]> git.proxmox.com Git - rustc.git/blob - src/llvm/lib/Transforms/Instrumentation/ThreadSanitizer.cpp
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / lib / Transforms / Instrumentation / ThreadSanitizer.cpp
1 //===-- ThreadSanitizer.cpp - race detector -------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of ThreadSanitizer, a race detector.
11 //
12 // The tool is under development, for the details about previous versions see
13 // http://code.google.com/p/data-race-test
14 //
15 // The instrumentation phase is quite simple:
16 // - Insert calls to run-time library before every memory access.
17 // - Optimizations may apply to avoid instrumenting some of the accesses.
18 // - Insert calls at function entry/exit.
19 // The rest is handled by the run-time library.
20 //===----------------------------------------------------------------------===//
21
22 #include "llvm/Transforms/Instrumentation.h"
23 #include "llvm/ADT/SmallSet.h"
24 #include "llvm/ADT/SmallString.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/Metadata.h"
35 #include "llvm/IR/Module.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
42 #include "llvm/Transforms/Utils/ModuleUtils.h"
43
44 using namespace llvm;
45
46 #define DEBUG_TYPE "tsan"
47
48 static cl::opt<bool> ClInstrumentMemoryAccesses(
49 "tsan-instrument-memory-accesses", cl::init(true),
50 cl::desc("Instrument memory accesses"), cl::Hidden);
51 static cl::opt<bool> ClInstrumentFuncEntryExit(
52 "tsan-instrument-func-entry-exit", cl::init(true),
53 cl::desc("Instrument function entry and exit"), cl::Hidden);
54 static cl::opt<bool> ClInstrumentAtomics(
55 "tsan-instrument-atomics", cl::init(true),
56 cl::desc("Instrument atomics"), cl::Hidden);
57 static cl::opt<bool> ClInstrumentMemIntrinsics(
58 "tsan-instrument-memintrinsics", cl::init(true),
59 cl::desc("Instrument memintrinsics (memset/memcpy/memmove)"), cl::Hidden);
60
61 STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
62 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
63 STATISTIC(NumOmittedReadsBeforeWrite,
64 "Number of reads ignored due to following writes");
65 STATISTIC(NumAccessesWithBadSize, "Number of accesses with bad size");
66 STATISTIC(NumInstrumentedVtableWrites, "Number of vtable ptr writes");
67 STATISTIC(NumInstrumentedVtableReads, "Number of vtable ptr reads");
68 STATISTIC(NumOmittedReadsFromConstantGlobals,
69 "Number of reads from constant globals");
70 STATISTIC(NumOmittedReadsFromVtable, "Number of vtable reads");
71
72 namespace {
73
74 /// ThreadSanitizer: instrument the code in module to find races.
75 struct ThreadSanitizer : public FunctionPass {
76 ThreadSanitizer() : FunctionPass(ID), DL(nullptr) {}
77 const char *getPassName() const override;
78 bool runOnFunction(Function &F) override;
79 bool doInitialization(Module &M) override;
80 static char ID; // Pass identification, replacement for typeid.
81
82 private:
83 void initializeCallbacks(Module &M);
84 bool instrumentLoadOrStore(Instruction *I);
85 bool instrumentAtomic(Instruction *I);
86 bool instrumentMemIntrinsic(Instruction *I);
87 void chooseInstructionsToInstrument(SmallVectorImpl<Instruction*> &Local,
88 SmallVectorImpl<Instruction*> &All);
89 bool addrPointsToConstantData(Value *Addr);
90 int getMemoryAccessFuncIndex(Value *Addr);
91
92 const DataLayout *DL;
93 Type *IntptrTy;
94 IntegerType *OrdTy;
95 // Callbacks to run-time library are computed in doInitialization.
