]> git.proxmox.com Git - rustc.git/blob - src/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / lib / Transforms / InstCombine / InstructionCombining.cpp
1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // InstructionCombining - Combine instructions to form fewer, simple
11 // instructions. This pass does not modify the CFG. This pass is where
12 // algebraic simplification happens.
13 //
14 // This pass combines things like:
15 // %Y = add i32 %X, 1
16 // %Z = add i32 %Y, 1
17 // into:
18 // %Z = add i32 %X, 2
19 //
20 // This is a simple worklist driven algorithm.
21 //
22 // This pass guarantees that the following canonicalizations are performed on
23 // the program:
24 // 1. If a binary operator has a constant operand, it is moved to the RHS
25 // 2. Bitwise operators with constant operands are always grouped so that
26 // shifts are performed first, then or's, then and's, then xor's.
27 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28 // 4. All cmp instructions on boolean values are replaced with logical ops
29 // 5. add X, X is represented as (X*2) => (X << 1)
30 // 6. Multiplies with a power-of-two constant argument are transformed into
31 // shifts.
32 // ... etc.
33 //
34 //===----------------------------------------------------------------------===//
35
36 #include "llvm/Transforms/Scalar.h"
37 #include "InstCombine.h"
38 #include "llvm-c/Initialization.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 #include "llvm/ADT/Statistic.h"
41 #include "llvm/ADT/StringSwitch.h"
42 #include "llvm/Analysis/AssumptionCache.h"
43 #include "llvm/Analysis/CFG.h"
44 #include "llvm/Analysis/ConstantFolding.h"
45 #include "llvm/Analysis/InstructionSimplify.h"
46 #include "llvm/Analysis/LoopInfo.h"
47 #include "llvm/Analysis/MemoryBuiltins.h"
48 #include "llvm/Analysis/ValueTracking.h"
49 #include "llvm/IR/CFG.h"
50 #include "llvm/IR/DataLayout.h"
51 #include "llvm/IR/Dominators.h"
52 #include "llvm/IR/GetElementPtrTypeIterator.h"
53 #include "llvm/IR/IntrinsicInst.h"
54 #include "llvm/IR/PatternMatch.h"
55 #include "llvm/IR/ValueHandle.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Target/TargetLibraryInfo.h"
59 #include "llvm/Transforms/Utils/Local.h"
60 #include <algorithm>
61 #include <climits>
62 using namespace llvm;
63 using namespace llvm::PatternMatch;
64
65 #define DEBUG_TYPE "instcombine"
66
67 STATISTIC(NumCombined , "Number of insts combined");
68 STATISTIC(NumConstProp, "Number of constant folds");
69 STATISTIC(NumDeadInst , "Number of dead inst eliminated");
70 STATISTIC(NumSunkInst , "Number of instructions sunk");
71 STATISTIC(NumExpand, "Number of expansions");
72 STATISTIC(NumFactor , "Number of factorizations");
73 STATISTIC(NumReassoc , "Number of reassociations");
74
75 // Initialization Routines
76 void llvm::initializeInstCombine(PassRegistry &Registry) {
77 initializeInstCombinerPass(Registry);
78 }
79
80 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
81 initializeInstCombine(*unwrap(R));
82 }
83
84 char InstCombiner::ID = 0;
85 INITIALIZE_PASS_BEGIN(InstCombiner, "instcombine",
86 "Combine redundant instructions", false, false)
87 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
88 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
89 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
90 INITIALIZE_PASS_END(InstCombiner, "instcombine",
91 "Combine redundant instructions", false, false)
92
93 void InstCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
94 AU.setPreservesCFG();
95 AU.addRequired<AssumptionCacheTracker>();
96 AU.addRequired<TargetLibraryInfo>();
97 AU.addRequired<DominatorTreeWrapperPass>();
98 AU.addPreserved<DominatorTreeWrapperPass>();
99 }
100
101
102 Value *InstCombiner::EmitGEPOffset(User *GEP) {
103 return llvm::EmitGEPOffset(Builder, *getDataLayout(), GEP);
104 }
105
106 /// ShouldChangeType - Return true if it is desirable to convert a computation
107 /// from 'From' to 'To'. We don't want to convert from a legal to an illegal
108 /// type for example, or from a smaller to a larger illegal type.
109 bool InstCombiner::ShouldChangeType(Type *From, Type *To) const {
110 assert(From->isIntegerTy() && To->isIntegerTy());
111
112 // If we don't have DL, we don't know if the source/dest are legal.
113 if (!DL) return false;
114
115 unsigned FromWidth = From->getPrimitiveSizeInBits();
116 unsigned ToWidth = To->getPrimitiveSizeInBits();
117 bool FromLegal = DL->isLegalInteger(FromWidth);
118 bool ToLegal = DL->isLegalInteger(ToWidth);
119
120 // If this is a legal integer from type, and the result would be an illegal
121 // type, don't do the transformation.
122 if (FromLegal && !ToLegal)
123 return false;
124
125 // Otherwise, if both are illegal, do not increase the size of the result. We
126 // do allow things like i160 -> i64, but not i64 -> i160.
127 if (!FromLegal && !ToLegal && ToWidth > FromWidth)
128 return false;
129
130 return true;
131 }
132
133 // Return true, if No Signed Wrap should be maintained for I.
134 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
135 // where both B and C should be ConstantInts, results in a constant that does
136 // not overflow. This function only handles the Add and Sub opcodes. For
137 // all other opcodes, the function conservatively returns false.
138 static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
139 OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
140 if (!OBO || !OBO->hasNoSignedWrap()) {
141 return false;
142 }
143
144 // We reason about Add and Sub Only.
145 Instruction::BinaryOps Opcode = I.getOpcode();
146 if (Opcode != Instruction::Add &&
147 Opcode != Instruction::Sub) {
148 return false;
149 }
150
151 ConstantInt *CB = dyn_cast<ConstantInt>(B);
152 ConstantInt *CC = dyn_cast<ConstantInt>(C);
153
154 if (!CB || !CC) {
155 return false;
156 }
157
158 const APInt &BVal = CB->getValue();
159 const APInt &CVal = CC->getValue();
160 bool Overflow = false;
161
162 if (Opcode == Instruction::Add) {
163 BVal.sadd_ov(CVal, Overflow);
164 } else {
165 BVal.ssub_ov(CVal, Overflow);
166 }
167
168 return !Overflow;
169 }
170
171 /// Conservatively clears subclassOptionalData after a reassociation or
172 /// commutation. We preserve fast-math flags when applicable as they can be
173 /// preserved.
174 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
175 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
176 if (!FPMO) {
177 I.clearSubclassOptionalData();
178 return;
179 }
180
181 FastMathFlags FMF = I.getFastMathFlags();
182 I.clearSubclassOptionalData();
183 I.setFastMathFlags(FMF);
184 }
185
186 /// SimplifyAssociativeOrCommutative - This performs a few simplifications for
187 /// operators which are associative or commutative:
188 //
189 // Commutative operators:
190 //
191 // 1. Order operands such that they are listed from right (least complex) to
192 // left (most complex). This puts constants before unary operators before
193 // binary operators.
194 //
195 // Associative operators:
196 //
197 // 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
198 // 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
199 //
200 // Associative and commutative operators:
201 //
202 // 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
203 // 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
204 // 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
205 // if C1 and C2 are constants.
206 //
207 bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
208 Instruction::BinaryOps Opcode = I.getOpcode();
209 bool Changed = false;
210
211 do {
212 // Order operands such that they are listed from right (least complex) to
213 // left (most complex). This puts constants before unary operators before
214 // binary operators.
215 if (I.isCommutative() && getComplexity(I.getOperand(0)) <
216 getComplexity(I.getOperand(1)))
217 Changed = !I.swapOperands();
218
219 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
220 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
221
222 if (I.isAssociative()) {
223 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
224 if (Op0 && Op0->getOpcode() == Opcode) {
225 Value *A = Op0->getOperand(0);
226 Value *B = Op0->getOperand(1);
227 Value *C = I.getOperand(1);
228
229 // Does "B op C" simplify?
230 if (Value *V = SimplifyBinOp(Opcode, B, C, DL)) {
231 // It simplifies to V. Form "A op V".
232 I.setOperand(0, A);
233 I.setOperand(1, V);
234 // Conservatively clear the optional flags, since they may not be
235 // preserved by the reassociation.
236 if (MaintainNoSignedWrap(I, B, C) &&
237 (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) {
238 // Note: this is only valid because SimplifyBinOp doesn't look at
239 // the operands to Op0.
240 I.clearSubclassOptionalData();
241 I.setHasNoSignedWrap(true);
242 } else {
243 ClearSubclassDataAfterReassociation(I);
244 }
245
246 Changed = true;
247 ++NumReassoc;
248 continue;
249 }
250 }
251
252 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
253 if (Op1 && Op1->getOpcode() == Opcode) {
254 Value *A = I.getOperand(0);
255 Value *B = Op1->getOperand(0);
256 Value *C = Op1->getOperand(1);
257
258 // Does "A op B" simplify?
259 if (Value *V = SimplifyBinOp(Opcode, A, B, DL)) {
260 // It simplifies to V. Form "V op C".
261 I.setOperand(0, V);
262 I.setOperand(1, C);
263 // Conservatively clear the optional flags, since they may not be
264 // preserved by the reassociation.
265 ClearSubclassDataAfterReassociation(I);
266 Changed = true;
267 ++NumReassoc;
268 continue;
269 }
270 }
271 }
272
273 if (I.isAssociative() && I.isCommutative()) {
274 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
275 if (Op0 && Op0->getOpcode() == Opcode) {
276 Value *A = Op0->getOperand(0);
277 Value *B = Op0->getOperand(1);
278 Value *C = I.getOperand(1);
279
280 // Does "C op A" simplify?
281 if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) {
282 // It simplifies to V. Form "V op B".
283 I.setOperand(0, V);
284 I.setOperand(1, B);
285 // Conservatively clear the optional flags, since they may not be
286 // preserved by the reassociation.
287 ClearSubclassDataAfterReassociation(I);
288 Changed = true;
289 ++NumReassoc;
290 continue;
291 }
292 }
293
294 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
295 if (Op1 && Op1->getOpcode() == Opcode) {
296 Value *A = I.getOperand(0);
297 Value *B = Op1->getOperand(0);
298 Value *C = Op1->getOperand(1);
299
300 // Does "C op A" simplify?
301 if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) {
302 // It simplifies to V. Form "B op V".
303 I.setOperand(0, B);
304 I.setOperand(1, V);
305 // Conservatively clear the optional flags, since they may not be
306 // preserved by the reassociation.
307 ClearSubclassDataAfterReassociation(I);
308 Changed = true;
309 ++NumReassoc;
310 continue;
311 }
312 }
313
314 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
315 // if C1 and C2 are constants.
316 if (Op0 && Op1 &&
317 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
318 isa<Constant>(Op0->getOperand(1)) &&
319 isa<Constant>(Op1->getOperand(1)) &&
320 Op0->hasOneUse() && Op1->hasOneUse()) {
321 Value *A = Op0->getOperand(0);
322 Constant *C1 = cast<Constant>(Op0->getOperand(1));
323 Value *B = Op1->getOperand(0);
324 Constant *C2 = cast<Constant>(Op1->getOperand(1));
325
326 Constant *Folded = ConstantExpr::get(Opcode, C1, C2);
327 BinaryOperator *New = BinaryOperator::Create(Opcode, A, B);
328 if (isa<FPMathOperator>(New)) {
329 FastMathFlags Flags = I.getFastMathFlags();
330 Flags &= Op0->getFastMathFlags();
331 Flags &= Op1->getFastMathFlags();
332 New->setFastMathFlags(Flags);
333 }
334 InsertNewInstWith(New, I);
335 New->takeName(Op1);
336 I.setOperand(0, New);
337 I.setOperand(1, Folded);
338 // Conservatively clear the optional flags, since they may not be
339 // preserved by the reassociation.
340 ClearSubclassDataAfterReassociation(I);
341
342 Changed = true;
343 continue;
344 }
345 }
346
347 // No further simplifications.
348 return Changed;
349 } while (1);
350 }
351
352 /// LeftDistributesOverRight - Whether "X LOp (Y ROp Z)" is always equal to
353 /// "(X LOp Y) ROp (X LOp Z)".
354 static bool LeftDistributesOverRight(Instruction::BinaryOps LOp,
355 Instruction::BinaryOps ROp) {
356 switch (LOp) {
357 default:
358 return false;
359
360 case Instruction::And:
361 // And distributes over Or and Xor.
362 switch (ROp) {
363 default:
364 return false;
365 case Instruction::Or:
366 case Instruction::Xor:
367 return true;
368 }
369
370 case Instruction::Mul:
371 // Multiplication distributes over addition and subtraction.
372 switch (ROp) {
373 default:
374 return false;
375 case Instruction::Add:
376 case Instruction::Sub:
377 return true;
378 }
379
380 case Instruction::Or:
381 // Or distributes over And.
382 switch (ROp) {
383 default:
384 return false;
385 case Instruction::And:
386 return true;
387 }
388 }
389 }
390
391 /// RightDistributesOverLeft - Whether "(X LOp Y) ROp Z" is always equal to
392 /// "(X ROp Z) LOp (Y ROp Z)".
393 static bool RightDistributesOverLeft(Instruction::BinaryOps LOp,
394 Instruction::BinaryOps ROp) {
395 if (Instruction::isCommutative(ROp))
396 return LeftDistributesOverRight(ROp, LOp);
397
398 switch (LOp) {
399 default:
400 return false;
401 // (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts.
402 // (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts.
403 // (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts.
404 case Instruction::And:
405 case Instruction::Or:
406 case Instruction::Xor:
407 switch (ROp) {
408 default:
409 return false;
410 case Instruction::Shl:
411 case Instruction::LShr:
412 case Instruction::AShr:
413 return true;
414 }
415 }
416 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
417 // but this requires knowing that the addition does not overflow and other
418 // such subtleties.
419 return false;
420 }
421
422 /// This function returns identity value for given opcode, which can be used to
423 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
424 static Value *getIdentityValue(Instruction::BinaryOps OpCode, Value *V) {
425 if (isa<Constant>(V))
426 return nullptr;
427
428 if (OpCode == Instruction::Mul)
429 return ConstantInt::get(V->getType(), 1);
430
431 // TODO: We can handle other cases e.g. Instruction::And, Instruction::Or etc.
