]> git.proxmox.com Git - rustc.git/blob - src/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / lib / Transforms / Scalar / IndVarSimplify.cpp
1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into simpler forms suitable for subsequent
12 // analysis and transformation.
13 //
14 // If the trip count of a loop is computable, this pass also makes the following
15 // changes:
16 // 1. The exit condition for the loop is canonicalized to compare the
17 // induction value against the exit value. This turns loops like:
18 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
19 // 2. Any use outside of the loop of an expression derived from the indvar
20 // is changed to compute the derived value outside of the loop, eliminating
21 // the dependence on the exit value of the induction variable. If the only
22 // purpose of the loop is to compute the exit value of some derived
23 // expression, this transformation will make the loop dead.
24 //
25 //===----------------------------------------------------------------------===//
26
27 #include "llvm/Transforms/Scalar.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/Analysis/LoopPass.h"
33 #include "llvm/Analysis/ScalarEvolutionExpander.h"
34 #include "llvm/Analysis/TargetTransformInfo.h"
35 #include "llvm/IR/BasicBlock.h"
36 #include "llvm/IR/CFG.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/LLVMContext.h"
43 #include "llvm/IR/Type.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/Target/TargetLibraryInfo.h"
48 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
49 #include "llvm/Transforms/Utils/Local.h"
50 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
51 using namespace llvm;
52
53 #define DEBUG_TYPE "indvars"
54
55 STATISTIC(NumWidened , "Number of indvars widened");
56 STATISTIC(NumReplaced , "Number of exit values replaced");
57 STATISTIC(NumLFTR , "Number of loop exit tests replaced");
58 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated");
59 STATISTIC(NumElimIV , "Number of congruent IVs eliminated");
60
61 // Trip count verification can be enabled by default under NDEBUG if we
62 // implement a strong expression equivalence checker in SCEV. Until then, we
63 // use the verify-indvars flag, which may assert in some cases.
64 static cl::opt<bool> VerifyIndvars(
65 "verify-indvars", cl::Hidden,
66 cl::desc("Verify the ScalarEvolution result after running indvars"));
67
68 static cl::opt<bool> ReduceLiveIVs("liv-reduce", cl::Hidden,
69 cl::desc("Reduce live induction variables."));
70
71 namespace {
72 class IndVarSimplify : public LoopPass {
73 LoopInfo *LI;
74 ScalarEvolution *SE;
75 DominatorTree *DT;
76 const DataLayout *DL;
77 TargetLibraryInfo *TLI;
78 const TargetTransformInfo *TTI;
79
80 SmallVector<WeakVH, 16> DeadInsts;
81 bool Changed;
82 public:
83
84 static char ID; // Pass identification, replacement for typeid
85 IndVarSimplify() : LoopPass(ID), LI(nullptr), SE(nullptr), DT(nullptr),
86 DL(nullptr), Changed(false) {
87 initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
88 }
89
90 bool runOnLoop(Loop *L, LPPassManager &LPM) override;
91
92 void getAnalysisUsage(AnalysisUsage &AU) const override {
93 AU.addRequired<DominatorTreeWrapperPass>();
94 AU.addRequired<LoopInfo>();
95 AU.addRequired<ScalarEvolution>();
96 AU.addRequiredID(LoopSimplifyID);
97 AU.addRequiredID(LCSSAID);
98 AU.addPreserved<ScalarEvolution>();
99 AU.addPreservedID(LoopSimplifyID);
100 AU.addPreservedID(LCSSAID);
101 AU.setPreservesCFG();
102 }
103
104 private:
105 void releaseMemory() override {
106 DeadInsts.clear();
107 }
108
109 bool isValidRewrite(Value *FromVal, Value *ToVal);
110
111 void HandleFloatingPointIV(Loop *L, PHINode *PH);
112 void RewriteNonIntegerIVs(Loop *L);
113
114 void SimplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LPPassManager &LPM);
115
116 void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
117
118 Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
119 PHINode *IndVar, SCEVExpander &Rewriter);
120
121 void SinkUnusedInvariants(Loop *L);
122 };
123 }
124
125 char IndVarSimplify::ID = 0;
126 INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars",
127 "Induction Variable Simplification", false, false)
128 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
129 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
130 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
131 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
132 INITIALIZE_PASS_DEPENDENCY(LCSSA)
133 INITIALIZE_PASS_END(IndVarSimplify, "indvars",
134 "Induction Variable Simplification", false, false)
135
136 Pass *llvm::createIndVarSimplifyPass() {
137 return new IndVarSimplify();
138 }
139
140 /// isValidRewrite - Return true if the SCEV expansion generated by the
141 /// rewriter can replace the original value. SCEV guarantees that it
142 /// produces the same value, but the way it is produced may be illegal IR.
143 /// Ideally, this function will only be called for verification.
144 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
145 // If an SCEV expression subsumed multiple pointers, its expansion could
146 // reassociate the GEP changing the base pointer. This is illegal because the
147 // final address produced by a GEP chain must be inbounds relative to its
148 // underlying object. Otherwise basic alias analysis, among other things,
149 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
150 // producing an expression involving multiple pointers. Until then, we must
151 // bail out here.
152 //
153 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
154 // because it understands lcssa phis while SCEV does not.
155 Value *FromPtr = FromVal;
156 Value *ToPtr = ToVal;
157 if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) {
158 FromPtr = GEP->getPointerOperand();
159 }
160 if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) {
161 ToPtr = GEP->getPointerOperand();
162 }
163 if (FromPtr != FromVal || ToPtr != ToVal) {
164 // Quickly check the common case
165 if (FromPtr == ToPtr)
166 return true;
167
168 // SCEV may have rewritten an expression that produces the GEP's pointer
169 // operand. That's ok as long as the pointer operand has the same base
170 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
171 // base of a recurrence. This handles the case in which SCEV expansion
172 // converts a pointer type recurrence into a nonrecurrent pointer base
173 // indexed by an integer recurrence.
174
175 // If the GEP base pointer is a vector of pointers, abort.
176 if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
177 return false;
178
179 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
180 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
181 if (FromBase == ToBase)
182 return true;
183
184 DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
185 << *FromBase << " != " << *ToBase << "\n");
186
187 return false;
188 }
189 return true;
190 }
191
192 /// Determine the insertion point for this user. By default, insert immediately
193 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the
194 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest
195 /// common dominator for the incoming blocks.
196 static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
197 DominatorTree *DT) {
198 PHINode *PHI = dyn_cast<PHINode>(User);
199 if (!PHI)
200 return User;
201
202 Instruction *InsertPt = nullptr;
203 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
204 if (PHI->getIncomingValue(i) != Def)
205 continue;
206
207 BasicBlock *InsertBB = PHI->getIncomingBlock(i);
208 if (!InsertPt) {
209 InsertPt = InsertBB->getTerminator();
210 continue;
211 }
212 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
213 InsertPt = InsertBB->getTerminator();
214 }
215 assert(InsertPt && "Missing phi operand");
216 assert((!isa<Instruction>(Def) ||
217 DT->dominates(cast<Instruction>(Def), InsertPt)) &&
218 "def does not dominate all uses");
219 return InsertPt;
220 }
221
222 //===----------------------------------------------------------------------===//
223 // RewriteNonIntegerIVs and helpers. Prefer integer IVs.
224 //===----------------------------------------------------------------------===//
225
226 /// ConvertToSInt - Convert APF to an integer, if possible.
227 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
228 bool isExact = false;
229 // See if we can convert this to an int64_t
230 uint64_t UIntVal;
231 if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
232 &isExact) != APFloat::opOK || !isExact)
233 return false;
234 IntVal = UIntVal;
235 return true;
236 }
237
238 /// HandleFloatingPointIV - If the loop has floating induction variable
239 /// then insert corresponding integer induction variable if possible.
240 /// For example,
241 /// for(double i = 0; i < 10000; ++i)
242 /// bar(i)
243 /// is converted into
244 /// for(int i = 0; i < 10000; ++i)
245 /// bar((double)i);
246 ///
247 void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
248 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
249 unsigned BackEdge = IncomingEdge^1;
250
251 // Check incoming value.
252 ConstantFP *InitValueVal =
253 dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
254
255 int64_t InitValue;
256 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
257 return;
258
259 // Check IV increment. Reject this PN if increment operation is not
260 // an add or increment value can not be represented by an integer.
261 BinaryOperator *Incr =
262 dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
263 if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return;
264
265 // If this is not an add of the PHI with a constantfp, or if the constant fp
266 // is not an integer, bail out.
267 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
268 int64_t IncValue;
269 if (IncValueVal == nullptr || Incr->getOperand(0) != PN ||
270 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
271 return;
272
273 // Check Incr uses. One user is PN and the other user is an exit condition
274 // used by the conditional terminator.
275 Value::user_iterator IncrUse = Incr->user_begin();
276 Instruction *U1 = cast<Instruction>(*IncrUse++);
277 if (IncrUse == Incr->user_end()) return;
278 Instruction *U2 = cast<Instruction>(*IncrUse++);
279 if (IncrUse != Incr->user_end()) return;
280
281 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't
282 // only used by a branch, we can't transform it.
283 FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
284 if (!Compare)
285 Compare = dyn_cast<FCmpInst>(U2);
286 if (!Compare || !Compare->hasOneUse() ||
287 !isa<BranchInst>(Compare->user_back()))
288 return;
289
290 BranchInst *TheBr = cast<BranchInst>(Compare->user_back());
291
292 // We need to verify that the branch actually controls the iteration count
293 // of the loop. If not, the new IV can overflow and no one will notice.