96 Function *TsanFuncEntry;
97 Function *TsanFuncExit;
98 // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
99 static const size_t kNumberOfAccessSizes = 5;
100 Function *TsanRead[kNumberOfAccessSizes];
101 Function *TsanWrite[kNumberOfAccessSizes];
102 Function *TsanAtomicLoad[kNumberOfAccessSizes];
103 Function *TsanAtomicStore[kNumberOfAccessSizes];
104 Function *TsanAtomicRMW[AtomicRMWInst::LAST_BINOP + 1][kNumberOfAccessSizes];
105 Function *TsanAtomicCAS[kNumberOfAccessSizes];
106 Function *TsanAtomicThreadFence;
107 Function *TsanAtomicSignalFence;
108 Function *TsanVptrUpdate;
109 Function *TsanVptrLoad;
110 Function *MemmoveFn, *MemcpyFn, *MemsetFn;
111 };
112 } // namespace
113
114 char ThreadSanitizer::ID = 0;
115 INITIALIZE_PASS(ThreadSanitizer, "tsan",
116 "ThreadSanitizer: detects data races.",
117 false, false)
118
119 const char *ThreadSanitizer::getPassName() const {
120 return "ThreadSanitizer";
121 }
122
123 FunctionPass *llvm::createThreadSanitizerPass() {
124 return new ThreadSanitizer();
125 }
126
127 static Function *checkInterfaceFunction(Constant *FuncOrBitcast) {
128 if (Function *F = dyn_cast<Function>(FuncOrBitcast))
129 return F;
130 FuncOrBitcast->dump();
131 report_fatal_error("ThreadSanitizer interface function redefined");
132 }
133
134 void ThreadSanitizer::initializeCallbacks(Module &M) {
135 IRBuilder<> IRB(M.getContext());
136 // Initialize the callbacks.
137 TsanFuncEntry = checkInterfaceFunction(M.getOrInsertFunction(
138 "__tsan_func_entry", IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
139 TsanFuncExit = checkInterfaceFunction(M.getOrInsertFunction(
140 "__tsan_func_exit", IRB.getVoidTy(), nullptr));
141 OrdTy = IRB.getInt32Ty();
142 for (size_t i = 0; i < kNumberOfAccessSizes; ++i) {
143 const size_t ByteSize = 1 << i;
144 const size_t BitSize = ByteSize * 8;
145 SmallString<32> ReadName("__tsan_read" + itostr(ByteSize));
146 TsanRead[i] = checkInterfaceFunction(M.getOrInsertFunction(
147 ReadName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
148
149 SmallString<32> WriteName("__tsan_write" + itostr(ByteSize));
150 TsanWrite[i] = checkInterfaceFunction(M.getOrInsertFunction(
151 WriteName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
152
153 Type *Ty = Type::getIntNTy(M.getContext(), BitSize);
154 Type *PtrTy = Ty->getPointerTo();
155 SmallString<32> AtomicLoadName("__tsan_atomic" + itostr(BitSize) +
156 "_load");
157 TsanAtomicLoad[i] = checkInterfaceFunction(M.getOrInsertFunction(
158 AtomicLoadName, Ty, PtrTy, OrdTy, nullptr));
159
160 SmallString<32> AtomicStoreName("__tsan_atomic" + itostr(BitSize) +
161 "_store");
162 TsanAtomicStore[i] = checkInterfaceFunction(M.getOrInsertFunction(
163 AtomicStoreName, IRB.getVoidTy(), PtrTy, Ty, OrdTy,
164 nullptr));
165
166 for (int op = AtomicRMWInst::FIRST_BINOP;
167 op <= AtomicRMWInst::LAST_BINOP; ++op) {
168 TsanAtomicRMW[op][i] = nullptr;
169 const char *NamePart = nullptr;
170 if (op == AtomicRMWInst::Xchg)
171 NamePart = "_exchange";
172 else if (op == AtomicRMWInst::Add)
173 NamePart = "_fetch_add";
174 else if (op == AtomicRMWInst::Sub)
175 NamePart = "_fetch_sub";
176 else if (op == AtomicRMWInst::And)
177 NamePart = "_fetch_and";
178 else if (op == AtomicRMWInst::Or)
179 NamePart = "_fetch_or";
180 else if (op == AtomicRMWInst::Xor)
181 NamePart = "_fetch_xor";
182 else if (op == AtomicRMWInst::Nand)
183 NamePart = "_fetch_nand";
184 else
185 continue;
186 SmallString<32> RMWName("__tsan_atomic" + itostr(BitSize) + NamePart);
187 TsanAtomicRMW[op][i] = checkInterfaceFunction(M.getOrInsertFunction(
188 RMWName, Ty, PtrTy, Ty, OrdTy, nullptr));
189 }
190
191 SmallString<32> AtomicCASName("__tsan_atomic" + itostr(BitSize) +
192 "_compare_exchange_val");
