]> git.proxmox.com Git - rustc.git/blob - src/llvm/lib/Transforms/Scalar/Reassociate.cpp
Imported Upstream version 0.7
[rustc.git] / src / llvm / lib / Transforms / Scalar / Reassociate.cpp
1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass reassociates commutative expressions in an order that is designed
11 // to promote better constant propagation, GCSE, LICM, PRE, etc.
12 //
13 // For example: 4 + (x + 5) -> x + (4 + 5)
14 //
15 // In the implementation of this algorithm, constants are assigned rank = 0,
16 // function arguments are rank = 1, and other values are assigned ranks
17 // corresponding to the reverse post order traversal of current function
18 // (starting at 2), which effectively gives values in deep loops higher rank
19 // than values not in loops.
20 //
21 //===----------------------------------------------------------------------===//
22
23 #define DEBUG_TYPE "reassociate"
24 #include "llvm/Transforms/Scalar.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/PostOrderIterator.h"
27 #include "llvm/ADT/STLExtras.h"
28 #include "llvm/ADT/SetVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/Assembly/Writer.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/DerivedTypes.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/IRBuilder.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/CFG.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ValueHandle.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Transforms/Utils/Local.h"
43 #include <algorithm>
44 using namespace llvm;
45
46 STATISTIC(NumChanged, "Number of insts reassociated");
47 STATISTIC(NumAnnihil, "Number of expr tree annihilated");
48 STATISTIC(NumFactor , "Number of multiplies factored");
49
50 namespace {
51 struct ValueEntry {
52 unsigned Rank;
53 Value *Op;
54 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
55 };
56 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
57 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
58 }
59 }
60
61 #ifndef NDEBUG
62 /// PrintOps - Print out the expression identified in the Ops list.
63 ///
64 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
65 Module *M = I->getParent()->getParent()->getParent();
66 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
67 << *Ops[0].Op->getType() << '\t';
68 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
69 dbgs() << "[ ";
70 WriteAsOperand(dbgs(), Ops[i].Op, false, M);
71 dbgs() << ", #" << Ops[i].Rank << "] ";
72 }
73 }
74 #endif
75
76 namespace {
77 /// \brief Utility class representing a base and exponent pair which form one
78 /// factor of some product.
79 struct Factor {
80 Value *Base;
81 unsigned Power;
82
83 Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {}
84
85 /// \brief Sort factors by their Base.
86 struct BaseSorter {
87 bool operator()(const Factor &LHS, const Factor &RHS) {
88 return LHS.Base < RHS.Base;
89 }
90 };
91
92 /// \brief Compare factors for equal bases.
93 struct BaseEqual {
94 bool operator()(const Factor &LHS, const Factor &RHS) {
95 return LHS.Base == RHS.Base;
96 }
97 };
98
99 /// \brief Sort factors in descending order by their power.
100 struct PowerDescendingSorter {
101 bool operator()(const Factor &LHS, const Factor &RHS) {
102 return LHS.Power > RHS.Power;
103 }
104 };
105
106 /// \brief Compare factors for equal powers.
107 struct PowerEqual {
108 bool operator()(const Factor &LHS, const Factor &RHS) {
109 return LHS.Power == RHS.Power;
110 }
111 };
112 };
113 }
114
115 namespace {
116 class Reassociate : public FunctionPass {
117 DenseMap<BasicBlock*, unsigned> RankMap;
118 DenseMap<AssertingVH<Value>, unsigned> ValueRankMap;
119 SetVector<AssertingVH<Instruction> > RedoInsts;
120 bool MadeChange;
121 public:
122 static char ID; // Pass identification, replacement for typeid
123 Reassociate() : FunctionPass(ID) {
124 initializeReassociatePass(*PassRegistry::getPassRegistry());
125 }
126
127 bool runOnFunction(Function &F);
128
129 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
130 AU.setPreservesCFG();
131 }
132 private:
133 void BuildRankMap(Function &F);
134 unsigned getRank(Value *V);
135 void ReassociateExpression(BinaryOperator *I);
136 void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
137 Value *OptimizeExpression(BinaryOperator *I,
138 SmallVectorImpl<ValueEntry> &Ops);
139 Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
140 bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
141 SmallVectorImpl<Factor> &Factors);
142 Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder,
143 SmallVectorImpl<Factor> &Factors);
144 Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
145 Value *RemoveFactorFromExpression(Value *V, Value *Factor);
146 void EraseInst(Instruction *I);
147 void OptimizeInst(Instruction *I);
148 };
149 }
150
151 char Reassociate::ID = 0;
152 INITIALIZE_PASS(Reassociate, "reassociate",
153 "Reassociate expressions", false, false)
154
155 // Public interface to the Reassociate pass
156 FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
157
158 /// isReassociableOp - Return true if V is an instruction of the specified
159 /// opcode and if it only has one use.
160 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
161 if (V->hasOneUse() && isa<Instruction>(V) &&
162 cast<Instruction>(V)->getOpcode() == Opcode)
163 return cast<BinaryOperator>(V);
164 return 0;
165 }
166
167 static bool isUnmovableInstruction(Instruction *I) {
168 if (I->getOpcode() == Instruction::PHI ||
169 I->getOpcode() == Instruction::LandingPad ||
170 I->getOpcode() == Instruction::Alloca ||
171 I->getOpcode() == Instruction::Load ||
172 I->getOpcode() == Instruction::Invoke ||
173 (I->getOpcode() == Instruction::Call &&
174 !isa<DbgInfoIntrinsic>(I)) ||
175 I->getOpcode() == Instruction::UDiv ||
176 I->getOpcode() == Instruction::SDiv ||
177 I->getOpcode() == Instruction::FDiv ||
178 I->getOpcode() == Instruction::URem ||
179 I->getOpcode() == Instruction::SRem ||
180 I->getOpcode() == Instruction::FRem)
181 return true;
182 return false;
183 }
184
185 void Reassociate::BuildRankMap(Function &F) {
186 unsigned i = 2;
187
188 // Assign distinct ranks to function arguments
189 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
190 ValueRankMap[&*I] = ++i;
191
192 ReversePostOrderTraversal<Function*> RPOT(&F);
193 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
194 E = RPOT.end(); I != E; ++I) {
195 BasicBlock *BB = *I;
196 unsigned BBRank = RankMap[BB] = ++i << 16;
197
198 // Walk the basic block, adding precomputed ranks for any instructions that
199 // we cannot move. This ensures that the ranks for these instructions are
200 // all different in the block.
201 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
202 if (isUnmovableInstruction(I))
203 ValueRankMap[&*I] = ++BBRank;
204 }
205 }
206
207 unsigned Reassociate::getRank(Value *V) {
208 Instruction *I = dyn_cast<Instruction>(V);
209 if (I == 0) {
210 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument.
211 return 0; // Otherwise it's a global or constant, rank 0.
212 }
213
214 if (unsigned Rank = ValueRankMap[I])
215 return Rank; // Rank already known?
216
217 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
218 // we can reassociate expressions for code motion! Since we do not recurse
219 // for PHI nodes, we cannot have infinite recursion here, because there
220 // cannot be loops in the value graph that do not go through PHI nodes.
221 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
222 for (unsigned i = 0, e = I->getNumOperands();
223 i != e && Rank != MaxRank; ++i)
224 Rank = std::max(Rank, getRank(I->getOperand(i)));
225
226 // If this is a not or neg instruction, do not count it for rank. This
227 // assures us that X and ~X will have the same rank.
