zext(truncBf);
447 KnownOne = KnownOne.zext(truncBf);
448 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
449 KnownZero, KnownOne, Depth+1))
450 return I;
451 DemandedMask = DemandedMask.trunc(BitWidth);
452 KnownZero = KnownZero.trunc(BitWidth);
453 KnownOne = KnownOne.trunc(BitWidth);
454 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
455 break;
456 }
457 case Instruction::BitCast:
458 if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
459 return nullptr; // vector->int or fp->int?
460
461 if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
462 if (VectorType *SrcVTy =
463 dyn_cast<VectorType>(I->getOperand(0)->getType())) {
464 if (DstVTy->getNumElements() != SrcVTy->getNumElements())
465 // Don't touch a bitcast between vectors of different element counts.
466 return nullptr;
467 } else
468 // Don't touch a scalar-to-vector bitcast.
469 return nullptr;
470 } else if (I->getOperand(0)->getType()->isVectorTy())
471 // Don't touch a vector-to-scalar bitcast.
472 return nullptr;
473
474 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
475 KnownZero, KnownOne, Depth+1))
476 return I;
477 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
478 break;
479 case Instruction::ZExt: {
480 // Compute the bits in the result that are not present in the input.
481 unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
482
483 DemandedMask = DemandedMask.trunc(SrcBitWidth);
484 KnownZero = KnownZero.trunc(SrcBitWidth);
485 KnownOne = KnownOne.trunc(SrcBitWidth);
486 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
487 KnownZero, KnownOne, Depth+1))
488 return I;
489 DemandedMask = DemandedMask.zext(BitWidth);
490 KnownZero = KnownZero.zext(BitWidth);
491 KnownOne = KnownOne.zext(BitWidth);
492 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
493 // The top bits are known to be zero.
494 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
495 break;
496 }
497 case Instruction::SExt: {
498 // Compute the bits in the result that are not present in the input.
499 unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
500
501 APInt InputDemandedBits = DemandedMask &
502 APInt::getLowBitsSet(BitWidth, SrcBitWidth);
503
504 APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth));
505 // If any of the sign extended bits are demanded, we know that the sign
506 // bit is demanded.
507 if ((NewBits & DemandedMask) != 0)
508 InputDemandedBits.setBit(SrcBitWidth-1);
509
510 InputDemandedBits = InputDemandedBits.trunc(SrcBitWidth);
511 KnownZero = KnownZero.trunc(SrcBitWidth);
512 KnownOne = KnownOne.trunc(SrcBitWidth);
513 if (SimplifyDemandedBits(I->getOperandUse(0), InputDemandedBits,
514 KnownZero, KnownOne, Depth+1))
515 return I;
516 InputDemandedBits = InputDemandedBits.zext(BitWidth);
517 KnownZero = KnownZero.zext(BitWidth);
518 KnownOne = KnownOne.zext(BitWidth);
519 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
520
521 // If the sign bit of the input is known set or clear, then we know the
522 // top bits of the result.
523
524 // If the input sign bit is known zero, or if the NewBits are not demanded
525 // convert this into a zero extension.
526 if (KnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits) {
527 // Convert to ZExt cast
528 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
529 return InsertNewInstWith(NewCast, *I);
530 } else if (KnownOne[SrcBitWidth-1]) { // Input sign bit known set
531 KnownOne |= NewBits;
532 }
533 break;
534 }
535 case Instruction::Add: {
536 // Figure out what the input bits are. If the top bits of the and result
537 // are not demanded, then the add doesn't demand them from its input
538 // either.
539 unsigned NLZ = DemandedMask.countLeadingZeros();
540
541 // If there is a constant on the RHS, there are a variety of xformations
542 // we can do.
543 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
544 // If null, this should be simplified elsewhere. Some of the xforms here
545 // won't work if the RHS is zero.
546 if (RHS->isZero())
547 break;
548
549 // If the top bit of the output is demanded, demand everything from the
550 // input. Otherwise, we demand all the input bits except NLZ top bits.
551 APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ));
552
553 // Find information about known zero/one bits in the input.
