]> git.proxmox.com Git - rustc.git/blob - src/llvm/lib/Transforms/Scalar/Reassociate.cpp
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / lib / Transforms / Scalar / Reassociate.cpp
1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass reassociates commutative expressions in an order that is designed
11 // to promote better constant propagation, GCSE, LICM, PRE, etc.
12 //
13 // For example: 4 + (x + 5) -> x + (4 + 5)
14 //
15 // In the implementation of this algorithm, constants are assigned rank = 0,
16 // function arguments are rank = 1, and other values are assigned ranks
17 // corresponding to the reverse post order traversal of current function
18 // (starting at 2), which effectively gives values in deep loops higher rank
19 // than values not in loops.
20 //
21 //===----------------------------------------------------------------------===//
22
23 #include "llvm/Transforms/Scalar.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/PostOrderIterator.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SetVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/ValueHandle.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include "llvm/Transforms/Utils/Local.h"
41 #include <algorithm>
42 using namespace llvm;
43
44 #define DEBUG_TYPE "reassociate"
45
46 STATISTIC(NumChanged, "Number of insts reassociated");
47 STATISTIC(NumAnnihil, "Number of expr tree annihilated");
48 STATISTIC(NumFactor , "Number of multiplies factored");
49
50 namespace {
51 struct ValueEntry {
52 unsigned Rank;
53 Value *Op;
54 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
55 };
56 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
57 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
58 }
59 }
60
61 #ifndef NDEBUG
62 /// PrintOps - Print out the expression identified in the Ops list.
63 ///
64 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
65 Module *M = I->getParent()->getParent()->getParent();
66 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
67 << *Ops[0].Op->getType() << '\t';
68 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
69 dbgs() << "[ ";
70 Ops[i].Op->printAsOperand(dbgs(), false, M);
71 dbgs() << ", #" << Ops[i].Rank << "] ";
72 }
73 }
74 #endif
75
76 namespace {
77 /// \brief Utility class representing a base and exponent pair which form one
78 /// factor of some product.
79 struct Factor {
80 Value *Base;
81 unsigned Power;
82
83 Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {}
84
85 /// \brief Sort factors by their Base.
86 struct BaseSorter {
87 bool operator()(const Factor &LHS, const Factor &RHS) {
88 return LHS.Base < RHS.Base;
89 }
90 };
91
92 /// \brief Compare factors for equal bases.
93 struct BaseEqual {
94 bool operator()(const Factor &LHS, const Factor &RHS) {
95 return LHS.Base == RHS.Base;
96 }
97 };
98
99 /// \brief Sort factors in descending order by their power.
100 struct PowerDescendingSorter {
101 bool operator()(const Factor &LHS, const Factor &RHS) {
102 return LHS.Power > RHS.Power;
103 }
104 };
105
106 /// \brief Compare factors for equal powers.
107 struct PowerEqual {
108 bool operator()(const Factor &LHS, const Factor &RHS) {
109 return LHS.Power == RHS.Power;
110 }
111 };
112 };
113
114 /// Utility class representing a non-constant Xor-operand. We classify
115 /// non-constant Xor-Operands into two categories:
116 /// C1) The operand is in the form "X & C", where C is a constant and C != ~0
117 /// C2)
118 /// C2.1) The operand is in the form of "X | C", where C is a non-zero
119 /// constant.
120 /// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
121 /// operand as "E | 0"
122 class XorOpnd {
123 public:
124 XorOpnd(Value *V);
125
126 bool isInvalid() const { return SymbolicPart == nullptr; }
127 bool isOrExpr() const { return isOr; }
128 Value *getValue() const { return OrigVal; }
129 Value *getSymbolicPart() const { return SymbolicPart; }
130 unsigned getSymbolicRank() const { return SymbolicRank; }
131 const APInt &getConstPart() const { return ConstPart; }
132
133 void Invalidate() { SymbolicPart = OrigVal = nullptr; }
134 void setSymbolicRank(unsigned R) { SymbolicRank = R; }
135
136 // Sort the XorOpnd-Pointer in ascending order of symbolic-value-rank.
137 // The purpose is twofold:
138 // 1) Cluster together the operands sharing the same symbolic-value.
139 // 2) Operand having smaller symbolic-value-rank is permuted earlier, which
140 // could potentially shorten crital path, and expose more loop-invariants.