228 if (!I->getType()->isIntegerTy() ||
229 (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
230 ++Rank;
231
232 //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = "
233 // << Rank << "\n");
234
235 return ValueRankMap[I] = Rank;
236 }
237
238 /// LowerNegateToMultiply - Replace 0-X with X*-1.
239 ///
240 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
241 Constant *Cst = Constant::getAllOnesValue(Neg->getType());
242
243 BinaryOperator *Res =
244 BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
245 Neg->setOperand(1, Constant::getNullValue(Neg->getType())); // Drop use of op.
246 Res->takeName(Neg);
247 Neg->replaceAllUsesWith(Res);
248 Res->setDebugLoc(Neg->getDebugLoc());
249 return Res;
250 }
251
252 /// CarmichaelShift - Returns k such that lambda(2^Bitwidth) = 2^k, where lambda
253 /// is the Carmichael function. This means that x^(2^k) === 1 mod 2^Bitwidth for
254 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
255 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
256 /// even x in Bitwidth-bit arithmetic.
257 static unsigned CarmichaelShift(unsigned Bitwidth) {
258 if (Bitwidth < 3)
259 return Bitwidth - 1;
260 return Bitwidth - 2;
261 }
262
263 /// IncorporateWeight - Add the extra weight 'RHS' to the existing weight 'LHS',
264 /// reducing the combined weight using any special properties of the operation.
265 /// The existing weight LHS represents the computation X op X op ... op X where
266 /// X occurs LHS times. The combined weight represents X op X op ... op X with
267 /// X occurring LHS + RHS times. If op is "Xor" for example then the combined
268 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
269 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
270 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
271 // If we were working with infinite precision arithmetic then the combined
272 // weight would be LHS + RHS. But we are using finite precision arithmetic,
273 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
274 // for nilpotent operations and addition, but not for idempotent operations
275 // and multiplication), so it is important to correctly reduce the combined
276 // weight back into range if wrapping would be wrong.
277
278 // If RHS is zero then the weight didn't change.
279 if (RHS.isMinValue())
280 return;
281 // If LHS is zero then the combined weight is RHS.
282 if (LHS.isMinValue()) {
283 LHS = RHS;
284 return;
285 }
286 // From this point on we know that neither LHS nor RHS is zero.
287
288 if (Instruction::isIdempotent(Opcode)) {
289 // Idempotent means X op X === X, so any non-zero weight is equivalent to a
290 // weight of 1. Keeping weights at zero or one also means that wrapping is
291 // not a problem.
292 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
293 return; // Return a weight of 1.
294 }
295 if (Instruction::isNilpotent(Opcode)) {
296 // Nilpotent means X op X === 0, so reduce weights modulo 2.
297 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
298 LHS = 0; // 1 + 1 === 0 modulo 2.
299 return;
300 }
301 if (Opcode == Instruction::Add) {
302 // TODO: Reduce the weight by exploiting nsw/nuw?
303 LHS += RHS;
304 return;
305 }
306
307 assert(Opcode == Instruction::Mul && "Unknown associative operation!");
308 unsigned Bitwidth = LHS.getBitWidth();
309 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
310 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth
311 // bit number x, since either x is odd in which case x^CM = 1, or x is even in
312 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples
313 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
314 // which by a happy accident means that they can always be represented using
315 // Bitwidth bits.
316 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than
317 // the Carmichael number).
318 if (Bitwidth > 3) {
319 /// CM - The value of Carmichael's lambda function.
320 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
321 // Any weight W >= Threshold can be replaced with W - CM.
322 APInt Threshold = CM + Bitwidth;
323 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
324 // For Bitwidth 4 or more the following sum does not overflow.
325 LHS += RHS;
326 while (LHS.uge(Threshold))
327 LHS -= CM;
328 } else {
329 // To avoid problems with overflow do everything the same as above but using
330 // a larger type.
331 unsigned CM = 1U << CarmichaelShift(Bitwidth);
332 unsigned Threshold = CM + Bitwidth;
333 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
334 "Weights not reduced!");
335 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
336 while (Total >= Threshold)
337 Total -= CM;
338 LHS = Total;
339 }
340 }
341
342 typedef std::pair<Value*, APInt> RepeatedValue;
343
344 /// LinearizeExprTree - Given an associative binary expression, return the leaf
345 /// nodes in Ops along with their weights (how many times the leaf occurs). The
346 /// original expression is the same as
347 /// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times
348 /// op
349 /// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times
350 /// op
351 /// ...
352 /// op
353 /// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times
354 ///
355 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
356 ///
357 /// This routine may modify the function, in which case it returns 'true'. The
358 /// changes it makes may well be destructive, changing the value computed by 'I'
359 /// to something completely different. Thus if the routine returns 'true' then
360 /// you MUST either replace I with a new expression computed from the Ops array,
361 /// or use RewriteExprTree to put the values back in.
362 ///
363 /// A leaf node is either not a binary operation of the same kind as the root
364 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different
365 /// opcode), or is the same kind of binary operator but has a use which either
366 /// does not belong to the expression, or does belong to the expression but is
367 /// a leaf node. Every leaf node has at least one use that is a non-leaf node
368 /// of the expression, while for non-leaf nodes (except for the root 'I') every
369 /// use is a non-leaf node of the expression.
370 ///
371 /// For example:
372 /// expression graph node names
373 ///
374 /// + | I
375 /// / \ |
376 /// + + | A, B
377 /// / \ / \ |
378 /// * + * | C, D, E
379 /// / \ / \ / \ |
380 /// + * | F, G
381 ///
382 /// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in
383 /// that order) (C, 1), (E, 1), (F, 2), (G, 2).
384 ///
385 /// The expression is maximal: if some instruction is a binary operator of the
386 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
387 /// then the instruction also belongs to the expression, is not a leaf node of
388 /// it, and its operands also belong to the expression (but may be leaf nodes).
389 ///
390 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
391 /// order to ensure that every non-root node in the expression has *exactly one*
392 /// use by a non-leaf node of the expression. This destruction means that the
393 /// caller MUST either replace 'I' with a new expression or use something like
394 /// RewriteExprTree to put the values back in if the routine indicates that it
395 /// made a change by returning 'true'.
396 ///
397 /// In the above example either the right operand of A or the left operand of B
398 /// will be replaced by undef. If it is B's operand then this gives:
399 ///
400 /// + | I
401 /// / \ |
402 /// + + | A, B - operand of B replaced with undef
403 /// / \ \ |
404 /// * + * | C, D, E
405 /// / \ / \ / \ |
406 /// + * | F, G
407 ///
408 /// Note that such undef operands can only be reached by passing through 'I'.
409 /// For example, if you visit operands recursively starting from a leaf node
410 /// then you will never see such an undef operand unless you get back to 'I',
411 /// which requires passing through a phi node.
412 ///
413 /// Note that this routine may also mutate binary operators of the wrong type
414 /// that have all uses inside the expression (i.e. only used by non-leaf nodes
415 /// of the expression) if it can turn them into binary operators of the right
416 /// type and thus make the expression bigger.
417
418 static bool LinearizeExprTree(BinaryOperator *I,
419 SmallVectorImpl<RepeatedValue> &Ops) {
420 DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
421 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
422 unsigned Opcode = I->getOpcode();
423 assert(Instruction::isAssociative(Opcode) &&
424 Instruction::isCommutative(Opcode) &&
425 "Expected an associative and commutative operation!");
426
427 // Visit all operands of the expression, keeping track of their weight (the
428 // number of paths from the expression root to the operand, or if you like
429 // the number of times that operand occurs in the linearized expression).
430 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
431 // while A has weight two.
