]> git.proxmox.com Git - rustc.git/blob - src/llvm/lib/Transforms/Scalar/AlignmentFromAssumptions.cpp
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / lib / Transforms / Scalar / AlignmentFromAssumptions.cpp
1 //===----------------------- AlignmentFromAssumptions.cpp -----------------===//
2 // Set Load/Store Alignments From Assumptions
3 //
4 // The LLVM Compiler Infrastructure
5 //
6 // This file is distributed under the University of Illinois Open Source
7 // License. See LICENSE.TXT for details.
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 // This file implements a ScalarEvolution-based transformation to set
12 // the alignments of load, stores and memory intrinsics based on the truth
13 // expressions of assume intrinsics. The primary motivation is to handle
14 // complex alignment assumptions that apply to vector loads and stores that
15 // appear after vectorization and unrolling.
16 //
17 //===----------------------------------------------------------------------===//
18
19 #define AA_NAME "alignment-from-assumptions"
20 #define DEBUG_TYPE AA_NAME
21 #include "llvm/Transforms/Scalar.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/ValueTracking.h"
27 #include "llvm/Analysis/ScalarEvolution.h"
28 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
29 #include "llvm/IR/Constant.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
37 using namespace llvm;
38
39 STATISTIC(NumLoadAlignChanged,
40 "Number of loads changed by alignment assumptions");
41 STATISTIC(NumStoreAlignChanged,
42 "Number of stores changed by alignment assumptions");
43 STATISTIC(NumMemIntAlignChanged,
44 "Number of memory intrinsics changed by alignment assumptions");
45
46 namespace {
47 struct AlignmentFromAssumptions : public FunctionPass {
48 static char ID; // Pass identification, replacement for typeid
49 AlignmentFromAssumptions() : FunctionPass(ID) {
50 initializeAlignmentFromAssumptionsPass(*PassRegistry::getPassRegistry());
51 }
52
53 bool runOnFunction(Function &F);
54
55 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
56 AU.addRequired<AssumptionCacheTracker>();
57 AU.addRequired<ScalarEvolution>();
58 AU.addRequired<DominatorTreeWrapperPass>();
59
60 AU.setPreservesCFG();
61 AU.addPreserved<LoopInfo>();
62 AU.addPreserved<DominatorTreeWrapperPass>();
63 AU.addPreserved<ScalarEvolution>();
64 }
65
66 // For memory transfers, we need a common alignment for both the source and
67 // destination. If we have a new alignment for only one operand of a transfer
68 // instruction, save it in these maps. If we reach the other operand through
69 // another assumption later, then we may change the alignment at that point.
70 DenseMap<MemTransferInst *, unsigned> NewDestAlignments, NewSrcAlignments;
71
72 ScalarEvolution *SE;
73 DominatorTree *DT;
74 const DataLayout *DL;
75
76 bool extractAlignmentInfo(CallInst *I, Value *&AAPtr, const SCEV *&AlignSCEV,
77 const SCEV *&OffSCEV);
78 bool processAssumption(CallInst *I);
79 };
80 }
81
82 char AlignmentFromAssumptions::ID = 0;
83 static const char aip_name[] = "Alignment from assumptions";
84 INITIALIZE_PASS_BEGIN(AlignmentFromAssumptions, AA_NAME,
85 aip_name, false, false)
86 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
87 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
88 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
89 INITIALIZE_PASS_END(AlignmentFromAssumptions, AA_NAME,
90 aip_name, false, false)
91
92 FunctionPass *llvm::createAlignmentFromAssumptionsPass() {
93 return new AlignmentFromAssumptions();
94 }
95
96 // Given an expression for the (constant) alignment, AlignSCEV, and an
97 // expression for the displacement between a pointer and the aligned address,
98 // DiffSCEV, compute the alignment of the displaced pointer if it can be reduced
99 // to a constant. Using SCEV to compute alignment handles the case where
100 // DiffSCEV is a recurrence with constant start such that the aligned offset
101 // is constant. e.g. {16,+,32} % 32 -> 16.