193 TsanAtomicCAS[i] = checkInterfaceFunction(M.getOrInsertFunction(
194 AtomicCASName, Ty, PtrTy, Ty, Ty, OrdTy, OrdTy, nullptr));
195 }
196 TsanVptrUpdate = checkInterfaceFunction(M.getOrInsertFunction(
197 "__tsan_vptr_update", IRB.getVoidTy(), IRB.getInt8PtrTy(),
198 IRB.getInt8PtrTy(), nullptr));
199 TsanVptrLoad = checkInterfaceFunction(M.getOrInsertFunction(
200 "__tsan_vptr_read", IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
201 TsanAtomicThreadFence = checkInterfaceFunction(M.getOrInsertFunction(
202 "__tsan_atomic_thread_fence", IRB.getVoidTy(), OrdTy, nullptr));
203 TsanAtomicSignalFence = checkInterfaceFunction(M.getOrInsertFunction(
204 "__tsan_atomic_signal_fence", IRB.getVoidTy(), OrdTy, nullptr));
205
206 MemmoveFn = checkInterfaceFunction(M.getOrInsertFunction(
207 "memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
208 IRB.getInt8PtrTy(), IntptrTy, nullptr));
209 MemcpyFn = checkInterfaceFunction(M.getOrInsertFunction(
210 "memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
211 IntptrTy, nullptr));
212 MemsetFn = checkInterfaceFunction(M.getOrInsertFunction(
213 "memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(),
214 IntptrTy, nullptr));
215 }
216
217 bool ThreadSanitizer::doInitialization(Module &M) {
218 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
219 if (!DLP)
220 report_fatal_error("data layout missing");
221 DL = &DLP->getDataLayout();
222
223 // Always insert a call to __tsan_init into the module's CTORs.
224 IRBuilder<> IRB(M.getContext());
225 IntptrTy = IRB.getIntPtrTy(DL);
226 Value *TsanInit = M.getOrInsertFunction("__tsan_init",
227 IRB.getVoidTy(), nullptr);
228 appendToGlobalCtors(M, cast<Function>(TsanInit), 0);
229
230 return true;
231 }
232
233 static bool isVtableAccess(Instruction *I) {
234 if (MDNode *Tag = I->getMetadata(LLVMContext::MD_tbaa))
235 return Tag->isTBAAVtableAccess();
236 return false;
237 }
238
239 bool ThreadSanitizer::addrPointsToConstantData(Value *Addr) {
240 // If this is a GEP, just analyze its pointer operand.
241 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr))
242 Addr = GEP->getPointerOperand();
243
244 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
245 if (GV->isConstant()) {
246 // Reads from constant globals can not race with any writes.
247 NumOmittedReadsFromConstantGlobals++;
248 return true;
249 }
250 } else if (LoadInst *L = dyn_cast<LoadInst>(Addr)) {
251 if (isVtableAccess(L)) {
252 // Reads from a vtable pointer can not race with any writes.
253 NumOmittedReadsFromVtable++;
254 return true;
255 }
256 }
257 return false;
258 }
259
260 // Instrumenting some of the accesses may be proven redundant.
261 // Currently handled:
262 // - read-before-write (within same BB, no calls between)
263 //
264 // We do not handle some of the patterns that should not survive
265 // after the classic compiler optimizations.
266 // E.g. two reads from the same temp should be eliminated by CSE,
267 // two writes should be eliminated by DSE, etc.
268 //
269 // 'Local' is a vector of insns within the same BB (no calls between).
270 // 'All' is a vector of insns that will be instrumented.
271 void ThreadSanitizer::chooseInstructionsToInstrument(
272 SmallVectorImpl<Instruction*> &Local,
273 SmallVectorImpl<Instruction*> &All) {
274 SmallSet<Value*, 8> WriteTargets;
275 // Iterate from the end.
276 for (SmallVectorImpl<Instruction*>::reverse_iterator It = Local.rbegin(),
277 E = Local.rend(); It != E; ++It) {
278 Instruction *I = *It;
279 if (StoreInst *Store = dyn_cast<StoreInst>(I)) {
280 WriteTargets.insert(Store->getPointerOperand());
281 } else {
282 LoadInst *Load = cast<LoadInst>(I);
283 Value *Addr = Load->getPointerOperand();
284 if (WriteTargets.count(Addr)) {
285 // We will write to this temp, so no reason to analyze the read.