432
433 // Worklist of non-leaf nodes (their operands are in the expression too) along
434 // with their weights, representing a certain number of paths to the operator.
435 // If an operator occurs in the worklist multiple times then we found multiple
436 // ways to get to it.
437 SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
438 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
439 bool MadeChange = false;
440
441 // Leaves of the expression are values that either aren't the right kind of
442 // operation (eg: a constant, or a multiply in an add tree), or are, but have
443 // some uses that are not inside the expression. For example, in I = X + X,
444 // X = A + B, the value X has two uses (by I) that are in the expression. If
445 // X has any other uses, for example in a return instruction, then we consider
446 // X to be a leaf, and won't analyze it further. When we first visit a value,
447 // if it has more than one use then at first we conservatively consider it to
448 // be a leaf. Later, as the expression is explored, we may discover some more
449 // uses of the value from inside the expression. If all uses turn out to be
450 // from within the expression (and the value is a binary operator of the right
451 // kind) then the value is no longer considered to be a leaf, and its operands
452 // are explored.
453
454 // Leaves - Keeps track of the set of putative leaves as well as the number of
455 // paths to each leaf seen so far.
456 typedef DenseMap<Value*, APInt> LeafMap;
457 LeafMap Leaves; // Leaf -> Total weight so far.
458 SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order.
459
460 #ifndef NDEBUG
461 SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme.
462 #endif
463 while (!Worklist.empty()) {
464 std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
465 I = P.first; // We examine the operands of this binary operator.
466
467 for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
468 Value *Op = I->getOperand(OpIdx);
469 APInt Weight = P.second; // Number of paths to this operand.
470 DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
471 assert(!Op->use_empty() && "No uses, so how did we get to it?!");
472
473 // If this is a binary operation of the right kind with only one use then
474 // add its operands to the expression.
475 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
476 assert(Visited.insert(Op) && "Not first visit!");
477 DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
478 Worklist.push_back(std::make_pair(BO, Weight));
479 continue;
480 }
481
482 // Appears to be a leaf. Is the operand already in the set of leaves?
483 LeafMap::iterator It = Leaves.find(Op);
484 if (It == Leaves.end()) {
485 // Not in the leaf map. Must be the first time we saw this operand.
486 assert(Visited.insert(Op) && "Not first visit!");
487 if (!Op->hasOneUse()) {
488 // This value has uses not accounted for by the expression, so it is
489 // not safe to modify. Mark it as being a leaf.
490 DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
491 LeafOrder.push_back(Op);
492 Leaves[Op] = Weight;
493 continue;
494 }
495 // No uses outside the expression, try morphing it.
496 } else if (It != Leaves.end()) {
497 // Already in the leaf map.
498 assert(Visited.count(Op) && "In leaf map but not visited!");
499
500 // Update the number of paths to the leaf.
501 IncorporateWeight(It->second, Weight, Opcode);
502
503 #if 0 // TODO: Re-enable once PR13021 is fixed.
504 // The leaf already has one use from inside the expression. As we want
505 // exactly one such use, drop this new use of the leaf.
506 assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
507 I->setOperand(OpIdx, UndefValue::get(I->getType()));
508 MadeChange = true;
509
510 // If the leaf is a binary operation of the right kind and we now see
511 // that its multiple original uses were in fact all by nodes belonging
512 // to the expression, then no longer consider it to be a leaf and add
513 // its operands to the expression.
514 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
515 DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
516 Worklist.push_back(std::make_pair(BO, It->second));
517 Leaves.erase(It);
518 continue;
519 }
520 #endif
521
522 // If we still have uses that are not accounted for by the expression
523 // then it is not safe to modify the value.
524 if (!Op->hasOneUse())
525 continue;
526
527 // No uses outside the expression, try morphing it.
528 Weight = It->second;
529 Leaves.erase(It); // Since the value may be morphed below.
530 }
531
532 // At this point we have a value which, first of all, is not a binary
533 // expression of the right kind, and secondly, is only used inside the
534 // expression. This means that it can safely be modified. See if we
535 // can usefully morph it into an expression of the right kind.
536 assert((!isa<Instruction>(Op) ||
537 cast<Instruction>(Op)->getOpcode() != Opcode) &&
538 "Should have been handled above!");
539 assert(Op->hasOneUse() && "Has uses outside the expression tree!");
540
541 // If this is a multiply expression, turn any internal negations into
542 // multiplies by -1 so they can be reassociated.
543 BinaryOperator *BO = dyn_cast<BinaryOperator>(Op);
544 if (Opcode == Instruction::Mul && BO && BinaryOperator::isNeg(BO)) {
545 DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
546 BO = LowerNegateToMultiply(BO);
547 DEBUG(dbgs() << *BO << 'n');
548 Worklist.push_back(std::make_pair(BO, Weight));
549 MadeChange = true;
550 continue;
551 }
552
553 // Failed to morph into an expression of the right type. This really is
554 // a leaf.
555 DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
556 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
557 LeafOrder.push_back(Op);
558 Leaves[Op] = Weight;
559 }
560 }
561
562 // The leaves, repeated according to their weights, represent the linearized
563 // form of the expression.
564 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
565 Value *V = LeafOrder[i];
566 LeafMap::iterator It = Leaves.find(V);
567 if (It == Leaves.end())
568 // Node initially thought to be a leaf wasn't.
569 continue;
570 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
571 APInt Weight = It->second;
572 if (Weight.isMinValue())
573 // Leaf already output or weight reduction eliminated it.
574 continue;
575 // Ensure the leaf is only output once.
576 It->second = 0;
577 Ops.push_back(std::make_pair(V, Weight));
578 }
579
580 // For nilpotent operations or addition there may be no operands, for example
581 // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
582 // in both cases the weight reduces to 0 causing the value to be skipped.
583 if (Ops.empty()) {
584 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
585 assert(Identity && "Associative operation without identity!");
586 Ops.push_back(std::make_pair(Identity, APInt(Bitwidth, 1)));
587 }
588
589 return MadeChange;
590 }
591
592 // RewriteExprTree - Now that the operands for this expression tree are
593 // linearized and optimized, emit them in-order.
594 void Reassociate::RewriteExprTree(BinaryOperator *I,
595 SmallVectorImpl<ValueEntry> &Ops) {
596 assert(Ops.size() > 1 && "Single values should be used directly!");
597
598 // Since our optimizations should never increase the number of operations, the
599 // new expression can usually be written reusing the existing binary operators
600 // from the original expression tree, without creating any new instructions,
601 // though the rewritten expression may have a completely different topology.
602 // We take care to not change anything if the new expression will be the same
603 // as the original. If more than trivial changes (like commuting operands)
604 // were made then we are obliged to clear out any optional subclass data like
605 // nsw flags.
606
607 /// NodesToRewrite - Nodes from the original expression available for writing
608 /// the new expression into.
609 SmallVector<BinaryOperator*, 8> NodesToRewrite;
610 unsigned Opcode = I->getOpcode();
611 BinaryOperator *Op = I;
612
613 /// NotRewritable - The operands being written will be the leaves of the new
614 /// expression and must not be used as inner nodes (via NodesToRewrite) by
615 /// mistake. Inner nodes are always reassociable, and usually leaves are not
616 /// (if they were they would have been incorporated into the expression and so
617 /// would not be leaves), so most of the time there is no danger of this. But
618 /// in rare cases a leaf may become reassociable if an optimization kills uses
619 /// of it, or it may momentarily become reassociable during rewriting (below)
620 /// due it being removed as an operand of one of its uses. Ensure that misuse
621 /// of leaf nodes as inner nodes cannot occur by remembering all of the future
622 /// leaves and refusing to reuse any of them as inner nodes.