141 // Note that values' rank are basically defined in RPO order (FIXME).
142 // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
143 // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
144 // "z" in the order of X-Y-Z is better than any other orders.
145 struct PtrSortFunctor {
146 bool operator()(XorOpnd * const &LHS, XorOpnd * const &RHS) {
147 return LHS->getSymbolicRank() < RHS->getSymbolicRank();
148 }
149 };
150 private:
151 Value *OrigVal;
152 Value *SymbolicPart;
153 APInt ConstPart;
154 unsigned SymbolicRank;
155 bool isOr;
156 };
157 }
158
159 namespace {
160 class Reassociate : public FunctionPass {
161 DenseMap<BasicBlock*, unsigned> RankMap;
162 DenseMap<AssertingVH<Value>, unsigned> ValueRankMap;
163 SetVector<AssertingVH<Instruction> > RedoInsts;
164 bool MadeChange;
165 public:
166 static char ID; // Pass identification, replacement for typeid
167 Reassociate() : FunctionPass(ID) {
168 initializeReassociatePass(*PassRegistry::getPassRegistry());
169 }
170
171 bool runOnFunction(Function &F) override;
172
173 void getAnalysisUsage(AnalysisUsage &AU) const override {
174 AU.setPreservesCFG();
175 }
176 private:
177 void BuildRankMap(Function &F);
178 unsigned getRank(Value *V);
179 void canonicalizeOperands(Instruction *I);
180 void ReassociateExpression(BinaryOperator *I);
181 void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
182 Value *OptimizeExpression(BinaryOperator *I,
183 SmallVectorImpl<ValueEntry> &Ops);
184 Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
185 Value *OptimizeXor(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
186 bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, APInt &ConstOpnd,
187 Value *&Res);
188 bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
189 APInt &ConstOpnd, Value *&Res);
190 bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
191 SmallVectorImpl<Factor> &Factors);
192 Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder,
193 SmallVectorImpl<Factor> &Factors);
194 Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
195 Value *RemoveFactorFromExpression(Value *V, Value *Factor);
196 void EraseInst(Instruction *I);
197 void OptimizeInst(Instruction *I);
198 Instruction *canonicalizeNegConstExpr(Instruction *I);
199 };
200 }
201
202 XorOpnd::XorOpnd(Value *V) {
203 assert(!isa<ConstantInt>(V) && "No ConstantInt");
204 OrigVal = V;
205 Instruction *I = dyn_cast<Instruction>(V);
206 SymbolicRank = 0;
207
208 if (I && (I->getOpcode() == Instruction::Or ||
209 I->getOpcode() == Instruction::And)) {
210 Value *V0 = I->getOperand(0);
211 Value *V1 = I->getOperand(1);
212 if (isa<ConstantInt>(V0))
213 std::swap(V0, V1);
214
215 if (ConstantInt *C = dyn_cast<ConstantInt>(V1)) {
216 ConstPart = C->getValue();
217 SymbolicPart = V0;
218 isOr = (I->getOpcode() == Instruction::Or);
219 return;
220 }
221 }
222
223 // view the operand as "V | 0"
224 SymbolicPart = V;
225 ConstPart = APInt::getNullValue(V->getType()->getIntegerBitWidth());
226 isOr = true;
227 }
228
229 char Reassociate::ID = 0;
230 INITIALIZE_PASS(Reassociate, "reassociate",
231 "Reassociate expressions", false, false)
232
233 // Public interface to the Reassociate pass
234 FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
235
236 /// isReassociableOp - Return true if V is an instruction of the specified
237 /// opcode and if it only has one use.