432
433 return nullptr;
434 }
435
436 /// This function factors binary ops which can be combined using distributive
437 /// laws. This function tries to transform 'Op' based TopLevelOpcode to enable
438 /// factorization e.g for ADD(SHL(X , 2), MUL(X, 5)), When this function called
439 /// with TopLevelOpcode == Instruction::Add and Op = SHL(X, 2), transforms
440 /// SHL(X, 2) to MUL(X, 4) i.e. returns Instruction::Mul with LHS set to 'X' and
441 /// RHS to 4.
442 static Instruction::BinaryOps
443 getBinOpsForFactorization(Instruction::BinaryOps TopLevelOpcode,
444 BinaryOperator *Op, Value *&LHS, Value *&RHS) {
445 if (!Op)
446 return Instruction::BinaryOpsEnd;
447
448 LHS = Op->getOperand(0);
449 RHS = Op->getOperand(1);
450
451 switch (TopLevelOpcode) {
452 default:
453 return Op->getOpcode();
454
455 case Instruction::Add:
456 case Instruction::Sub:
457 if (Op->getOpcode() == Instruction::Shl) {
458 if (Constant *CST = dyn_cast<Constant>(Op->getOperand(1))) {
459 // The multiplier is really 1 << CST.
460 RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), CST);
461 return Instruction::Mul;
462 }
463 }
464 return Op->getOpcode();
465 }
466
467 // TODO: We can add other conversions e.g. shr => div etc.
468 }
469
470 /// This tries to simplify binary operations by factorizing out common terms
471 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
472 static Value *tryFactorization(InstCombiner::BuilderTy *Builder,
473 const DataLayout *DL, BinaryOperator &I,
474 Instruction::BinaryOps InnerOpcode, Value *A,
475 Value *B, Value *C, Value *D) {
476
477 // If any of A, B, C, D are null, we can not factor I, return early.
478 // Checking A and C should be enough.
479 if (!A || !C || !B || !D)
480 return nullptr;
481
482 Value *SimplifiedInst = nullptr;
483 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
484 Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
485
486 // Does "X op' Y" always equal "Y op' X"?
487 bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
488
489 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
490 if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode))
491 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
492 // commutative case, "(A op' B) op (C op' A)"?
493 if (A == C || (InnerCommutative && A == D)) {
494 if (A != C)
495 std::swap(C, D);
496 // Consider forming "A op' (B op D)".
497 // If "B op D" simplifies then it can be formed with no cost.
498 Value *V = SimplifyBinOp(TopLevelOpcode, B, D, DL);
499 // If "B op D" doesn't simplify then only go on if both of the existing
500 // operations "A op' B" and "C op' D" will be zapped as no longer used.
501 if (!V && LHS->hasOneUse() && RHS->hasOneUse())
502 V = Builder->CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
503 if (V) {
504 SimplifiedInst = Builder->CreateBinOp(InnerOpcode, A, V);
505 }
506 }
507
508 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
509 if (!SimplifiedInst && RightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
510 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
511 // commutative case, "(A op' B) op (B op' D)"?
512 if (B == D || (InnerCommutative && B == C)) {
513 if (B != D)
514 std::swap(C, D);
515 // Consider forming "(A op C) op' B".
516 // If "A op C" simplifies then it can be formed with no cost.
517 Value *V = SimplifyBinOp(TopLevelOpcode, A, C, DL);
518
519 // If "A op C" doesn't simplify then only go on if both of the existing
520 // operations "A op' B" and "C op' D" will be zapped as no longer used.
521 if (!V && LHS->hasOneUse() && RHS->hasOneUse())
522 V = Builder->CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
523 if (V) {
524 SimplifiedInst = Builder->CreateBinOp(InnerOpcode, V, B);
525 }
526 }
527
528 if (SimplifiedInst) {
529 ++NumFactor;
530 SimplifiedInst->takeName(&I);
531
532 // Check if we can add NSW flag to SimplifiedInst. If so, set NSW flag.
533 // TODO: Check for NUW.
534 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) {
535 if (isa<OverflowingBinaryOperator>(SimplifiedInst)) {
536 bool HasNSW = false;
537 if (isa<OverflowingBinaryOperator>(&I))
538 HasNSW = I.hasNoSignedWrap();
539
540 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
541 if (isa<OverflowingBinaryOperator>(Op0))
542 HasNSW &= Op0->hasNoSignedWrap();
543
544 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
545 if (isa<OverflowingBinaryOperator>(Op1))
546 HasNSW &= Op1->hasNoSignedWrap();
547 BO->setHasNoSignedWrap(HasNSW);
548 }
549 }
550 }
551 return SimplifiedInst;
552 }
553
554 /// SimplifyUsingDistributiveLaws - This tries to simplify binary operations
555 /// which some other binary operation distributes over either by factorizing
556 /// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this
557 /// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is
558 /// a win). Returns the simplified value, or null if it didn't simplify.
559 Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
560 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
561 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
562 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
563
564 // Factorization.
565 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
566 auto TopLevelOpcode = I.getOpcode();
567 auto LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B);
568 auto RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D);
569
570 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize
571 // a common term.
572 if (LHSOpcode == RHSOpcode) {
573 if (Value *V = tryFactorization(Builder, DL, I, LHSOpcode, A, B, C, D))
574 return V;
575 }
576
577 // The instruction has the form "(A op' B) op (C)". Try to factorize common
578 // term.
579 if (Value *V = tryFactorization(Builder, DL, I, LHSOpcode, A, B, RHS,
580 getIdentityValue(LHSOpcode, RHS)))
581 return V;
582
583 // The instruction has the form "(B) op (C op' D)". Try to factorize common
584 // term.
585 if (Value *V = tryFactorization(Builder, DL, I, RHSOpcode, LHS,
586 getIdentityValue(RHSOpcode, LHS), C, D))
587 return V;
588
589 // Expansion.
590 if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
591 // The instruction has the form "(A op' B) op C". See if expanding it out
592 // to "(A op C) op' (B op C)" results in simplifications.
593 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
594 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
595
596 // Do "A op C" and "B op C" both simplify?
597 if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, DL))
598 if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, DL)) {
599 // They do! Return "L op' R".
600 ++NumExpand;
601 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
602 if ((L == A && R == B) ||
603 (Instruction::isCommutative(InnerOpcode) && L == B && R == A))
604 return Op0;
605 // Otherwise return "L op' R" if it simplifies.
606 if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL))
607 return V;
608 // Otherwise, create a new instruction.
609 C = Builder->CreateBinOp(InnerOpcode, L, R);
610 C->takeName(&I);
611 return C;
612 }
613 }
614
615 if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
616 // The instruction has the form "A op (B op' C)". See if expanding it out
617 // to "(A op B) op' (A op C)" results in simplifications.
618 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
619 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
620
621 // Do "A op B" and "A op C" both simplify?
622 if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, DL))
623 if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, DL)) {
624 // They do! Return "L op' R".
625 ++NumExpand;
626 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
627 if ((L == B && R == C) ||
628 (Instruction::isCommutative(InnerOpcode) && L == C && R == B))
629 return Op1;
630 // Otherwise return "L op' R" if it simplifies.
631 if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL))
632 return V;
633 // Otherwise, create a new instruction.
634 A = Builder->CreateBinOp(InnerOpcode, L, R);
635 A->takeName(&I);
636 return A;
637 }
638 }
639
640 return nullptr;
641 }
642
643 // dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
644 // if the LHS is a constant zero (which is the 'negate' form).
645 //
646 Value *InstCombiner::dyn_castNegVal(Value *V) const {
647 if (BinaryOperator::isNeg(V))
648 return BinaryOperator::getNegArgument(V);
649
650 // Constants can be considered to be negated values if they can be folded.
651 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
652 return ConstantExpr::getNeg(C);
653
654 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
655 if (C->getType()->getElementType()->isIntegerTy())
656 return ConstantExpr::getNeg(C);
657
658 return nullptr;
659 }
660
661 // dyn_castFNegVal - Given a 'fsub' instruction, return the RHS of the
662 // instruction if the LHS is a constant negative zero (which is the 'negate'
663 // form).
664 //
665 Value *InstCombiner::dyn_castFNegVal(Value *V, bool IgnoreZeroSign) const {
666 if (BinaryOperator::isFNeg(V, IgnoreZeroSign))
667 return BinaryOperator::getFNegArgument(V);
668
669 // Constants can be considered to be negated values if they can be folded.
670 if (ConstantFP *C = dyn_cast<ConstantFP>(V))
671 return ConstantExpr::getFNeg(C);
672
673 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
674 if (C->getType()->getElementType()->isFloatingPointTy())
675 return ConstantExpr::getFNeg(C);
676
677 return nullptr;
678 }
679
680 static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
681 InstCombiner *IC) {
682 if (CastInst *CI = dyn_cast<CastInst>(&I)) {
683 return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType());
684 }
685
686 // Figure out if the constant is the left or the right argument.
687 bool ConstIsRHS = isa<Constant>(I.getOperand(1));
688 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
689
690 if (Constant *SOC = dyn_cast<Constant>(SO)) {
691 if (ConstIsRHS)
692 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
693 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
694 }
695
696 Value *Op0 = SO, *Op1 = ConstOperand;
697 if (!ConstIsRHS)
698 std::swap(Op0, Op1);
699
700 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I)) {
701 Value *RI = IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1,
702 SO->getName()+".op");
703 Instruction *FPInst = dyn_cast<Instruction>(RI);
704 if (FPInst && isa<FPMathOperator>(FPInst))
705 FPInst->copyFastMathFlags(BO);
706 return RI;
707 }
708 if (ICmpInst *CI = dyn_cast<ICmpInst>(&I))
709 return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
710 SO->getName()+".cmp");
711 if (FCmpInst *CI = dyn_cast<FCmpInst>(&I))
712 return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
713 SO->getName()+".cmp");
714 llvm_unreachable("Unknown binary instruction type!");
715 }
716
717 // FoldOpIntoSelect - Given an instruction with a select as one operand and a
718 // constant as the other operand, try to fold the binary operator into the
719 // select arguments. This also works for Cast instructions, which obviously do
720 // not have a second operand.
721 Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
722 // Don't modify shared select instructions
723 if (!SI->hasOneUse()) return nullptr;
724 Value *TV = SI->getOperand(1);
725 Value *FV = SI->getOperand(2);
726
727 if (isa<Constant>(TV) || isa<Constant>(FV)) {
728 // Bool selects with constant operands can be folded to logical ops.
729 if (SI->getType()->isIntegerTy(1)) return nullptr;
730
731 // If it's a bitcast involving vectors, make sure it has the same number of
732 // elements on both sides.
733 if (BitCastInst *BC = dyn_cast<BitCastInst>(&Op)) {
734 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
735 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
736
737 // Verify that either both or neither are vectors.
738 if ((SrcTy == nullptr) != (DestTy == nullptr)) return nullptr;
739 // If vectors, verify that they have the same number of elements.
740 if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
741 return nullptr;
742 }
743
744 Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this);
745 Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this);
746
747 return SelectInst::Create(SI->getCondition(),
748 SelectTrueVal, SelectFalseVal);
749 }
750 return nullptr;
751 }
752
753
754 /// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which
755 /// has a PHI node as operand #0, see if we can fold the instruction into the
756 /// PHI (which is only possible if all operands to the PHI are constants).
757 ///
758 Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
759 PHINode *PN = cast<PHINode>(I.getOperand(0));
760 unsigned NumPHIValues = PN->getNumIncomingValues();
761 if (NumPHIValues == 0)
762 return nullptr;
763
764 // We normally only transform phis with a single use. However, if a PHI has
765 // multiple uses and they are all the same operation, we can fold *all* of the
766 // uses into the PHI.
767 if (!PN->hasOneUse()) {
768 // Walk the use list for the instruction, comparing them to I.
769 for (User *U : PN->users()) {
770 Instruction *UI = cast<Instruction>(U);
771 if (UI != &I && !I.isIdenticalTo(UI))
772 return nullptr;
773 }
774 // Otherwise, we can replace *all* users with the new PHI we form.
775 }
776
777 // Check to see if all of the operands of the PHI are simple constants
778 // (constantint/constantfp/undef). If there is one non-constant value,
779 // remember the BB it is in. If there is more than one or if *it* is a PHI,
780 // bail out. We don't do arbitrary constant expressions here because moving
781 // their computation can be expensive without a cost model.
782 BasicBlock *NonConstBB = nullptr;
783 for (unsigned i = 0; i != NumPHIValues; ++i) {
784 Value *InVal = PN->getIncomingValue(i);
785 if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
786 continue;
787
788 if (isa<PHINode>(InVal)) return nullptr; // Itself a phi.
789 if (NonConstBB) return nullptr; // More than one non-const value.
790
791 NonConstBB = PN->getIncomingBlock(i);
792
793 // If the InVal is an invoke at the end of the pred block, then we can't
794 // insert a computation after it without breaking the edge.
795 if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
796 if (II->getParent() == NonConstBB)
797 return nullptr;
798
799 // If the incoming non-constant value is in I's block, we will remove one
800 // instruction, but insert another equivalent one, leading to infinite
801 // instcombine.
802 if (isPotentiallyReachable(I.getParent(), NonConstBB, DT,
803 getAnalysisIfAvailable<LoopInfo>()))
804 return nullptr;
805 }
806
807 // If there is exactly one non-constant value, we can insert a copy of the
808 // operation in that block. However, if this is a critical edge, we would be
809 // inserting the computation on some other paths (e.g. inside a loop). Only
810 // do this if the pred block is unconditionally branching into the phi block.
811 if (NonConstBB != nullptr) {
812 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
813 if (!BI || !BI->isUnconditional()) return nullptr;
814 }
815
816 // Okay, we can do the transformation: create the new PHI node.
817 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
818 InsertNewInstBefore(NewPN, *PN);
819 NewPN->takeName(PN);
820
821 // If we are going to have to insert a new computation, do so right before the
822 // predecessors terminator.
823 if (NonConstBB)
824 Builder->SetInsertPoint(NonConstBB->getTerminator());
825
826 // Next, add all of the operands to the PHI.
827 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
828 // We only currently try to fold the condition of a select when it is a phi,
829 // not the true/false values.