623 SmallPtrSet<Value*, 8> NotRewritable;
624 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
625 NotRewritable.insert(Ops[i].Op);
626
627 // ExpressionChanged - Non-null if the rewritten expression differs from the
628 // original in some non-trivial way, requiring the clearing of optional flags.
629 // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
630 BinaryOperator *ExpressionChanged = 0;
631 for (unsigned i = 0; ; ++i) {
632 // The last operation (which comes earliest in the IR) is special as both
633 // operands will come from Ops, rather than just one with the other being
634 // a subexpression.
635 if (i+2 == Ops.size()) {
636 Value *NewLHS = Ops[i].Op;
637 Value *NewRHS = Ops[i+1].Op;
638 Value *OldLHS = Op->getOperand(0);
639 Value *OldRHS = Op->getOperand(1);
640
641 if (NewLHS == OldLHS && NewRHS == OldRHS)
642 // Nothing changed, leave it alone.
643 break;
644
645 if (NewLHS == OldRHS && NewRHS == OldLHS) {
646 // The order of the operands was reversed. Swap them.
647 DEBUG(dbgs() << "RA: " << *Op << '\n');
648 Op->swapOperands();
649 DEBUG(dbgs() << "TO: " << *Op << '\n');
650 MadeChange = true;
651 ++NumChanged;
652 break;
653 }
654
655 // The new operation differs non-trivially from the original. Overwrite
656 // the old operands with the new ones.
657 DEBUG(dbgs() << "RA: " << *Op << '\n');
658 if (NewLHS != OldLHS) {
659 BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
660 if (BO && !NotRewritable.count(BO))
661 NodesToRewrite.push_back(BO);
662 Op->setOperand(0, NewLHS);
663 }
664 if (NewRHS != OldRHS) {
665 BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
666 if (BO && !NotRewritable.count(BO))
667 NodesToRewrite.push_back(BO);
668 Op->setOperand(1, NewRHS);
669 }
670 DEBUG(dbgs() << "TO: " << *Op << '\n');
671
672 ExpressionChanged = Op;
673 MadeChange = true;
674 ++NumChanged;
675
676 break;
677 }
678
679 // Not the last operation. The left-hand side will be a sub-expression
680 // while the right-hand side will be the current element of Ops.
681 Value *NewRHS = Ops[i].Op;
682 if (NewRHS != Op->getOperand(1)) {
683 DEBUG(dbgs() << "RA: " << *Op << '\n');
684 if (NewRHS == Op->getOperand(0)) {
685 // The new right-hand side was already present as the left operand. If
686 // we are lucky then swapping the operands will sort out both of them.
687 Op->swapOperands();
688 } else {
689 // Overwrite with the new right-hand side.
690 BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
691 if (BO && !NotRewritable.count(BO))
692 NodesToRewrite.push_back(BO);
693 Op->setOperand(1, NewRHS);
694 ExpressionChanged = Op;
695 }
696 DEBUG(dbgs() << "TO: " << *Op << '\n');
697 MadeChange = true;
698 ++NumChanged;
699 }
700
701 // Now deal with the left-hand side. If this is already an operation node
702 // from the original expression then just rewrite the rest of the expression
703 // into it.
704 BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
705 if (BO && !NotRewritable.count(BO)) {
706 Op = BO;
707 continue;
708 }
709
710 // Otherwise, grab a spare node from the original expression and use that as
711 // the left-hand side. If there are no nodes left then the optimizers made
712 // an expression with more nodes than the original! This usually means that
713 // they did something stupid but it might mean that the problem was just too
714 // hard (finding the mimimal number of multiplications needed to realize a
715 // multiplication expression is NP-complete). Whatever the reason, smart or
716 // stupid, create a new node if there are none left.
717 BinaryOperator *NewOp;
718 if (NodesToRewrite.empty()) {
719 Constant *Undef = UndefValue::get(I->getType());
720 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
721 Undef, Undef, "", I);
722 } else {
723 NewOp = NodesToRewrite.pop_back_val();
724 }
725
726 DEBUG(dbgs() << "RA: " << *Op << '\n');
727 Op->setOperand(0, NewOp);
728 DEBUG(dbgs() << "TO: " << *Op << '\n');
729 ExpressionChanged = Op;
730 MadeChange = true;
731 ++NumChanged;
732 Op = NewOp;
733 }
734
735 // If the expression changed non-trivially then clear out all subclass data
736 // starting from the operator specified in ExpressionChanged, and compactify
737 // the operators to just before the expression root to guarantee that the
738 // expression tree is dominated by all of Ops.
739 if (ExpressionChanged)
740 do {
741 ExpressionChanged->clearSubclassOptionalData();
742 if (ExpressionChanged == I)
743 break;
744 ExpressionChanged->moveBefore(I);
745 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->use_begin());
746 } while (1);
747
748 // Throw away any left over nodes from the original expression.
749 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
750 RedoInsts.insert(NodesToRewrite[i]);
751 }
752
753 /// NegateValue - Insert instructions before the instruction pointed to by BI,
754 /// that computes the negative version of the value specified. The negative
755 /// version of the value is returned, and BI is left pointing at the instruction
756 /// that should be processed next by the reassociation pass.
757 static Value *NegateValue(Value *V, Instruction *BI) {
758 if (Constant *C = dyn_cast<Constant>(V))
759 return ConstantExpr::getNeg(C);
760
761 // We are trying to expose opportunity for reassociation. One of the things
762 // that we want to do to achieve this is to push a negation as deep into an
763 // expression chain as possible, to expose the add instructions. In practice,
764 // this means that we turn this:
765 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
766 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
767 // the constants. We assume that instcombine will clean up the mess later if
768 // we introduce tons of unnecessary negation instructions.
769 //
770 if (BinaryOperator *I = isReassociableOp(V, Instruction::Add)) {
771 // Push the negates through the add.
772 I->setOperand(0, NegateValue(I->getOperand(0), BI));
773 I->setOperand(1, NegateValue(I->getOperand(1), BI));
774
775 // We must move the add instruction here, because the neg instructions do
776 // not dominate the old add instruction in general. By moving it, we are
777 // assured that the neg instructions we just inserted dominate the
778 // instruction we are about to insert after them.
779 //
780 I->moveBefore(BI);
781 I->setName(I->getName()+".neg");
782 return I;
783 }
784
785 // Okay, we need to materialize a negated version of V with an instruction.
786 // Scan the use lists of V to see if we have one already.
787 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
788 User *U = *UI;
789 if (!BinaryOperator::isNeg(U)) continue;
790
791 // We found one! Now we have to make sure that the definition dominates
792 // this use. We do this by moving it to the entry block (if it is a
793 // non-instruction value) or right after the definition. These negates will
794 // be zapped by reassociate later, so we don't need much finesse here.
795 BinaryOperator *TheNeg = cast<BinaryOperator>(U);
796
797 // Verify that the negate is in this function, V might be a constant expr.
798 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
799 continue;
800
801 BasicBlock::iterator InsertPt;
802 if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
803 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
804 InsertPt = II->getNormalDest()->begin();
805 } else {
806 InsertPt = InstInput;
807 ++InsertPt;
808 }
809 while (isa<PHINode>(InsertPt)) ++InsertPt;
810 } else {
811 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
812 }
813 TheNeg->moveBefore(InsertPt);
814 return TheNeg;
815 }
816
817 // Insert a 'neg' instruction that subtracts the value from zero to get the
818 // negation.