554 if (SimplifyDemandedBits(I->getOperandUse(0), InDemandedBits,
555 LHSKnownZero, LHSKnownOne, Depth+1))
556 return I;
557
558 // If the RHS of the add has bits set that can't affect the input, reduce
559 // the constant.
560 if (ShrinkDemandedConstant(I, 1, InDemandedBits))
561 return I;
562
563 // Avoid excess work.
564 if (LHSKnownZero == 0 && LHSKnownOne == 0)
565 break;
566
567 // Turn it into OR if input bits are zero.
568 if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) {
569 Instruction *Or =
570 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
571 I->getName());
572 return InsertNewInstWith(Or, *I);
573 }
574
575 // We can say something about the output known-zero and known-one bits,
576 // depending on potential carries from the input constant and the
577 // unknowns. For example if the LHS is known to have at most the 0x0F0F0
578 // bits set and the RHS constant is 0x01001, then we know we have a known
579 // one mask of 0x00001 and a known zero mask of 0xE0F0E.
580
581 // To compute this, we first compute the potential carry bits. These are
582 // the bits which may be modified. I'm not aware of a better way to do
583 // this scan.
584 const APInt &RHSVal = RHS->getValue();
585 APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal));
586
587 // Now that we know which bits have carries, compute the known-1/0 sets.
588
589 // Bits are known one if they are known zero in one operand and one in the
590 // other, and there is no input carry.
591 KnownOne = ((LHSKnownZero & RHSVal) |
592 (LHSKnownOne & ~RHSVal)) & ~CarryBits;
593
594 // Bits are known zero if they are known zero in both operands and there
595 // is no input carry.
596 KnownZero = LHSKnownZero & ~RHSVal & ~CarryBits;
597 } else {
598 // If the high-bits of this ADD are not demanded, then it does not demand
599 // the high bits of its LHS or RHS.
600 if (DemandedMask[BitWidth-1] == 0) {
601 // Right fill the mask of bits for this ADD to demand the most
602 // significant bit and all those below it.
603 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
604 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps,
605 LHSKnownZero, LHSKnownOne, Depth+1) ||
606 SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps,
607 LHSKnownZero, LHSKnownOne, Depth+1))
608 return I;
609 }
610 }
611 break;
612 }
613 case Instruction::Sub:
614 // If the high-bits of this SUB are not demanded, then it does not demand
615 // the high bits of its LHS or RHS.
616 if (DemandedMask[BitWidth-1] == 0) {
617 // Right fill the mask of bits for this SUB to demand the most
618 // significant bit and all those below it.
619 uint32_t NLZ = DemandedMask.countLeadingZeros();
620 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
621 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps,
622 LHSKnownZero, LHSKnownOne, Depth+1) ||
623 SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps,
624 LHSKnownZero, LHSKnownOne, Depth+1))
625 return I;
626 }
627
628 // Otherwise just hand the sub off to computeKnownBits to fill in
629 // the known zeros and ones.
630 computeKnownBits(V, KnownZero, KnownOne, Depth, CxtI);
631
632 // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known
633 // zero.
634 if (ConstantInt *C0 = dyn_cast<ConstantInt>(I->getOperand(0))) {
635 APInt I0 = C0->getValue();
636 if ((I0 + 1).isPowerOf2() && (I0 | KnownZero).isAllOnesValue()) {
637 Instruction *Xor = BinaryOperator::CreateXor(I->getOperand(1), C0);
638 return InsertNewInstWith(Xor, *I);
639 }
640 }
641 break;
642 case Instruction::Shl:
643 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
644 {
645 Value *VarX; ConstantInt *C1;
646 if (match(I->getOperand(0), m_Shr(m_Value(VarX), m_ConstantInt(C1)))) {
647 Instruction *Shr = cast<Instruction>(I->getOperand(0));
648 Value *R = SimplifyShrShlDemandedBits(Shr, I, DemandedMask,
649 KnownZero, KnownOne);
650 if (R)
651 return R;
652 }
653 }
654
655 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
656 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
657
658 // If the shift is NUW/NSW, then it does demand the high bits.