830 Value *TrueV = SI->getTrueValue();
831 Value *FalseV = SI->getFalseValue();
832 BasicBlock *PhiTransBB = PN->getParent();
833 for (unsigned i = 0; i != NumPHIValues; ++i) {
834 BasicBlock *ThisBB = PN->getIncomingBlock(i);
835 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
836 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
837 Value *InV = nullptr;
838 // Beware of ConstantExpr: it may eventually evaluate to getNullValue,
839 // even if currently isNullValue gives false.
840 Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i));
841 if (InC && !isa<ConstantExpr>(InC))
842 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
843 else
844 InV = Builder->CreateSelect(PN->getIncomingValue(i),
845 TrueVInPred, FalseVInPred, "phitmp");
846 NewPN->addIncoming(InV, ThisBB);
847 }
848 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
849 Constant *C = cast<Constant>(I.getOperand(1));
850 for (unsigned i = 0; i != NumPHIValues; ++i) {
851 Value *InV = nullptr;
852 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
853 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
854 else if (isa<ICmpInst>(CI))
855 InV = Builder->CreateICmp(CI->getPredicate(), PN->getIncomingValue(i),
856 C, "phitmp");
857 else
858 InV = Builder->CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i),
859 C, "phitmp");
860 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
861 }
862 } else if (I.getNumOperands() == 2) {
863 Constant *C = cast<Constant>(I.getOperand(1));
864 for (unsigned i = 0; i != NumPHIValues; ++i) {
865 Value *InV = nullptr;
866 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
867 InV = ConstantExpr::get(I.getOpcode(), InC, C);
868 else
869 InV = Builder->CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
870 PN->getIncomingValue(i), C, "phitmp");
871 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
872 }
873 } else {
874 CastInst *CI = cast<CastInst>(&I);
875 Type *RetTy = CI->getType();
876 for (unsigned i = 0; i != NumPHIValues; ++i) {
877 Value *InV;
878 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
879 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
880 else
881 InV = Builder->CreateCast(CI->getOpcode(),
882 PN->getIncomingValue(i), I.getType(), "phitmp");
883 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
884 }
885 }
886
887 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
888 Instruction *User = cast<Instruction>(*UI++);
889 if (User == &I) continue;
890 ReplaceInstUsesWith(*User, NewPN);
891 EraseInstFromFunction(*User);
892 }
893 return ReplaceInstUsesWith(I, NewPN);
894 }
895
896 /// FindElementAtOffset - Given a pointer type and a constant offset, determine
897 /// whether or not there is a sequence of GEP indices into the pointed type that
898 /// will land us at the specified offset. If so, fill them into NewIndices and
899 /// return the resultant element type, otherwise return null.
900 Type *InstCombiner::FindElementAtOffset(Type *PtrTy, int64_t Offset,
901 SmallVectorImpl<Value*> &NewIndices) {
902 assert(PtrTy->isPtrOrPtrVectorTy());
903
904 if (!DL)
905 return nullptr;
906
907 Type *Ty = PtrTy->getPointerElementType();
908 if (!Ty->isSized())
909 return nullptr;
910
911 // Start with the index over the outer type. Note that the type size
912 // might be zero (even if the offset isn't zero) if the indexed type
913 // is something like [0 x {int, int}]
914 Type *IntPtrTy = DL->getIntPtrType(PtrTy);
915 int64_t FirstIdx = 0;
916 if (int64_t TySize = DL->getTypeAllocSize(Ty)) {
917 FirstIdx = Offset/TySize;
918 Offset -= FirstIdx*TySize;
919
920 // Handle hosts where % returns negative instead of values [0..TySize).
921 if (Offset < 0) {
922 --FirstIdx;
923 Offset += TySize;
924 assert(Offset >= 0);
925 }
926 assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
927 }
928
929 NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
930
931 // Index into the types. If we fail, set OrigBase to null.
932 while (Offset) {
933 // Indexing into tail padding between struct/array elements.
934 if (uint64_t(Offset*8) >= DL->getTypeSizeInBits(Ty))
935 return nullptr;
936
937 if (StructType *STy = dyn_cast<StructType>(Ty)) {
938 const StructLayout *SL = DL->getStructLayout(STy);
939 assert(Offset < (int64_t)SL->getSizeInBytes() &&
940 "Offset must stay within the indexed type");
941
942 unsigned Elt = SL->getElementContainingOffset(Offset);
943 NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
944 Elt));
945
946 Offset -= SL->getElementOffset(Elt);
947 Ty = STy->getElementType(Elt);
948 } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
949 uint64_t EltSize = DL->getTypeAllocSize(AT->getElementType());
950 assert(EltSize && "Cannot index into a zero-sized array");
951 NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
952 Offset %= EltSize;
953 Ty = AT->getElementType();
954 } else {
955 // Otherwise, we can't index into the middle of this atomic type, bail.
956 return nullptr;
957 }
958 }
959
960 return Ty;
961 }
962
963 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
964 // If this GEP has only 0 indices, it is the same pointer as
965 // Src. If Src is not a trivial GEP too, don't combine
966 // the indices.
967 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
968 !Src.hasOneUse())
969 return false;
970 return true;
971 }
972
973 /// Descale - Return a value X such that Val = X * Scale, or null if none. If
974 /// the multiplication is known not to overflow then NoSignedWrap is set.
975 Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
976 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
977 assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
978 Scale.getBitWidth() && "Scale not compatible with value!");
979
980 // If Val is zero or Scale is one then Val = Val * Scale.
981 if (match(Val, m_Zero()) || Scale == 1) {
982 NoSignedWrap = true;
983 return Val;
984 }
985
986 // If Scale is zero then it does not divide Val.
987 if (Scale.isMinValue())
988 return nullptr;
989
990 // Look through chains of multiplications, searching for a constant that is
991 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4
992 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by
993 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore
994 // down from Val:
995 //
996 // Val = M1 * X || Analysis starts here and works down
997 // M1 = M2 * Y || Doesn't descend into terms with more
998 // M2 = Z * 4 \/ than one use
999 //
1000 // Then to modify a term at the bottom:
1001 //
1002 // Val = M1 * X
1003 // M1 = Z * Y || Replaced M2 with Z
1004 //
1005 // Then to work back up correcting nsw flags.
1006
1007 // Op - the term we are currently analyzing. Starts at Val then drills down.
1008 // Replaced with its descaled value before exiting from the drill down loop.
1009 Value *Op = Val;
1010
1011 // Parent - initially null, but after drilling down notes where Op came from.
1012 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
1013 // 0'th operand of Val.
1014 std::pair<Instruction*, unsigned> Parent;
1015
1016 // RequireNoSignedWrap - Set if the transform requires a descaling at deeper
1017 // levels that doesn't overflow.
1018 bool RequireNoSignedWrap = false;
1019
1020 // logScale - log base 2 of the scale. Negative if not a power of 2.
1021 int32_t logScale = Scale.exactLogBase2();
1022
1023 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
1024
1025 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
1026 // If Op is a constant divisible by Scale then descale to the quotient.
1027 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
1028 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
1029 if (!Remainder.isMinValue())
1030 // Not divisible by Scale.
1031 return nullptr;
1032 // Replace with the quotient in the parent.
1033 Op = ConstantInt::get(CI->getType(), Quotient);
1034 NoSignedWrap = true;
1035 break;
1036 }
1037
1038 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
1039
1040 if (BO->getOpcode() == Instruction::Mul) {
1041 // Multiplication.
1042 NoSignedWrap = BO->hasNoSignedWrap();
1043 if (RequireNoSignedWrap && !NoSignedWrap)
1044 return nullptr;
1045
1046 // There are three cases for multiplication: multiplication by exactly
1047 // the scale, multiplication by a constant different to the scale, and
1048 // multiplication by something else.
1049 Value *LHS = BO->getOperand(0);
1050 Value *RHS = BO->getOperand(1);
1051
1052 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1053 // Multiplication by a constant.
1054 if (CI->getValue() == Scale) {
1055 // Multiplication by exactly the scale, replace the multiplication
1056 // by its left-hand side in the parent.
1057 Op = LHS;
1058 break;
1059 }
1060
1061 // Otherwise drill down into the constant.
1062 if (!Op->hasOneUse())
1063 return nullptr;
1064
1065 Parent = std::make_pair(BO, 1);
1066 continue;
1067 }
1068
1069 // Multiplication by something else. Drill down into the left-hand side
1070 // since that's where the reassociate pass puts the good stuff.
1071 if (!Op->hasOneUse())
1072 return nullptr;
1073
1074 Parent = std::make_pair(BO, 0);
1075 continue;
1076 }
1077
1078 if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
1079 isa<ConstantInt>(BO->getOperand(1))) {
1080 // Multiplication by a power of 2.
1081 NoSignedWrap = BO->hasNoSignedWrap();
1082 if (RequireNoSignedWrap && !NoSignedWrap)
1083 return nullptr;
1084
1085 Value *LHS = BO->getOperand(0);
1086 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
1087 getLimitedValue(Scale.getBitWidth());
1088 // Op = LHS << Amt.
1089
1090 if (Amt == logScale) {
1091 // Multiplication by exactly the scale, replace the multiplication
1092 // by its left-hand side in the parent.
1093 Op = LHS;
1094 break;
1095 }
1096 if (Amt < logScale || !Op->hasOneUse())
1097 return nullptr;
1098
1099 // Multiplication by more than the scale. Reduce the multiplying amount
1100 // by the scale in the parent.
1101 Parent = std::make_pair(BO, 1);
1102 Op = ConstantInt::get(BO->getType(), Amt - logScale);
1103 break;
1104 }
1105 }
1106
1107 if (!Op->hasOneUse())
1108 return nullptr;
1109
1110 if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
1111 if (Cast->getOpcode() == Instruction::SExt) {
1112 // Op is sign-extended from a smaller type, descale in the smaller type.
1113 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1114 APInt SmallScale = Scale.trunc(SmallSize);
1115 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to
1116 // descale Op as (sext Y) * Scale. In order to have
1117 // sext (Y * SmallScale) = (sext Y) * Scale
1118 // some conditions need to hold however: SmallScale must sign-extend to
1119 // Scale and the multiplication Y * SmallScale should not overflow.
1120 if (SmallScale.sext(Scale.getBitWidth()) != Scale)
1121 // SmallScale does not sign-extend to Scale.
1122 return nullptr;
1123 assert(SmallScale.exactLogBase2() == logScale);
1124 // Require that Y * SmallScale must not overflow.
1125 RequireNoSignedWrap = true;
1126
1127 // Drill down through the cast.
1128 Parent = std::make_pair(Cast, 0);
1129 Scale = SmallScale;
1130 continue;
1131 }
1132
1133 if (Cast->getOpcode() == Instruction::Trunc) {
1134 // Op is truncated from a larger type, descale in the larger type.
1135 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then
1136 // trunc (Y * sext Scale) = (trunc Y) * Scale
1137 // always holds. However (trunc Y) * Scale may overflow even if
1138 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
1139 // from this point up in the expression (see later).
1140 if (RequireNoSignedWrap)
1141 return nullptr;
1142
1143 // Drill down through the cast.
1144 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1145 Parent = std::make_pair(Cast, 0);
1146 Scale = Scale.sext(LargeSize);
1147 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
1148 logScale = -1;
1149 assert(Scale.exactLogBase2() == logScale);
1150 continue;
1151 }
1152 }
1153
1154 // Unsupported expression, bail out.
1155 return nullptr;
1156 }
1157
1158 // If Op is zero then Val = Op * Scale.
1159 if (match(Op, m_Zero())) {
1160 NoSignedWrap = true;
1161 return Op;
1162 }
1163
1164 // We know that we can successfully descale, so from here on we can safely
1165 // modify the IR. Op holds the descaled version of the deepest term in the
1166 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known
1167 // not to overflow.
1168
1169 if (!Parent.first)
1170 // The expression only had one term.
1171 return Op;
1172
1173 // Rewrite the parent using the descaled version of its operand.
1174 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
1175 assert(Op != Parent.first->getOperand(Parent.second) &&
1176 "Descaling was a no-op?");
1177 Parent.first->setOperand(Parent.second, Op);
1178 Worklist.Add(Parent.first);
1179
1180 // Now work back up the expression correcting nsw flags. The logic is based
1181 // on the following observation: if X * Y is known not to overflow as a signed
1182 // multiplication, and Y is replaced by a value Z with smaller absolute value,
1183 // then X * Z will not overflow as a signed multiplication either. As we work
1184 // our way up, having NoSignedWrap 'true' means that the descaled value at the
1185 // current level has strictly smaller absolute value than the original.
1186 Instruction *Ancestor = Parent.first;
1187 do {
1188 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
1189 // If the multiplication wasn't nsw then we can't say anything about the
1190 // value of the descaled multiplication, and we have to clear nsw flags
1191 // from this point on up.
1192 bool OpNoSignedWrap = BO->hasNoSignedWrap();
1193 NoSignedWrap &= OpNoSignedWrap;
1194 if (NoSignedWrap != OpNoSignedWrap) {
1195 BO->setHasNoSignedWrap(NoSignedWrap);
1196 Worklist.Add(Ancestor);
1197 }
1198 } else if (Ancestor->getOpcode() == Instruction::Trunc) {
1199 // The fact that the descaled input to the trunc has smaller absolute
1200 // value than the original input doesn't tell us anything useful about
1201 // the absolute values of the truncations.
1202 NoSignedWrap = false;
1203 }
1204 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
1205 "Failed to keep proper track of nsw flags while drilling down?");
1206
1207 if (Ancestor == Val)
1208 // Got to the top, all done!
1209 return Val;
1210
1211 // Move up one level in the expression.
1212 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
1213 Ancestor = Ancestor->user_back();
1214 } while (1);
1215 }
1216
1217 /// \brief Creates node of binary operation with the same attributes as the
1218 /// specified one but with other operands.
1219 static Value *CreateBinOpAsGiven(BinaryOperator &Inst, Value *LHS, Value *RHS,
1220 InstCombiner::BuilderTy *B) {
1221 Value *BORes = B->CreateBinOp(Inst.getOpcode(), LHS, RHS);
1222 if (BinaryOperator *NewBO = dyn_cast<BinaryOperator>(BORes)) {
1223 if (isa<OverflowingBinaryOperator>(NewBO)) {
1224 NewBO->setHasNoSignedWrap(Inst.hasNoSignedWrap());
1225 NewBO->setHasNoUnsignedWrap(Inst.hasNoUnsignedWrap());
1226 }
1227 if (isa<PossiblyExactOperator>(NewBO))
1228 NewBO->setIsExact(Inst.isExact());
1229 }
1230 return BORes;
1231 }
1232
1233 /// \brief Makes transformation of binary operation specific for vector types.