102 static unsigned getNewAlignmentDiff(const SCEV *DiffSCEV,
103 const SCEV *AlignSCEV,
104 ScalarEvolution *SE) {
105 // DiffUnits = Diff % int64_t(Alignment)
106 const SCEV *DiffAlignDiv = SE->getUDivExpr(DiffSCEV, AlignSCEV);
107 const SCEV *DiffAlign = SE->getMulExpr(DiffAlignDiv, AlignSCEV);
108 const SCEV *DiffUnitsSCEV = SE->getMinusSCEV(DiffAlign, DiffSCEV);
109
110 DEBUG(dbgs() << "\talignment relative to " << *AlignSCEV << " is " <<
111 *DiffUnitsSCEV << " (diff: " << *DiffSCEV << ")\n");
112
113 if (const SCEVConstant *ConstDUSCEV =
114 dyn_cast<SCEVConstant>(DiffUnitsSCEV)) {
115 int64_t DiffUnits = ConstDUSCEV->getValue()->getSExtValue();
116
117 // If the displacement is an exact multiple of the alignment, then the
118 // displaced pointer has the same alignment as the aligned pointer, so
119 // return the alignment value.
120 if (!DiffUnits)
121 return (unsigned)
122 cast<SCEVConstant>(AlignSCEV)->getValue()->getSExtValue();
123
124 // If the displacement is not an exact multiple, but the remainder is a
125 // constant, then return this remainder (but only if it is a power of 2).
126 uint64_t DiffUnitsAbs = abs64(DiffUnits);
127 if (isPowerOf2_64(DiffUnitsAbs))
128 return (unsigned) DiffUnitsAbs;
129 }
130
131 return 0;
132 }
133
134 // There is an address given by an offset OffSCEV from AASCEV which has an
135 // alignment AlignSCEV. Use that information, if possible, to compute a new
136 // alignment for Ptr.
137 static unsigned getNewAlignment(const SCEV *AASCEV, const SCEV *AlignSCEV,
138 const SCEV *OffSCEV, Value *Ptr,
139 ScalarEvolution *SE) {
140 const SCEV *PtrSCEV = SE->getSCEV(Ptr);
141 const SCEV *DiffSCEV = SE->getMinusSCEV(PtrSCEV, AASCEV);
142
143 // On 32-bit platforms, DiffSCEV might now have type i32 -- we've always
144 // sign-extended OffSCEV to i64, so make sure they agree again.
145 DiffSCEV = SE->getNoopOrSignExtend(DiffSCEV, OffSCEV->getType());
146
147 // What we really want to know is the overall offset to the aligned
148 // address. This address is displaced by the provided offset.
149 DiffSCEV = SE->getMinusSCEV(DiffSCEV, OffSCEV);
150
151 DEBUG(dbgs() << "AFI: alignment of " << *Ptr << " relative to " <<
152 *AlignSCEV << " and offset " << *OffSCEV <<
153 " using diff " << *DiffSCEV << "\n");
154
155 unsigned NewAlignment = getNewAlignmentDiff(DiffSCEV, AlignSCEV, SE);
156 DEBUG(dbgs() << "\tnew alignment: " << NewAlignment << "\n");
157
158 if (NewAlignment) {
159 return NewAlignment;
160 } else if (const SCEVAddRecExpr *DiffARSCEV =
161 dyn_cast<SCEVAddRecExpr>(DiffSCEV)) {
162 // The relative offset to the alignment assumption did not yield a constant,
163 // but we should try harder: if we assume that a is 32-byte aligned, then in
164 // for (i = 0; i < 1024; i += 4) r += a[i]; not all of the loads from a are
165 // 32-byte aligned, but instead alternate between 32 and 16-byte alignment.
166 // As a result, the new alignment will not be a constant, but can still
167 // be improved over the default (of 4) to 16.