659 ShlOperator *IOp = cast<ShlOperator>(I);
660 if (IOp->hasNoSignedWrap())
661 DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
662 else if (IOp->hasNoUnsignedWrap())
663 DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
664
665 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
666 KnownZero, KnownOne, Depth+1))
667 return I;
668 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
669 KnownZero <<= ShiftAmt;
670 KnownOne <<= ShiftAmt;
671 // low bits known zero.
672 if (ShiftAmt)
673 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
674 }
675 break;
676 case Instruction::LShr:
677 // For a logical shift right
678 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
679 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
680
681 // Unsigned shift right.
682 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
683
684 // If the shift is exact, then it does demand the low bits (and knows that
685 // they are zero).
686 if (cast<LShrOperator>(I)->isExact())
687 DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
688
689 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
690 KnownZero, KnownOne, Depth+1))
691 return I;
692 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
693 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
694 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
695 if (ShiftAmt) {
696 // Compute the new bits that are at the top now.
697 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
698 KnownZero |= HighBits; // high bits known zero.
699 }
700 }
701 break;
702 case Instruction::AShr:
703 // If this is an arithmetic shift right and only the low-bit is set, we can
704 // always convert this into a logical shr, even if the shift amount is
705 // variable. The low bit of the shift cannot be an input sign bit unless
706 // the shift amount is >= the size of the datatype, which is undefined.
707 if (DemandedMask == 1) {
708 // Perform the logical shift right.
709 Instruction *NewVal = BinaryOperator::CreateLShr(
710 I->getOperand(0), I->getOperand(1), I->getName());
711 return InsertNewInstWith(NewVal, *I);
712 }
713
714 // If the sign bit is the only bit demanded by this ashr, then there is no
715 // need to do it, the shift doesn't change the high bit.
716 if (DemandedMask.isSignBit())
717 return I->getOperand(0);
718
719 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
720 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
721
722 // Signed shift right.
723 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
724 // If any of the "high bits" are demanded, we should set the sign bit as
725 // demanded.
726 if (DemandedMask.countLeadingZeros() <= ShiftAmt)
727 DemandedMaskIn.setBit(BitWidth-1);
728
729 // If the shift is exact, then it does demand the low bits (and knows that
730 // they are zero).
731 if (cast<AShrOperator>(I)->isExact())
732 DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
733
734 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
735 KnownZero, KnownOne, Depth+1))
736 return I;
737 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
738 // Compute the new bits that are at the top now.
739 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
740 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
741 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
742
743 // Handle the sign bits.
744 APInt SignBit(APInt::getSignBit(BitWidth));
745 // Adjust to where it is now in the mask.
746 SignBit = APIntOps::lshr(SignBit, ShiftAmt);
747
748 // If the input sign bit is known to be zero, or if none of the top bits
749 // are demanded, turn this into an unsigned shift right.
750 if (BitWidth <= ShiftAmt || KnownZero[BitWidth-ShiftAmt-1] ||
751 (HighBits & ~DemandedMask) == HighBits) {
752 // Perform the logical shift right.
753 BinaryOperator *NewVal = BinaryOperator::CreateLShr(I->getOperand(0),
754 SA, I->getName());
755 NewVal->setIsExact(cast<BinaryOperator>(I)->isExact());
756 return InsertNewInstWith(NewVal, *I);
757 } else if ((KnownOne & SignBit) != 0) { // New bits are known one.
758 KnownOne |= HighBits;
759 }
760 }
761 break;
762 case Instruction::SRem:
763 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
764 // X % -1 demands all the bits because we don't want to introduce
765 // INT_MIN % -1 (== undef) by accident.
766 if (Rem->isAllOnesValue())
767 break;
768 APInt RA = Rem->getValue().abs();
769 if (RA.isPowerOf2()) {
770 if (DemandedMask.ult(RA)) // srem won't affect demanded bits
771 return I->getOperand(0);
772
773 APInt LowBits = RA - 1;
774 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
775 if (SimplifyDemandedBits(I->getOperandUse(0), Mask2,
776 LHSKnownZero, LHSKnownOne, Depth+1))
777 return I;
778
779 // The low bits of LHS are unchanged by the srem.