1234 /// \param Inst Binary operator to transform.
1235 /// \return Pointer to node that must replace the original binary operator, or
1236 /// null pointer if no transformation was made.
1237 Value *InstCombiner::SimplifyVectorOp(BinaryOperator &Inst) {
1238 if (!Inst.getType()->isVectorTy()) return nullptr;
1239
1240 // It may not be safe to reorder shuffles and things like div, urem, etc.
1241 // because we may trap when executing those ops on unknown vector elements.
1242 // See PR20059.
1243 if (!isSafeToSpeculativelyExecute(&Inst, DL)) return nullptr;
1244
1245 unsigned VWidth = cast<VectorType>(Inst.getType())->getNumElements();
1246 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
1247 assert(cast<VectorType>(LHS->getType())->getNumElements() == VWidth);
1248 assert(cast<VectorType>(RHS->getType())->getNumElements() == VWidth);
1249
1250 // If both arguments of binary operation are shuffles, which use the same
1251 // mask and shuffle within a single vector, it is worthwhile to move the
1252 // shuffle after binary operation:
1253 // Op(shuffle(v1, m), shuffle(v2, m)) -> shuffle(Op(v1, v2), m)
1254 if (isa<ShuffleVectorInst>(LHS) && isa<ShuffleVectorInst>(RHS)) {
1255 ShuffleVectorInst *LShuf = cast<ShuffleVectorInst>(LHS);
1256 ShuffleVectorInst *RShuf = cast<ShuffleVectorInst>(RHS);
1257 if (isa<UndefValue>(LShuf->getOperand(1)) &&
1258 isa<UndefValue>(RShuf->getOperand(1)) &&
1259 LShuf->getOperand(0)->getType() == RShuf->getOperand(0)->getType() &&
1260 LShuf->getMask() == RShuf->getMask()) {
1261 Value *NewBO = CreateBinOpAsGiven(Inst, LShuf->getOperand(0),
1262 RShuf->getOperand(0), Builder);
1263 Value *Res = Builder->CreateShuffleVector(NewBO,
1264 UndefValue::get(NewBO->getType()), LShuf->getMask());
1265 return Res;
1266 }
1267 }
1268
1269 // If one argument is a shuffle within one vector, the other is a constant,
1270 // try moving the shuffle after the binary operation.
1271 ShuffleVectorInst *Shuffle = nullptr;
1272 Constant *C1 = nullptr;
1273 if (isa<ShuffleVectorInst>(LHS)) Shuffle = cast<ShuffleVectorInst>(LHS);
1274 if (isa<ShuffleVectorInst>(RHS)) Shuffle = cast<ShuffleVectorInst>(RHS);
1275 if (isa<Constant>(LHS)) C1 = cast<Constant>(LHS);
1276 if (isa<Constant>(RHS)) C1 = cast<Constant>(RHS);
1277 if (Shuffle && C1 &&
1278 (isa<ConstantVector>(C1) || isa<ConstantDataVector>(C1)) &&
1279 isa<UndefValue>(Shuffle->getOperand(1)) &&
1280 Shuffle->getType() == Shuffle->getOperand(0)->getType()) {
1281 SmallVector<int, 16> ShMask = Shuffle->getShuffleMask();
1282 // Find constant C2 that has property:
1283 // shuffle(C2, ShMask) = C1
1284 // If such constant does not exist (example: ShMask=<0,0> and C1=<1,2>)
1285 // reorder is not possible.
1286 SmallVector<Constant*, 16> C2M(VWidth,
1287 UndefValue::get(C1->getType()->getScalarType()));
1288 bool MayChange = true;
1289 for (unsigned I = 0; I < VWidth; ++I) {
1290 if (ShMask[I] >= 0) {
1291 assert(ShMask[I] < (int)VWidth);
1292 if (!isa<UndefValue>(C2M[ShMask[I]])) {
1293 MayChange = false;
1294 break;
1295 }
1296 C2M[ShMask[I]] = C1->getAggregateElement(I);
1297 }
1298 }
1299 if (MayChange) {
1300 Constant *C2 = ConstantVector::get(C2M);
1301 Value *NewLHS, *NewRHS;
1302 if (isa<Constant>(LHS)) {
1303 NewLHS = C2;
1304 NewRHS = Shuffle->getOperand(0);
1305 } else {
1306 NewLHS = Shuffle->getOperand(0);
1307 NewRHS = C2;
1308 }
1309 Value *NewBO = CreateBinOpAsGiven(Inst, NewLHS, NewRHS, Builder);
1310 Value *Res = Builder->CreateShuffleVector(NewBO,
1311 UndefValue::get(Inst.getType()), Shuffle->getMask());
1312 return Res;
1313 }
1314 }
1315
1316 return nullptr;
1317 }
1318
1319 Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
1320 SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
1321
1322 if (Value *V = SimplifyGEPInst(Ops, DL, TLI, DT, AC))
1323 return ReplaceInstUsesWith(GEP, V);
1324
1325 Value *PtrOp = GEP.getOperand(0);
1326
1327 // Eliminate unneeded casts for indices, and replace indices which displace
1328 // by multiples of a zero size type with zero.
1329 if (DL) {
1330 bool MadeChange = false;
1331 Type *IntPtrTy = DL->getIntPtrType(GEP.getPointerOperandType());
1332
1333 gep_type_iterator GTI = gep_type_begin(GEP);
1334 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end();
1335 I != E; ++I, ++GTI) {
1336 // Skip indices into struct types.
1337 SequentialType *SeqTy = dyn_cast<SequentialType>(*GTI);
1338 if (!SeqTy) continue;
1339
1340 // If the element type has zero size then any index over it is equivalent
1341 // to an index of zero, so replace it with zero if it is not zero already.
1342 if (SeqTy->getElementType()->isSized() &&
1343 DL->getTypeAllocSize(SeqTy->getElementType()) == 0)
1344 if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
1345 *I = Constant::getNullValue(IntPtrTy);
1346 MadeChange = true;
1347 }
1348
1349 Type *IndexTy = (*I)->getType();
1350 if (IndexTy != IntPtrTy) {
1351 // If we are using a wider index than needed for this platform, shrink
1352 // it to what we need. If narrower, sign-extend it to what we need.
1353 // This explicit cast can make subsequent optimizations more obvious.
1354 *I = Builder->CreateIntCast(*I, IntPtrTy, true);
1355 MadeChange = true;
1356 }
1357 }
1358 if (MadeChange) return &GEP;
1359 }
1360
1361 // Check to see if the inputs to the PHI node are getelementptr instructions.
1362 if (PHINode *PN = dyn_cast<PHINode>(PtrOp)) {
1363 GetElementPtrInst *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
1364 if (!Op1)
1365 return nullptr;
1366
1367 signed DI = -1;
1368
1369 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
1370 GetElementPtrInst *Op2 = dyn_cast<GetElementPtrInst>(*I);
1371 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands())
1372 return nullptr;
1373
1374 // Keep track of the type as we walk the GEP.
1375 Type *CurTy = Op1->getOperand(0)->getType()->getScalarType();
1376
1377 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
1378 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
1379 return nullptr;
1380
1381 if (Op1->getOperand(J) != Op2->getOperand(J)) {
1382 if (DI == -1) {
1383 // We have not seen any differences yet in the GEPs feeding the
1384 // PHI yet, so we record this one if it is allowed to be a
1385 // variable.
1386
1387 // The first two arguments can vary for any GEP, the rest have to be
1388 // static for struct slots
1389 if (J > 1 && CurTy->isStructTy())
1390 return nullptr;
1391
1392 DI = J;
1393 } else {
1394 // The GEP is different by more than one input. While this could be
1395 // extended to support GEPs that vary by more than one variable it
1396 // doesn't make sense since it greatly increases the complexity and
1397 // would result in an R+R+R addressing mode which no backend
1398 // directly supports and would need to be broken into several
1399 // simpler instructions anyway.
1400 return nullptr;
1401 }
1402 }
1403
1404 // Sink down a layer of the type for the next iteration.
1405 if (J > 0) {
1406 if (CompositeType *CT = dyn_cast<CompositeType>(CurTy)) {
1407 CurTy = CT->getTypeAtIndex(Op1->getOperand(J));
1408 } else {
1409 CurTy = nullptr;
1410 }
1411 }
1412 }
1413 }
1414
1415 GetElementPtrInst *NewGEP = cast<GetElementPtrInst>(Op1->clone());
1416
1417 if (DI == -1) {
1418 // All the GEPs feeding the PHI are identical. Clone one down into our
1419 // BB so that it can be merged with the current GEP.
1420 GEP.getParent()->getInstList().insert(GEP.getParent()->getFirstNonPHI(),
1421 NewGEP);
1422 } else {
1423 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
1424 // into the current block so it can be merged, and create a new PHI to
1425 // set that index.
1426 Instruction *InsertPt = Builder->GetInsertPoint();
1427 Builder->SetInsertPoint(PN);
1428 PHINode *NewPN = Builder->CreatePHI(Op1->getOperand(DI)->getType(),
1429 PN->getNumOperands());
1430 Builder->SetInsertPoint(InsertPt);
1431
1432 for (auto &I : PN->operands())
1433 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
1434 PN->getIncomingBlock(I));
1435
1436 NewGEP->setOperand(DI, NewPN);
1437 GEP.getParent()->getInstList().insert(GEP.getParent()->getFirstNonPHI(),
1438 NewGEP);
1439 NewGEP->setOperand(DI, NewPN);
1440 }
1441
1442 GEP.setOperand(0, NewGEP);
1443 PtrOp = NewGEP;
1444 }
1445
1446 // Combine Indices - If the source pointer to this getelementptr instruction
1447 // is a getelementptr instruction, combine the indices of the two
1448 // getelementptr instructions into a single instruction.
1449 //
1450 if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
1451 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
1452 return nullptr;
1453
1454 // Note that if our source is a gep chain itself then we wait for that
1455 // chain to be resolved before we perform this transformation. This
1456 // avoids us creating a TON of code in some cases.
1457 if (GEPOperator *SrcGEP =
1458 dyn_cast<GEPOperator>(Src->getOperand(0)))
1459 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
1460 return nullptr; // Wait until our source is folded to completion.
1461
1462 SmallVector<Value*, 8> Indices;
1463
1464 // Find out whether the last index in the source GEP is a sequential idx.
1465 bool EndsWithSequential = false;
1466 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
1467 I != E; ++I)
1468 EndsWithSequential = !(*I)->isStructTy();
1469
1470 // Can we combine the two pointer arithmetics offsets?
1471 if (EndsWithSequential) {
1472 // Replace: gep (gep %P, long B), long A, ...
1473 // With: T = long A+B; gep %P, T, ...
1474 //
1475 Value *Sum;
1476 Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
1477 Value *GO1 = GEP.getOperand(1);
1478 if (SO1 == Constant::getNullValue(SO1->getType())) {
1479 Sum = GO1;
1480 } else if (GO1 == Constant::getNullValue(GO1->getType())) {
1481 Sum = SO1;
1482 } else {
1483 // If they aren't the same type, then the input hasn't been processed
1484 // by the loop above yet (which canonicalizes sequential index types to
1485 // intptr_t). Just avoid transforming this until the input has been
1486 // normalized.
1487 if (SO1->getType() != GO1->getType())
1488 return nullptr;
1489 Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
1490 }
1491
1492 // Update the GEP in place if possible.
1493 if (Src->getNumOperands() == 2) {
1494 GEP.setOperand(0, Src->getOperand(0));
1495 GEP.setOperand(1, Sum);
1496 return &GEP;
1497 }
1498 Indices.append(Src->op_begin()+1, Src->op_end()-1);
1499 Indices.push_back(Sum);
1500 Indices.append(GEP.op_begin()+2, GEP.op_end());
1501 } else if (isa<Constant>(*GEP.idx_begin()) &&
1502 cast<Constant>(*GEP.idx_begin())->isNullValue() &&
1503 Src->getNumOperands() != 1) {
1504 // Otherwise we can do the fold if the first index of the GEP is a zero
1505 Indices.append(Src->op_begin()+1, Src->op_end());
1506 Indices.append(GEP.idx_begin()+1, GEP.idx_end());
1507 }
1508
1509 if (!Indices.empty())
1510 return (GEP.isInBounds() && Src->isInBounds()) ?
1511 GetElementPtrInst::CreateInBounds(Src->getOperand(0), Indices,
1512 GEP.getName()) :
1513 GetElementPtrInst::Create(Src->getOperand(0), Indices, GEP.getName());
1514 }
1515
1516 if (DL && GEP.getNumIndices() == 1) {
1517 unsigned AS = GEP.getPointerAddressSpace();
1518 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
1519 DL->getPointerSizeInBits(AS)) {
1520 Type *PtrTy = GEP.getPointerOperandType();
1521 Type *Ty = PtrTy->getPointerElementType();
1522 uint64_t TyAllocSize = DL->getTypeAllocSize(Ty);
1523
1524 bool Matched = false;
1525 uint64_t C;
1526 Value *V = nullptr;
1527 if (TyAllocSize == 1) {
1528 V = GEP.getOperand(1);
1529 Matched = true;
1530 } else if (match(GEP.getOperand(1),
1531 m_AShr(m_Value(V), m_ConstantInt(C)))) {
1532 if (TyAllocSize == 1ULL << C)
1533 Matched = true;
1534 } else if (match(GEP.getOperand(1),
1535 m_SDiv(m_Value(V), m_ConstantInt(C)))) {
1536 if (TyAllocSize == C)
1537 Matched = true;
1538 }
1539
1540 if (Matched) {
1541 // Canonicalize (gep i8* X, -(ptrtoint Y))
1542 // to (inttoptr (sub (ptrtoint X), (ptrtoint Y)))
1543 // The GEP pattern is emitted by the SCEV expander for certain kinds of
1544 // pointer arithmetic.