294 // The branch block must be in the loop and one of the successors must be out
295 // of the loop.
296 assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
297 if (!L->contains(TheBr->getParent()) ||
298 (L->contains(TheBr->getSuccessor(0)) &&
299 L->contains(TheBr->getSuccessor(1))))
300 return;
301
302
303 // If it isn't a comparison with an integer-as-fp (the exit value), we can't
304 // transform it.
305 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
306 int64_t ExitValue;
307 if (ExitValueVal == nullptr ||
308 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
309 return;
310
311 // Find new predicate for integer comparison.
312 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
313 switch (Compare->getPredicate()) {
314 default: return; // Unknown comparison.
315 case CmpInst::FCMP_OEQ:
316 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
317 case CmpInst::FCMP_ONE:
318 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
319 case CmpInst::FCMP_OGT:
320 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
321 case CmpInst::FCMP_OGE:
322 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
323 case CmpInst::FCMP_OLT:
324 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
325 case CmpInst::FCMP_OLE:
326 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
327 }
328
329 // We convert the floating point induction variable to a signed i32 value if
330 // we can. This is only safe if the comparison will not overflow in a way
331 // that won't be trapped by the integer equivalent operations. Check for this
332 // now.
333 // TODO: We could use i64 if it is native and the range requires it.
334
335 // The start/stride/exit values must all fit in signed i32.
336 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
337 return;
338
339 // If not actually striding (add x, 0.0), avoid touching the code.
340 if (IncValue == 0)
341 return;
342
343 // Positive and negative strides have different safety conditions.
344 if (IncValue > 0) {
345 // If we have a positive stride, we require the init to be less than the
346 // exit value.
347 if (InitValue >= ExitValue)
348 return;
349
350 uint32_t Range = uint32_t(ExitValue-InitValue);
351 // Check for infinite loop, either:
352 // while (i <= Exit) or until (i > Exit)
353 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
354 if (++Range == 0) return; // Range overflows.
355 }
356
357 unsigned Leftover = Range % uint32_t(IncValue);
358
359 // If this is an equality comparison, we require that the strided value
360 // exactly land on the exit value, otherwise the IV condition will wrap
361 // around and do things the fp IV wouldn't.
362 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
363 Leftover != 0)
364 return;
365
366 // If the stride would wrap around the i32 before exiting, we can't
367 // transform the IV.
368 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
369 return;
370
371 } else {
372 // If we have a negative stride, we require the init to be greater than the
373 // exit value.
374 if (InitValue <= ExitValue)
375 return;
376
377 uint32_t Range = uint32_t(InitValue-ExitValue);
378 // Check for infinite loop, either:
379 // while (i >= Exit) or until (i < Exit)
380 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
381 if (++Range == 0) return; // Range overflows.
382 }
383
384 unsigned Leftover = Range % uint32_t(-IncValue);
385
386 // If this is an equality comparison, we require that the strided value
387 // exactly land on the exit value, otherwise the IV condition will wrap
388 // around and do things the fp IV wouldn't.
389 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
390 Leftover != 0)
391 return;
392
393 // If the stride would wrap around the i32 before exiting, we can't
394 // transform the IV.
395 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
396 return;
397 }
398
399 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
400
401 // Insert new integer induction variable.
402 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
403 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
404 PN->getIncomingBlock(IncomingEdge));
405
406 Value *NewAdd =
407 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
408 Incr->getName()+".int", Incr);
409 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
410
411 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
412 ConstantInt::get(Int32Ty, ExitValue),
413 Compare->getName());
414
415 // In the following deletions, PN may become dead and may be deleted.
416 // Use a WeakVH to observe whether this happens.
417 WeakVH WeakPH = PN;
418
419 // Delete the old floating point exit comparison. The branch starts using the
420 // new comparison.
421 NewCompare->takeName(Compare);
422 Compare->replaceAllUsesWith(NewCompare);
423 RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI);
424
425 // Delete the old floating point increment.
426 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
427 RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI);
428
429 // If the FP induction variable still has uses, this is because something else
430 // in the loop uses its value. In order to canonicalize the induction
431 // variable, we chose to eliminate the IV and rewrite it in terms of an
432 // int->fp cast.
433 //
434 // We give preference to sitofp over uitofp because it is faster on most
435 // platforms.
436 if (WeakPH) {
437 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
438 PN->getParent()->getFirstInsertionPt());
439 PN->replaceAllUsesWith(Conv);
440 RecursivelyDeleteTriviallyDeadInstructions(PN, TLI);
441 }
442 Changed = true;
443 }
444
445 void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
446 // First step. Check to see if there are any floating-point recurrences.
447 // If there are, change them into integer recurrences, permitting analysis by
448 // the SCEV routines.
449 //
450 BasicBlock *Header = L->getHeader();
451
452 SmallVector<WeakVH, 8> PHIs;
453 for (BasicBlock::iterator I = Header->begin();
454 PHINode *PN = dyn_cast<PHINode>(I); ++I)
455 PHIs.push_back(PN);
456
457 for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
458 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
459 HandleFloatingPointIV(L, PN);
460
461 // If the loop previously had floating-point IV, ScalarEvolution
462 // may not have been able to compute a trip count. Now that we've done some
463 // re-writing, the trip count may be computable.
464 if (Changed)
465 SE->forgetLoop(L);
466 }
467
468 //===----------------------------------------------------------------------===//
469 // RewriteLoopExitValues - Optimize IV users outside the loop.
470 // As a side effect, reduces the amount of IV processing within the loop.
471 //===----------------------------------------------------------------------===//
472
473 /// RewriteLoopExitValues - Check to see if this loop has a computable
474 /// loop-invariant execution count. If so, this means that we can compute the
475 /// final value of any expressions that are recurrent in the loop, and
476 /// substitute the exit values from the loop into any instructions outside of
477 /// the loop that use the final values of the current expressions.
478 ///
479 /// This is mostly redundant with the regular IndVarSimplify activities that
480 /// happen later, except that it's more powerful in some cases, because it's
481 /// able to brute-force evaluate arbitrary instructions as long as they have
482 /// constant operands at the beginning of the loop.
483 void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
484 // Verify the input to the pass in already in LCSSA form.
485 assert(L->isLCSSAForm(*DT));
486
487 SmallVector<BasicBlock*, 8> ExitBlocks;
488 L->getUniqueExitBlocks(ExitBlocks);
489
490 // Find all values that are computed inside the loop, but used outside of it.
491 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan
492 // the exit blocks of the loop to find them.
493 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
494 BasicBlock *ExitBB = ExitBlocks[i];
495
496 // If there are no PHI nodes in this exit block, then no values defined
497 // inside the loop are used on this path, skip it.
498 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
499 if (!PN) continue;
500
501 unsigned NumPreds = PN->getNumIncomingValues();
502
503 // We would like to be able to RAUW single-incoming value PHI nodes. We
504 // have to be certain this is safe even when this is an LCSSA PHI node.
505 // While the computed exit value is no longer varying in *this* loop, the
506 // exit block may be an exit block for an outer containing loop as well,
507 // the exit value may be varying in the outer loop, and thus it may still
508 // require an LCSSA PHI node. The safe case is when this is
509 // single-predecessor PHI node (LCSSA) and the exit block containing it is
510 // part of the enclosing loop, or this is the outer most loop of the nest.
511 // In either case the exit value could (at most) be varying in the same
512 // loop body as the phi node itself. Thus if it is in turn used outside of
513 // an enclosing loop it will only be via a separate LCSSA node.
514 bool LCSSASafePhiForRAUW =
515 NumPreds == 1 &&
516 (!L->getParentLoop() || L->getParentLoop() == LI->getLoopFor(ExitBB));
517
518 // Iterate over all of the PHI nodes.
519 BasicBlock::iterator BBI = ExitBB->begin();
520 while ((PN = dyn_cast<PHINode>(BBI++))) {
521 if (PN->use_empty())
522 continue; // dead use, don't replace it
523
524 // SCEV only supports integer expressions for now.
525 if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
526 continue;
527
528 // It's necessary to tell ScalarEvolution about this explicitly so that
529 // it can walk the def-use list and forget all SCEVs, as it may not be
530 // watching the PHI itself. Once the new exit value is in place, there
531 // may not be a def-use connection between the loop and every instruction
532 // which got a SCEVAddRecExpr for that loop.
533 SE->forgetValue(PN);
534
535 // Iterate over all of the values in all the PHI nodes.
536 for (unsigned i = 0; i != NumPreds; ++i) {
537 // If the value being merged in is not integer or is not defined
538 // in the loop, skip it.
539 Value *InVal = PN->getIncomingValue(i);
540 if (!isa<Instruction>(InVal))
541 continue;
542
543 // If this pred is for a subloop, not L itself, skip it.
544 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
545 continue; // The Block is in a subloop, skip it.
546
547 // Check that InVal is defined in the loop.
548 Instruction *Inst = cast<Instruction>(InVal);
549 if (!L->contains(Inst))
550 continue;
551
552 // Okay, this instruction has a user outside of the current loop
553 // and varies predictably *inside* the loop. Evaluate the value it
554 // contains when the loop exits, if possible.
555 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
556 if (!SE->isLoopInvariant(ExitValue, L) ||
557 !isSafeToExpand(ExitValue, *SE))
558 continue;
559
560 // Computing the value outside of the loop brings no benefit if :
561 // - it is definitely used inside the loop in a way which can not be
562 // optimized away.