819 return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
820 }
821
822 /// ShouldBreakUpSubtract - Return true if we should break up this subtract of
823 /// X-Y into (X + -Y).
824 static bool ShouldBreakUpSubtract(Instruction *Sub) {
825 // If this is a negation, we can't split it up!
826 if (BinaryOperator::isNeg(Sub))
827 return false;
828
829 // Don't bother to break this up unless either the LHS is an associable add or
830 // subtract or if this is only used by one.
831 if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
832 isReassociableOp(Sub->getOperand(0), Instruction::Sub))
833 return true;
834 if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
835 isReassociableOp(Sub->getOperand(1), Instruction::Sub))
836 return true;
837 if (Sub->hasOneUse() &&
838 (isReassociableOp(Sub->use_back(), Instruction::Add) ||
839 isReassociableOp(Sub->use_back(), Instruction::Sub)))
840 return true;
841
842 return false;
843 }
844
845 /// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
846 /// only used by an add, transform this into (X+(0-Y)) to promote better
847 /// reassociation.
848 static BinaryOperator *BreakUpSubtract(Instruction *Sub) {
849 // Convert a subtract into an add and a neg instruction. This allows sub
850 // instructions to be commuted with other add instructions.
851 //
852 // Calculate the negative value of Operand 1 of the sub instruction,
853 // and set it as the RHS of the add instruction we just made.
854 //
855 Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
856 BinaryOperator *New =
857 BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
858 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
859 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
860 New->takeName(Sub);
861
862 // Everyone now refers to the add instruction.
863 Sub->replaceAllUsesWith(New);
864 New->setDebugLoc(Sub->getDebugLoc());
865
866 DEBUG(dbgs() << "Negated: " << *New << '\n');
867 return New;
868 }
869
870 /// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
871 /// by one, change this into a multiply by a constant to assist with further
872 /// reassociation.
873 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
874 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
875 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
876
877 BinaryOperator *Mul =
878 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
879 Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
880 Mul->takeName(Shl);
881 Shl->replaceAllUsesWith(Mul);
882 Mul->setDebugLoc(Shl->getDebugLoc());
883 return Mul;
884 }
885
886 /// FindInOperandList - Scan backwards and forwards among values with the same
887 /// rank as element i to see if X exists. If X does not exist, return i. This
888 /// is useful when scanning for 'x' when we see '-x' because they both get the
889 /// same rank.
890 static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
891 Value *X) {
892 unsigned XRank = Ops[i].Rank;
893 unsigned e = Ops.size();
894 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
895 if (Ops[j].Op == X)
896 return j;
897 // Scan backwards.
898 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
899 if (Ops[j].Op == X)
900 return j;
901 return i;
902 }
903
904 /// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
905 /// and returning the result. Insert the tree before I.
906 static Value *EmitAddTreeOfValues(Instruction *I,
907 SmallVectorImpl<WeakVH> &Ops){
908 if (Ops.size() == 1) return Ops.back();
909
910 Value *V1 = Ops.back();
911 Ops.pop_back();
912 Value *V2 = EmitAddTreeOfValues(I, Ops);
913 return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
914 }
915
916 /// RemoveFactorFromExpression - If V is an expression tree that is a
917 /// multiplication sequence, and if this sequence contains a multiply by Factor,
918 /// remove Factor from the tree and return the new tree.
919 Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
920 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
921 if (!BO) return 0;
922
923 SmallVector<RepeatedValue, 8> Tree;
924 MadeChange |= LinearizeExprTree(BO, Tree);
925 SmallVector<ValueEntry, 8> Factors;
926 Factors.reserve(Tree.size());
927 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
928 RepeatedValue E = Tree[i];
929 Factors.append(E.second.getZExtValue(),
930 ValueEntry(getRank(E.first), E.first));
931 }
932
933 bool FoundFactor = false;
934 bool NeedsNegate = false;
935 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
936 if (Factors[i].Op == Factor) {
937 FoundFactor = true;
938 Factors.erase(Factors.begin()+i);
939 break;
940 }
941
942 // If this is a negative version of this factor, remove it.
943 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor))
944 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
945 if (FC1->getValue() == -FC2->getValue()) {
946 FoundFactor = NeedsNegate = true;
947 Factors.erase(Factors.begin()+i);
948 break;
949 }
950 }
951
952 if (!FoundFactor) {
953 // Make sure to restore the operands to the expression tree.
954 RewriteExprTree(BO, Factors);
955 return 0;
956 }
957
958 BasicBlock::iterator InsertPt = BO; ++InsertPt;
959
960 // If this was just a single multiply, remove the multiply and return the only
961 // remaining operand.
962 if (Factors.size() == 1) {
963 RedoInsts.insert(BO);
964 V = Factors[0].Op;
965 } else {
966 RewriteExprTree(BO, Factors);
967 V = BO;
968 }
969
970 if (NeedsNegate)
971 V = BinaryOperator::CreateNeg(V, "neg", InsertPt);
972
973 return V;
974 }
975
976 /// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
977 /// add its operands as factors, otherwise add V to the list of factors.
978 ///
979 /// Ops is the top-level list of add operands we're trying to factor.
980 static void FindSingleUseMultiplyFactors(Value *V,
981 SmallVectorImpl<Value*> &Factors,
982 const SmallVectorImpl<ValueEntry> &Ops) {
983 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
984 if (!BO) {
985 Factors.push_back(V);
986 return;
987 }
988
989 // Otherwise, add the LHS and RHS to the list of factors.
990 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops);
991 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops);
992 }
993
994 /// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
995 /// instruction. This optimizes based on identities. If it can be reduced to
996 /// a single Value, it is returned, otherwise the Ops list is mutated as
997 /// necessary.
998 static Value *OptimizeAndOrXor(unsigned Opcode,
999 SmallVectorImpl<ValueEntry> &Ops) {
1000 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1001 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1002 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1003 // First, check for X and ~X in the operand list.
1004 assert(i < Ops.size());
1005 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
1006 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
1007 unsigned FoundX = FindInOperandList(Ops, i, X);
1008 if (FoundX != i) {
1009 if (Opcode == Instruction::And) // ...&X&~X = 0
1010 return Constant::getNullValue(X->getType());
1011
1012 if (Opcode == Instruction::Or) // ...|X|~X = -1
1013 return Constant::getAllOnesValue(X->getType());
1014 }
1015 }
1016
1017 // Next, check for duplicate pairs of values, which we assume are next to
1018 // each other, due to our sorting criteria.
1019 assert(i < Ops.size());
1020 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1021 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
1022 // Drop duplicate values for And and Or.
1023 Ops.erase(Ops.begin()+i);
1024 --i; --e;
1025 ++NumAnnihil;
1026 continue;
1027 }
1028
1029 // Drop pairs of values for Xor.
1030 assert(Opcode == Instruction::Xor);
1031 if (e == 2)
1032 return Constant::getNullValue(Ops[0].Op->getType());
1033
1034 // Y ^ X^X -> Y
1035 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1036 i -= 1; e -= 2;
1037 ++NumAnnihil;
1038 }
1039 }
1040 return 0;
1041 }
1042
1043 /// OptimizeAdd - Optimize a series of operands to an 'add' instruction. This
1044 /// optimizes based on identities. If it can be reduced to a single Value, it
1045 /// is returned, otherwise the Ops list is mutated as necessary.
1046 Value *Reassociate::OptimizeAdd(Instruction *I,
1047 SmallVectorImpl<ValueEntry> &Ops) {
1048 // Scan the operand lists looking for X and -X pairs. If we find any, we
1049 // can simplify the expression. X+-X == 0. While we're at it, scan for any
1050 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
1051 //
1052 // TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1".