286 NumOmittedReadsBeforeWrite++;
287 continue;
288 }
289 if (addrPointsToConstantData(Addr)) {
290 // Addr points to some constant data -- it can not race with any writes.
291 continue;
292 }
293 }
294 All.push_back(I);
295 }
296 Local.clear();
297 }
298
299 static bool isAtomic(Instruction *I) {
300 if (LoadInst *LI = dyn_cast<LoadInst>(I))
301 return LI->isAtomic() && LI->getSynchScope() == CrossThread;
302 if (StoreInst *SI = dyn_cast<StoreInst>(I))
303 return SI->isAtomic() && SI->getSynchScope() == CrossThread;
304 if (isa<AtomicRMWInst>(I))
305 return true;
306 if (isa<AtomicCmpXchgInst>(I))
307 return true;
308 if (isa<FenceInst>(I))
309 return true;
310 return false;
311 }
312
313 bool ThreadSanitizer::runOnFunction(Function &F) {
314 if (!DL) return false;
315 initializeCallbacks(*F.getParent());
316 SmallVector<Instruction*, 8> RetVec;
317 SmallVector<Instruction*, 8> AllLoadsAndStores;
318 SmallVector<Instruction*, 8> LocalLoadsAndStores;
319 SmallVector<Instruction*, 8> AtomicAccesses;
320 SmallVector<Instruction*, 8> MemIntrinCalls;
321 bool Res = false;
322 bool HasCalls = false;
323 bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeThread);
324
325 // Traverse all instructions, collect loads/stores/returns, check for calls.
326 for (auto &BB : F) {
327 for (auto &Inst : BB) {
328 if (isAtomic(&Inst))
329 AtomicAccesses.push_back(&Inst);
330 else if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst))
331 LocalLoadsAndStores.push_back(&Inst);
332 else if (isa<ReturnInst>(Inst))
333 RetVec.push_back(&Inst);
334 else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) {
335 if (isa<MemIntrinsic>(Inst))
336 MemIntrinCalls.push_back(&Inst);
337 HasCalls = true;
338 chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores);
339 }
340 }
341 chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores);
342 }
343
344 // We have collected all loads and stores.
345 // FIXME: many of these accesses do not need to be checked for races
346 // (e.g. variables that do not escape, etc).
347
348 // Instrument memory accesses only if we want to report bugs in the function.
349 if (ClInstrumentMemoryAccesses && SanitizeFunction)
350 for (auto Inst : AllLoadsAndStores) {
351 Res |= instrumentLoadOrStore(Inst);
352 }
353
354 // Instrument atomic memory accesses in any case (they can be used to
355 // implement synchronization).
356 if (ClInstrumentAtomics)
357 for (auto Inst : AtomicAccesses) {
358 Res |= instrumentAtomic(Inst);
359 }
360
361 if (ClInstrumentMemIntrinsics && SanitizeFunction)
362 for (auto Inst : MemIntrinCalls) {
363 Res |= instrumentMemIntrinsic(Inst);
364 }
365
366 // Instrument function entry/exit points if there were instrumented accesses.
367 if ((Res || HasCalls) && ClInstrumentFuncEntryExit) {
368 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
369 Value *ReturnAddress = IRB.CreateCall(
370 Intrinsic::getDeclaration(F.getParent(), Intrinsic::returnaddress),
371 IRB.getInt32(0));
372 IRB.CreateCall(TsanFuncEntry, ReturnAddress);
373 for (auto RetInst : RetVec) {
374 IRBuilder<> IRBRet(RetInst);
375 IRBRet.CreateCall(TsanFuncExit);
376 }
377 Res = true;
378 }
379 return Res;
380 }
381
382 bool ThreadSanitizer::instrumentLoadOrStore(Instruction *I) {
383 IRBuilder<> IRB(I);
384 bool IsWrite = isa<StoreInst>(*I);
385 Value *Addr = IsWrite
386 ? cast<StoreInst>(I)->getPointerOperand()
387 : cast<LoadInst>(I)->getPointerOperand();
388 int Idx = getMemoryAccessFuncIndex(Addr);
389 if (Idx < 0)
390 return false;
391 if (IsWrite && isVtableAccess(I)) {
392 DEBUG(dbgs() << " VPTR : " << *I << "\n");
393 Value *StoredValue = cast<StoreInst>(I)->getValueOperand();
394 // StoredValue may be a vector type if we are storing several vptrs at once.