1545 if (match(V, m_Neg(m_PtrToInt(m_Value())))) {
1546 Operator *Index = cast<Operator>(V);
1547 Value *PtrToInt = Builder->CreatePtrToInt(PtrOp, Index->getType());
1548 Value *NewSub = Builder->CreateSub(PtrToInt, Index->getOperand(1));
1549 return CastInst::Create(Instruction::IntToPtr, NewSub, GEP.getType());
1550 }
1551 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X))
1552 // to (bitcast Y)
1553 Value *Y;
1554 if (match(V, m_Sub(m_PtrToInt(m_Value(Y)),
1555 m_PtrToInt(m_Specific(GEP.getOperand(0)))))) {
1556 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y,
1557 GEP.getType());
1558 }
1559 }
1560 }
1561 }
1562
1563 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
1564 Value *StrippedPtr = PtrOp->stripPointerCasts();
1565 PointerType *StrippedPtrTy = dyn_cast<PointerType>(StrippedPtr->getType());
1566
1567 // We do not handle pointer-vector geps here.
1568 if (!StrippedPtrTy)
1569 return nullptr;
1570
1571 if (StrippedPtr != PtrOp) {
1572 bool HasZeroPointerIndex = false;
1573 if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
1574 HasZeroPointerIndex = C->isZero();
1575
1576 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
1577 // into : GEP [10 x i8]* X, i32 0, ...
1578 //
1579 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
1580 // into : GEP i8* X, ...
1581 //
1582 // This occurs when the program declares an array extern like "int X[];"
1583 if (HasZeroPointerIndex) {
1584 PointerType *CPTy = cast<PointerType>(PtrOp->getType());
1585 if (ArrayType *CATy =
1586 dyn_cast<ArrayType>(CPTy->getElementType())) {
1587 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
1588 if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
1589 // -> GEP i8* X, ...
1590 SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
1591 GetElementPtrInst *Res =
1592 GetElementPtrInst::Create(StrippedPtr, Idx, GEP.getName());
1593 Res->setIsInBounds(GEP.isInBounds());
1594 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace())
1595 return Res;
1596 // Insert Res, and create an addrspacecast.
1597 // e.g.,
1598 // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ...
1599 // ->
1600 // %0 = GEP i8 addrspace(1)* X, ...
1601 // addrspacecast i8 addrspace(1)* %0 to i8*
1602 return new AddrSpaceCastInst(Builder->Insert(Res), GEP.getType());
1603 }
1604
1605 if (ArrayType *XATy =
1606 dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){
1607 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
1608 if (CATy->getElementType() == XATy->getElementType()) {
1609 // -> GEP [10 x i8]* X, i32 0, ...
1610 // At this point, we know that the cast source type is a pointer
1611 // to an array of the same type as the destination pointer
1612 // array. Because the array type is never stepped over (there
1613 // is a leading zero) we can fold the cast into this GEP.
1614 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) {
1615 GEP.setOperand(0, StrippedPtr);
1616 return &GEP;
1617 }
1618 // Cannot replace the base pointer directly because StrippedPtr's
1619 // address space is different. Instead, create a new GEP followed by
1620 // an addrspacecast.
1621 // e.g.,
1622 // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*),
1623 // i32 0, ...
1624 // ->
1625 // %0 = GEP [10 x i8] addrspace(1)* X, ...
1626 // addrspacecast i8 addrspace(1)* %0 to i8*
1627 SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end());
1628 Value *NewGEP = GEP.isInBounds() ?
1629 Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()) :
1630 Builder->CreateGEP(StrippedPtr, Idx, GEP.getName());
1631 return new AddrSpaceCastInst(NewGEP, GEP.getType());
1632 }
1633 }
1634 }
1635 } else if (GEP.getNumOperands() == 2) {
1636 // Transform things like:
1637 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
1638 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
1639 Type *SrcElTy = StrippedPtrTy->getElementType();
1640 Type *ResElTy = PtrOp->getType()->getPointerElementType();
1641 if (DL && SrcElTy->isArrayTy() &&
1642 DL->getTypeAllocSize(SrcElTy->getArrayElementType()) ==
1643 DL->getTypeAllocSize(ResElTy)) {
1644 Type *IdxType = DL->getIntPtrType(GEP.getType());
1645 Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
1646 Value *NewGEP = GEP.isInBounds() ?
1647 Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()) :
1648 Builder->CreateGEP(StrippedPtr, Idx, GEP.getName());
1649
1650 // V and GEP are both pointer types --> BitCast
1651 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
1652 GEP.getType());
1653 }
1654
1655 // Transform things like:
1656 // %V = mul i64 %N, 4
1657 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
1658 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast
1659 if (DL && ResElTy->isSized() && SrcElTy->isSized()) {
1660 // Check that changing the type amounts to dividing the index by a scale
1661 // factor.
1662 uint64_t ResSize = DL->getTypeAllocSize(ResElTy);
1663 uint64_t SrcSize = DL->getTypeAllocSize(SrcElTy);
1664 if (ResSize && SrcSize % ResSize == 0) {
1665 Value *Idx = GEP.getOperand(1);
1666 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
1667 uint64_t Scale = SrcSize / ResSize;
1668
1669 // Earlier transforms ensure that the index has type IntPtrType, which
1670 // considerably simplifies the logic by eliminating implicit casts.
1671 assert(Idx->getType() == DL->getIntPtrType(GEP.getType()) &&
1672 "Index not cast to pointer width?");
1673
1674 bool NSW;
1675 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
1676 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
1677 // If the multiplication NewIdx * Scale may overflow then the new
1678 // GEP may not be "inbounds".
1679 Value *NewGEP = GEP.isInBounds() && NSW ?
1680 Builder->CreateInBoundsGEP(StrippedPtr, NewIdx, GEP.getName()) :
1681 Builder->CreateGEP(StrippedPtr, NewIdx, GEP.getName());
1682
1683 // The NewGEP must be pointer typed, so must the old one -> BitCast
1684 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
1685 GEP.getType());
1686 }
1687 }
1688 }
1689
1690 // Similarly, transform things like:
1691 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
1692 // (where tmp = 8*tmp2) into:
1693 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
1694 if (DL && ResElTy->isSized() && SrcElTy->isSized() &&
1695 SrcElTy->isArrayTy()) {
1696 // Check that changing to the array element type amounts to dividing the
1697 // index by a scale factor.
1698 uint64_t ResSize = DL->getTypeAllocSize(ResElTy);
1699 uint64_t ArrayEltSize
1700 = DL->getTypeAllocSize(SrcElTy->getArrayElementType());
1701 if (ResSize && ArrayEltSize % ResSize == 0) {
1702 Value *Idx = GEP.getOperand(1);
1703 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
1704 uint64_t Scale = ArrayEltSize / ResSize;
1705
1706 // Earlier transforms ensure that the index has type IntPtrType, which
1707 // considerably simplifies the logic by eliminating implicit casts.
1708 assert(Idx->getType() == DL->getIntPtrType(GEP.getType()) &&
1709 "Index not cast to pointer width?");
1710
1711 bool NSW;
1712 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
1713 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
1714 // If the multiplication NewIdx * Scale may overflow then the new
1715 // GEP may not be "inbounds".
1716 Value *Off[2] = {
1717 Constant::getNullValue(DL->getIntPtrType(GEP.getType())),
1718 NewIdx
1719 };
1720
1721 Value *NewGEP = GEP.isInBounds() && NSW ?
1722 Builder->CreateInBoundsGEP(StrippedPtr, Off, GEP.getName()) :
1723 Builder->CreateGEP(StrippedPtr, Off, GEP.getName());
1724 // The NewGEP must be pointer typed, so must the old one -> BitCast
1725 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
1726 GEP.getType());
1727 }
1728 }
1729 }
1730 }
1731 }
1732
1733 if (!DL)
1734 return nullptr;
1735
1736 // addrspacecast between types is canonicalized as a bitcast, then an
1737 // addrspacecast. To take advantage of the below bitcast + struct GEP, look
1738 // through the addrspacecast.
1739 if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) {
1740 // X = bitcast A addrspace(1)* to B addrspace(1)*
1741 // Y = addrspacecast A addrspace(1)* to B addrspace(2)*
1742 // Z = gep Y, <...constant indices...>
1743 // Into an addrspacecasted GEP of the struct.
1744 if (BitCastInst *BC = dyn_cast<BitCastInst>(ASC->getOperand(0)))
1745 PtrOp = BC;
1746 }
1747
1748 /// See if we can simplify:
1749 /// X = bitcast A* to B*
1750 /// Y = gep X, <...constant indices...>
1751 /// into a gep of the original struct. This is important for SROA and alias
1752 /// analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
1753 if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
1754 Value *Operand = BCI->getOperand(0);
1755 PointerType *OpType = cast<PointerType>(Operand->getType());
1756 unsigned OffsetBits = DL->getPointerTypeSizeInBits(GEP.getType());
1757 APInt Offset(OffsetBits, 0);
1758 if (!isa<BitCastInst>(Operand) &&
1759 GEP.accumulateConstantOffset(*DL, Offset)) {
1760
1761 // If this GEP instruction doesn't move the pointer, just replace the GEP
1762 // with a bitcast of the real input to the dest type.
1763 if (!Offset) {
1764 // If the bitcast is of an allocation, and the allocation will be
1765 // converted to match the type of the cast, don't touch this.
1766 if (isa<AllocaInst>(Operand) || isAllocationFn(Operand, TLI)) {
1767 // See if the bitcast simplifies, if so, don't nuke this GEP yet.
1768 if (Instruction *I = visitBitCast(*BCI)) {
1769 if (I != BCI) {
1770 I->takeName(BCI);
1771 BCI->getParent()->getInstList().insert(BCI, I);
1772 ReplaceInstUsesWith(*BCI, I);
1773 }
1774 return &GEP;
1775 }
1776 }
1777
1778 if (Operand->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
1779 return new AddrSpaceCastInst(Operand, GEP.getType());
1780 return new BitCastInst(Operand, GEP.getType());
1781 }
1782
1783 // Otherwise, if the offset is non-zero, we need to find out if there is a
1784 // field at Offset in 'A's type. If so, we can pull the cast through the
1785 // GEP.
1786 SmallVector<Value*, 8> NewIndices;
1787 if (FindElementAtOffset(OpType, Offset.getSExtValue(), NewIndices)) {
1788 Value *NGEP = GEP.isInBounds() ?
1789 Builder->CreateInBoundsGEP(Operand, NewIndices) :
1790 Builder->CreateGEP(Operand, NewIndices);
1791
1792 if (NGEP->getType() == GEP.getType())
1793 return ReplaceInstUsesWith(GEP, NGEP);
1794 NGEP->takeName(&GEP);
1795
1796 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
1797 return new AddrSpaceCastInst(NGEP, GEP.getType());
1798 return new BitCastInst(NGEP, GEP.getType());
1799 }
1800 }
1801 }
1802
1803 return nullptr;
1804 }
1805
1806 static bool
1807 isAllocSiteRemovable(Instruction *AI, SmallVectorImpl<WeakVH> &Users,
1808 const TargetLibraryInfo *TLI) {
1809 SmallVector<Instruction*, 4> Worklist;
1810 Worklist.push_back(AI);
1811
1812 do {
1813 Instruction *PI = Worklist.pop_back_val();
1814 for (User *U : PI->users()) {
1815 Instruction *I = cast<Instruction>(U);
1816 switch (I->getOpcode()) {
1817 default:
1818 // Give up the moment we see something we can't handle.
1819 return false;
1820
1821 case Instruction::BitCast:
1822 case Instruction::GetElementPtr:
1823 Users.push_back(I);
1824 Worklist.push_back(I);
1825 continue;
1826
1827 case Instruction::ICmp: {
1828 ICmpInst *ICI = cast<ICmpInst>(I);
1829 // We can fold eq/ne comparisons with null to false/true, respectively.
1830 if (!ICI->isEquality() || !isa<ConstantPointerNull>(ICI->getOperand(1)))
1831 return false;
1832 Users.push_back(I);
1833 continue;
1834 }
1835
1836 case Instruction::Call:
1837 // Ignore no-op and store intrinsics.
1838 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1839 switch (II->getIntrinsicID()) {
1840 default:
1841 return false;
1842
1843 case Intrinsic::memmove:
1844 case Intrinsic::memcpy:
1845 case Intrinsic::memset: {
1846 MemIntrinsic *MI = cast<MemIntrinsic>(II);
1847 if (MI->isVolatile() || MI->getRawDest() != PI)
1848 return false;
1849 }
1850 // fall through
1851 case Intrinsic::dbg_declare:
1852 case Intrinsic::dbg_value:
1853 case Intrinsic::invariant_start:
1854 case Intrinsic::invariant_end:
1855 case Intrinsic::lifetime_start:
1856 case Intrinsic::lifetime_end:
1857 case Intrinsic::objectsize:
1858 Users.push_back(I);
1859 continue;
1860 }
1861 }
1862
1863 if (isFreeCall(I, TLI)) {
1864 Users.push_back(I);
1865 continue;
1866 }
1867 return false;
1868
1869 case Instruction::Store: {
1870 StoreInst *SI = cast<StoreInst>(I);
1871 if (SI->isVolatile() || SI->getPointerOperand() != PI)
1872 return false;
1873 Users.push_back(I);
1874 continue;
1875 }
1876 }
1877 llvm_unreachable("missing a return?");
1878 }
1879 } while (!Worklist.empty());
1880 return true;
1881 }
1882
1883 Instruction *InstCombiner::visitAllocSite(Instruction &MI) {
1884 // If we have a malloc call which is only used in any amount of comparisons
1885 // to null and free calls, delete the calls and replace the comparisons with
1886 // true or false as appropriate.