1053 //
1054 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1055 Value *TheOp = Ops[i].Op;
1056 // Check to see if we've seen this operand before. If so, we factor all
1057 // instances of the operand together. Due to our sorting criteria, we know
1058 // that these need to be next to each other in the vector.
1059 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1060 // Rescan the list, remove all instances of this operand from the expr.
1061 unsigned NumFound = 0;
1062 do {
1063 Ops.erase(Ops.begin()+i);
1064 ++NumFound;
1065 } while (i != Ops.size() && Ops[i].Op == TheOp);
1066
1067 DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
1068 ++NumFactor;
1069
1070 // Insert a new multiply.
1071 Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound);
1072 Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I);
1073
1074 // Now that we have inserted a multiply, optimize it. This allows us to
1075 // handle cases that require multiple factoring steps, such as this:
1076 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
1077 RedoInsts.insert(cast<Instruction>(Mul));
1078
1079 // If every add operand was a duplicate, return the multiply.
1080 if (Ops.empty())
1081 return Mul;
1082
1083 // Otherwise, we had some input that didn't have the dupe, such as
1084 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of
1085 // things being added by this operation.
1086 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
1087
1088 --i;
1089 e = Ops.size();
1090 continue;
1091 }
1092
1093 // Check for X and -X in the operand list.
1094 if (!BinaryOperator::isNeg(TheOp))
1095 continue;
1096
1097 Value *X = BinaryOperator::getNegArgument(TheOp);
1098 unsigned FoundX = FindInOperandList(Ops, i, X);
1099 if (FoundX == i)
1100 continue;
1101
1102 // Remove X and -X from the operand list.
1103 if (Ops.size() == 2)
1104 return Constant::getNullValue(X->getType());
1105
1106 Ops.erase(Ops.begin()+i);
1107 if (i < FoundX)
1108 --FoundX;
1109 else
1110 --i; // Need to back up an extra one.
1111 Ops.erase(Ops.begin()+FoundX);
1112 ++NumAnnihil;
1113 --i; // Revisit element.
1114 e -= 2; // Removed two elements.
1115 }
1116
1117 // Scan the operand list, checking to see if there are any common factors
1118 // between operands. Consider something like A*A+A*B*C+D. We would like to
1119 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1120 // To efficiently find this, we count the number of times a factor occurs
1121 // for any ADD operands that are MULs.
1122 DenseMap<Value*, unsigned> FactorOccurrences;
1123
1124 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1125 // where they are actually the same multiply.
1126 unsigned MaxOcc = 0;
1127 Value *MaxOccVal = 0;
1128 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1129 BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul);
1130 if (!BOp)
1131 continue;
1132
1133 // Compute all of the factors of this added value.
1134 SmallVector<Value*, 8> Factors;
1135 FindSingleUseMultiplyFactors(BOp, Factors, Ops);
1136 assert(Factors.size() > 1 && "Bad linearize!");
1137
1138 // Add one to FactorOccurrences for each unique factor in this op.
1139 SmallPtrSet<Value*, 8> Duplicates;
1140 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1141 Value *Factor = Factors[i];
1142 if (!Duplicates.insert(Factor)) continue;
1143
1144 unsigned Occ = ++FactorOccurrences[Factor];
1145 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
1146
1147 // If Factor is a negative constant, add the negated value as a factor
1148 // because we can percolate the negate out. Watch for minint, which
1149 // cannot be positivified.
1150 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor))
1151 if (CI->isNegative() && !CI->isMinValue(true)) {
1152 Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1153 assert(!Duplicates.count(Factor) &&
1154 "Shouldn't have two constant factors, missed a canonicalize");
1155
1156 unsigned Occ = ++FactorOccurrences[Factor];
1157 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
1158 }
1159 }
1160 }
1161
1162 // If any factor occurred more than one time, we can pull it out.
1163 if (MaxOcc > 1) {
1164 DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
1165 ++NumFactor;
1166
1167 // Create a new instruction that uses the MaxOccVal twice. If we don't do
1168 // this, we could otherwise run into situations where removing a factor
1169 // from an expression will drop a use of maxocc, and this can cause
1170 // RemoveFactorFromExpression on successive values to behave differently.
1171 Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
1172 SmallVector<WeakVH, 4> NewMulOps;
1173 for (unsigned i = 0; i != Ops.size(); ++i) {
1174 // Only try to remove factors from expressions we're allowed to.
1175 BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul);
1176 if (!BOp)
1177 continue;
1178
1179 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
1180 // The factorized operand may occur several times. Convert them all in
1181 // one fell swoop.
1182 for (unsigned j = Ops.size(); j != i;) {
1183 --j;
1184 if (Ops[j].Op == Ops[i].Op) {
1185 NewMulOps.push_back(V);
1186 Ops.erase(Ops.begin()+j);
1187 }
1188 }
1189 --i;
1190 }
1191 }
1192
1193 // No need for extra uses anymore.
1194 delete DummyInst;
1195
1196 unsigned NumAddedValues = NewMulOps.size();
1197 Value *V = EmitAddTreeOfValues(I, NewMulOps);
1198
1199 // Now that we have inserted the add tree, optimize it. This allows us to
1200 // handle cases that require multiple factoring steps, such as this:
1201 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
1202 assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
1203 (void)NumAddedValues;
1204 if (Instruction *VI = dyn_cast<Instruction>(V))
1205 RedoInsts.insert(VI);
1206
1207 // Create the multiply.
1208 Instruction *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
1209
1210 // Rerun associate on the multiply in case the inner expression turned into
1211 // a multiply. We want to make sure that we keep things in canonical form.
1212 RedoInsts.insert(V2);
1213
1214 // If every add operand included the factor (e.g. "A*B + A*C"), then the
1215 // entire result expression is just the multiply "A*(B+C)".
1216 if (Ops.empty())
1217 return V2;
1218
1219 // Otherwise, we had some input that didn't have the factor, such as
1220 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
1221 // things being added by this operation.
1222 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1223 }
1224
1225 return 0;
1226 }
1227
1228 namespace {
1229 /// \brief Predicate tests whether a ValueEntry's op is in a map.
1230 struct IsValueInMap {
1231 const DenseMap<Value *, unsigned> &Map;
1232
1233 IsValueInMap(const DenseMap<Value *, unsigned> &Map) : Map(Map) {}
1234
1235 bool operator()(const ValueEntry &Entry) {
1236 return Map.find(Entry.Op) != Map.end();
1237 }
1238 };
1239 }
1240
1241 /// \brief Build up a vector of value/power pairs factoring a product.
1242 ///
1243 /// Given a series of multiplication operands, build a vector of factors and
1244 /// the powers each is raised to when forming the final product. Sort them in
1245 /// the order of descending power.
1246 ///
1247 /// (x*x) -> [(x, 2)]
1248 /// ((x*x)*x) -> [(x, 3)]
1249 /// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1250 ///
1251 /// \returns Whether any factors have a power greater than one.
1252 bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1253 SmallVectorImpl<Factor> &Factors) {
1254 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1255 // Compute the sum of powers of simplifiable factors.
1256 unsigned FactorPowerSum = 0;
1257 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1258 Value *Op = Ops[Idx-1].Op;
1259
1260 // Count the number of occurrences of this value.
1261 unsigned Count = 1;
1262 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1263 ++Count;
1264 // Track for simplification all factors which occur 2 or more times.