563 // - no use outside of the loop can take advantage of hoisting the
564 // computation out of the loop
565 if (ExitValue->getSCEVType()>=scMulExpr) {
566 unsigned NumHardInternalUses = 0;
567 unsigned NumSoftExternalUses = 0;
568 unsigned NumUses = 0;
569 for (auto IB = Inst->user_begin(), IE = Inst->user_end();
570 IB != IE && NumUses <= 6; ++IB) {
571 Instruction *UseInstr = cast<Instruction>(*IB);
572 unsigned Opc = UseInstr->getOpcode();
573 NumUses++;
574 if (L->contains(UseInstr)) {
575 if (Opc == Instruction::Call || Opc == Instruction::Ret)
576 NumHardInternalUses++;
577 } else {
578 if (Opc == Instruction::PHI) {
579 // Do not count the Phi as a use. LCSSA may have inserted
580 // plenty of trivial ones.
581 NumUses--;
582 for (auto PB = UseInstr->user_begin(),
583 PE = UseInstr->user_end();
584 PB != PE && NumUses <= 6; ++PB, ++NumUses) {
585 unsigned PhiOpc = cast<Instruction>(*PB)->getOpcode();
586 if (PhiOpc != Instruction::Call && PhiOpc != Instruction::Ret)
587 NumSoftExternalUses++;
588 }
589 continue;
590 }
591 if (Opc != Instruction::Call && Opc != Instruction::Ret)
592 NumSoftExternalUses++;
593 }
594 }
595 if (NumUses <= 6 && NumHardInternalUses && !NumSoftExternalUses)
596 continue;
597 }
598
599 Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
600
601 DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
602 << " LoopVal = " << *Inst << "\n");
603
604 if (!isValidRewrite(Inst, ExitVal)) {
605 DeadInsts.push_back(ExitVal);
606 continue;
607 }
608 Changed = true;
609 ++NumReplaced;
610
611 PN->setIncomingValue(i, ExitVal);
612
613 // If this instruction is dead now, delete it. Don't do it now to avoid
614 // invalidating iterators.
615 if (isInstructionTriviallyDead(Inst, TLI))
616 DeadInsts.push_back(Inst);
617
618 // If we determined that this PHI is safe to replace even if an LCSSA
619 // PHI, do so.
620 if (LCSSASafePhiForRAUW) {
621 PN->replaceAllUsesWith(ExitVal);
622 PN->eraseFromParent();
623 }
624 }
625
626 // If we were unable to completely replace the PHI node, clone the PHI
627 // and delete the original one. This lets IVUsers and any other maps
628 // purge the original user from their records.
629 if (!LCSSASafePhiForRAUW) {
630 PHINode *NewPN = cast<PHINode>(PN->clone());
631 NewPN->takeName(PN);
632 NewPN->insertBefore(PN);
633 PN->replaceAllUsesWith(NewPN);
634 PN->eraseFromParent();
635 }
636 }
637 }
638
639 // The insertion point instruction may have been deleted; clear it out
640 // so that the rewriter doesn't trip over it later.
641 Rewriter.clearInsertPoint();
642 }
643
644 //===----------------------------------------------------------------------===//
645 // IV Widening - Extend the width of an IV to cover its widest uses.
646 //===----------------------------------------------------------------------===//
647
648 namespace {
649 // Collect information about induction variables that are used by sign/zero
650 // extend operations. This information is recorded by CollectExtend and
651 // provides the input to WidenIV.
652 struct WideIVInfo {
653 PHINode *NarrowIV;
654 Type *WidestNativeType; // Widest integer type created [sz]ext
655 bool IsSigned; // Was a sext user seen before a zext?
656
657 WideIVInfo() : NarrowIV(nullptr), WidestNativeType(nullptr),
658 IsSigned(false) {}
659 };
660 }
661
662 /// visitCast - Update information about the induction variable that is
663 /// extended by this sign or zero extend operation. This is used to determine
664 /// the final width of the IV before actually widening it.
665 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE,
666 const DataLayout *DL, const TargetTransformInfo *TTI) {
667 bool IsSigned = Cast->getOpcode() == Instruction::SExt;
668 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
669 return;
670
671 Type *Ty = Cast->getType();
672 uint64_t Width = SE->getTypeSizeInBits(Ty);
673 if (DL && !DL->isLegalInteger(Width))
674 return;
675
676 // Cast is either an sext or zext up to this point.
677 // We should not widen an indvar if arithmetics on the wider indvar are more
678 // expensive than those on the narrower indvar. We check only the cost of ADD
679 // because at least an ADD is required to increment the induction variable. We
680 // could compute more comprehensively the cost of all instructions on the
681 // induction variable when necessary.
682 if (TTI &&
683 TTI->getArithmeticInstrCost(Instruction::Add, Ty) >
684 TTI->getArithmeticInstrCost(Instruction::Add,
685 Cast->getOperand(0)->getType())) {
686 return;
687 }
688
689 if (!WI.WidestNativeType) {
690 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
691 WI.IsSigned = IsSigned;
692 return;
693 }
694
695 // We extend the IV to satisfy the sign of its first user, arbitrarily.
696 if (WI.IsSigned != IsSigned)
697 return;
698
699 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
700 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
701 }
702
703 namespace {
704
705 /// NarrowIVDefUse - Record a link in the Narrow IV def-use chain along with the
706 /// WideIV that computes the same value as the Narrow IV def. This avoids
707 /// caching Use* pointers.
708 struct NarrowIVDefUse {
709 Instruction *NarrowDef;
710 Instruction *NarrowUse;
711 Instruction *WideDef;
712
713 NarrowIVDefUse(): NarrowDef(nullptr), NarrowUse(nullptr), WideDef(nullptr) {}
714
715 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD):
716 NarrowDef(ND), NarrowUse(NU), WideDef(WD) {}
717 };
718
719 /// WidenIV - The goal of this transform is to remove sign and zero extends
720 /// without creating any new induction variables. To do this, it creates a new
721 /// phi of the wider type and redirects all users, either removing extends or
722 /// inserting truncs whenever we stop propagating the type.
723 ///
724 class WidenIV {
725 // Parameters
726 PHINode *OrigPhi;
727 Type *WideType;
728 bool IsSigned;
729
730 // Context
731 LoopInfo *LI;
732 Loop *L;
733 ScalarEvolution *SE;
734 DominatorTree *DT;
735
736 // Result
737 PHINode *WidePhi;
738 Instruction *WideInc;
739 const SCEV *WideIncExpr;
740 SmallVectorImpl<WeakVH> &DeadInsts;
741
742 SmallPtrSet<Instruction*,16> Widened;
743 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
744
745 public:
746 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo,
747 ScalarEvolution *SEv, DominatorTree *DTree,
748 SmallVectorImpl<WeakVH> &DI) :
749 OrigPhi(WI.NarrowIV),
750 WideType(WI.WidestNativeType),
751 IsSigned(WI.IsSigned),
752 LI(LInfo),
753 L(LI->getLoopFor(OrigPhi->getParent())),
754 SE(SEv),
755 DT(DTree),
756 WidePhi(nullptr),
757 WideInc(nullptr),
758 WideIncExpr(nullptr),
759 DeadInsts(DI) {
760 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
761 }
762
763 PHINode *CreateWideIV(SCEVExpander &Rewriter);
764
765 protected:
766 Value *getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
767 Instruction *Use);
768
769 Instruction *CloneIVUser(NarrowIVDefUse DU);
770
771 const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse);
772
773 const SCEVAddRecExpr* GetExtendedOperandRecurrence(NarrowIVDefUse DU);
774
775 const SCEV *GetSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
776 unsigned OpCode) const;
777
778 Instruction *WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
779
780 bool WidenLoopCompare(NarrowIVDefUse DU);
781
782 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
783 };
784 } // anonymous namespace
785
786 /// isLoopInvariant - Perform a quick domtree based check for loop invariance
787 /// assuming that V is used within the loop. LoopInfo::isLoopInvariant() seems
788 /// gratuitous for this purpose.
789 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) {
790 Instruction *Inst = dyn_cast<Instruction>(V);
791 if (!Inst)
792 return true;
793
794 return DT->properlyDominates(Inst->getParent(), L->getHeader());
795 }
796
797 Value *WidenIV::getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
798 Instruction *Use) {
799 // Set the debug location and conservative insertion point.
800 IRBuilder<> Builder(Use);
801 // Hoist the insertion point into loop preheaders as far as possible.
802 for (const Loop *L = LI->getLoopFor(Use->getParent());
803 L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT);
804 L = L->getParentLoop())
805 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
806
807 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
808 Builder.CreateZExt(NarrowOper, WideType);
809 }
810
811 /// CloneIVUser - Instantiate a wide operation to replace a narrow
812 /// operation. This only needs to handle operations that can evaluation to
813 /// SCEVAddRec. It can safely return 0 for any operation we decide not to clone.
814 Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) {
815 unsigned Opcode = DU.NarrowUse->getOpcode();
816 switch (Opcode) {
817 default:
818 return nullptr;
819 case Instruction::Add:
820 case Instruction::Mul:
821 case Instruction::UDiv:
822 case Instruction::Sub:
823 case Instruction::And:
824 case Instruction::Or:
825 case Instruction::Xor:
826 case Instruction::Shl:
827 case Instruction::LShr:
828 case Instruction::AShr:
829 DEBUG(dbgs() << "Cloning IVUser: " << *DU.NarrowUse << "\n");
830
831 // Replace NarrowDef operands with WideDef. Otherwise, we don't know
832 // anything about the narrow operand yet so must insert a [sz]ext. It is
833 // probably loop invariant and will be folded or hoisted. If it actually
834 // comes from a widened IV, it should be removed during a future call to
835 // WidenIVUse.