238 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
239 if (V->hasOneUse() && isa<Instruction>(V) &&
240 cast<Instruction>(V)->getOpcode() == Opcode &&
241 (!isa<FPMathOperator>(V) ||
242 cast<Instruction>(V)->hasUnsafeAlgebra()))
243 return cast<BinaryOperator>(V);
244 return nullptr;
245 }
246
247 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
248 unsigned Opcode2) {
249 if (V->hasOneUse() && isa<Instruction>(V) &&
250 (cast<Instruction>(V)->getOpcode() == Opcode1 ||
251 cast<Instruction>(V)->getOpcode() == Opcode2) &&
252 (!isa<FPMathOperator>(V) ||
253 cast<Instruction>(V)->hasUnsafeAlgebra()))
254 return cast<BinaryOperator>(V);
255 return nullptr;
256 }
257
258 static bool isUnmovableInstruction(Instruction *I) {
259 switch (I->getOpcode()) {
260 case Instruction::PHI:
261 case Instruction::LandingPad:
262 case Instruction::Alloca:
263 case Instruction::Load:
264 case Instruction::Invoke:
265 case Instruction::UDiv:
266 case Instruction::SDiv:
267 case Instruction::FDiv:
268 case Instruction::URem:
269 case Instruction::SRem:
270 case Instruction::FRem:
271 return true;
272 case Instruction::Call:
273 return !isa<DbgInfoIntrinsic>(I);
274 default:
275 return false;
276 }
277 }
278
279 void Reassociate::BuildRankMap(Function &F) {
280 unsigned i = 2;
281
282 // Assign distinct ranks to function arguments.
283 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
284 ValueRankMap[&*I] = ++i;
285 DEBUG(dbgs() << "Calculated Rank[" << I->getName() << "] = " << i << "\n");
286 }
287
288 ReversePostOrderTraversal<Function*> RPOT(&F);
289 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
290 E = RPOT.end(); I != E; ++I) {
291 BasicBlock *BB = *I;
292 unsigned BBRank = RankMap[BB] = ++i << 16;
293
294 // Walk the basic block, adding precomputed ranks for any instructions that
295 // we cannot move. This ensures that the ranks for these instructions are
296 // all different in the block.
297 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
298 if (isUnmovableInstruction(I))
299 ValueRankMap[&*I] = ++BBRank;
300 }
301 }
302
303 unsigned Reassociate::getRank(Value *V) {
304 Instruction *I = dyn_cast<Instruction>(V);
305 if (!I) {
306 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument.
307 return 0; // Otherwise it's a global or constant, rank 0.
308 }
309
310 if (unsigned Rank = ValueRankMap[I])
311 return Rank; // Rank already known?
312
313 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
314 // we can reassociate expressions for code motion! Since we do not recurse
315 // for PHI nodes, we cannot have infinite recursion here, because there
316 // cannot be loops in the value graph that do not go through PHI nodes.
317 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
318 for (unsigned i = 0, e = I->getNumOperands();
319 i != e && Rank != MaxRank; ++i)
320 Rank = std::max(Rank, getRank(I->getOperand(i)));
321
322 // If this is a not or neg instruction, do not count it for rank. This
323 // assures us that X and ~X will have the same rank.
324 Type *Ty = V->getType();
325 if ((!Ty->isIntegerTy() && !Ty->isFloatingPointTy()) ||
326 (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I) &&
327 !BinaryOperator::isFNeg(I)))
328 ++Rank;
329
330 DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank << "\n");
331
332 return ValueRankMap[I] = Rank;
333 }
334
335 // Canonicalize constants to RHS. Otherwise, sort the operands by rank.
336 void Reassociate::canonicalizeOperands(Instruction *I) {
337 assert(isa<BinaryOperator>(I) && "Expected binary operator.");
338 assert(I->isCommutative() && "Expected commutative operator.");
339
340 Value *LHS = I->getOperand(0);
341 Value *RHS = I->getOperand(1);
342 unsigned LHSRank = getRank(LHS);
343 unsigned RHSRank = getRank(RHS);
344
345 if (isa<Constant>(RHS))
346 return;
347
348 if (isa<Constant>(LHS) || RHSRank < LHSRank)
349 cast<BinaryOperator>(I)->swapOperands();
350 }
351
352 static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
353 Instruction *InsertBefore, Value *FlagsOp) {
354 if (S1->getType()->isIntegerTy())
355 return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
356 else {
357 BinaryOperator *Res =
358 BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
359 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
360 return Res;
361 }
362 }
363
364 static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
365 Instruction *InsertBefore, Value *FlagsOp) {
366 if (S1->getType()->isIntegerTy())
367 return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
368 else {
369 BinaryOperator *Res =
370 BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
371 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
372 return Res;
373 }
374 }
375
376 static BinaryOperator *CreateNeg(Value *S1, const Twine &Name,
377 Instruction *InsertBefore, Value *FlagsOp) {
378 if (S1->getType()->isIntegerTy())
379 return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
380 else {
381 BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore);
382 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
383 return Res;
384 }
385 }
386
387 /// LowerNegateToMultiply - Replace 0-X with X*-1.