1887 SmallVector<WeakVH, 64> Users;
1888 if (isAllocSiteRemovable(&MI, Users, TLI)) {
1889 for (unsigned i = 0, e = Users.size(); i != e; ++i) {
1890 Instruction *I = cast_or_null<Instruction>(&*Users[i]);
1891 if (!I) continue;
1892
1893 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
1894 ReplaceInstUsesWith(*C,
1895 ConstantInt::get(Type::getInt1Ty(C->getContext()),
1896 C->isFalseWhenEqual()));
1897 } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
1898 ReplaceInstUsesWith(*I, UndefValue::get(I->getType()));
1899 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1900 if (II->getIntrinsicID() == Intrinsic::objectsize) {
1901 ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1));
1902 uint64_t DontKnow = CI->isZero() ? -1ULL : 0;
1903 ReplaceInstUsesWith(*I, ConstantInt::get(I->getType(), DontKnow));
1904 }
1905 }
1906 EraseInstFromFunction(*I);
1907 }
1908
1909 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
1910 // Replace invoke with a NOP intrinsic to maintain the original CFG
1911 Module *M = II->getParent()->getParent()->getParent();
1912 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
1913 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
1914 None, "", II->getParent());
1915 }
1916 return EraseInstFromFunction(MI);
1917 }
1918 return nullptr;
1919 }
1920
1921 /// \brief Move the call to free before a NULL test.
1922 ///
1923 /// Check if this free is accessed after its argument has been test
1924 /// against NULL (property 0).
1925 /// If yes, it is legal to move this call in its predecessor block.
1926 ///
1927 /// The move is performed only if the block containing the call to free
1928 /// will be removed, i.e.:
1929 /// 1. it has only one predecessor P, and P has two successors
1930 /// 2. it contains the call and an unconditional branch
1931 /// 3. its successor is the same as its predecessor's successor
1932 ///
1933 /// The profitability is out-of concern here and this function should
1934 /// be called only if the caller knows this transformation would be
1935 /// profitable (e.g., for code size).
1936 static Instruction *
1937 tryToMoveFreeBeforeNullTest(CallInst &FI) {
1938 Value *Op = FI.getArgOperand(0);
1939 BasicBlock *FreeInstrBB = FI.getParent();
1940 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
1941
1942 // Validate part of constraint #1: Only one predecessor
1943 // FIXME: We can extend the number of predecessor, but in that case, we
1944 // would duplicate the call to free in each predecessor and it may
1945 // not be profitable even for code size.
1946 if (!PredBB)
1947 return nullptr;
1948
1949 // Validate constraint #2: Does this block contains only the call to
1950 // free and an unconditional branch?
1951 // FIXME: We could check if we can speculate everything in the
1952 // predecessor block
1953 if (FreeInstrBB->size() != 2)
1954 return nullptr;
1955 BasicBlock *SuccBB;
1956 if (!match(FreeInstrBB->getTerminator(), m_UnconditionalBr(SuccBB)))
1957 return nullptr;
1958
1959 // Validate the rest of constraint #1 by matching on the pred branch.
1960 TerminatorInst *TI = PredBB->getTerminator();
1961 BasicBlock *TrueBB, *FalseBB;
1962 ICmpInst::Predicate Pred;
1963 if (!match(TI, m_Br(m_ICmp(Pred, m_Specific(Op), m_Zero()), TrueBB, FalseBB)))
1964 return nullptr;
1965 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
1966 return nullptr;
1967
1968 // Validate constraint #3: Ensure the null case just falls through.
1969 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
1970 return nullptr;
1971 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
1972 "Broken CFG: missing edge from predecessor to successor");
1973
1974 FI.moveBefore(TI);
1975 return &FI;
1976 }
1977
1978
1979 Instruction *InstCombiner::visitFree(CallInst &FI) {
1980 Value *Op = FI.getArgOperand(0);
1981
1982 // free undef -> unreachable.
1983 if (isa<UndefValue>(Op)) {
1984 // Insert a new store to null because we cannot modify the CFG here.
1985 Builder->CreateStore(ConstantInt::getTrue(FI.getContext()),
1986 UndefValue::get(Type::getInt1PtrTy(FI.getContext())));
1987 return EraseInstFromFunction(FI);
1988 }
1989
1990 // If we have 'free null' delete the instruction. This can happen in stl code
1991 // when lots of inlining happens.
1992 if (isa<ConstantPointerNull>(Op))
1993 return EraseInstFromFunction(FI);
1994
1995 // If we optimize for code size, try to move the call to free before the null
1996 // test so that simplify cfg can remove the empty block and dead code
1997 // elimination the branch. I.e., helps to turn something like:
1998 // if (foo) free(foo);
1999 // into
2000 // free(foo);
2001 if (MinimizeSize)
2002 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI))
2003 return I;
2004
2005 return nullptr;
2006 }
2007
2008 Instruction *InstCombiner::visitReturnInst(ReturnInst &RI) {
2009 if (RI.getNumOperands() == 0) // ret void
2010 return nullptr;
2011
2012 Value *ResultOp = RI.getOperand(0);
2013 Type *VTy = ResultOp->getType();
2014 if (!VTy->isIntegerTy())
2015 return nullptr;
2016
2017 // There might be assume intrinsics dominating this return that completely
2018 // determine the value. If so, constant fold it.
2019 unsigned BitWidth = VTy->getPrimitiveSizeInBits();
2020 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
2021 computeKnownBits(ResultOp, KnownZero, KnownOne, 0, &RI);
2022 if ((KnownZero|KnownOne).isAllOnesValue())
2023 RI.setOperand(0, Constant::getIntegerValue(VTy, KnownOne));
2024
2025 return nullptr;
2026 }
2027
2028 Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
2029 // Change br (not X), label True, label False to: br X, label False, True
2030 Value *X = nullptr;
2031 BasicBlock *TrueDest;
2032 BasicBlock *FalseDest;
2033 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
2034 !isa<Constant>(X)) {
2035 // Swap Destinations and condition...
2036 BI.setCondition(X);
2037 BI.swapSuccessors();
2038 return &BI;
2039 }
2040
2041 // Canonicalize fcmp_one -> fcmp_oeq
2042 FCmpInst::Predicate FPred; Value *Y;
2043 if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
2044 TrueDest, FalseDest)) &&
2045 BI.getCondition()->hasOneUse())
2046 if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
2047 FPred == FCmpInst::FCMP_OGE) {
2048 FCmpInst *Cond = cast<FCmpInst>(BI.getCondition());
2049 Cond->setPredicate(FCmpInst::getInversePredicate(FPred));
2050
2051 // Swap Destinations and condition.
2052 BI.swapSuccessors();
2053 Worklist.Add(Cond);
2054 return &BI;
2055 }
2056
2057 // Canonicalize icmp_ne -> icmp_eq
2058 ICmpInst::Predicate IPred;
2059 if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
2060 TrueDest, FalseDest)) &&
2061 BI.getCondition()->hasOneUse())
2062 if (IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE ||
2063 IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
2064 IPred == ICmpInst::ICMP_SGE) {
2065 ICmpInst *Cond = cast<ICmpInst>(BI.getCondition());
2066 Cond->setPredicate(ICmpInst::getInversePredicate(IPred));
2067 // Swap Destinations and condition.
2068 BI.swapSuccessors();
2069 Worklist.Add(Cond);
2070 return &BI;
2071 }
2072
2073 return nullptr;
2074 }
2075
2076 Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
2077 Value *Cond = SI.getCondition();
2078 unsigned BitWidth = cast<IntegerType>(Cond->getType())->getBitWidth();
2079 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
2080 computeKnownBits(Cond, KnownZero, KnownOne);
2081 unsigned LeadingKnownZeros = KnownZero.countLeadingOnes();
2082 unsigned LeadingKnownOnes = KnownOne.countLeadingOnes();
2083
2084 // Compute the number of leading bits we can ignore.
2085 for (auto &C : SI.cases()) {
2086 LeadingKnownZeros = std::min(
2087 LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros());
2088 LeadingKnownOnes = std::min(
2089 LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes());
2090 }
2091
2092 unsigned NewWidth = BitWidth - std::max(LeadingKnownZeros, LeadingKnownOnes);
2093
2094 // Truncate the condition operand if the new type is equal to or larger than
2095 // the largest legal integer type. We need to be conservative here since
2096 // x86 generates redundant zero-extenstion instructions if the operand is
2097 // truncated to i8 or i16.
2098 bool TruncCond = false;
2099 if (DL && BitWidth > NewWidth &&
2100 NewWidth >= DL->getLargestLegalIntTypeSize()) {
2101 TruncCond = true;
2102 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
2103 Builder->SetInsertPoint(&SI);
2104 Value *NewCond = Builder->CreateTrunc(SI.getCondition(), Ty, "trunc");
2105 SI.setCondition(NewCond);
2106
2107 for (auto &C : SI.cases())
2108 static_cast<SwitchInst::CaseIt *>(&C)->setValue(ConstantInt::get(
2109 SI.getContext(), C.getCaseValue()->getValue().trunc(NewWidth)));
2110 }
2111
2112 if (Instruction *I = dyn_cast<Instruction>(Cond)) {
2113 if (I->getOpcode() == Instruction::Add)
2114 if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
2115 // change 'switch (X+4) case 1:' into 'switch (X) case -3'
2116 // Skip the first item since that's the default case.
2117 for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end();
2118 i != e; ++i) {
2119 ConstantInt* CaseVal = i.getCaseValue();
2120 Constant *LHS = CaseVal;
2121 if (TruncCond)
2122 LHS = LeadingKnownZeros
2123 ? ConstantExpr::getZExt(CaseVal, Cond->getType())
2124 : ConstantExpr::getSExt(CaseVal, Cond->getType());
2125 Constant* NewCaseVal = ConstantExpr::getSub(LHS, AddRHS);
2126 assert(isa<ConstantInt>(NewCaseVal) &&
2127 "Result of expression should be constant");
2128 i.setValue(cast<ConstantInt>(NewCaseVal));
2129 }
2130 SI.setCondition(I->getOperand(0));
2131 Worklist.Add(I);
2132 return &SI;
2133 }
2134 }
2135
2136 return TruncCond ? &SI : nullptr;
2137 }
2138
2139 Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
2140 Value *Agg = EV.getAggregateOperand();
2141
2142 if (!EV.hasIndices())
2143 return ReplaceInstUsesWith(EV, Agg);
2144
2145 if (Constant *C = dyn_cast<Constant>(Agg)) {
2146 if (Constant *C2 = C->getAggregateElement(*EV.idx_begin())) {
2147 if (EV.getNumIndices() == 0)
2148 return ReplaceInstUsesWith(EV, C2);
2149 // Extract the remaining indices out of the constant indexed by the
2150 // first index
2151 return ExtractValueInst::Create(C2, EV.getIndices().slice(1));
2152 }
2153 return nullptr; // Can't handle other constants
2154 }
2155
2156 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
2157 // We're extracting from an insertvalue instruction, compare the indices
2158 const unsigned *exti, *exte, *insi, *inse;
2159 for (exti = EV.idx_begin(), insi = IV->idx_begin(),
2160 exte = EV.idx_end(), inse = IV->idx_end();
2161 exti != exte && insi != inse;
2162 ++exti, ++insi) {
2163 if (*insi != *exti)
2164 // The insert and extract both reference distinctly different elements.
2165 // This means the extract is not influenced by the insert, and we can
2166 // replace the aggregate operand of the extract with the aggregate
2167 // operand of the insert. i.e., replace
2168 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
2169 // %E = extractvalue { i32, { i32 } } %I, 0
2170 // with
2171 // %E = extractvalue { i32, { i32 } } %A, 0
2172 return ExtractValueInst::Create(IV->getAggregateOperand(),
2173 EV.getIndices());
2174 }
2175 if (exti == exte && insi == inse)
2176 // Both iterators are at the end: Index lists are identical. Replace
2177 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
2178 // %C = extractvalue { i32, { i32 } } %B, 1, 0
2179 // with "i32 42"
2180 return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
2181 if (exti == exte) {
2182 // The extract list is a prefix of the insert list. i.e. replace
2183 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
2184 // %E = extractvalue { i32, { i32 } } %I, 1
2185 // with
2186 // %X = extractvalue { i32, { i32 } } %A, 1
2187 // %E = insertvalue { i32 } %X, i32 42, 0
2188 // by switching the order of the insert and extract (though the
2189 // insertvalue should be left in, since it may have other uses).
2190 Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(),
2191 EV.getIndices());
2192 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
2193 makeArrayRef(insi, inse));
2194 }
2195 if (insi == inse)
2196 // The insert list is a prefix of the extract list
2197 // We can simply remove the common indices from the extract and make it
2198 // operate on the inserted value instead of the insertvalue result.
2199 // i.e., replace
2200 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
2201 // %E = extractvalue { i32, { i32 } } %I, 1, 0
2202 // with
2203 // %E extractvalue { i32 } { i32 42 }, 0
2204 return ExtractValueInst::Create(IV->getInsertedValueOperand(),
2205 makeArrayRef(exti, exte));
2206 }
2207 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
2208 // We're extracting from an intrinsic, see if we're the only user, which
2209 // allows us to simplify multiple result intrinsics to simpler things that
2210 // just get one value.
2211 if (II->hasOneUse()) {
2212 // Check if we're grabbing the overflow bit or the result of a 'with
2213 // overflow' intrinsic. If it's the latter we can remove the intrinsic
2214 // and replace it with a traditional binary instruction.
2215 switch (II->getIntrinsicID()) {
2216 case Intrinsic::uadd_with_overflow:
2217 case Intrinsic::sadd_with_overflow:
2218 if (*EV.idx_begin() == 0) { // Normal result.
2219 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
2220 ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
2221 EraseInstFromFunction(*II);
2222 return BinaryOperator::CreateAdd(LHS, RHS);
2223 }
2224
2225 // If the normal result of the add is dead, and the RHS is a constant,
2226 // we can transform this into a range comparison.
2227 // overflow = uadd a, -4 --> overflow = icmp ugt a, 3
2228 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow)
2229 if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1)))
2230 return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0),
2231 ConstantExpr::getNot(CI));
2232 break;
2233 case Intrinsic::usub_with_overflow:
2234 case Intrinsic::ssub_with_overflow:
2235 if (*EV.idx_begin() == 0) { // Normal result.
2236 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
2237 ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
2238 EraseInstFromFunction(*II);
2239 return BinaryOperator::CreateSub(LHS, RHS);
2240 }
2241 break;
2242 case Intrinsic::umul_with_overflow:
2243 case Intrinsic::smul_with_overflow:
2244 if (*EV.idx_begin() == 0) { // Normal result.
2245 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
2246 ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
2247 EraseInstFromFunction(*II);
2248 return BinaryOperator::CreateMul(LHS, RHS);
2249 }
2250 break;
2251 default:
2252 break;
2253 }
2254 }
2255 }
2256 if (LoadInst *L = dyn_cast<LoadInst>(Agg))
2257 // If the (non-volatile) load only has one use, we can rewrite this to a
2258 // load from a GEP. This reduces the size of the load.