1265 if (Count > 1)
1266 FactorPowerSum += Count;
1267 }
1268
1269 // We can only simplify factors if the sum of the powers of our simplifiable
1270 // factors is 4 or higher. When that is the case, we will *always* have
1271 // a simplification. This is an important invariant to prevent cyclicly
1272 // trying to simplify already minimal formations.
1273 if (FactorPowerSum < 4)
1274 return false;
1275
1276 // Now gather the simplifiable factors, removing them from Ops.
1277 FactorPowerSum = 0;
1278 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1279 Value *Op = Ops[Idx-1].Op;
1280
1281 // Count the number of occurrences of this value.
1282 unsigned Count = 1;
1283 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1284 ++Count;
1285 if (Count == 1)
1286 continue;
1287 // Move an even number of occurrences to Factors.
1288 Count &= ~1U;
1289 Idx -= Count;
1290 FactorPowerSum += Count;
1291 Factors.push_back(Factor(Op, Count));
1292 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
1293 }
1294
1295 // None of the adjustments above should have reduced the sum of factor powers
1296 // below our mininum of '4'.
1297 assert(FactorPowerSum >= 4);
1298
1299 std::sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter());
1300 return true;
1301 }
1302
1303 /// \brief Build a tree of multiplies, computing the product of Ops.
1304 static Value *buildMultiplyTree(IRBuilder<> &Builder,
1305 SmallVectorImpl<Value*> &Ops) {
1306 if (Ops.size() == 1)
1307 return Ops.back();
1308
1309 Value *LHS = Ops.pop_back_val();
1310 do {
1311 LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1312 } while (!Ops.empty());
1313
1314 return LHS;
1315 }
1316
1317 /// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1318 ///
1319 /// Given a vector of values raised to various powers, where no two values are
1320 /// equal and the powers are sorted in decreasing order, compute the minimal
1321 /// DAG of multiplies to compute the final product, and return that product
1322 /// value.
1323 Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1324 SmallVectorImpl<Factor> &Factors) {
1325 assert(Factors[0].Power);
1326 SmallVector<Value *, 4> OuterProduct;
1327 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1328 Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1329 if (Factors[Idx].Power != Factors[LastIdx].Power) {
1330 LastIdx = Idx;
1331 continue;
1332 }
1333
1334 // We want to multiply across all the factors with the same power so that
1335 // we can raise them to that power as a single entity. Build a mini tree
1336 // for that.
1337 SmallVector<Value *, 4> InnerProduct;
1338 InnerProduct.push_back(Factors[LastIdx].Base);
1339 do {
1340 InnerProduct.push_back(Factors[Idx].Base);
1341 ++Idx;
1342 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1343
1344 // Reset the base value of the first factor to the new expression tree.
1345 // We'll remove all the factors with the same power in a second pass.
1346 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1347 if (Instruction *MI = dyn_cast<Instruction>(M))
1348 RedoInsts.insert(MI);
1349
1350 LastIdx = Idx;
1351 }
1352 // Unique factors with equal powers -- we've folded them into the first one's
1353 // base.
1354 Factors.erase(std::unique(Factors.begin(), Factors.end(),
1355 Factor::PowerEqual()),
1356 Factors.end());
1357
1358 // Iteratively collect the base of each factor with an add power into the
1359 // outer product, and halve each power in preparation for squaring the
1360 // expression.
1361 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1362 if (Factors[Idx].Power & 1)
1363 OuterProduct.push_back(Factors[Idx].Base);
1364 Factors[Idx].Power >>= 1;
1365 }
1366 if (Factors[0].Power) {
1367 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1368 OuterProduct.push_back(SquareRoot);
1369 OuterProduct.push_back(SquareRoot);
1370 }
1371 if (OuterProduct.size() == 1)
1372 return OuterProduct.front();
1373
1374 Value *V = buildMultiplyTree(Builder, OuterProduct);
1375 return V;
1376 }
1377
1378 Value *Reassociate::OptimizeMul(BinaryOperator *I,
1379 SmallVectorImpl<ValueEntry> &Ops) {
1380 // We can only optimize the multiplies when there is a chain of more than
1381 // three, such that a balanced tree might require fewer total multiplies.
1382 if (Ops.size() < 4)
1383 return 0;
1384
1385 // Try to turn linear trees of multiplies without other uses of the
1386 // intermediate stages into minimal multiply DAGs with perfect sub-expression
1387 // re-use.
1388 SmallVector<Factor, 4> Factors;
1389 if (!collectMultiplyFactors(Ops, Factors))
1390 return 0; // All distinct factors, so nothing left for us to do.
1391
1392 IRBuilder<> Builder(I);
1393 Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1394 if (Ops.empty())
1395 return V;
1396
1397 ValueEntry NewEntry = ValueEntry(getRank(V), V);
1398 Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
1399 return 0;
1400 }
1401
1402 Value *Reassociate::OptimizeExpression(BinaryOperator *I,
1403 SmallVectorImpl<ValueEntry> &Ops) {
1404 // Now that we have the linearized expression tree, try to optimize it.
1405 // Start by folding any constants that we found.
1406 Constant *Cst = 0;
1407 unsigned Opcode = I->getOpcode();
1408 while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
1409 Constant *C = cast<Constant>(Ops.pop_back_val().Op);
1410 Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
1411 }
1412 // If there was nothing but constants then we are done.
1413 if (Ops.empty())
1414 return Cst;
1415
1416 // Put the combined constant back at the end of the operand list, except if
1417 // there is no point. For example, an add of 0 gets dropped here, while a
1418 // multiplication by zero turns the whole expression into zero.
1419 if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
1420 if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
1421 return Cst;
1422 Ops.push_back(ValueEntry(0, Cst));
1423 }
1424
1425 if (Ops.size() == 1) return Ops[0].Op;
1426
1427 // Handle destructive annihilation due to identities between elements in the
1428 // argument list here.
1429 unsigned NumOps = Ops.size();
1430 switch (Opcode) {
1431 default: break;
1432 case Instruction::And:
1433 case Instruction::Or:
1434 case Instruction::Xor:
1435 if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1436 return Result;
1437 break;
1438
1439 case Instruction::Add:
1440 if (Value *Result = OptimizeAdd(I, Ops))
1441 return Result;
1442 break;
1443
1444 case Instruction::Mul:
1445 if (Value *Result = OptimizeMul(I, Ops))
1446 return Result;
1447 break;
1448 }
1449
1450 if (Ops.size() != NumOps)
1451 return OptimizeExpression(I, Ops);
1452 return 0;
1453 }
1454
1455 /// EraseInst - Zap the given instruction, adding interesting operands to the
1456 /// work list.
1457 void Reassociate::EraseInst(Instruction *I) {
1458 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1459 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1460 // Erase the dead instruction.
1461 ValueRankMap.erase(I);
1462 RedoInsts.remove(I);
1463 I->eraseFromParent();
1464 // Optimize its operands.
1465 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
1466 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1467 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1468 // If this is a node in an expression tree, climb to the expression root
1469 // and add that since that's where optimization actually happens.
1470 unsigned Opcode = Op->getOpcode();
1471 while (Op->hasOneUse() && Op->use_back()->getOpcode() == Opcode &&
1472 Visited.insert(Op))
1473 Op = Op->use_back();
1474 RedoInsts.insert(Op);
1475 }
1476 }
1477
1478 /// OptimizeInst - Inspect and optimize the given instruction. Note that erasing
1479 /// instructions is not allowed.
1480 void Reassociate::OptimizeInst(Instruction *I) {
1481 // Only consider operations that we understand.