388 ///
389 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
390 Type *Ty = Neg->getType();
391 Constant *NegOne = Ty->isIntegerTy() ? ConstantInt::getAllOnesValue(Ty)
392 : ConstantFP::get(Ty, -1.0);
393
394 BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg);
395 Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op.
396 Res->takeName(Neg);
397 Neg->replaceAllUsesWith(Res);
398 Res->setDebugLoc(Neg->getDebugLoc());
399 return Res;
400 }
401
402 /// CarmichaelShift - Returns k such that lambda(2^Bitwidth) = 2^k, where lambda
403 /// is the Carmichael function. This means that x^(2^k) === 1 mod 2^Bitwidth for
404 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
405 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
406 /// even x in Bitwidth-bit arithmetic.
407 static unsigned CarmichaelShift(unsigned Bitwidth) {
408 if (Bitwidth < 3)
409 return Bitwidth - 1;
410 return Bitwidth - 2;
411 }
412
413 /// IncorporateWeight - Add the extra weight 'RHS' to the existing weight 'LHS',
414 /// reducing the combined weight using any special properties of the operation.
415 /// The existing weight LHS represents the computation X op X op ... op X where
416 /// X occurs LHS times. The combined weight represents X op X op ... op X with
417 /// X occurring LHS + RHS times. If op is "Xor" for example then the combined
418 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
419 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
420 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
421 // If we were working with infinite precision arithmetic then the combined
422 // weight would be LHS + RHS. But we are using finite precision arithmetic,
423 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
424 // for nilpotent operations and addition, but not for idempotent operations
425 // and multiplication), so it is important to correctly reduce the combined
426 // weight back into range if wrapping would be wrong.
427
428 // If RHS is zero then the weight didn't change.
429 if (RHS.isMinValue())
430 return;
431 // If LHS is zero then the combined weight is RHS.
432 if (LHS.isMinValue()) {
433 LHS = RHS;
434 return;
435 }
436 // From this point on we know that neither LHS nor RHS is zero.
437
438 if (Instruction::isIdempotent(Opcode)) {
439 // Idempotent means X op X === X, so any non-zero weight is equivalent to a
440 // weight of 1. Keeping weights at zero or one also means that wrapping is
441 // not a problem.
442 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
443 return; // Return a weight of 1.
444 }
445 if (Instruction::isNilpotent(Opcode)) {
446 // Nilpotent means X op X === 0, so reduce weights modulo 2.
447 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
448 LHS = 0; // 1 + 1 === 0 modulo 2.
449 return;
450 }
451 if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
452 // TODO: Reduce the weight by exploiting nsw/nuw?
453 LHS += RHS;
454 return;
455 }
456
457 assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
458 "Unknown associative operation!");
459 unsigned Bitwidth = LHS.getBitWidth();
460 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
461 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth
462 // bit number x, since either x is odd in which case x^CM = 1, or x is even in
463 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples
464 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
465 // which by a happy accident means that they can always be represented using
466 // Bitwidth bits.
467 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than
468 // the Carmichael number).
469 if (Bitwidth > 3) {
470 /// CM - The value of Carmichael's lambda function.
471 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
472 // Any weight W >= Threshold can be replaced with W - CM.
473 APInt Threshold = CM + Bitwidth;
474 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
475 // For Bitwidth 4 or more the following sum does not overflow.
476 LHS += RHS;
477 while (LHS.uge(Threshold))
478 LHS -= CM;
479 } else {
480 // To avoid problems with overflow do everything the same as above but using
481 // a larger type.
482 unsigned CM = 1U << CarmichaelShift(Bitwidth);
483 unsigned Threshold = CM + Bitwidth;
484 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
485 "Weights not reduced!");
486 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
487 while (Total >= Threshold)
488 Total -= CM;
489 LHS = Total;
490 }
491 }
492
493 typedef std::pair<Value*, APInt> RepeatedValue;
494
495 /// LinearizeExprTree - Given an associative binary expression, return the leaf
496 /// nodes in Ops along with their weights (how many times the leaf occurs). The
497 /// original expression is the same as
498 /// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times
499 /// op
500 /// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times
501 /// op
502 /// ...