836 Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) ? DU.WideDef :
837 getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, DU.NarrowUse);
838 Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) ? DU.WideDef :
839 getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, DU.NarrowUse);
840
841 BinaryOperator *NarrowBO = cast<BinaryOperator>(DU.NarrowUse);
842 BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(),
843 LHS, RHS,
844 NarrowBO->getName());
845 IRBuilder<> Builder(DU.NarrowUse);
846 Builder.Insert(WideBO);
847 if (const OverflowingBinaryOperator *OBO =
848 dyn_cast<OverflowingBinaryOperator>(NarrowBO)) {
849 if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap();
850 if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap();
851 }
852 return WideBO;
853 }
854 }
855
856 const SCEV *WidenIV::GetSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
857 unsigned OpCode) const {
858 if (OpCode == Instruction::Add)
859 return SE->getAddExpr(LHS, RHS);
860 if (OpCode == Instruction::Sub)
861 return SE->getMinusSCEV(LHS, RHS);
862 if (OpCode == Instruction::Mul)
863 return SE->getMulExpr(LHS, RHS);
864
865 llvm_unreachable("Unsupported opcode.");
866 }
867
868 /// No-wrap operations can transfer sign extension of their result to their
869 /// operands. Generate the SCEV value for the widened operation without
870 /// actually modifying the IR yet. If the expression after extending the
871 /// operands is an AddRec for this loop, return it.
872 const SCEVAddRecExpr* WidenIV::GetExtendedOperandRecurrence(NarrowIVDefUse DU) {
873
874 // Handle the common case of add<nsw/nuw>
875 const unsigned OpCode = DU.NarrowUse->getOpcode();
876 // Only Add/Sub/Mul instructions supported yet.
877 if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
878 OpCode != Instruction::Mul)
879 return nullptr;
880
881 // One operand (NarrowDef) has already been extended to WideDef. Now determine
882 // if extending the other will lead to a recurrence.
883 const unsigned ExtendOperIdx =
884 DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
885 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
886
887 const SCEV *ExtendOperExpr = nullptr;
888 const OverflowingBinaryOperator *OBO =
889 cast<OverflowingBinaryOperator>(DU.NarrowUse);
890 if (IsSigned && OBO->hasNoSignedWrap())
891 ExtendOperExpr = SE->getSignExtendExpr(
892 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
893 else if(!IsSigned && OBO->hasNoUnsignedWrap())
894 ExtendOperExpr = SE->getZeroExtendExpr(
895 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
896 else
897 return nullptr;
898
899 // When creating this SCEV expr, don't apply the current operations NSW or NUW
900 // flags. This instruction may be guarded by control flow that the no-wrap
901 // behavior depends on. Non-control-equivalent instructions can be mapped to
902 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
903 // semantics to those operations.
904 const SCEV *lhs = SE->getSCEV(DU.WideDef);
905 const SCEV *rhs = ExtendOperExpr;
906
907 // Let's swap operands to the initial order for the case of non-commutative
908 // operations, like SUB. See PR21014.
909 if (ExtendOperIdx == 0)
910 std::swap(lhs, rhs);
911 const SCEVAddRecExpr *AddRec =
912 dyn_cast<SCEVAddRecExpr>(GetSCEVByOpCode(lhs, rhs, OpCode));
913
914 if (!AddRec || AddRec->getLoop() != L)
915 return nullptr;
916 return AddRec;
917 }
918
919 /// GetWideRecurrence - Is this instruction potentially interesting from
920 /// IVUsers' perspective after widening it's type? In other words, can the
921 /// extend be safely hoisted out of the loop with SCEV reducing the value to a
922 /// recurrence on the same loop. If so, return the sign or zero extended
923 /// recurrence. Otherwise return NULL.
924 const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) {
925 if (!SE->isSCEVable(NarrowUse->getType()))
926 return nullptr;
927
928 const SCEV *NarrowExpr = SE->getSCEV(NarrowUse);
929 if (SE->getTypeSizeInBits(NarrowExpr->getType())
930 >= SE->getTypeSizeInBits(WideType)) {
931 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
932 // index. So don't follow this use.
933 return nullptr;
934 }
935
936 const SCEV *WideExpr = IsSigned ?
937 SE->getSignExtendExpr(NarrowExpr, WideType) :
938 SE->getZeroExtendExpr(NarrowExpr, WideType);
939 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
940 if (!AddRec || AddRec->getLoop() != L)
941 return nullptr;
942 return AddRec;
943 }
944
945 /// This IV user cannot be widen. Replace this use of the original narrow IV
946 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV.
947 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT) {
948 DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef
949 << " for user " << *DU.NarrowUse << "\n");
950 IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT));
951 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
952 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
953 }
954
955 /// If the narrow use is a compare instruction, then widen the compare
956 // (and possibly the other operand). The extend operation is hoisted into the
957 // loop preheader as far as possible.
958 bool WidenIV::WidenLoopCompare(NarrowIVDefUse DU) {
959 ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse);
960 if (!Cmp)
961 return false;
962
963 // Sign of IV user and compare must match.
964 if (IsSigned != CmpInst::isSigned(Cmp->getPredicate()))
965 return false;
966
967 Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0);
968 unsigned CastWidth = SE->getTypeSizeInBits(Op->getType());
969 unsigned IVWidth = SE->getTypeSizeInBits(WideType);
970 assert (CastWidth <= IVWidth && "Unexpected width while widening compare.");
971
972 // Widen the compare instruction.
973 IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT));
974 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
975
976 // Widen the other operand of the compare, if necessary.
977 if (CastWidth < IVWidth) {
978 Value *ExtOp = getExtend(Op, WideType, IsSigned, Cmp);
979 DU.NarrowUse->replaceUsesOfWith(Op, ExtOp);
980 }
981 return true;
982 }
983
984 /// WidenIVUse - Determine whether an individual user of the narrow IV can be
985 /// widened. If so, return the wide clone of the user.
986 Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
987
988 // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
989 if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) {
990 if (LI->getLoopFor(UsePhi->getParent()) != L) {
991 // For LCSSA phis, sink the truncate outside the loop.
992 // After SimplifyCFG most loop exit targets have a single predecessor.
993 // Otherwise fall back to a truncate within the loop.
994 if (UsePhi->getNumOperands() != 1)
995 truncateIVUse(DU, DT);
996 else {
997 PHINode *WidePhi =
998 PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide",
999 UsePhi);
1000 WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0));
1001 IRBuilder<> Builder(WidePhi->getParent()->getFirstInsertionPt());
1002 Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType());
1003 UsePhi->replaceAllUsesWith(Trunc);
1004 DeadInsts.push_back(UsePhi);
1005 DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi
1006 << " to " << *WidePhi << "\n");
1007 }
1008 return nullptr;
1009 }
1010 }
1011 // Our raison d'etre! Eliminate sign and zero extension.
1012 if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) {
1013 Value *NewDef = DU.WideDef;
1014 if (DU.NarrowUse->getType() != WideType) {
1015 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
1016 unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1017 if (CastWidth < IVWidth) {
1018 // The cast isn't as wide as the IV, so insert a Trunc.
1019 IRBuilder<> Builder(DU.NarrowUse);
1020 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
1021 }
1022 else {
1023 // A wider extend was hidden behind a narrower one. This may induce
1024 // another round of IV widening in which the intermediate IV becomes
1025 // dead. It should be very rare.
1026 DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
1027 << " not wide enough to subsume " << *DU.NarrowUse << "\n");
1028 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1029 NewDef = DU.NarrowUse;
1030 }
1031 }
1032 if (NewDef != DU.NarrowUse) {
1033 DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
1034 << " replaced by " << *DU.WideDef << "\n");
1035 ++NumElimExt;
1036 DU.NarrowUse->replaceAllUsesWith(NewDef);
1037 DeadInsts.push_back(DU.NarrowUse);
1038 }
1039 // Now that the extend is gone, we want to expose it's uses for potential
1040 // further simplification. We don't need to directly inform SimplifyIVUsers
1041 // of the new users, because their parent IV will be processed later as a
1042 // new loop phi. If we preserved IVUsers analysis, we would also want to
1043 // push the uses of WideDef here.
1044
1045 // No further widening is needed. The deceased [sz]ext had done it for us.
1046 return nullptr;
1047 }
1048
1049 // Does this user itself evaluate to a recurrence after widening?
1050 const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse);
1051 if (!WideAddRec)
1052 WideAddRec = GetExtendedOperandRecurrence(DU);
1053
1054 if (!WideAddRec) {
1055 // If use is a loop condition, try to promote the condition instead of
1056 // truncating the IV first.
1057 if (WidenLoopCompare(DU))
1058 return nullptr;
1059
1060 // This user does not evaluate to a recurence after widening, so don't
1061 // follow it. Instead insert a Trunc to kill off the original use,
1062 // eventually isolating the original narrow IV so it can be removed.
1063 truncateIVUse(DU, DT);
1064 return nullptr;
1065 }
1066 // Assume block terminators cannot evaluate to a recurrence. We can't to
1067 // insert a Trunc after a terminator if there happens to be a critical edge.
1068 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
1069 "SCEV is not expected to evaluate a block terminator");
1070
1071 // Reuse the IV increment that SCEVExpander created as long as it dominates
1072 // NarrowUse.