395 // In this case, just take the first element of the vector since this is
396 // enough to find vptr races.
397 if (isa<VectorType>(StoredValue->getType()))
398 StoredValue = IRB.CreateExtractElement(
399 StoredValue, ConstantInt::get(IRB.getInt32Ty(), 0));
400 if (StoredValue->getType()->isIntegerTy())
401 StoredValue = IRB.CreateIntToPtr(StoredValue, IRB.getInt8PtrTy());
402 // Call TsanVptrUpdate.
403 IRB.CreateCall2(TsanVptrUpdate,
404 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
405 IRB.CreatePointerCast(StoredValue, IRB.getInt8PtrTy()));
406 NumInstrumentedVtableWrites++;
407 return true;
408 }
409 if (!IsWrite && isVtableAccess(I)) {
410 IRB.CreateCall(TsanVptrLoad,
411 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()));
412 NumInstrumentedVtableReads++;
413 return true;
414 }
415 Value *OnAccessFunc = IsWrite ? TsanWrite[Idx] : TsanRead[Idx];
416 IRB.CreateCall(OnAccessFunc, IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()));
417 if (IsWrite) NumInstrumentedWrites++;
418 else NumInstrumentedReads++;
419 return true;
420 }
421
422 static ConstantInt *createOrdering(IRBuilder<> *IRB, AtomicOrdering ord) {
423 uint32_t v = 0;
424 switch (ord) {
425 case NotAtomic: llvm_unreachable("unexpected atomic ordering!");
426 case Unordered: // Fall-through.
427 case Monotonic: v = 0; break;
428 // case Consume: v = 1; break; // Not specified yet.
429 case Acquire: v = 2; break;
430 case Release: v = 3; break;
431 case AcquireRelease: v = 4; break;
432 case SequentiallyConsistent: v = 5; break;
433 }
434 return IRB->getInt32(v);
435 }
436
437 // If a memset intrinsic gets inlined by the code gen, we will miss races on it.
438 // So, we either need to ensure the intrinsic is not inlined, or instrument it.
439 // We do not instrument memset/memmove/memcpy intrinsics (too complicated),
440 // instead we simply replace them with regular function calls, which are then
441 // intercepted by the run-time.
442 // Since tsan is running after everyone else, the calls should not be
443 // replaced back with intrinsics. If that becomes wrong at some point,
444 // we will need to call e.g. __tsan_memset to avoid the intrinsics.
445 bool ThreadSanitizer::instrumentMemIntrinsic(Instruction *I) {
446 IRBuilder<> IRB(I);
447 if (MemSetInst *M = dyn_cast<MemSetInst>(I)) {
448 IRB.CreateCall3(MemsetFn,
449 IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()),
450 IRB.CreateIntCast(M->getArgOperand(1), IRB.getInt32Ty(), false),
451 IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false));
452 I->eraseFromParent();
453 } else if (MemTransferInst *M = dyn_cast<MemTransferInst>(I)) {
454 IRB.CreateCall3(isa<MemCpyInst>(M) ? MemcpyFn : MemmoveFn,
455 IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()),
456 IRB.CreatePointerCast(M->getArgOperand(1), IRB.getInt8PtrTy()),
457 IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false));
458 I->eraseFromParent();
459 }
460 return false;
461 }
462
463 // Both llvm and ThreadSanitizer atomic operations are based on C++11/C1x
464 // standards. For background see C++11 standard. A slightly older, publicly
465 // available draft of the standard (not entirely up-to-date, but close enough
466 // for casual browsing) is available here:
467 // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
468 // The following page contains more background information:
469 // http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/
470
471 bool ThreadSanitizer::instrumentAtomic(Instruction *I) {
472 IRBuilder<> IRB(I);
473 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
474 Value *Addr = LI->getPointerOperand();