503 /// op
504 /// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times
505 ///
506 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
507 ///
508 /// This routine may modify the function, in which case it returns 'true'. The
509 /// changes it makes may well be destructive, changing the value computed by 'I'
510 /// to something completely different. Thus if the routine returns 'true' then
511 /// you MUST either replace I with a new expression computed from the Ops array,
512 /// or use RewriteExprTree to put the values back in.
513 ///
514 /// A leaf node is either not a binary operation of the same kind as the root
515 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different
516 /// opcode), or is the same kind of binary operator but has a use which either
517 /// does not belong to the expression, or does belong to the expression but is
518 /// a leaf node. Every leaf node has at least one use that is a non-leaf node
519 /// of the expression, while for non-leaf nodes (except for the root 'I') every
520 /// use is a non-leaf node of the expression.
521 ///
522 /// For example:
523 /// expression graph node names
524 ///
525 /// + | I
526 /// / \ |
527 /// + + | A, B
528 /// / \ / \ |
529 /// * + * | C, D, E
530 /// / \ / \ / \ |
531 /// + * | F, G
532 ///
533 /// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in
534 /// that order) (C, 1), (E, 1), (F, 2), (G, 2).
535 ///
536 /// The expression is maximal: if some instruction is a binary operator of the
537 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
538 /// then the instruction also belongs to the expression, is not a leaf node of
539 /// it, and its operands also belong to the expression (but may be leaf nodes).
540 ///
541 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
542 /// order to ensure that every non-root node in the expression has *exactly one*
543 /// use by a non-leaf node of the expression. This destruction means that the
544 /// caller MUST either replace 'I' with a new expression or use something like
545 /// RewriteExprTree to put the values back in if the routine indicates that it
546 /// made a change by returning 'true'.
547 ///
548 /// In the above example either the right operand of A or the left operand of B
549 /// will be replaced by undef. If it is B's operand then this gives:
550 ///
551 /// + | I
552 /// / \ |
553 /// + + | A, B - operand of B replaced with undef
554 /// / \ \ |
555 /// * + * | C, D, E
556 /// / \ / \ / \ |
557 /// + * | F, G
558 ///
559 /// Note that such undef operands can only be reached by passing through 'I'.
560 /// For example, if you visit operands recursively starting from a leaf node
561 /// then you will never see such an undef operand unless you get back to 'I',
562 /// which requires passing through a phi node.
563 ///
564 /// Note that this routine may also mutate binary operators of the wrong type
565 /// that have all uses inside the expression (i.e. only used by non-leaf nodes
566 /// of the expression) if it can turn them into binary operators of the right
567 /// type and thus make the expression bigger.
568
569 static bool LinearizeExprTree(BinaryOperator *I,
570 SmallVectorImpl<RepeatedValue> &Ops) {
571 DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
572 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
573 unsigned Opcode = I->getOpcode();
574 assert(I->isAssociative() && I->isCommutative() &&
575 "Expected an associative and commutative operation!");
576
577 // Visit all operands of the expression, keeping track of their weight (the
578 // number of paths from the expression root to the operand, or if you like
579 // the number of times that operand occurs in the linearized expression).
580 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
581 // while A has weight two.
582
583 // Worklist of non-leaf nodes (their operands are in the expression too) along
584 // with their weights, representing a certain number of paths to the operator.
585 // If an operator occurs in the worklist multiple times then we found multiple
586 // ways to get to it.
587 SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
588 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
589 bool Changed = false;
590
591 // Leaves of the expression are values that either aren't the right kind of
592 // operation (eg: a constant, or a multiply in an add tree), or are, but have
593 // some uses that are not inside the expression. For example, in I = X + X,
594 // X = A + B, the value X has two uses (by I) that are in the expression. If
595 // X has any other uses, for example in a return instruction, then we consider
596 // X to be a leaf, and won't analyze it further. When we first visit a value,
597 // if it has more than one use then at first we conservatively consider it to
598 // be a leaf. Later, as the expression is explored, we may discover some more
599 // uses of the value from inside the expression. If all uses turn out to be
600 // from within the expression (and the value is a binary operator of the right
601 // kind) then the value is no longer considered to be a leaf, and its operands
602 // are explored.
603
604 // Leaves - Keeps track of the set of putative leaves as well as the number of
605 // paths to each leaf seen so far.