168
169 const SCEV *DiffStartSCEV = DiffARSCEV->getStart();
170 const SCEV *DiffIncSCEV = DiffARSCEV->getStepRecurrence(*SE);
171
172 DEBUG(dbgs() << "\ttrying start/inc alignment using start " <<
173 *DiffStartSCEV << " and inc " << *DiffIncSCEV << "\n");
174
175 // Now compute the new alignment using the displacement to the value in the
176 // first iteration, and also the alignment using the per-iteration delta.
177 // If these are the same, then use that answer. Otherwise, use the smaller
178 // one, but only if it divides the larger one.
179 NewAlignment = getNewAlignmentDiff(DiffStartSCEV, AlignSCEV, SE);
180 unsigned NewIncAlignment = getNewAlignmentDiff(DiffIncSCEV, AlignSCEV, SE);
181
182 DEBUG(dbgs() << "\tnew start alignment: " << NewAlignment << "\n");
183 DEBUG(dbgs() << "\tnew inc alignment: " << NewIncAlignment << "\n");
184
185 if (!NewAlignment || !NewIncAlignment) {
186 return 0;
187 } else if (NewAlignment > NewIncAlignment) {
188 if (NewAlignment % NewIncAlignment == 0) {
189 DEBUG(dbgs() << "\tnew start/inc alignment: " <<
190 NewIncAlignment << "\n");
191 return NewIncAlignment;
192 }
193 } else if (NewIncAlignment > NewAlignment) {
194 if (NewIncAlignment % NewAlignment == 0) {
195 DEBUG(dbgs() << "\tnew start/inc alignment: " <<
196 NewAlignment << "\n");
197 return NewAlignment;
198 }
199 } else if (NewIncAlignment == NewAlignment) {
200 DEBUG(dbgs() << "\tnew start/inc alignment: " <<
201 NewAlignment << "\n");
202 return NewAlignment;
203 }
204 }
205
206 return 0;
207 }
208
209 bool AlignmentFromAssumptions::extractAlignmentInfo(CallInst *I,
210 Value *&AAPtr, const SCEV *&AlignSCEV,
211 const SCEV *&OffSCEV) {
212 // An alignment assume must be a statement about the least-significant
213 // bits of the pointer being zero, possibly with some offset.
214 ICmpInst *ICI = dyn_cast<ICmpInst>(I->getArgOperand(0));
215 if (!ICI)
216 return false;
217
218 // This must be an expression of the form: x & m == 0.
219 if (ICI->getPredicate() != ICmpInst::ICMP_EQ)
220 return false;
221
222 // Swap things around so that the RHS is 0.
223 Value *CmpLHS = ICI->getOperand(0);
224 Value *CmpRHS = ICI->getOperand(1);
225 const SCEV *CmpLHSSCEV = SE->getSCEV(CmpLHS);
226 const SCEV *CmpRHSSCEV = SE->getSCEV(CmpRHS);
227 if (CmpLHSSCEV->isZero())
228 std::swap(CmpLHS, CmpRHS);
229 else if (!CmpRHSSCEV->isZero())
230 return false;
231
232 BinaryOperator *CmpBO = dyn_cast<BinaryOperator>(CmpLHS);
233 if (!CmpBO || CmpBO->getOpcode() != Instruction::And)
234 return false;
235
236 // Swap things around so that the right operand of the and is a constant
237 // (the mask); we cannot deal with variable masks.
238 Value *AndLHS = CmpBO->getOperand(0);
239 Value *AndRHS = CmpBO->getOperand(1);
240 const SCEV *AndLHSSCEV = SE->getSCEV(AndLHS);
241 const SCEV *AndRHSSCEV = SE->getSCEV(AndRHS);
242 if (isa<SCEVConstant>(AndLHSSCEV)) {
243 std::swap(AndLHS, AndRHS);
244 std::swap(AndLHSSCEV, AndRHSSCEV);
245 }
246
247 const SCEVConstant *MaskSCEV = dyn_cast<SCEVConstant>(AndRHSSCEV);
248 if (!MaskSCEV)
249 return false;
250
251 // The mask must have some trailing ones (otherwise the condition is
252 // trivial and tells us nothing about the alignment of the left operand).