780 KnownZero = LHSKnownZero & LowBits;
781 KnownOne = LHSKnownOne & LowBits;
782
783 // If LHS is non-negative or has all low bits zero, then the upper bits
784 // are all zero.
785 if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits))
786 KnownZero |= ~LowBits;
787
788 // If LHS is negative and not all low bits are zero, then the upper bits
789 // are all one.
790 if (LHSKnownOne[BitWidth-1] && ((LHSKnownOne & LowBits) != 0))
791 KnownOne |= ~LowBits;
792
793 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
794 }
795 }
796
797 // The sign bit is the LHS's sign bit, except when the result of the
798 // remainder is zero.
799 if (DemandedMask.isNegative() && KnownZero.isNonNegative()) {
800 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
801 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1,
802 CxtI);
803 // If it's known zero, our sign bit is also zero.
804 if (LHSKnownZero.isNegative())
805 KnownZero.setBit(KnownZero.getBitWidth() - 1);
806 }
807 break;
808 case Instruction::URem: {
809 APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
810 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
811 if (SimplifyDemandedBits(I->getOperandUse(0), AllOnes,
812 KnownZero2, KnownOne2, Depth+1) ||
813 SimplifyDemandedBits(I->getOperandUse(1), AllOnes,
814 KnownZero2, KnownOne2, Depth+1))
815 return I;
816
817 unsigned Leaders = KnownZero2.countLeadingOnes();
818 Leaders = std::max(Leaders,
819 KnownZero2.countLeadingOnes());
820 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
821 break;
822 }
823 case Instruction::Call:
824 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
825 switch (II->getIntrinsicID()) {
826 default: break;
827 case Intrinsic::bswap: {
828 // If the only bits demanded come from one byte of the bswap result,
829 // just shift the input byte into position to eliminate the bswap.
830 unsigned NLZ = DemandedMask.countLeadingZeros();
831 unsigned NTZ = DemandedMask.countTrailingZeros();
832
833 // Round NTZ down to the next byte. If we have 11 trailing zeros, then
834 // we need all the bits down to bit 8. Likewise, round NLZ. If we
835 // have 14 leading zeros, round to 8.
836 NLZ &= ~7;
837 NTZ &= ~7;
838 // If we need exactly one byte, we can do this transformation.
839 if (BitWidth-NLZ-NTZ == 8) {
840 unsigned ResultBit = NTZ;
841 unsigned InputBit = BitWidth-NTZ-8;
842
843 // Replace this with either a left or right shift to get the byte into
844 // the right place.
845 Instruction *NewVal;
846 if (InputBit > ResultBit)
847 NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0),
848 ConstantInt::get(I->getType(), InputBit-ResultBit));
849 else
850 NewVal = BinaryOperator::CreateShl(II->getArgOperand(0),
851 ConstantInt::get(I->getType(), ResultBit-InputBit));
852 NewVal->takeName(I);
853 return InsertNewInstWith(NewVal, *I);
854 }
855
856 // TODO: Could compute known zero/one bits based on the input.
857 break;
858 }
859 case Intrinsic::x86_sse42_crc32_64_64:
860 KnownZero = APInt::getHighBitsSet(64, 32);
861 return nullptr;
862 }
863 }
864 computeKnownBits(V, KnownZero, KnownOne, Depth, CxtI);
865 break;
866 }
867
868 // If the client is only demanding bits that we know, return the known
869 // constant.
870 if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
871 return Constant::getIntegerValue(VTy, KnownOne);
872 return nullptr;
873 }
874
875 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify
876 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
877 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
878 /// of "C2-C1".
879 ///
880 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
881 /// ..., bn}, without considering the specific value X is holding.
882 /// This transformation is legal iff one of following conditions is hold:
883 /// 1) All the bit in S are 0, in this case E1 == E2.
884 /// 2) We don't care those bits in S, per the input DemandedMask.
885 /// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
886 /// rest bits.
887 ///
888 /// Currently we only test condition 2).
889 ///
890 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
891 /// not successful.