2259 // FIXME: If a load is used only by extractvalue instructions then this
2260 // could be done regardless of having multiple uses.
2261 if (L->isSimple() && L->hasOneUse()) {
2262 // extractvalue has integer indices, getelementptr has Value*s. Convert.
2263 SmallVector<Value*, 4> Indices;
2264 // Prefix an i32 0 since we need the first element.
2265 Indices.push_back(Builder->getInt32(0));
2266 for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
2267 I != E; ++I)
2268 Indices.push_back(Builder->getInt32(*I));
2269
2270 // We need to insert these at the location of the old load, not at that of
2271 // the extractvalue.
2272 Builder->SetInsertPoint(L->getParent(), L);
2273 Value *GEP = Builder->CreateInBoundsGEP(L->getPointerOperand(), Indices);
2274 // Returning the load directly will cause the main loop to insert it in
2275 // the wrong spot, so use ReplaceInstUsesWith().
2276 return ReplaceInstUsesWith(EV, Builder->CreateLoad(GEP));
2277 }
2278 // We could simplify extracts from other values. Note that nested extracts may
2279 // already be simplified implicitly by the above: extract (extract (insert) )
2280 // will be translated into extract ( insert ( extract ) ) first and then just
2281 // the value inserted, if appropriate. Similarly for extracts from single-use
2282 // loads: extract (extract (load)) will be translated to extract (load (gep))
2283 // and if again single-use then via load (gep (gep)) to load (gep).
2284 // However, double extracts from e.g. function arguments or return values
2285 // aren't handled yet.
2286 return nullptr;
2287 }
2288
2289 enum Personality_Type {
2290 Unknown_Personality,
2291 GNU_Ada_Personality,
2292 GNU_CXX_Personality,
2293 GNU_ObjC_Personality
2294 };
2295
2296 /// RecognizePersonality - See if the given exception handling personality
2297 /// function is one that we understand. If so, return a description of it;
2298 /// otherwise return Unknown_Personality.
2299 static Personality_Type RecognizePersonality(Value *Pers) {
2300 Function *F = dyn_cast<Function>(Pers->stripPointerCasts());
2301 if (!F)
2302 return Unknown_Personality;
2303 return StringSwitch<Personality_Type>(F->getName())
2304 .Case("__gnat_eh_personality", GNU_Ada_Personality)
2305 .Case("__gxx_personality_v0", GNU_CXX_Personality)
2306 .Case("__objc_personality_v0", GNU_ObjC_Personality)
2307 .Default(Unknown_Personality);
2308 }
2309
2310 /// isCatchAll - Return 'true' if the given typeinfo will match anything.
2311 static bool isCatchAll(Personality_Type Personality, Constant *TypeInfo) {
2312 switch (Personality) {
2313 case Unknown_Personality:
2314 return false;
2315 case GNU_Ada_Personality:
2316 // While __gnat_all_others_value will match any Ada exception, it doesn't
2317 // match foreign exceptions (or didn't, before gcc-4.7).
2318 return false;
2319 case GNU_CXX_Personality:
2320 case GNU_ObjC_Personality:
2321 return TypeInfo->isNullValue();
2322 }
2323 llvm_unreachable("Unknown personality!");
2324 }
2325
2326 static bool shorter_filter(const Value *LHS, const Value *RHS) {
2327 return
2328 cast<ArrayType>(LHS->getType())->getNumElements()
2329 <
2330 cast<ArrayType>(RHS->getType())->getNumElements();
2331 }
2332
2333 Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) {
2334 // The logic here should be correct for any real-world personality function.
2335 // However if that turns out not to be true, the offending logic can always
2336 // be conditioned on the personality function, like the catch-all logic is.
2337 Personality_Type Personality = RecognizePersonality(LI.getPersonalityFn());
2338
2339 // Simplify the list of clauses, eg by removing repeated catch clauses
2340 // (these are often created by inlining).
2341 bool MakeNewInstruction = false; // If true, recreate using the following:
2342 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
2343 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup.
2344
2345 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
2346 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
2347 bool isLastClause = i + 1 == e;
2348 if (LI.isCatch(i)) {
2349 // A catch clause.
2350 Constant *CatchClause = LI.getClause(i);
2351 Constant *TypeInfo = CatchClause->stripPointerCasts();
2352
2353 // If we already saw this clause, there is no point in having a second
2354 // copy of it.
2355 if (AlreadyCaught.insert(TypeInfo).second) {
2356 // This catch clause was not already seen.
2357 NewClauses.push_back(CatchClause);
2358 } else {
2359 // Repeated catch clause - drop the redundant copy.
2360 MakeNewInstruction = true;
2361 }
2362
2363 // If this is a catch-all then there is no point in keeping any following
2364 // clauses or marking the landingpad as having a cleanup.
2365 if (isCatchAll(Personality, TypeInfo)) {
2366 if (!isLastClause)
2367 MakeNewInstruction = true;
2368 CleanupFlag = false;
2369 break;
2370 }
2371 } else {
2372 // A filter clause. If any of the filter elements were already caught
2373 // then they can be dropped from the filter. It is tempting to try to
2374 // exploit the filter further by saying that any typeinfo that does not
2375 // occur in the filter can't be caught later (and thus can be dropped).
2376 // However this would be wrong, since typeinfos can match without being
2377 // equal (for example if one represents a C++ class, and the other some
2378 // class derived from it).
2379 assert(LI.isFilter(i) && "Unsupported landingpad clause!");
2380 Constant *FilterClause = LI.getClause(i);
2381 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
2382 unsigned NumTypeInfos = FilterType->getNumElements();
2383
2384 // An empty filter catches everything, so there is no point in keeping any
2385 // following clauses or marking the landingpad as having a cleanup. By
2386 // dealing with this case here the following code is made a bit simpler.
2387 if (!NumTypeInfos) {
2388 NewClauses.push_back(FilterClause);
2389 if (!isLastClause)
2390 MakeNewInstruction = true;
2391 CleanupFlag = false;
2392 break;
2393 }
2394
2395 bool MakeNewFilter = false; // If true, make a new filter.
2396 SmallVector<Constant *, 16> NewFilterElts; // New elements.
2397 if (isa<ConstantAggregateZero>(FilterClause)) {
2398 // Not an empty filter - it contains at least one null typeinfo.
2399 assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
2400 Constant *TypeInfo =
2401 Constant::getNullValue(FilterType->getElementType());
2402 // If this typeinfo is a catch-all then the filter can never match.
2403 if (isCatchAll(Personality, TypeInfo)) {
2404 // Throw the filter away.
2405 MakeNewInstruction = true;
2406 continue;
2407 }
2408
2409 // There is no point in having multiple copies of this typeinfo, so
2410 // discard all but the first copy if there is more than one.
2411 NewFilterElts.push_back(TypeInfo);
2412 if (NumTypeInfos > 1)
2413 MakeNewFilter = true;
2414 } else {
2415 ConstantArray *Filter = cast<ConstantArray>(FilterClause);
2416 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
2417 NewFilterElts.reserve(NumTypeInfos);
2418
2419 // Remove any filter elements that were already caught or that already
2420 // occurred in the filter. While there, see if any of the elements are
2421 // catch-alls. If so, the filter can be discarded.
2422 bool SawCatchAll = false;
2423 for (unsigned j = 0; j != NumTypeInfos; ++j) {
2424 Constant *Elt = Filter->getOperand(j);
2425 Constant *TypeInfo = Elt->stripPointerCasts();
2426 if (isCatchAll(Personality, TypeInfo)) {
2427 // This element is a catch-all. Bail out, noting this fact.
2428 SawCatchAll = true;
2429 break;
2430 }
2431 if (AlreadyCaught.count(TypeInfo))
2432 // Already caught by an earlier clause, so having it in the filter
2433 // is pointless.
2434 continue;
2435 // There is no point in having multiple copies of the same typeinfo in
2436 // a filter, so only add it if we didn't already.
2437 if (SeenInFilter.insert(TypeInfo).second)
2438 NewFilterElts.push_back(cast<Constant>(Elt));
2439 }
2440 // A filter containing a catch-all cannot match anything by definition.
2441 if (SawCatchAll) {
2442 // Throw the filter away.
2443 MakeNewInstruction = true;
2444 continue;
2445 }
2446
2447 // If we dropped something from the filter, make a new one.
2448 if (NewFilterElts.size() < NumTypeInfos)
2449 MakeNewFilter = true;
2450 }
2451 if (MakeNewFilter) {
2452 FilterType = ArrayType::get(FilterType->getElementType(),
2453 NewFilterElts.size());
2454 FilterClause = ConstantArray::get(FilterType, NewFilterElts);
2455 MakeNewInstruction = true;
2456 }
2457
2458 NewClauses.push_back(FilterClause);
2459
2460 // If the new filter is empty then it will catch everything so there is
2461 // no point in keeping any following clauses or marking the landingpad
2462 // as having a cleanup. The case of the original filter being empty was
2463 // already handled above.
2464 if (MakeNewFilter && !NewFilterElts.size()) {
2465 assert(MakeNewInstruction && "New filter but not a new instruction!");
2466 CleanupFlag = false;
2467 break;
2468 }
2469 }
2470 }
2471
2472 // If several filters occur in a row then reorder them so that the shortest
2473 // filters come first (those with the smallest number of elements). This is
2474 // advantageous because shorter filters are more likely to match, speeding up
2475 // unwinding, but mostly because it increases the effectiveness of the other
2476 // filter optimizations below.
2477 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
2478 unsigned j;
2479 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
2480 for (j = i; j != e; ++j)
2481 if (!isa<ArrayType>(NewClauses[j]->getType()))
2482 break;
2483
2484 // Check whether the filters are already sorted by length. We need to know
2485 // if sorting them is actually going to do anything so that we only make a
2486 // new landingpad instruction if it does.
2487 for (unsigned k = i; k + 1 < j; ++k)
2488 if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
2489 // Not sorted, so sort the filters now. Doing an unstable sort would be
2490 // correct too but reordering filters pointlessly might confuse users.
2491 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
2492 shorter_filter);
2493 MakeNewInstruction = true;
2494 break;
2495 }
2496
2497 // Look for the next batch of filters.
2498 i = j + 1;
2499 }
2500
2501 // If typeinfos matched if and only if equal, then the elements of a filter L
2502 // that occurs later than a filter F could be replaced by the intersection of
2503 // the elements of F and L. In reality two typeinfos can match without being
2504 // equal (for example if one represents a C++ class, and the other some class
2505 // derived from it) so it would be wrong to perform this transform in general.
2506 // However the transform is correct and useful if F is a subset of L. In that
2507 // case L can be replaced by F, and thus removed altogether since repeating a
2508 // filter is pointless. So here we look at all pairs of filters F and L where
2509 // L follows F in the list of clauses, and remove L if every element of F is
2510 // an element of L. This can occur when inlining C++ functions with exception
2511 // specifications.
2512 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
2513 // Examine each filter in turn.
2514 Value *Filter = NewClauses[i];
2515 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
2516 if (!FTy)
2517 // Not a filter - skip it.
2518 continue;
2519 unsigned FElts = FTy->getNumElements();
2520 // Examine each filter following this one. Doing this backwards means that
2521 // we don't have to worry about filters disappearing under us when removed.
2522 for (unsigned j = NewClauses.size() - 1; j != i; --j) {
2523 Value *LFilter = NewClauses[j];
2524 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
2525 if (!LTy)
2526 // Not a filter - skip it.
2527 continue;
2528 // If Filter is a subset of LFilter, i.e. every element of Filter is also
2529 // an element of LFilter, then discard LFilter.
2530 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
2531 // If Filter is empty then it is a subset of LFilter.
2532 if (!FElts) {
2533 // Discard LFilter.
2534 NewClauses.erase(J);
2535 MakeNewInstruction = true;
2536 // Move on to the next filter.
2537 continue;
2538 }
2539 unsigned LElts = LTy->getNumElements();
2540 // If Filter is longer than LFilter then it cannot be a subset of it.
2541 if (FElts > LElts)
2542 // Move on to the next filter.
2543 continue;
2544 // At this point we know that LFilter has at least one element.
2545 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
2546 // Filter is a subset of LFilter iff Filter contains only zeros (as we
2547 // already know that Filter is not longer than LFilter).
2548 if (isa<ConstantAggregateZero>(Filter)) {
2549 assert(FElts <= LElts && "Should have handled this case earlier!");
2550 // Discard LFilter.
2551 NewClauses.erase(J);
2552 MakeNewInstruction = true;
2553 }
2554 // Move on to the next filter.
2555 continue;
2556 }
2557 ConstantArray *LArray = cast<ConstantArray>(LFilter);
2558 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
2559 // Since Filter is non-empty and contains only zeros, it is a subset of
2560 // LFilter iff LFilter contains a zero.
2561 assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
2562 for (unsigned l = 0; l != LElts; ++l)
2563 if (LArray->getOperand(l)->isNullValue()) {
2564 // LFilter contains a zero - discard it.
2565 NewClauses.erase(J);
2566 MakeNewInstruction = true;
2567 break;
2568 }
2569 // Move on to the next filter.
2570 continue;
2571 }
2572 // At this point we know that both filters are ConstantArrays. Loop over
2573 // operands to see whether every element of Filter is also an element of
2574 // LFilter. Since filters tend to be short this is probably faster than
2575 // using a method that scales nicely.
2576 ConstantArray *FArray = cast<ConstantArray>(Filter);
2577 bool AllFound = true;
2578 for (unsigned f = 0; f != FElts; ++f) {
2579 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
2580 AllFound = false;
2581 for (unsigned l = 0; l != LElts; ++l) {
2582 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
2583 if (LTypeInfo == FTypeInfo) {
2584 AllFound = true;
2585 break;
2586 }
2587 }
2588 if (!AllFound)
2589 break;
2590 }
2591 if (AllFound) {
2592 // Discard LFilter.
2593 NewClauses.erase(J);
2594 MakeNewInstruction = true;
2595 }
2596 // Move on to the next filter.
2597 }
2598 }
2599
2600 // If we changed any of the clauses, replace the old landingpad instruction
2601 // with a new one.