606 typedef DenseMap<Value*, APInt> LeafMap;
607 LeafMap Leaves; // Leaf -> Total weight so far.
608 SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order.
609
610 #ifndef NDEBUG
611 SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme.
612 #endif
613 while (!Worklist.empty()) {
614 std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
615 I = P.first; // We examine the operands of this binary operator.
616
617 for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
618 Value *Op = I->getOperand(OpIdx);
619 APInt Weight = P.second; // Number of paths to this operand.
620 DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
621 assert(!Op->use_empty() && "No uses, so how did we get to it?!");
622
623 // If this is a binary operation of the right kind with only one use then
624 // add its operands to the expression.
625 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
626 assert(Visited.insert(Op).second && "Not first visit!");
627 DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
628 Worklist.push_back(std::make_pair(BO, Weight));
629 continue;
630 }
631
632 // Appears to be a leaf. Is the operand already in the set of leaves?
633 LeafMap::iterator It = Leaves.find(Op);
634 if (It == Leaves.end()) {
635 // Not in the leaf map. Must be the first time we saw this operand.
636 assert(Visited.insert(Op).second && "Not first visit!");
637 if (!Op->hasOneUse()) {
638 // This value has uses not accounted for by the expression, so it is
639 // not safe to modify. Mark it as being a leaf.
640 DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
641 LeafOrder.push_back(Op);
642 Leaves[Op] = Weight;
643 continue;
644 }
645 // No uses outside the expression, try morphing it.
646 } else if (It != Leaves.end()) {
647 // Already in the leaf map.
648 assert(Visited.count(Op) && "In leaf map but not visited!");
649
650 // Update the number of paths to the leaf.
651 IncorporateWeight(It->second, Weight, Opcode);
652
653 #if 0 // TODO: Re-enable once PR13021 is fixed.
654 // The leaf already has one use from inside the expression. As we want
655 // exactly one such use, drop this new use of the leaf.
656 assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
657 I->setOperand(OpIdx, UndefValue::get(I->getType()));
658 Changed = true;
659
660 // If the leaf is a binary operation of the right kind and we now see
661 // that its multiple original uses were in fact all by nodes belonging
662 // to the expression, then no longer consider it to be a leaf and add
663 // its operands to the expression.
664 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
665 DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
666 Worklist.push_back(std::make_pair(BO, It->second));
667 Leaves.erase(It);
668 continue;
669 }
670 #endif
671
672 // If we still have uses that are not accounted for by the expression
673 // then it is not safe to modify the value.
674 if (!Op->hasOneUse())
675 continue;
676
677 // No uses outside the expression, try morphing it.
678 Weight = It->second;
679 Leaves.erase(It); // Since the value may be morphed below.
680 }
681
682 // At this point we have a value which, first of all, is not a binary
683 // expression of the right kind, and secondly, is only used inside the
684 // expression. This means that it can safely be modified. See if we
685 // can usefully morph it into an expression of the right kind.
686 assert((!isa<Instruction>(Op) ||
687 cast<Instruction>(Op)->getOpcode() != Opcode
688 || (isa<FPMathOperator>(Op) &&
689 !cast<Instruction>(Op)->hasUnsafeAlgebra())) &&
690 "Should have been handled above!");
691 assert(Op->hasOneUse() && "Has uses outside the expression tree!");
692
693 // If this is a multiply expression, turn any internal negations into
694 // multiplies by -1 so they can be reassociated.
695 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op))
696 if ((Opcode == Instruction::Mul && BinaryOperator::isNeg(BO)) ||
697 (Opcode == Instruction::FMul && BinaryOperator::isFNeg(BO))) {
698 DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
699 BO = LowerNegateToMultiply(BO);
700 DEBUG(dbgs() << *BO << '\n');
701 Worklist.push_back(std::make_pair(BO, Weight));
702 Changed = true;
703 continue;
704 }
705
706 // Failed to morph into an expression of the right type. This really is
707 // a leaf.
708 DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
709 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
710 LeafOrder.push_back(Op);
711 Leaves[Op] = Weight;
712 }
713 }
714
715 // The leaves, repeated according to their weights, represent the linearized
716 // form of the expression.
717 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
718 Value *V = LeafOrder[i];
719 LeafMap::iterator It = Leaves.find(V);
720 if (It == Leaves.end())
721 // Node initially thought to be a leaf wasn't.
722 continue;
723 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
724 APInt Weight = It->second;
725 if (Weight.isMinValue())
726 // Leaf already output or weight reduction eliminated it.
727 continue;
728 // Ensure the leaf is only output once.