892 Value *InstCombiner::SimplifyShrShlDemandedBits(Instruction *Shr,
893 Instruction *Shl, APInt DemandedMask, APInt &KnownZero, APInt &KnownOne) {
894
895 const APInt &ShlOp1 = cast<ConstantInt>(Shl->getOperand(1))->getValue();
896 const APInt &ShrOp1 = cast<ConstantInt>(Shr->getOperand(1))->getValue();
897 if (!ShlOp1 || !ShrOp1)
898 return nullptr; // Noop.
899
900 Value *VarX = Shr->getOperand(0);
901 Type *Ty = VarX->getType();
902 unsigned BitWidth = Ty->getIntegerBitWidth();
903 if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth))
904 return nullptr; // Undef.
905
906 unsigned ShlAmt = ShlOp1.getZExtValue();
907 unsigned ShrAmt = ShrOp1.getZExtValue();
908
909 KnownOne.clearAllBits();
910 KnownZero = APInt::getBitsSet(KnownZero.getBitWidth(), 0, ShlAmt-1);
911 KnownZero &= DemandedMask;
912
913 APInt BitMask1(APInt::getAllOnesValue(BitWidth));
914 APInt BitMask2(APInt::getAllOnesValue(BitWidth));
915
916 bool isLshr = (Shr->getOpcode() == Instruction::LShr);
917 BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
918 (BitMask1.ashr(ShrAmt) << ShlAmt);
919
920 if (ShrAmt <= ShlAmt) {
921 BitMask2 <<= (ShlAmt - ShrAmt);
922 } else {
923 BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt):
924 BitMask2.ashr(ShrAmt - ShlAmt);
925 }
926
927 // Check if condition-2 (see the comment to this function) is satified.
928 if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) {
929 if (ShrAmt == ShlAmt)
930 return VarX;
931
932 if (!Shr->hasOneUse())
933 return nullptr;
934
935 BinaryOperator *New;
936 if (ShrAmt < ShlAmt) {
937 Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt);
938 New = BinaryOperator::CreateShl(VarX, Amt);
939 BinaryOperator *Orig = cast<BinaryOperator>(Shl);
940 New->setHasNoSignedWrap(Orig->hasNoSignedWrap());
941 New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap());
942 } else {
943 Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
944 New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
945 BinaryOperator::CreateAShr(VarX, Amt);
946 if (cast<BinaryOperator>(Shr)->isExact())
947 New->setIsExact(true);
948 }
949
950 return InsertNewInstWith(New, *Shl);
951 }
952
953 return nullptr;
954 }
955
956 /// SimplifyDemandedVectorElts - The specified value produces a vector with
957 /// any number of elements. DemandedElts contains the set of elements that are
958 /// actually used by the caller. This method analyzes which elements of the
959 /// operand are undef and returns that information in UndefElts.
960 ///
961 /// If the information about demanded elements can be used to simplify the
962 /// operation, the operation is simplified, then the resultant value is
963 /// returned. This returns null if no change was made.
964 Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
965 APInt &UndefElts,
966 unsigned Depth) {
967 unsigned VWidth = cast<VectorType>(V->getType())->getNumElements();
968 APInt EltMask(APInt::getAllOnesValue(VWidth));
969 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
970
971 if (isa<UndefValue>(V)) {
972 // If the entire vector is undefined, just return this info.
973 UndefElts = EltMask;
974 return nullptr;
975 }
976
977 if (DemandedElts == 0) { // If nothing is demanded, provide undef.
978 UndefElts = EltMask;
979 return UndefValue::get(V->getType());
980 }
981
982 UndefElts = 0;
983
984 // Handle ConstantAggregateZero, ConstantVector, ConstantDataSequential.
985 if (Constant *C = dyn_cast<Constant>(V)) {
986 // Check if this is identity. If so, return 0 since we are not simplifying
987 // anything.
988 if (DemandedElts.isAllOnesValue())
989 return nullptr;
990
991 Type *EltTy = cast<VectorType>(V->getType())->getElementType();
992 Constant *Undef = UndefValue::get(EltTy);
993
994 SmallVector<Constant*, 16> Elts;
995 for (unsigned i = 0; i != VWidth; ++i) {
996 if (!DemandedElts[i]) { // If not demanded, set to undef.