1073 Instruction *WideUse = nullptr;
1074 if (WideAddRec == WideIncExpr
1075 && Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
1076 WideUse = WideInc;
1077 else {
1078 WideUse = CloneIVUser(DU);
1079 if (!WideUse)
1080 return nullptr;
1081 }
1082 // Evaluation of WideAddRec ensured that the narrow expression could be
1083 // extended outside the loop without overflow. This suggests that the wide use
1084 // evaluates to the same expression as the extended narrow use, but doesn't
1085 // absolutely guarantee it. Hence the following failsafe check. In rare cases
1086 // where it fails, we simply throw away the newly created wide use.
1087 if (WideAddRec != SE->getSCEV(WideUse)) {
1088 DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
1089 << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n");
1090 DeadInsts.push_back(WideUse);
1091 return nullptr;
1092 }
1093
1094 // Returning WideUse pushes it on the worklist.
1095 return WideUse;
1096 }
1097
1098 /// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers.
1099 ///
1100 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
1101 for (User *U : NarrowDef->users()) {
1102 Instruction *NarrowUser = cast<Instruction>(U);
1103
1104 // Handle data flow merges and bizarre phi cycles.
1105 if (!Widened.insert(NarrowUser).second)
1106 continue;
1107
1108 NarrowIVUsers.push_back(NarrowIVDefUse(NarrowDef, NarrowUser, WideDef));
1109 }
1110 }
1111
1112 /// CreateWideIV - Process a single induction variable. First use the
1113 /// SCEVExpander to create a wide induction variable that evaluates to the same
1114 /// recurrence as the original narrow IV. Then use a worklist to forward
1115 /// traverse the narrow IV's def-use chain. After WidenIVUse has processed all
1116 /// interesting IV users, the narrow IV will be isolated for removal by
1117 /// DeleteDeadPHIs.
1118 ///
1119 /// It would be simpler to delete uses as they are processed, but we must avoid
1120 /// invalidating SCEV expressions.
1121 ///
1122 PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) {
1123 // Is this phi an induction variable?
1124 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1125 if (!AddRec)
1126 return nullptr;
1127
1128 // Widen the induction variable expression.
1129 const SCEV *WideIVExpr = IsSigned ?
1130 SE->getSignExtendExpr(AddRec, WideType) :
1131 SE->getZeroExtendExpr(AddRec, WideType);
1132
1133 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1134 "Expect the new IV expression to preserve its type");
1135
1136 // Can the IV be extended outside the loop without overflow?
1137 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1138 if (!AddRec || AddRec->getLoop() != L)
1139 return nullptr;
1140
1141 // An AddRec must have loop-invariant operands. Since this AddRec is
1142 // materialized by a loop header phi, the expression cannot have any post-loop
1143 // operands, so they must dominate the loop header.
1144 assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1145 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader())
1146 && "Loop header phi recurrence inputs do not dominate the loop");
1147
1148 // The rewriter provides a value for the desired IV expression. This may
1149 // either find an existing phi or materialize a new one. Either way, we
1150 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1151 // of the phi-SCC dominates the loop entry.
1152 Instruction *InsertPt = L->getHeader()->begin();
1153 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
1154
1155 // Remembering the WideIV increment generated by SCEVExpander allows
1156 // WidenIVUse to reuse it when widening the narrow IV's increment. We don't
1157 // employ a general reuse mechanism because the call above is the only call to
1158 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1159 if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1160 WideInc =
1161 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1162 WideIncExpr = SE->getSCEV(WideInc);
1163 }
1164
1165 DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1166 ++NumWidened;
1167
1168 // Traverse the def-use chain using a worklist starting at the original IV.
1169 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
1170
1171 Widened.insert(OrigPhi);
1172 pushNarrowIVUsers(OrigPhi, WidePhi);
1173
1174 while (!NarrowIVUsers.empty()) {
1175 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
1176
1177 // Process a def-use edge. This may replace the use, so don't hold a
1178 // use_iterator across it.
1179 Instruction *WideUse = WidenIVUse(DU, Rewriter);
1180
1181 // Follow all def-use edges from the previous narrow use.
1182 if (WideUse)
1183 pushNarrowIVUsers(DU.NarrowUse, WideUse);
1184
1185 // WidenIVUse may have removed the def-use edge.
1186 if (DU.NarrowDef->use_empty())
1187 DeadInsts.push_back(DU.NarrowDef);
1188 }
1189 return WidePhi;
1190 }
1191
1192 //===----------------------------------------------------------------------===//
1193 // Live IV Reduction - Minimize IVs live across the loop.
1194 //===----------------------------------------------------------------------===//
1195
1196
1197 //===----------------------------------------------------------------------===//
1198 // Simplification of IV users based on SCEV evaluation.
1199 //===----------------------------------------------------------------------===//
1200
1201 namespace {
1202 class IndVarSimplifyVisitor : public IVVisitor {
1203 ScalarEvolution *SE;
1204 const DataLayout *DL;
1205 const TargetTransformInfo *TTI;
1206 PHINode *IVPhi;
1207
1208 public:
1209 WideIVInfo WI;
1210
1211 IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV,
1212 const DataLayout *DL, const TargetTransformInfo *TTI,
1213 const DominatorTree *DTree)
1214 : SE(SCEV), DL(DL), TTI(TTI), IVPhi(IV) {
1215 DT = DTree;
1216 WI.NarrowIV = IVPhi;
1217 if (ReduceLiveIVs)
1218 setSplitOverflowIntrinsics();
1219 }
1220
1221 // Implement the interface used by simplifyUsersOfIV.
1222 void visitCast(CastInst *Cast) override {
1223 visitIVCast(Cast, WI, SE, DL, TTI);
1224 }
1225 };
1226 }
1227
1228 /// SimplifyAndExtend - Iteratively perform simplification on a worklist of IV
1229 /// users. Each successive simplification may push more users which may
1230 /// themselves be candidates for simplification.
1231 ///
1232 /// Sign/Zero extend elimination is interleaved with IV simplification.
1233 ///
1234 void IndVarSimplify::SimplifyAndExtend(Loop *L,
1235 SCEVExpander &Rewriter,
1236 LPPassManager &LPM) {
1237 SmallVector<WideIVInfo, 8> WideIVs;
1238
1239 SmallVector<PHINode*, 8> LoopPhis;
1240 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1241 LoopPhis.push_back(cast<PHINode>(I));
1242 }
1243 // Each round of simplification iterates through the SimplifyIVUsers worklist
1244 // for all current phis, then determines whether any IVs can be
1245 // widened. Widening adds new phis to LoopPhis, inducing another round of
1246 // simplification on the wide IVs.
1247 while (!LoopPhis.empty()) {
1248 // Evaluate as many IV expressions as possible before widening any IVs. This
1249 // forces SCEV to set no-wrap flags before evaluating sign/zero
1250 // extension. The first time SCEV attempts to normalize sign/zero extension,
1251 // the result becomes final. So for the most predictable results, we delay
1252 // evaluation of sign/zero extend evaluation until needed, and avoid running
1253 // other SCEV based analysis prior to SimplifyAndExtend.
1254 do {
1255 PHINode *CurrIV = LoopPhis.pop_back_val();
1256
1257 // Information about sign/zero extensions of CurrIV.
1258 IndVarSimplifyVisitor Visitor(CurrIV, SE, DL, TTI, DT);
1259
1260 Changed |= simplifyUsersOfIV(CurrIV, SE, &LPM, DeadInsts, &Visitor);
1261
1262 if (Visitor.WI.WidestNativeType) {
1263 WideIVs.push_back(Visitor.WI);
1264 }
1265 } while(!LoopPhis.empty());
1266
1267 for (; !WideIVs.empty(); WideIVs.pop_back()) {
1268 WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts);
1269 if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) {
1270 Changed = true;
1271 LoopPhis.push_back(WidePhi);
1272 }
1273 }
1274 }
1275 }
1276
1277 //===----------------------------------------------------------------------===//
1278 // LinearFunctionTestReplace and its kin. Rewrite the loop exit condition.
1279 //===----------------------------------------------------------------------===//
1280
1281 /// Check for expressions that ScalarEvolution generates to compute
1282 /// BackedgeTakenInfo. If these expressions have not been reduced, then
1283 /// expanding them may incur additional cost (albeit in the loop preheader).
1284 static bool isHighCostExpansion(const SCEV *S, BranchInst *BI,
1285 SmallPtrSetImpl<const SCEV*> &Processed,
1286 ScalarEvolution *SE) {
1287 if (!Processed.insert(S).second)
1288 return false;
1289
1290 // If the backedge-taken count is a UDiv, it's very likely a UDiv that
1291 // ScalarEvolution's HowFarToZero or HowManyLessThans produced to compute a
1292 // precise expression, rather than a UDiv from the user's code. If we can't
1293 // find a UDiv in the code with some simple searching, assume the former and
1294 // forego rewriting the loop.
1295 if (isa<SCEVUDivExpr>(S)) {
1296 ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition());
1297 if (!OrigCond) return true;
1298 const SCEV *R = SE->getSCEV(OrigCond->getOperand(1));
1299 R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1));
1300 if (R != S) {
1301 const SCEV *L = SE->getSCEV(OrigCond->getOperand(0));
1302 L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1));
1303 if (L != S)
1304 return true;
1305 }
1306 }
1307
1308 // Recurse past add expressions, which commonly occur in the
1309 // BackedgeTakenCount. They may already exist in program code, and if not,
1310 // they are not too expensive rematerialize.
1311 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
1312 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1313 I != E; ++I) {
1314 if (isHighCostExpansion(*I, BI, Processed, SE))
1315 return true;
1316 }
1317 return false;
1318 }
1319
1320 // HowManyLessThans uses a Max expression whenever the loop is not guarded by
1321 // the exit condition.