1482 if (!isa<BinaryOperator>(I))
1483 return;
1484
1485 if (I->getOpcode() == Instruction::Shl &&
1486 isa<ConstantInt>(I->getOperand(1)))
1487 // If an operand of this shift is a reassociable multiply, or if the shift
1488 // is used by a reassociable multiply or add, turn into a multiply.
1489 if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
1490 (I->hasOneUse() &&
1491 (isReassociableOp(I->use_back(), Instruction::Mul) ||
1492 isReassociableOp(I->use_back(), Instruction::Add)))) {
1493 Instruction *NI = ConvertShiftToMul(I);
1494 RedoInsts.insert(I);
1495 MadeChange = true;
1496 I = NI;
1497 }
1498
1499 // Floating point binary operators are not associative, but we can still
1500 // commute (some) of them, to canonicalize the order of their operands.
1501 // This can potentially expose more CSE opportunities, and makes writing
1502 // other transformations simpler.
1503 if ((I->getType()->isFloatingPointTy() || I->getType()->isVectorTy())) {
1504 // FAdd and FMul can be commuted.
1505 if (I->getOpcode() != Instruction::FMul &&
1506 I->getOpcode() != Instruction::FAdd)
1507 return;
1508
1509 Value *LHS = I->getOperand(0);
1510 Value *RHS = I->getOperand(1);
1511 unsigned LHSRank = getRank(LHS);
1512 unsigned RHSRank = getRank(RHS);
1513
1514 // Sort the operands by rank.
1515 if (RHSRank < LHSRank) {
1516 I->setOperand(0, RHS);
1517 I->setOperand(1, LHS);
1518 }
1519
1520 return;
1521 }
1522
1523 // Do not reassociate boolean (i1) expressions. We want to preserve the
1524 // original order of evaluation for short-circuited comparisons that
1525 // SimplifyCFG has folded to AND/OR expressions. If the expression
1526 // is not further optimized, it is likely to be transformed back to a
1527 // short-circuited form for code gen, and the source order may have been
1528 // optimized for the most likely conditions.
1529 if (I->getType()->isIntegerTy(1))
1530 return;
1531
1532 // If this is a subtract instruction which is not already in negate form,
1533 // see if we can convert it to X+-Y.
1534 if (I->getOpcode() == Instruction::Sub) {
1535 if (ShouldBreakUpSubtract(I)) {
1536 Instruction *NI = BreakUpSubtract(I);
1537 RedoInsts.insert(I);
1538 MadeChange = true;
1539 I = NI;
1540 } else if (BinaryOperator::isNeg(I)) {
1541 // Otherwise, this is a negation. See if the operand is a multiply tree
1542 // and if this is not an inner node of a multiply tree.
1543 if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
1544 (!I->hasOneUse() ||
1545 !isReassociableOp(I->use_back(), Instruction::Mul))) {
1546 Instruction *NI = LowerNegateToMultiply(I);
1547 RedoInsts.insert(I);
1548 MadeChange = true;
1549 I = NI;
1550 }
1551 }
1552 }
1553
1554 // If this instruction is an associative binary operator, process it.
1555 if (!I->isAssociative()) return;
1556 BinaryOperator *BO = cast<BinaryOperator>(I);
1557
1558 // If this is an interior node of a reassociable tree, ignore it until we
1559 // get to the root of the tree, to avoid N^2 analysis.
1560 unsigned Opcode = BO->getOpcode();
1561 if (BO->hasOneUse() && BO->use_back()->getOpcode() == Opcode)
1562 return;
1563
1564 // If this is an add tree that is used by a sub instruction, ignore it
1565 // until we process the subtract.
1566 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
1567 cast<Instruction>(BO->use_back())->getOpcode() == Instruction::Sub)
1568 return;
1569
1570 ReassociateExpression(BO);
1571 }
1572
1573 void Reassociate::ReassociateExpression(BinaryOperator *I) {
1574
1575 // First, walk the expression tree, linearizing the tree, collecting the
1576 // operand information.
1577 SmallVector<RepeatedValue, 8> Tree;
1578 MadeChange |= LinearizeExprTree(I, Tree);
1579 SmallVector<ValueEntry, 8> Ops;
1580 Ops.reserve(Tree.size());
1581 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1582 RepeatedValue E = Tree[i];
1583 Ops.append(E.second.getZExtValue(),
1584 ValueEntry(getRank(E.first), E.first));
1585 }
1586
1587 DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
1588
1589 // Now that we have linearized the tree to a list and have gathered all of
1590 // the operands and their ranks, sort the operands by their rank. Use a
1591 // stable_sort so that values with equal ranks will have their relative
1592 // positions maintained (and so the compiler is deterministic). Note that
1593 // this sorts so that the highest ranking values end up at the beginning of
1594 // the vector.
1595 std::stable_sort(Ops.begin(), Ops.end());
1596
1597 // OptimizeExpression - Now that we have the expression tree in a convenient
1598 // sorted form, optimize it globally if possible.
1599 if (Value *V = OptimizeExpression(I, Ops)) {
1600 if (V == I)
1601 // Self-referential expression in unreachable code.
1602 return;
1603 // This expression tree simplified to something that isn't a tree,
1604 // eliminate it.
1605 DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
1606 I->replaceAllUsesWith(V);
1607 if (Instruction *VI = dyn_cast<Instruction>(V))
1608 VI->setDebugLoc(I->getDebugLoc());
1609 RedoInsts.insert(I);
1610 ++NumAnnihil;
1611 return;
1612 }
1613
1614 // We want to sink immediates as deeply as possible except in the case where
1615 // this is a multiply tree used only by an add, and the immediate is a -1.
1616 // In this case we reassociate to put the negation on the outside so that we
1617 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
1618 if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
1619 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
1620 isa<ConstantInt>(Ops.back().Op) &&
1621 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
1622 ValueEntry Tmp = Ops.pop_back_val();
1623 Ops.insert(Ops.begin(), Tmp);
1624 }
1625
1626 DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
1627
1628 if (Ops.size() == 1) {
1629 if (Ops[0].Op == I)
1630 // Self-referential expression in unreachable code.
1631 return;
1632
1633 // This expression tree simplified to something that isn't a tree,
1634 // eliminate it.
1635 I->replaceAllUsesWith(Ops[0].Op);
1636 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
1637 OI->setDebugLoc(I->getDebugLoc());
1638 RedoInsts.insert(I);
1639 return;
1640 }
1641
1642 // Now that we ordered and optimized the expressions, splat them back into
1643 // the expression tree, removing any unneeded nodes.
1644 RewriteExprTree(I, Ops);
1645 }
1646
1647 bool Reassociate::runOnFunction(Function &F) {
1648 // Calculate the rank map for F
1649 BuildRankMap(F);
1650
1651 MadeChange = false;
1652 for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
1653 // Optimize every instruction in the basic block.
1654 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; )
1655 if (isInstructionTriviallyDead(II)) {
1656 EraseInst(II++);
1657 } else {
1658 OptimizeInst(II);
1659 assert(II->getParent() == BI && "Moved to a different block!");
1660 ++II;
1661 }
1662
1663 // If this produced extra instructions to optimize, handle them now.
1664 while (!RedoInsts.empty()) {
1665 Instruction *I = RedoInsts.pop_back_val();
1666 if (isInstructionTriviallyDead(I))
1667 EraseInst(I);
1668 else
1669 OptimizeInst(I);
1670 }
1671 }
1672
1673 // We are done with the rank map.
1674 RankMap.clear();
1675 ValueRankMap.clear();
1676
1677 return MadeChange;
1678 }