253 unsigned TrailingOnes =
254 MaskSCEV->getValue()->getValue().countTrailingOnes();
255 if (!TrailingOnes)
256 return false;
257
258 // Cap the alignment at the maximum with which LLVM can deal (and make sure
259 // we don't overflow the shift).
260 uint64_t Alignment;
261 TrailingOnes = std::min(TrailingOnes,
262 unsigned(sizeof(unsigned) * CHAR_BIT - 1));
263 Alignment = std::min(1u << TrailingOnes, +Value::MaximumAlignment);
264
265 Type *Int64Ty = Type::getInt64Ty(I->getParent()->getParent()->getContext());
266 AlignSCEV = SE->getConstant(Int64Ty, Alignment);
267
268 // The LHS might be a ptrtoint instruction, or it might be the pointer
269 // with an offset.
270 AAPtr = nullptr;
271 OffSCEV = nullptr;
272 if (PtrToIntInst *PToI = dyn_cast<PtrToIntInst>(AndLHS)) {
273 AAPtr = PToI->getPointerOperand();
274 OffSCEV = SE->getConstant(Int64Ty, 0);
275 } else if (const SCEVAddExpr* AndLHSAddSCEV =
276 dyn_cast<SCEVAddExpr>(AndLHSSCEV)) {
277 // Try to find the ptrtoint; subtract it and the rest is the offset.
278 for (SCEVAddExpr::op_iterator J = AndLHSAddSCEV->op_begin(),
279 JE = AndLHSAddSCEV->op_end(); J != JE; ++J)
280 if (const SCEVUnknown *OpUnk = dyn_cast<SCEVUnknown>(*J))
281 if (PtrToIntInst *PToI = dyn_cast<PtrToIntInst>(OpUnk->getValue())) {
282 AAPtr = PToI->getPointerOperand();
283 OffSCEV = SE->getMinusSCEV(AndLHSAddSCEV, *J);
284 break;
285 }
286 }
287
288 if (!AAPtr)
289 return false;
290
291 // Sign extend the offset to 64 bits (so that it is like all of the other
292 // expressions).
293 unsigned OffSCEVBits = OffSCEV->getType()->getPrimitiveSizeInBits();
294 if (OffSCEVBits < 64)
295 OffSCEV = SE->getSignExtendExpr(OffSCEV, Int64Ty);
296 else if (OffSCEVBits > 64)
297 return false;
298
299 AAPtr = AAPtr->stripPointerCasts();
300 return true;
301 }
302
303 bool AlignmentFromAssumptions::processAssumption(CallInst *ACall) {
304 Value *AAPtr;
305 const SCEV *AlignSCEV, *OffSCEV;
306 if (!extractAlignmentInfo(ACall, AAPtr, AlignSCEV, OffSCEV))
307 return false;
308
309 const SCEV *AASCEV = SE->getSCEV(AAPtr);
310
311 // Apply the assumption to all other users of the specified pointer.
312 SmallPtrSet<Instruction *, 32> Visited;
313 SmallVector<Instruction*, 16> WorkList;
314 for (User *J : AAPtr->users()) {
315 if (J == ACall)
316 continue;
317
318 if (Instruction *K = dyn_cast<Instruction>(J))
319 if (isValidAssumeForContext(ACall, K, DL, DT))
320 WorkList.push_back(K);
321 }
322
323 while (!WorkList.empty()) {
324 Instruction *J = WorkList.pop_back_val();
325
326 if (LoadInst *LI = dyn_cast<LoadInst>(J)) {
327 unsigned NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
328 LI->getPointerOperand(), SE);
329
330 if (NewAlignment > LI->getAlignment()) {
331 LI->setAlignment(NewAlignment);
332 ++NumLoadAlignChanged;
333 }
334 } else if (StoreInst *SI = dyn_cast<StoreInst>(J)) {
335 unsigned NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
336 SI->getPointerOperand(), SE);
337
338 if (NewAlignment > SI->getAlignment()) {
339 SI->setAlignment(NewAlignment);
340 ++NumStoreAlignChanged;
341 }
342 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(J)) {
343 unsigned NewDestAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
344 MI->getDest(), SE);
345
346 // For memory transfers, we need a common alignment for both the
347 // source and destination. If we have a new alignment for this
348 // instruction, but only for one operand, save it. If we reach the
349 // other operand through another assumption later, then we may
350 // change the alignment at that point.