2602 if (MakeNewInstruction) {
2603 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
2604 LI.getPersonalityFn(),
2605 NewClauses.size());
2606 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
2607 NLI->addClause(NewClauses[i]);
2608 // A landing pad with no clauses must have the cleanup flag set. It is
2609 // theoretically possible, though highly unlikely, that we eliminated all
2610 // clauses. If so, force the cleanup flag to true.
2611 if (NewClauses.empty())
2612 CleanupFlag = true;
2613 NLI->setCleanup(CleanupFlag);
2614 return NLI;
2615 }
2616
2617 // Even if none of the clauses changed, we may nonetheless have understood
2618 // that the cleanup flag is pointless. Clear it if so.
2619 if (LI.isCleanup() != CleanupFlag) {
2620 assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
2621 LI.setCleanup(CleanupFlag);
2622 return &LI;
2623 }
2624
2625 return nullptr;
2626 }
2627
2628
2629
2630
2631 /// TryToSinkInstruction - Try to move the specified instruction from its
2632 /// current block into the beginning of DestBlock, which can only happen if it's
2633 /// safe to move the instruction past all of the instructions between it and the
2634 /// end of its block.
2635 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
2636 assert(I->hasOneUse() && "Invariants didn't hold!");
2637
2638 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
2639 if (isa<PHINode>(I) || isa<LandingPadInst>(I) || I->mayHaveSideEffects() ||
2640 isa<TerminatorInst>(I))
2641 return false;
2642
2643 // Do not sink alloca instructions out of the entry block.
2644 if (isa<AllocaInst>(I) && I->getParent() ==
2645 &DestBlock->getParent()->getEntryBlock())
2646 return false;
2647
2648 // We can only sink load instructions if there is nothing between the load and
2649 // the end of block that could change the value.
2650 if (I->mayReadFromMemory()) {
2651 for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
2652 Scan != E; ++Scan)
2653 if (Scan->mayWriteToMemory())
2654 return false;
2655 }
2656
2657 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
2658 I->moveBefore(InsertPos);
2659 ++NumSunkInst;
2660 return true;
2661 }
2662
2663
2664 /// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
2665 /// all reachable code to the worklist.
2666 ///
2667 /// This has a couple of tricks to make the code faster and more powerful. In
2668 /// particular, we constant fold and DCE instructions as we go, to avoid adding
2669 /// them to the worklist (this significantly speeds up instcombine on code where
2670 /// many instructions are dead or constant). Additionally, if we find a branch
2671 /// whose condition is a known constant, we only visit the reachable successors.
2672 ///
2673 static bool AddReachableCodeToWorklist(BasicBlock *BB,
2674 SmallPtrSetImpl<BasicBlock*> &Visited,
2675 InstCombiner &IC,
2676 const DataLayout *DL,
2677 const TargetLibraryInfo *TLI) {
2678 bool MadeIRChange = false;
2679 SmallVector<BasicBlock*, 256> Worklist;
2680 Worklist.push_back(BB);
2681
2682 SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
2683 DenseMap<ConstantExpr*, Constant*> FoldedConstants;
2684
2685 do {
2686 BB = Worklist.pop_back_val();
2687
2688 // We have now visited this block! If we've already been here, ignore it.
2689 if (!Visited.insert(BB).second)
2690 continue;
2691
2692 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
2693 Instruction *Inst = BBI++;
2694
2695 // DCE instruction if trivially dead.
2696 if (isInstructionTriviallyDead(Inst, TLI)) {
2697 ++NumDeadInst;
2698 DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
2699 Inst->eraseFromParent();
2700 continue;
2701 }
2702
2703 // ConstantProp instruction if trivially constant.
2704 if (!Inst->use_empty() && isa<Constant>(Inst->getOperand(0)))
2705 if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) {
2706 DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: "
2707 << *Inst << '\n');
2708 Inst->replaceAllUsesWith(C);
2709 ++NumConstProp;
2710 Inst->eraseFromParent();
2711 continue;
2712 }
2713
2714 if (DL) {
2715 // See if we can constant fold its operands.
2716 for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end();
2717 i != e; ++i) {
2718 ConstantExpr *CE = dyn_cast<ConstantExpr>(i);
2719 if (CE == nullptr) continue;
2720
2721 Constant*& FoldRes = FoldedConstants[CE];
2722 if (!FoldRes)
2723 FoldRes = ConstantFoldConstantExpression(CE, DL, TLI);
2724 if (!FoldRes)
2725 FoldRes = CE;
2726
2727 if (FoldRes != CE) {
2728 *i = FoldRes;
2729 MadeIRChange = true;
2730 }
2731 }
2732 }
2733
2734 InstrsForInstCombineWorklist.push_back(Inst);
2735 }
2736
2737 // Recursively visit successors. If this is a branch or switch on a
2738 // constant, only visit the reachable successor.
2739 TerminatorInst *TI = BB->getTerminator();
2740 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
2741 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
2742 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
2743 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
2744 Worklist.push_back(ReachableBB);
2745 continue;
2746 }
2747 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
2748 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
2749 // See if this is an explicit destination.
2750 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2751 i != e; ++i)
2752 if (i.getCaseValue() == Cond) {
2753 BasicBlock *ReachableBB = i.getCaseSuccessor();
2754 Worklist.push_back(ReachableBB);
2755 continue;
2756 }
2757
2758 // Otherwise it is the default destination.
2759 Worklist.push_back(SI->getDefaultDest());
2760 continue;
2761 }
2762 }
2763
2764 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
2765 Worklist.push_back(TI->getSuccessor(i));
2766 } while (!Worklist.empty());
2767
2768 // Once we've found all of the instructions to add to instcombine's worklist,
2769 // add them in reverse order. This way instcombine will visit from the top
2770 // of the function down. This jives well with the way that it adds all uses
2771 // of instructions to the worklist after doing a transformation, thus avoiding
2772 // some N^2 behavior in pathological cases.
2773 IC.Worklist.AddInitialGroup(&InstrsForInstCombineWorklist[0],
2774 InstrsForInstCombineWorklist.size());
2775
2776 return MadeIRChange;
2777 }
2778
2779 bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
2780 MadeIRChange = false;
2781
2782 DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
2783 << F.getName() << "\n");
2784
2785 {
2786 // Do a depth-first traversal of the function, populate the worklist with
2787 // the reachable instructions. Ignore blocks that are not reachable. Keep
2788 // track of which blocks we visit.
2789 SmallPtrSet<BasicBlock*, 64> Visited;
2790 MadeIRChange |= AddReachableCodeToWorklist(F.begin(), Visited, *this, DL,
2791 TLI);
2792
2793 // Do a quick scan over the function. If we find any blocks that are
2794 // unreachable, remove any instructions inside of them. This prevents
2795 // the instcombine code from having to deal with some bad special cases.
2796 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
2797 if (Visited.count(BB)) continue;
2798
2799 // Delete the instructions backwards, as it has a reduced likelihood of
2800 // having to update as many def-use and use-def chains.
2801 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
2802 while (EndInst != BB->begin()) {
2803 // Delete the next to last instruction.
2804 BasicBlock::iterator I = EndInst;
2805 Instruction *Inst = --I;
2806 if (!Inst->use_empty())
2807 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
2808 if (isa<LandingPadInst>(Inst)) {
2809 EndInst = Inst;
2810 continue;
2811 }
2812 if (!isa<DbgInfoIntrinsic>(Inst)) {
2813 ++NumDeadInst;
2814 MadeIRChange = true;
2815 }
2816 Inst->eraseFromParent();
2817 }
2818 }
2819 }
2820
2821 while (!Worklist.isEmpty()) {
2822 Instruction *I = Worklist.RemoveOne();
2823 if (I == nullptr) continue; // skip null values.
2824
2825 // Check to see if we can DCE the instruction.
2826 if (isInstructionTriviallyDead(I, TLI)) {
2827 DEBUG(dbgs() << "IC: DCE: " << *I << '\n');
2828 EraseInstFromFunction(*I);
2829 ++NumDeadInst;
2830 MadeIRChange = true;
2831 continue;
2832 }
2833
2834 // Instruction isn't dead, see if we can constant propagate it.
2835 if (!I->use_empty() && isa<Constant>(I->getOperand(0)))
2836 if (Constant *C = ConstantFoldInstruction(I, DL, TLI)) {
2837 DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
2838
2839 // Add operands to the worklist.
2840 ReplaceInstUsesWith(*I, C);
2841 ++NumConstProp;
2842 EraseInstFromFunction(*I);
2843 MadeIRChange = true;
2844 continue;
2845 }
2846
2847 // See if we can trivially sink this instruction to a successor basic block.
2848 if (I->hasOneUse()) {
2849 BasicBlock *BB = I->getParent();
2850 Instruction *UserInst = cast<Instruction>(*I->user_begin());
2851 BasicBlock *UserParent;
2852
2853 // Get the block the use occurs in.
2854 if (PHINode *PN = dyn_cast<PHINode>(UserInst))
2855 UserParent = PN->getIncomingBlock(*I->use_begin());
2856 else
2857 UserParent = UserInst->getParent();
2858
2859 if (UserParent != BB) {
2860 bool UserIsSuccessor = false;
2861 // See if the user is one of our successors.
2862 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
2863 if (*SI == UserParent) {
2864 UserIsSuccessor = true;
2865 break;
2866 }
2867
2868 // If the user is one of our immediate successors, and if that successor
2869 // only has us as a predecessors (we'd have to split the critical edge
2870 // otherwise), we can keep going.
2871 if (UserIsSuccessor && UserParent->getSinglePredecessor()) {
2872 // Okay, the CFG is simple enough, try to sink this instruction.
2873 if (TryToSinkInstruction(I, UserParent)) {
2874 MadeIRChange = true;
2875 // We'll add uses of the sunk instruction below, but since sinking
2876 // can expose opportunities for it's *operands* add them to the
2877 // worklist
2878 for (Use &U : I->operands())
2879 if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
2880 Worklist.Add(OpI);
2881 }
2882 }
2883 }
2884 }
2885
2886 // Now that we have an instruction, try combining it to simplify it.
2887 Builder->SetInsertPoint(I->getParent(), I);
2888 Builder->SetCurrentDebugLocation(I->getDebugLoc());
2889
2890 #ifndef NDEBUG
2891 std::string OrigI;
2892 #endif
2893 DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
2894 DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
2895
2896 if (Instruction *Result = visit(*I)) {
2897 ++NumCombined;
2898 // Should we replace the old instruction with a new one?
2899 if (Result != I) {
2900 DEBUG(dbgs() << "IC: Old = " << *I << '\n'
2901 << " New = " << *Result << '\n');
2902
2903 if (!I->getDebugLoc().isUnknown())
2904 Result->setDebugLoc(I->getDebugLoc());
2905 // Everything uses the new instruction now.
2906 I->replaceAllUsesWith(Result);
2907
2908 // Move the name to the new instruction first.
2909 Result->takeName(I);
2910
2911 // Push the new instruction and any users onto the worklist.
2912 Worklist.Add(Result);
2913 Worklist.AddUsersToWorkList(*Result);
2914
2915 // Insert the new instruction into the basic block...
2916 BasicBlock *InstParent = I->getParent();
2917 BasicBlock::iterator InsertPos = I;
2918
2919 // If we replace a PHI with something that isn't a PHI, fix up the
2920 // insertion point.
2921 if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos))
2922 InsertPos = InstParent->getFirstInsertionPt();
2923
2924 InstParent->getInstList().insert(InsertPos, Result);
2925
2926 EraseInstFromFunction(*I);
2927 } else {
2928 #ifndef NDEBUG
2929 DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
2930 << " New = " << *I << '\n');
2931 #endif
2932
2933 // If the instruction was modified, it's possible that it is now dead.
2934 // if so, remove it.
2935 if (isInstructionTriviallyDead(I, TLI)) {
2936 EraseInstFromFunction(*I);
2937 } else {
2938 Worklist.Add(I);
2939 Worklist.AddUsersToWorkList(*I);
2940 }
2941 }
2942 MadeIRChange = true;
2943 }
2944 }
2945
2946 Worklist.Zap();
2947 return MadeIRChange;
2948 }
2949
2950 namespace {
2951 class InstCombinerLibCallSimplifier final : public LibCallSimplifier {
2952 InstCombiner *IC;
2953 public:
2954 InstCombinerLibCallSimplifier(const DataLayout *DL,
2955 const TargetLibraryInfo *TLI,
2956 InstCombiner *IC)
2957 : LibCallSimplifier(DL, TLI) {
2958 this->IC = IC;
2959 }
2960
2961 /// replaceAllUsesWith - override so that instruction replacement
2962 /// can be defined in terms of the instruction combiner framework.
2963 void replaceAllUsesWith(Instruction *I, Value *With) const override {
2964 IC->ReplaceInstUsesWith(*I, With);
2965 }
2966 };
2967 }
2968
2969 bool InstCombiner::runOnFunction(Function &F) {
2970 if (skipOptnoneFunction(F))
2971 return false;
2972
2973 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2974 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
2975 DL = DLP ? &DLP->getDataLayout() : nullptr;
2976 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2977 TLI = &getAnalysis<TargetLibraryInfo>();
2978
2979 // Minimizing size?
2980 MinimizeSize = F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
2981 Attribute::MinSize);
2982
2983 /// Builder - This is an IRBuilder that automatically inserts new
2984 /// instructions into the worklist when they are created.
2985 IRBuilder<true, TargetFolder, InstCombineIRInserter> TheBuilder(
2986 F.getContext(), TargetFolder(DL), InstCombineIRInserter(Worklist, AC));
2987 Builder = &TheBuilder;
2988
2989 InstCombinerLibCallSimplifier TheSimplifier(DL, TLI, this);
2990 Simplifier = &TheSimplifier;
2991
2992 bool EverMadeChange = false;
2993
2994 // Lower dbg.declare intrinsics otherwise their value may be clobbered
2995 // by instcombiner.
2996 EverMadeChange = LowerDbgDeclare(F);
2997
2998 // Iterate while there is work to do.
2999 unsigned Iteration = 0;
3000 while (DoOneIteration(F, Iteration++))
3001 EverMadeChange = true;
3002
3003 Builder = nullptr;
3004 return EverMadeChange;
3005 }
3006
3007 FunctionPass *llvm::createInstructionCombiningPass() {
3008 return new InstCombiner();
3009 }