997 Elts.push_back(Undef);
998 UndefElts.setBit(i);
999 continue;
1000 }
1001
1002 Constant *Elt = C->getAggregateElement(i);
1003 if (!Elt) return nullptr;
1004
1005 if (isa<UndefValue>(Elt)) { // Already undef.
1006 Elts.push_back(Undef);
1007 UndefElts.setBit(i);
1008 } else { // Otherwise, defined.
1009 Elts.push_back(Elt);
1010 }
1011 }
1012
1013 // If we changed the constant, return it.
1014 Constant *NewCV = ConstantVector::get(Elts);
1015 return NewCV != C ? NewCV : nullptr;
1016 }
1017
1018 // Limit search depth.
1019 if (Depth == 10)
1020 return nullptr;
1021
1022 // If multiple users are using the root value, proceed with
1023 // simplification conservatively assuming that all elements
1024 // are needed.
1025 if (!V->hasOneUse()) {
1026 // Quit if we find multiple users of a non-root value though.
1027 // They'll be handled when it's their turn to be visited by
1028 // the main instcombine process.
1029 if (Depth != 0)
1030 // TODO: Just compute the UndefElts information recursively.
1031 return nullptr;
1032
1033 // Conservatively assume that all elements are needed.
1034 DemandedElts = EltMask;
1035 }
1036
1037 Instruction *I = dyn_cast<Instruction>(V);
1038 if (!I) return nullptr; // Only analyze instructions.
1039
1040 bool MadeChange = false;
1041 APInt UndefElts2(VWidth, 0);
1042 Value *TmpV;
1043 switch (I->getOpcode()) {
1044 default: break;
1045
1046 case Instruction::InsertElement: {
1047 // If this is a variable index, we don't know which element it overwrites.
1048 // demand exactly the same input as we produce.
1049 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
1050 if (!Idx) {
1051 // Note that we can't propagate undef elt info, because we don't know
1052 // which elt is getting updated.
1053 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1054 UndefElts2, Depth+1);
1055 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1056 break;
1057 }
1058
1059 // If this is inserting an element that isn't demanded, remove this
1060 // insertelement.
1061 unsigned IdxNo = Idx->getZExtValue();
1062 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
1063 Worklist.Add(I);
1064 return I->getOperand(0);
1065 }
1066
1067 // Otherwise, the element inserted overwrites whatever was there, so the
1068 // input demanded set is simpler than the output set.
1069 APInt DemandedElts2 = DemandedElts;
1070 DemandedElts2.clearBit(IdxNo);
1071 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2,
1072 UndefElts, Depth+1);
1073 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1074
1075 // The inserted element is defined.
1076 UndefElts.clearBit(IdxNo);
1077 break;
1078 }
1079 case Instruction::ShuffleVector: {
1080 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
1081 uint64_t LHSVWidth =
1082 cast<VectorType>(Shuffle->getOperand(0)->getType())->getNumElements();
1083 APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0);
1084 for (unsigned i = 0; i < VWidth; i++) {
1085 if (DemandedElts[i]) {
1086 unsigned MaskVal = Shuffle->getMaskValue(i);
1087 if (MaskVal != -1u) {
1088 assert(MaskVal < LHSVWidth * 2 &&
1089 "shufflevector mask index out of range!");
1090 if (MaskVal < LHSVWidth)
1091 LeftDemanded.setBit(MaskVal);
1092 else
1093 RightDemanded.setBit(MaskVal - LHSVWidth);
1094 }
1095 }
1096 }
1097
1098 APInt UndefElts4(LHSVWidth, 0);
1099 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded,
1100 UndefElts4, Depth+1);
1101 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1102
1103 APInt UndefElts3(LHSVWidth, 0);
1104 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded,
1105 UndefElts3, Depth+1);
1106 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1107
1108 bool NewUndefElts = false;
1109 for (unsigned i = 0; i < VWidth; i++) {
1110 unsigned MaskVal = Shuffle->getMaskValue(i);
1111 if (MaskVal == -1u) {
1112 UndefElts.setBit(i);
1113 } else if (!DemandedElts[i]) {
1114 NewUndefElts = true;
1115 UndefElts.setBit(i);
1116 } else if (MaskVal < LHSVWidth) {
1117 if (UndefElts4[MaskVal]) {
1118 NewUndefElts = true;
1119 UndefElts.setBit(i);
1120 }
1121 } else {
1122 if (UndefElts3[MaskVal - LHSVWidth]) {
1123 NewUndefElts = true;
1124 UndefElts.setBit(i);
1125 }
1126 }
1127 }
1128
1129 if (NewUndefElts) {
1130 // Add additional discovered undefs.