729 It->second = 0;
730 Ops.push_back(std::make_pair(V, Weight));
731 }
732
733 // For nilpotent operations or addition there may be no operands, for example
734 // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
735 // in both cases the weight reduces to 0 causing the value to be skipped.
736 if (Ops.empty()) {
737 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
738 assert(Identity && "Associative operation without identity!");
739 Ops.push_back(std::make_pair(Identity, APInt(Bitwidth, 1)));
740 }
741
742 return Changed;
743 }
744
745 // RewriteExprTree - Now that the operands for this expression tree are
746 // linearized and optimized, emit them in-order.
747 void Reassociate::RewriteExprTree(BinaryOperator *I,
748 SmallVectorImpl<ValueEntry> &Ops) {
749 assert(Ops.size() > 1 && "Single values should be used directly!");
750
751 // Since our optimizations should never increase the number of operations, the
752 // new expression can usually be written reusing the existing binary operators
753 // from the original expression tree, without creating any new instructions,
754 // though the rewritten expression may have a completely different topology.
755 // We take care to not change anything if the new expression will be the same
756 // as the original. If more than trivial changes (like commuting operands)
757 // were made then we are obliged to clear out any optional subclass data like
758 // nsw flags.
759
760 /// NodesToRewrite - Nodes from the original expression available for writing
761 /// the new expression into.
762 SmallVector<BinaryOperator*, 8> NodesToRewrite;
763 unsigned Opcode = I->getOpcode();
764 BinaryOperator *Op = I;
765
766 /// NotRewritable - The operands being written will be the leaves of the new
767 /// expression and must not be used as inner nodes (via NodesToRewrite) by
768 /// mistake. Inner nodes are always reassociable, and usually leaves are not
769 /// (if they were they would have been incorporated into the expression and so
770 /// would not be leaves), so most of the time there is no danger of this. But
771 /// in rare cases a leaf may become reassociable if an optimization kills uses
772 /// of it, or it may momentarily become reassociable during rewriting (below)
773 /// due it being removed as an operand of one of its uses. Ensure that misuse
774 /// of leaf nodes as inner nodes cannot occur by remembering all of the future
775 /// leaves and refusing to reuse any of them as inner nodes.
776 SmallPtrSet<Value*, 8> NotRewritable;
777 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
778 NotRewritable.insert(Ops[i].Op);
779
780 // ExpressionChanged - Non-null if the rewritten expression differs from the
781 // original in some non-trivial way, requiring the clearing of optional flags.
782 // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
783 BinaryOperator *ExpressionChanged = nullptr;
784 for (unsigned i = 0; ; ++i) {
785 // The last operation (which comes earliest in the IR) is special as both
786 // operands will come from Ops, rather than just one with the other being
787 // a subexpression.
788 if (i+2 == Ops.size()) {
789 Value *NewLHS = Ops[i].Op;
790 Value *NewRHS = Ops[i+1].Op;
791 Value *OldLHS = Op->getOperand(0);
792 Value *OldRHS = Op->getOperand(1);
793
794 if (NewLHS == OldLHS && NewRHS == OldRHS)
795 // Nothing changed, leave it alone.
796 break;
797
798 if (NewLHS == OldRHS && NewRHS == OldLHS) {
799 // The order of the operands was reversed. Swap them.
800 DEBUG(dbgs() << "RA: " << *Op << '\n');
801 Op->swapOperands();
802 DEBUG(dbgs() << "TO: " << *Op << '\n');
803 MadeChange = true;
804 ++NumChanged;
805 break;
806 }
807
808 // The new operation differs non-trivially from the original. Overwrite
809 // the old operands with the new ones.
810 DEBUG(dbgs() << "RA: " << *Op << '\n');
811 if (NewLHS != OldLHS) {
812 BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
813 if (BO && !NotRewritable.count(BO))
814 NodesToRewrite.push_back(BO);
815 Op->setOperand(0, NewLHS);
816 }
817 if (NewRHS != OldRHS) {
818 BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
819 if (BO && !NotRewritable.count(BO))
820 NodesToRewrite.push_back(BO);
821 Op->setOperand(1, NewRHS);
822 }
823 DEBUG(dbgs() << "TO: " << *Op << '\n');
824
825 ExpressionChanged = Op;
826 MadeChange = true;
827 ++NumChanged;
828
829 break;
830 }
831
832 // Not the last operation. The left-hand side will be a sub-expression
833 // while the right-hand side will be the current element of Ops.