1322 if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S))
1323 return true;
1324
1325 // If we haven't recognized an expensive SCEV pattern, assume it's an
1326 // expression produced by program code.
1327 return false;
1328 }
1329
1330 /// canExpandBackedgeTakenCount - Return true if this loop's backedge taken
1331 /// count expression can be safely and cheaply expanded into an instruction
1332 /// sequence that can be used by LinearFunctionTestReplace.
1333 ///
1334 /// TODO: This fails for pointer-type loop counters with greater than one byte
1335 /// strides, consequently preventing LFTR from running. For the purpose of LFTR
1336 /// we could skip this check in the case that the LFTR loop counter (chosen by
1337 /// FindLoopCounter) is also pointer type. Instead, we could directly convert
1338 /// the loop test to an inequality test by checking the target data's alignment
1339 /// of element types (given that the initial pointer value originates from or is
1340 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint).
1341 /// However, we don't yet have a strong motivation for converting loop tests
1342 /// into inequality tests.
1343 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) {
1344 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1345 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
1346 BackedgeTakenCount->isZero())
1347 return false;
1348
1349 if (!L->getExitingBlock())
1350 return false;
1351
1352 // Can't rewrite non-branch yet.
1353 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1354 if (!BI)
1355 return false;
1356
1357 SmallPtrSet<const SCEV*, 8> Processed;
1358 if (isHighCostExpansion(BackedgeTakenCount, BI, Processed, SE))
1359 return false;
1360
1361 return true;
1362 }
1363
1364 /// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop
1365 /// invariant value to the phi.
1366 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
1367 Instruction *IncI = dyn_cast<Instruction>(IncV);
1368 if (!IncI)
1369 return nullptr;
1370
1371 switch (IncI->getOpcode()) {
1372 case Instruction::Add:
1373 case Instruction::Sub:
1374 break;
1375 case Instruction::GetElementPtr:
1376 // An IV counter must preserve its type.
1377 if (IncI->getNumOperands() == 2)
1378 break;
1379 default:
1380 return nullptr;
1381 }
1382
1383 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
1384 if (Phi && Phi->getParent() == L->getHeader()) {
1385 if (isLoopInvariant(IncI->getOperand(1), L, DT))
1386 return Phi;
1387 return nullptr;
1388 }
1389 if (IncI->getOpcode() == Instruction::GetElementPtr)
1390 return nullptr;
1391
1392 // Allow add/sub to be commuted.
1393 Phi = dyn_cast<PHINode>(IncI->getOperand(1));
1394 if (Phi && Phi->getParent() == L->getHeader()) {
1395 if (isLoopInvariant(IncI->getOperand(0), L, DT))
1396 return Phi;
1397 }
1398 return nullptr;
1399 }
1400
1401 /// Return the compare guarding the loop latch, or NULL for unrecognized tests.
1402 static ICmpInst *getLoopTest(Loop *L) {
1403 assert(L->getExitingBlock() && "expected loop exit");
1404
1405 BasicBlock *LatchBlock = L->getLoopLatch();
1406 // Don't bother with LFTR if the loop is not properly simplified.
1407 if (!LatchBlock)
1408 return nullptr;
1409
1410 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1411 assert(BI && "expected exit branch");
1412
1413 return dyn_cast<ICmpInst>(BI->getCondition());
1414 }
1415
1416 /// needsLFTR - LinearFunctionTestReplace policy. Return true unless we can show
1417 /// that the current exit test is already sufficiently canonical.
1418 static bool needsLFTR(Loop *L, DominatorTree *DT) {
1419 // Do LFTR to simplify the exit condition to an ICMP.
1420 ICmpInst *Cond = getLoopTest(L);
1421 if (!Cond)
1422 return true;
1423
1424 // Do LFTR to simplify the exit ICMP to EQ/NE
1425 ICmpInst::Predicate Pred = Cond->getPredicate();
1426 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
1427 return true;
1428
1429 // Look for a loop invariant RHS
1430 Value *LHS = Cond->getOperand(0);
1431 Value *RHS = Cond->getOperand(1);
1432 if (!isLoopInvariant(RHS, L, DT)) {
1433 if (!isLoopInvariant(LHS, L, DT))
1434 return true;
1435 std::swap(LHS, RHS);
1436 }
1437 // Look for a simple IV counter LHS
1438 PHINode *Phi = dyn_cast<PHINode>(LHS);
1439 if (!Phi)
1440 Phi = getLoopPhiForCounter(LHS, L, DT);
1441
1442 if (!Phi)
1443 return true;
1444
1445 // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
1446 int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
1447 if (Idx < 0)
1448 return true;
1449
1450 // Do LFTR if the exit condition's IV is *not* a simple counter.
1451 Value *IncV = Phi->getIncomingValue(Idx);
1452 return Phi != getLoopPhiForCounter(IncV, L, DT);
1453 }
1454
1455 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
1456 /// down to checking that all operands are constant and listing instructions
1457 /// that may hide undef.
1458 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited,
1459 unsigned Depth) {
1460 if (isa<Constant>(V))
1461 return !isa<UndefValue>(V);
1462
1463 if (Depth >= 6)
1464 return false;
1465
1466 // Conservatively handle non-constant non-instructions. For example, Arguments
1467 // may be undef.
1468 Instruction *I = dyn_cast<Instruction>(V);
1469 if (!I)
1470 return false;
1471
1472 // Load and return values may be undef.
1473 if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
1474 return false;
1475
1476 // Optimistically handle other instructions.
1477 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) {
1478 if (!Visited.insert(*OI).second)
1479 continue;
1480 if (!hasConcreteDefImpl(*OI, Visited, Depth+1))
1481 return false;
1482 }
1483 return true;
1484 }
1485
1486 /// Return true if the given value is concrete. We must prove that undef can
1487 /// never reach it.
1488 ///
1489 /// TODO: If we decide that this is a good approach to checking for undef, we
1490 /// may factor it into a common location.
1491 static bool hasConcreteDef(Value *V) {
1492 SmallPtrSet<Value*, 8> Visited;
1493 Visited.insert(V);
1494 return hasConcreteDefImpl(V, Visited, 0);
1495 }
1496
1497 /// AlmostDeadIV - Return true if this IV has any uses other than the (soon to
1498 /// be rewritten) loop exit test.
1499 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
1500 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1501 Value *IncV = Phi->getIncomingValue(LatchIdx);
1502
1503 for (User *U : Phi->users())
1504 if (U != Cond && U != IncV) return false;
1505
1506 for (User *U : IncV->users())
1507 if (U != Cond && U != Phi) return false;
1508 return true;
1509 }
1510
1511 /// FindLoopCounter - Find an affine IV in canonical form.
1512 ///
1513 /// BECount may be an i8* pointer type. The pointer difference is already
1514 /// valid count without scaling the address stride, so it remains a pointer
1515 /// expression as far as SCEV is concerned.
1516 ///
1517 /// Currently only valid for LFTR. See the comments on hasConcreteDef below.
1518 ///
1519 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
1520 ///
1521 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
1522 /// This is difficult in general for SCEV because of potential overflow. But we
1523 /// could at least handle constant BECounts.
1524 static PHINode *
1525 FindLoopCounter(Loop *L, const SCEV *BECount,
1526 ScalarEvolution *SE, DominatorTree *DT, const DataLayout *DL) {
1527 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
1528
1529 Value *Cond =
1530 cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition();
1531
1532 // Loop over all of the PHI nodes, looking for a simple counter.
1533 PHINode *BestPhi = nullptr;
1534 const SCEV *BestInit = nullptr;
1535 BasicBlock *LatchBlock = L->getLoopLatch();
1536 assert(LatchBlock && "needsLFTR should guarantee a loop latch");
1537
1538 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1539 PHINode *Phi = cast<PHINode>(I);
1540 if (!SE->isSCEVable(Phi->getType()))
1541 continue;
1542
1543 // Avoid comparing an integer IV against a pointer Limit.
1544 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
1545 continue;
1546
1547 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
1548 if (!AR || AR->getLoop() != L || !AR->isAffine())
1549 continue;
1550
1551 // AR may be a pointer type, while BECount is an integer type.
1552 // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
1553 // AR may not be a narrower type, or we may never exit.
1554 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
1555 if (PhiWidth < BCWidth || (DL && !DL->isLegalInteger(PhiWidth)))
1556 continue;
1557
1558 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
1559 if (!Step || !Step->isOne())
1560 continue;
1561
1562 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1563 Value *IncV = Phi->getIncomingValue(LatchIdx);
1564 if (getLoopPhiForCounter(IncV, L, DT) != Phi)
1565 continue;
1566
1567 // Avoid reusing a potentially undef value to compute other values that may
1568 // have originally had a concrete definition.
1569 if (!hasConcreteDef(Phi)) {
1570 // We explicitly allow unknown phis as long as they are already used by
1571 // the loop test. In this case we assume that performing LFTR could not
1572 // increase the number of undef users.
1573 if (ICmpInst *Cond = getLoopTest(L)) {
1574 if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT)
1575 && Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) {
1576 continue;
1577 }
1578 }
1579 }
1580 const SCEV *Init = AR->getStart();
1581
1582 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
1583 // Don't force a live loop counter if another IV can be used.
1584 if (AlmostDeadIV(Phi, LatchBlock, Cond))
1585 continue;
1586
1587 // Prefer to count-from-zero. This is a more "canonical" counter form. It
1588 // also prefers integer to pointer IVs.