1131 SmallVector<Constant*, 16> Elts;
1132 for (unsigned i = 0; i < VWidth; ++i) {
1133 if (UndefElts[i])
1134 Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext())));
1135 else
1136 Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()),
1137 Shuffle->getMaskValue(i)));
1138 }
1139 I->setOperand(2, ConstantVector::get(Elts));
1140 MadeChange = true;
1141 }
1142 break;
1143 }
1144 case Instruction::Select: {
1145 APInt LeftDemanded(DemandedElts), RightDemanded(DemandedElts);
1146 if (ConstantVector* CV = dyn_cast<ConstantVector>(I->getOperand(0))) {
1147 for (unsigned i = 0; i < VWidth; i++) {
1148 if (CV->getAggregateElement(i)->isNullValue())
1149 LeftDemanded.clearBit(i);
1150 else
1151 RightDemanded.clearBit(i);
1152 }
1153 }
1154
1155 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), LeftDemanded,
1156 UndefElts, Depth+1);
1157 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1158
1159 TmpV = SimplifyDemandedVectorElts(I->getOperand(2), RightDemanded,
1160 UndefElts2, Depth+1);
1161 if (TmpV) { I->setOperand(2, TmpV); MadeChange = true; }
1162
1163 // Output elements are undefined if both are undefined.
1164 UndefElts &= UndefElts2;
1165 break;
1166 }
1167 case Instruction::BitCast: {
1168 // Vector->vector casts only.
1169 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1170 if (!VTy) break;
1171 unsigned InVWidth = VTy->getNumElements();
1172 APInt InputDemandedElts(InVWidth, 0);
1173 unsigned Ratio;
1174
1175 if (VWidth == InVWidth) {
1176 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1177 // elements as are demanded of us.
1178 Ratio = 1;
1179 InputDemandedElts = DemandedElts;
1180 } else if (VWidth > InVWidth) {
1181 // Untested so far.
1182 break;
1183
1184 // If there are more elements in the result than there are in the source,
1185 // then an input element is live if any of the corresponding output
1186 // elements are live.
1187 Ratio = VWidth/InVWidth;
1188 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1189 if (DemandedElts[OutIdx])
1190 InputDemandedElts.setBit(OutIdx/Ratio);
1191 }
1192 } else {
1193 // Untested so far.
1194 break;
1195
1196 // If there are more elements in the source than there are in the result,
1197 // then an input element is live if the corresponding output element is
1198 // live.
1199 Ratio = InVWidth/VWidth;
1200 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1201 if (DemandedElts[InIdx/Ratio])
1202 InputDemandedElts.setBit(InIdx);
1203 }
1204
1205 // div/rem demand all inputs, because they don't want divide by zero.
1206 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
1207 UndefElts2, Depth+1);
1208 if (TmpV) {
1209 I->setOperand(0, TmpV);
1210 MadeChange = true;
1211 }
1212
1213 UndefElts = UndefElts2;
1214 if (VWidth > InVWidth) {
1215 llvm_unreachable("Unimp");
1216 // If there are more elements in the result than there are in the source,
1217 // then an output element is undef if the corresponding input element is
1218 // undef.
1219 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1220 if (UndefElts2[OutIdx/Ratio])
1221 UndefElts.setBit(OutIdx);
1222 } else if (VWidth < InVWidth) {
1223 llvm_unreachable("Unimp");
1224 // If there are more elements in the source than there are in the result,
1225 // then a result element is undef if all of the corresponding input
1226 // elements are undef.