351 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
352 unsigned NewSrcAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
353 MTI->getSource(), SE);
354
355 DenseMap<MemTransferInst *, unsigned>::iterator DI =
356 NewDestAlignments.find(MTI);
357 unsigned AltDestAlignment = (DI == NewDestAlignments.end()) ?
358 0 : DI->second;
359
360 DenseMap<MemTransferInst *, unsigned>::iterator SI =
361 NewSrcAlignments.find(MTI);
362 unsigned AltSrcAlignment = (SI == NewSrcAlignments.end()) ?
363 0 : SI->second;
364
365 DEBUG(dbgs() << "\tmem trans: " << NewDestAlignment << " " <<
366 AltDestAlignment << " " << NewSrcAlignment <<
367 " " << AltSrcAlignment << "\n");
368
369 // Of these four alignments, pick the largest possible...
370 unsigned NewAlignment = 0;
371 if (NewDestAlignment <= std::max(NewSrcAlignment, AltSrcAlignment))
372 NewAlignment = std::max(NewAlignment, NewDestAlignment);
373 if (AltDestAlignment <= std::max(NewSrcAlignment, AltSrcAlignment))
374 NewAlignment = std::max(NewAlignment, AltDestAlignment);
375 if (NewSrcAlignment <= std::max(NewDestAlignment, AltDestAlignment))
376 NewAlignment = std::max(NewAlignment, NewSrcAlignment);
377 if (AltSrcAlignment <= std::max(NewDestAlignment, AltDestAlignment))
378 NewAlignment = std::max(NewAlignment, AltSrcAlignment);
379
380 if (NewAlignment > MI->getAlignment()) {
381 MI->setAlignment(ConstantInt::get(Type::getInt32Ty(
382 MI->getParent()->getContext()), NewAlignment));
383 ++NumMemIntAlignChanged;
384 }
385
386 NewDestAlignments.insert(std::make_pair(MTI, NewDestAlignment));
387 NewSrcAlignments.insert(std::make_pair(MTI, NewSrcAlignment));
388 } else if (NewDestAlignment > MI->getAlignment()) {
389 assert((!isa<MemIntrinsic>(MI) || isa<MemSetInst>(MI)) &&
390 "Unknown memory intrinsic");
391
392 MI->setAlignment(ConstantInt::get(Type::getInt32Ty(
393 MI->getParent()->getContext()), NewDestAlignment));
394 ++NumMemIntAlignChanged;
395 }
396 }
397
398 // Now that we've updated that use of the pointer, look for other uses of
399 // the pointer to update.
400 Visited.insert(J);
401 for (User *UJ : J->users()) {
402 Instruction *K = cast<Instruction>(UJ);
403 if (!Visited.count(K) && isValidAssumeForContext(ACall, K, DL, DT))
404 WorkList.push_back(K);
405 }
406 }
407
408 return true;
409 }
410
411 bool AlignmentFromAssumptions::runOnFunction(Function &F) {
412 bool Changed = false;
413 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
414 SE = &getAnalysis<ScalarEvolution>();
415 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
416 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
417 DL = DLP ? &DLP->getDataLayout() : nullptr;
418
419 NewDestAlignments.clear();
420 NewSrcAlignments.clear();
421
422 for (auto &AssumeVH : AC.assumptions())
423 if (AssumeVH)
424 Changed |= processAssumption(cast<CallInst>(AssumeVH));
425
426 return Changed;
427 }
428