1589 if (BestInit->isZero() != Init->isZero()) {
1590 if (BestInit->isZero())
1591 continue;
1592 }
1593 // If two IVs both count from zero or both count from nonzero then the
1594 // narrower is likely a dead phi that has been widened. Use the wider phi
1595 // to allow the other to be eliminated.
1596 else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
1597 continue;
1598 }
1599 BestPhi = Phi;
1600 BestInit = Init;
1601 }
1602 return BestPhi;
1603 }
1604
1605 /// genLoopLimit - Help LinearFunctionTestReplace by generating a value that
1606 /// holds the RHS of the new loop test.
1607 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L,
1608 SCEVExpander &Rewriter, ScalarEvolution *SE) {
1609 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
1610 assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
1611 const SCEV *IVInit = AR->getStart();
1612
1613 // IVInit may be a pointer while IVCount is an integer when FindLoopCounter
1614 // finds a valid pointer IV. Sign extend BECount in order to materialize a
1615 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
1616 // the existing GEPs whenever possible.
1617 if (IndVar->getType()->isPointerTy()
1618 && !IVCount->getType()->isPointerTy()) {
1619
1620 // IVOffset will be the new GEP offset that is interpreted by GEP as a
1621 // signed value. IVCount on the other hand represents the loop trip count,
1622 // which is an unsigned value. FindLoopCounter only allows induction
1623 // variables that have a positive unit stride of one. This means we don't
1624 // have to handle the case of negative offsets (yet) and just need to zero
1625 // extend IVCount.
1626 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
1627 const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy);
1628
1629 // Expand the code for the iteration count.
1630 assert(SE->isLoopInvariant(IVOffset, L) &&
1631 "Computed iteration count is not loop invariant!");
1632 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1633 Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI);
1634
1635 Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
1636 assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter");
1637 // We could handle pointer IVs other than i8*, but we need to compensate for
1638 // gep index scaling. See canExpandBackedgeTakenCount comments.
1639 assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()),
1640 cast<PointerType>(GEPBase->getType())->getElementType())->isOne()
1641 && "unit stride pointer IV must be i8*");
1642
1643 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
1644 return Builder.CreateGEP(GEPBase, GEPOffset, "lftr.limit");
1645 }
1646 else {
1647 // In any other case, convert both IVInit and IVCount to integers before
1648 // comparing. This may result in SCEV expension of pointers, but in practice
1649 // SCEV will fold the pointer arithmetic away as such:
1650 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
1651 //
1652 // Valid Cases: (1) both integers is most common; (2) both may be pointers
1653 // for simple memset-style loops.
1654 //
1655 // IVInit integer and IVCount pointer would only occur if a canonical IV
1656 // were generated on top of case #2, which is not expected.
1657
1658 const SCEV *IVLimit = nullptr;
1659 // For unit stride, IVCount = Start + BECount with 2's complement overflow.
1660 // For non-zero Start, compute IVCount here.
1661 if (AR->getStart()->isZero())
1662 IVLimit = IVCount;
1663 else {
1664 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
1665 const SCEV *IVInit = AR->getStart();
1666
1667 // For integer IVs, truncate the IV before computing IVInit + BECount.
1668 if (SE->getTypeSizeInBits(IVInit->getType())
1669 > SE->getTypeSizeInBits(IVCount->getType()))
1670 IVInit = SE->getTruncateExpr(IVInit, IVCount->getType());
1671
1672 IVLimit = SE->getAddExpr(IVInit, IVCount);
1673 }
1674 // Expand the code for the iteration count.
1675 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1676 IRBuilder<> Builder(BI);
1677 assert(SE->isLoopInvariant(IVLimit, L) &&
1678 "Computed iteration count is not loop invariant!");
1679 // Ensure that we generate the same type as IndVar, or a smaller integer
1680 // type. In the presence of null pointer values, we have an integer type
1681 // SCEV expression (IVInit) for a pointer type IV value (IndVar).
1682 Type *LimitTy = IVCount->getType()->isPointerTy() ?
1683 IndVar->getType() : IVCount->getType();
1684 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
1685 }
1686 }
1687
1688 /// LinearFunctionTestReplace - This method rewrites the exit condition of the
1689 /// loop to be a canonical != comparison against the incremented loop induction
1690 /// variable. This pass is able to rewrite the exit tests of any loop where the
1691 /// SCEV analysis can determine a loop-invariant trip count of the loop, which
1692 /// is actually a much broader range than just linear tests.
1693 Value *IndVarSimplify::
1694 LinearFunctionTestReplace(Loop *L,
1695 const SCEV *BackedgeTakenCount,
1696 PHINode *IndVar,
1697 SCEVExpander &Rewriter) {
1698 assert(canExpandBackedgeTakenCount(L, SE) && "precondition");
1699
1700 // Initialize CmpIndVar and IVCount to their preincremented values.
1701 Value *CmpIndVar = IndVar;
1702 const SCEV *IVCount = BackedgeTakenCount;
1703
1704 // If the exiting block is the same as the backedge block, we prefer to
1705 // compare against the post-incremented value, otherwise we must compare
1706 // against the preincremented value.
1707 if (L->getExitingBlock() == L->getLoopLatch()) {
1708 // The BackedgeTaken expression contains the number of times that the
1709 // backedge branches to the loop header. This is one less than the
1710 // number of times the loop executes, so use the incremented indvar.
1711 llvm::Value *IncrementedIndvar =
1712 IndVar->getIncomingValueForBlock(L->getExitingBlock());
1713 const auto *IncrementedIndvarSCEV =
1714 cast<SCEVAddRecExpr>(SE->getSCEV(IncrementedIndvar));
1715 // It is unsafe to use the incremented indvar if it has a wrapping flag, we
1716 // don't want to compare against a poison value. Check the SCEV that
1717 // corresponds to the incremented indvar, the SCEVExpander will only insert
1718 // flags in the IR if the SCEV originally had wrapping flags.
1719 // FIXME: In theory, SCEV could drop flags even though they exist in IR.
1720 // A more robust solution would involve getting a new expression for
1721 // CmpIndVar by applying non-NSW/NUW AddExprs.
1722 auto WrappingFlags =
1723 ScalarEvolution::setFlags(SCEV::FlagNUW, SCEV::FlagNSW);
1724 const SCEV *IVInit = IncrementedIndvarSCEV->getStart();
1725 if (SE->getTypeSizeInBits(IVInit->getType()) >
1726 SE->getTypeSizeInBits(IVCount->getType()))
1727 IVInit = SE->getTruncateExpr(IVInit, IVCount->getType());
1728 unsigned BitWidth = SE->getTypeSizeInBits(IVCount->getType());
1729 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth + 1);
1730 // Check if InitIV + BECount+1 requires sign/zero extension.
1731 // If not, clear the corresponding flag from WrappingFlags because it is not
1732 // necessary for those flags in the IncrementedIndvarSCEV expression.
1733 if (SE->getSignExtendExpr(SE->getAddExpr(IVInit, BackedgeTakenCount),
1734 WideTy) ==
1735 SE->getAddExpr(SE->getSignExtendExpr(IVInit, WideTy),
1736 SE->getSignExtendExpr(BackedgeTakenCount, WideTy)))
1737 WrappingFlags = ScalarEvolution::clearFlags(WrappingFlags, SCEV::FlagNSW);
1738 if (SE->getZeroExtendExpr(SE->getAddExpr(IVInit, BackedgeTakenCount),
1739 WideTy) ==
1740 SE->getAddExpr(SE->getZeroExtendExpr(IVInit, WideTy),
1741 SE->getZeroExtendExpr(BackedgeTakenCount, WideTy)))
1742 WrappingFlags = ScalarEvolution::clearFlags(WrappingFlags, SCEV::FlagNUW);
1743 if (!ScalarEvolution::maskFlags(IncrementedIndvarSCEV->getNoWrapFlags(),
1744 WrappingFlags)) {
1745 // Add one to the "backedge-taken" count to get the trip count.
1746 // This addition may overflow, which is valid as long as the comparison is
1747 // truncated to BackedgeTakenCount->getType().
1748 IVCount =
1749 SE->getAddExpr(BackedgeTakenCount,
1750 SE->getConstant(BackedgeTakenCount->getType(), 1));
1751 CmpIndVar = IncrementedIndvar;
1752 }
1753 }
1754
1755 Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE);
1756 assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy()
1757 && "genLoopLimit missed a cast");
1758
1759 // Insert a new icmp_ne or icmp_eq instruction before the branch.
1760 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1761 ICmpInst::Predicate P;
1762 if (L->contains(BI->getSuccessor(0)))
1763 P = ICmpInst::ICMP_NE;
1764 else
1765 P = ICmpInst::ICMP_EQ;
1766
1767 DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
1768 << " LHS:" << *CmpIndVar << '\n'
1769 << " op:\t"
1770 << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
1771 << " RHS:\t" << *ExitCnt << "\n"
1772 << " IVCount:\t" << *IVCount << "\n");
1773
1774 IRBuilder<> Builder(BI);
1775
1776 // LFTR can ignore IV overflow and truncate to the width of
1777 // BECount. This avoids materializing the add(zext(add)) expression.
1778 unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType());
1779 unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType());
1780 if (CmpIndVarSize > ExitCntSize) {
1781 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
1782 const SCEV *ARStart = AR->getStart();
1783 const SCEV *ARStep = AR->getStepRecurrence(*SE);
1784 // For constant IVCount, avoid truncation.