1227 UndefElts = ~0ULL >> (64-VWidth); // Start out all undef.
1228 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1229 if (!UndefElts2[InIdx]) // Not undef?
1230 UndefElts.clearBit(InIdx/Ratio); // Clear undef bit.
1231 }
1232 break;
1233 }
1234 case Instruction::And:
1235 case Instruction::Or:
1236 case Instruction::Xor:
1237 case Instruction::Add:
1238 case Instruction::Sub:
1239 case Instruction::Mul:
1240 // div/rem demand all inputs, because they don't want divide by zero.
1241 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1242 UndefElts, Depth+1);
1243 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1244 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
1245 UndefElts2, Depth+1);
1246 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1247
1248 // Output elements are undefined if both are undefined. Consider things
1249 // like undef&0. The result is known zero, not undef.
1250 UndefElts &= UndefElts2;
1251 break;
1252 case Instruction::FPTrunc:
1253 case Instruction::FPExt:
1254 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1255 UndefElts, Depth+1);
1256 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1257 break;
1258
1259 case Instruction::Call: {
1260 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1261 if (!II) break;
1262 switch (II->getIntrinsicID()) {
1263 default: break;
1264
1265 // Binary vector operations that work column-wise. A dest element is a
1266 // function of the corresponding input elements from the two inputs.
1267 case Intrinsic::x86_sse_sub_ss:
1268 case Intrinsic::x86_sse_mul_ss:
1269 case Intrinsic::x86_sse_min_ss:
1270 case Intrinsic::x86_sse_max_ss:
1271 case Intrinsic::x86_sse2_sub_sd:
1272 case Intrinsic::x86_sse2_mul_sd:
1273 case Intrinsic::x86_sse2_min_sd:
1274 case Intrinsic::x86_sse2_max_sd:
1275 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1276 UndefElts, Depth+1);
1277 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1278 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
1279 UndefElts2, Depth+1);
1280 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1281
1282 // If only the low elt is demanded and this is a scalarizable intrinsic,
1283 // scalarize it now.
1284 if (DemandedElts == 1) {
1285 switch (II->getIntrinsicID()) {
1286 default: break;
1287 case Intrinsic::x86_sse_sub_ss:
1288 case Intrinsic::x86_sse_mul_ss:
1289 case Intrinsic::x86_sse2_sub_sd:
1290 case Intrinsic::x86_sse2_mul_sd:
1291 // TODO: Lower MIN/MAX/ABS/etc
1292 Value *LHS = II->getArgOperand(0);
1293 Value *RHS = II->getArgOperand(1);
1294 // Extract the element as scalars.
1295 LHS = InsertNewInstWith(ExtractElementInst::Create(LHS,
1296 ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II);
1297 RHS = InsertNewInstWith(ExtractElementInst::Create(RHS,
1298 ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II);
1299
1300 switch (II->getIntrinsicID()) {
1301 default: llvm_unreachable("Case stmts out of sync!");
1302 case Intrinsic::x86_sse_sub_ss:
1303 case Intrinsic::x86_sse2_sub_sd:
1304 TmpV = InsertNewInstWith(BinaryOperator::CreateFSub(LHS, RHS,
1305 II->getName()), *II);
1306 break;
1307 case Intrinsic::x86_sse_mul_ss:
1308 case Intrinsic::x86_sse2_mul_sd:
1309 TmpV = InsertNewInstWith(BinaryOperator::CreateFMul(LHS, RHS,
1310 II->getName()), *II);
1311 break;
1312 }
1313
1314 Instruction *New =
1315 InsertElementInst::Create(
1316 UndefValue::get(II->getType()), TmpV,
1317 ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U, false),
1318 II->getName());
1319 InsertNewInstWith(New, *II);
1320 return New;
1321 }
1322 }
1323
1324 // Output elements are undefined if both are undefined. Consider things
1325 // like undef&0. The result is known zero, not undef.
1326 UndefElts &= UndefElts2;
1327 break;
1328 }
1329 break;
1330 }
1331 }
1332 return MadeChange ? I : nullptr;
1333 }