475 int Idx = getMemoryAccessFuncIndex(Addr);
476 if (Idx < 0)
477 return false;
478 const size_t ByteSize = 1 << Idx;
479 const size_t BitSize = ByteSize * 8;
480 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
481 Type *PtrTy = Ty->getPointerTo();
482 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
483 createOrdering(&IRB, LI->getOrdering())};
484 CallInst *C = CallInst::Create(TsanAtomicLoad[Idx], Args);
485 ReplaceInstWithInst(I, C);
486
487 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
488 Value *Addr = SI->getPointerOperand();
489 int Idx = getMemoryAccessFuncIndex(Addr);
490 if (Idx < 0)
491 return false;
492 const size_t ByteSize = 1 << Idx;
493 const size_t BitSize = ByteSize * 8;
494 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
495 Type *PtrTy = Ty->getPointerTo();
496 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
497 IRB.CreateIntCast(SI->getValueOperand(), Ty, false),
498 createOrdering(&IRB, SI->getOrdering())};
499 CallInst *C = CallInst::Create(TsanAtomicStore[Idx], Args);
500 ReplaceInstWithInst(I, C);
501 } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) {
502 Value *Addr = RMWI->getPointerOperand();
503 int Idx = getMemoryAccessFuncIndex(Addr);
504 if (Idx < 0)
505 return false;
506 Function *F = TsanAtomicRMW[RMWI->getOperation()][Idx];
507 if (!F)
508 return false;
509 const size_t ByteSize = 1 << Idx;
510 const size_t BitSize = ByteSize * 8;
511 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
512 Type *PtrTy = Ty->getPointerTo();
513 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
514 IRB.CreateIntCast(RMWI->getValOperand(), Ty, false),
515 createOrdering(&IRB, RMWI->getOrdering())};
516 CallInst *C = CallInst::Create(F, Args);
517 ReplaceInstWithInst(I, C);
518 } else if (AtomicCmpXchgInst *CASI = dyn_cast<AtomicCmpXchgInst>(I)) {
519 Value *Addr = CASI->getPointerOperand();
520 int Idx = getMemoryAccessFuncIndex(Addr);
521 if (Idx < 0)
522 return false;
523 const size_t ByteSize = 1 << Idx;
524 const size_t BitSize = ByteSize * 8;
525 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
526 Type *PtrTy = Ty->getPointerTo();
527 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
528 IRB.CreateIntCast(CASI->getCompareOperand(), Ty, false),
529 IRB.CreateIntCast(CASI->getNewValOperand(), Ty, false),
530 createOrdering(&IRB, CASI->getSuccessOrdering()),
531 createOrdering(&IRB, CASI->getFailureOrdering())};
532 CallInst *C = IRB.CreateCall(TsanAtomicCAS[Idx], Args);
533 Value *Success = IRB.CreateICmpEQ(C, CASI->getCompareOperand());
534
535 Value *Res = IRB.CreateInsertValue(UndefValue::get(CASI->getType()), C, 0);
536 Res = IRB.CreateInsertValue(Res, Success, 1);
537
538 I->replaceAllUsesWith(Res);
539 I->eraseFromParent();
540 } else if (FenceInst *FI = dyn_cast<FenceInst>(I)) {
541 Value *Args[] = {createOrdering(&IRB, FI->getOrdering())};
542 Function *F = FI->getSynchScope() == SingleThread ?
543 TsanAtomicSignalFence : TsanAtomicThreadFence;
544 CallInst *C = CallInst::Create(F, Args);
545 ReplaceInstWithInst(I, C);
546 }
547 return true;
548 }
549
550 int ThreadSanitizer::getMemoryAccessFuncIndex(Value *Addr) {
551 Type *OrigPtrTy = Addr->getType();
552 Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType();
553 assert(OrigTy->isSized());
554 uint32_t TypeSize = DL->getTypeStoreSizeInBits(OrigTy);
555 if (TypeSize != 8 && TypeSize != 16 &&
556 TypeSize != 32 && TypeSize != 64 && TypeSize != 128) {
557 NumAccessesWithBadSize++;
558 // Ignore all unusual sizes.
559 return -1;
560 }
561 size_t Idx = countTrailingZeros(TypeSize / 8);
562 assert(Idx < kNumberOfAccessSizes);
563 return Idx;
564 }