1785 if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) {
1786 const APInt &Start = cast<SCEVConstant>(ARStart)->getValue()->getValue();
1787 APInt Count = cast<SCEVConstant>(IVCount)->getValue()->getValue();
1788 // Note that the post-inc value of BackedgeTakenCount may have overflowed
1789 // above such that IVCount is now zero.
1790 if (IVCount != BackedgeTakenCount && Count == 0) {
1791 Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize);
1792 ++Count;
1793 }
1794 else
1795 Count = Count.zext(CmpIndVarSize);
1796 APInt NewLimit;
1797 if (cast<SCEVConstant>(ARStep)->getValue()->isNegative())
1798 NewLimit = Start - Count;
1799 else
1800 NewLimit = Start + Count;
1801 ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit);
1802
1803 DEBUG(dbgs() << " Widen RHS:\t" << *ExitCnt << "\n");
1804 } else {
1805 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
1806 "lftr.wideiv");
1807 }
1808 }
1809 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
1810 Value *OrigCond = BI->getCondition();
1811 // It's tempting to use replaceAllUsesWith here to fully replace the old
1812 // comparison, but that's not immediately safe, since users of the old
1813 // comparison may not be dominated by the new comparison. Instead, just
1814 // update the branch to use the new comparison; in the common case this
1815 // will make old comparison dead.
1816 BI->setCondition(Cond);
1817 DeadInsts.push_back(OrigCond);
1818
1819 ++NumLFTR;
1820 Changed = true;
1821 return Cond;
1822 }
1823
1824 //===----------------------------------------------------------------------===//
1825 // SinkUnusedInvariants. A late subpass to cleanup loop preheaders.
1826 //===----------------------------------------------------------------------===//
1827
1828 /// If there's a single exit block, sink any loop-invariant values that
1829 /// were defined in the preheader but not used inside the loop into the
1830 /// exit block to reduce register pressure in the loop.
1831 void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
1832 BasicBlock *ExitBlock = L->getExitBlock();
1833 if (!ExitBlock) return;
1834
1835 BasicBlock *Preheader = L->getLoopPreheader();
1836 if (!Preheader) return;
1837
1838 Instruction *InsertPt = ExitBlock->getFirstInsertionPt();
1839 BasicBlock::iterator I = Preheader->getTerminator();
1840 while (I != Preheader->begin()) {
1841 --I;
1842 // New instructions were inserted at the end of the preheader.
1843 if (isa<PHINode>(I))
1844 break;
1845
1846 // Don't move instructions which might have side effects, since the side
1847 // effects need to complete before instructions inside the loop. Also don't
1848 // move instructions which might read memory, since the loop may modify
1849 // memory. Note that it's okay if the instruction might have undefined
1850 // behavior: LoopSimplify guarantees that the preheader dominates the exit
1851 // block.
1852 if (I->mayHaveSideEffects() || I->mayReadFromMemory())
1853 continue;
1854
1855 // Skip debug info intrinsics.
1856 if (isa<DbgInfoIntrinsic>(I))
1857 continue;
1858
1859 // Skip landingpad instructions.
1860 if (isa<LandingPadInst>(I))
1861 continue;
1862
1863 // Don't sink alloca: we never want to sink static alloca's out of the
1864 // entry block, and correctly sinking dynamic alloca's requires
1865 // checks for stacksave/stackrestore intrinsics.
1866 // FIXME: Refactor this check somehow?
1867 if (isa<AllocaInst>(I))
1868 continue;
1869
1870 // Determine if there is a use in or before the loop (direct or
1871 // otherwise).
1872 bool UsedInLoop = false;
1873 for (Use &U : I->uses()) {
1874 Instruction *User = cast<Instruction>(U.getUser());
1875 BasicBlock *UseBB = User->getParent();
1876 if (PHINode *P = dyn_cast<PHINode>(User)) {
1877 unsigned i =
1878 PHINode::getIncomingValueNumForOperand(U.getOperandNo());
1879 UseBB = P->getIncomingBlock(i);
1880 }
1881 if (UseBB == Preheader || L->contains(UseBB)) {
1882 UsedInLoop = true;
1883 break;
1884 }
1885 }
1886
1887 // If there is, the def must remain in the preheader.
1888 if (UsedInLoop)
1889 continue;
1890
1891 // Otherwise, sink it to the exit block.
1892 Instruction *ToMove = I;
1893 bool Done = false;
1894
1895 if (I != Preheader->begin()) {
1896 // Skip debug info intrinsics.
1897 do {
1898 --I;
1899 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
1900
1901 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
1902 Done = true;
1903 } else {
1904 Done = true;
1905 }
1906
1907 ToMove->moveBefore(InsertPt);
1908 if (Done) break;
1909 InsertPt = ToMove;
1910 }
1911 }
1912
1913 //===----------------------------------------------------------------------===//
1914 // IndVarSimplify driver. Manage several subpasses of IV simplification.
1915 //===----------------------------------------------------------------------===//
1916
1917 bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
1918 if (skipOptnoneFunction(L))
1919 return false;
1920
1921 // If LoopSimplify form is not available, stay out of trouble. Some notes:
1922 // - LSR currently only supports LoopSimplify-form loops. Indvars'
1923 // canonicalization can be a pessimization without LSR to "clean up"
1924 // afterwards.
1925 // - We depend on having a preheader; in particular,
1926 // Loop::getCanonicalInductionVariable only supports loops with preheaders,
1927 // and we're in trouble if we can't find the induction variable even when
1928 // we've manually inserted one.
1929 if (!L->isLoopSimplifyForm())
1930 return false;
1931
1932 LI = &getAnalysis<LoopInfo>();
1933 SE = &getAnalysis<ScalarEvolution>();
1934 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1935 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
1936 DL = DLP ? &DLP->getDataLayout() : nullptr;
1937 TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
1938 TTI = getAnalysisIfAvailable<TargetTransformInfo>();
1939
1940 DeadInsts.clear();
1941 Changed = false;
1942
1943 // If there are any floating-point recurrences, attempt to
1944 // transform them to use integer recurrences.
1945 RewriteNonIntegerIVs(L);
1946
1947 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1948
1949 // Create a rewriter object which we'll use to transform the code with.
1950 SCEVExpander Rewriter(*SE, "indvars");
1951 #ifndef NDEBUG
1952 Rewriter.setDebugType(DEBUG_TYPE);
1953 #endif
1954
1955 // Eliminate redundant IV users.
1956 //
1957 // Simplification works best when run before other consumers of SCEV. We
1958 // attempt to avoid evaluating SCEVs for sign/zero extend operations until
1959 // other expressions involving loop IVs have been evaluated. This helps SCEV
1960 // set no-wrap flags before normalizing sign/zero extension.
1961 Rewriter.disableCanonicalMode();
1962 SimplifyAndExtend(L, Rewriter, LPM);
1963
1964 // Check to see if this loop has a computable loop-invariant execution count.
1965 // If so, this means that we can compute the final value of any expressions
1966 // that are recurrent in the loop, and substitute the exit values from the
1967 // loop into any instructions outside of the loop that use the final values of
1968 // the current expressions.
1969 //
1970 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1971 RewriteLoopExitValues(L, Rewriter);
1972
1973 // Eliminate redundant IV cycles.
1974 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
1975
1976 // If we have a trip count expression, rewrite the loop's exit condition
1977 // using it. We can currently only handle loops with a single exit.
1978 if (canExpandBackedgeTakenCount(L, SE) && needsLFTR(L, DT)) {
1979 PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT, DL);
1980 if (IndVar) {
1981 // Check preconditions for proper SCEVExpander operation. SCEV does not
1982 // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
1983 // pass that uses the SCEVExpander must do it. This does not work well for
1984 // loop passes because SCEVExpander makes assumptions about all loops,
1985 // while LoopPassManager only forces the current loop to be simplified.
1986 //
1987 // FIXME: SCEV expansion has no way to bail out, so the caller must
1988 // explicitly check any assumptions made by SCEV. Brittle.
1989 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
1990 if (!AR || AR->getLoop()->getLoopPreheader())
1991 (void)LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
1992 Rewriter);
1993 }
1994 }
1995 // Clear the rewriter cache, because values that are in the rewriter's cache
1996 // can be deleted in the loop below, causing the AssertingVH in the cache to
1997 // trigger.
1998 Rewriter.clear();
1999
2000 // Now that we're done iterating through lists, clean up any instructions
2001 // which are now dead.
2002 while (!DeadInsts.empty())
2003 if (Instruction *Inst =
2004 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
2005 RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
2006
2007 // The Rewriter may not be used from this point on.
2008
2009 // Loop-invariant instructions in the preheader that aren't used in the
2010 // loop may be sunk below the loop to reduce register pressure.
2011 SinkUnusedInvariants(L);
2012
2013 // Clean up dead instructions.
2014 Changed |= DeleteDeadPHIs(L->getHeader(), TLI);
2015 // Check a post-condition.
2016 assert(L->isLCSSAForm(*DT) &&
2017 "Indvars did not leave the loop in lcssa form!");
2018
2019 // Verify that LFTR, and any other change have not interfered with SCEV's
2020 // ability to compute trip count.
2021 #ifndef NDEBUG
2022 if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
2023 SE->forgetLoop(L);
2024 const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
2025 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
2026 SE->getTypeSizeInBits(NewBECount->getType()))
2027 NewBECount = SE->getTruncateOrNoop(NewBECount,
2028 BackedgeTakenCount->getType());
2029 else
2030 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
2031 NewBECount->getType());
2032 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
2033 }
2034 #endif
2035
2036 return Changed;
2037 }