834 Value *NewRHS = Ops[i].Op;
835 if (NewRHS != Op->getOperand(1)) {
836 DEBUG(dbgs() << "RA: " << *Op << '\n');
837 if (NewRHS == Op->getOperand(0)) {
838 // The new right-hand side was already present as the left operand. If
839 // we are lucky then swapping the operands will sort out both of them.
840 Op->swapOperands();
841 } else {
842 // Overwrite with the new right-hand side.
843 BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
844 if (BO && !NotRewritable.count(BO))
845 NodesToRewrite.push_back(BO);
846 Op->setOperand(1, NewRHS);
847 ExpressionChanged = Op;
848 }
849 DEBUG(dbgs() << "TO: " << *Op << '\n');
850 MadeChange = true;
851 ++NumChanged;
852 }
853
854 // Now deal with the left-hand side. If this is already an operation node
855 // from the original expression then just rewrite the rest of the expression
856 // into it.
857 BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
858 if (BO && !NotRewritable.count(BO)) {
859 Op = BO;
860 continue;
861 }
862
863 // Otherwise, grab a spare node from the original expression and use that as
864 // the left-hand side. If there are no nodes left then the optimizers made
865 // an expression with more nodes than the original! This usually means that
866 // they did something stupid but it might mean that the problem was just too
867 // hard (finding the mimimal number of multiplications needed to realize a
868 // multiplication expression is NP-complete). Whatever the reason, smart or
869 // stupid, create a new node if there are none left.
870 BinaryOperator *NewOp;
871 if (NodesToRewrite.empty()) {
872 Constant *Undef = UndefValue::get(I->getType());
873 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
874 Undef, Undef, "", I);
875 if (NewOp->getType()->isFloatingPointTy())
876 NewOp->setFastMathFlags(I->getFastMathFlags());
877 } else {
878 NewOp = NodesToRewrite.pop_back_val();
879 }
880
881 DEBUG(dbgs() << "RA: " << *Op << '\n');
882 Op->setOperand(0, NewOp);
883 DEBUG(dbgs() << "TO: " << *Op << '\n');
884 ExpressionChanged = Op;
885 MadeChange = true;
886 ++NumChanged;
887 Op = NewOp;
888 }
889
890 // If the expression changed non-trivially then clear out all subclass data
891 // starting from the operator specified in ExpressionChanged, and compactify
892 // the operators to just before the expression root to guarantee that the
893 // expression tree is dominated by all of Ops.
894 if (ExpressionChanged)
895 do {
896 // Preserve FastMathFlags.
897 if (isa<FPMathOperator>(I)) {
898 FastMathFlags Flags = I->getFastMathFlags();
899 ExpressionChanged->clearSubclassOptionalData();
900 ExpressionChanged->setFastMathFlags(Flags);
901 } else
902 ExpressionChanged->clearSubclassOptionalData();
903
904 if (ExpressionChanged == I)
905 break;
906 ExpressionChanged->moveBefore(I);
907 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
908 } while (1);
909
910 // Throw away any left over nodes from the original expression.
911 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
912 RedoInsts.insert(NodesToRewrite[i]);
913 }
914
915 /// NegateValue - Insert instructions before the instruction pointed to by BI,
916 /// that computes the negative version of the value specified. The negative
917 /// version of the value is returned, and BI is left pointing at the instruction
918 /// that should be processed next by the reassociation pass.
919 static Value *NegateValue(Value *V, Instruction *BI) {
920 if (ConstantFP *C = dyn_cast<ConstantFP>(V))
921 return ConstantExpr::getFNeg(C);
922 if (Constant *C = dyn_cast<Constant>(V))
923 return ConstantExpr::getNeg(C);
924
925 // We are trying to expose opportunity for reassociation. One of the things
926 // that we want to do to achieve this is to push a negation as deep into an
927 // expression chain as possible, to expose the add instructions. In practice,
928 // this means that we turn this:
929 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
930 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
931 // the constants. We assume that instcombine will clean up the mess later if
932 // we introduce tons of unnecessary negation instructions.
933 //
934 if (BinaryOperator *I =
935 isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
936 // Push the negates through the add.
937 I->setOperand(0, NegateValue(I->getOperand(0), BI));
938 I->setOperand(1, NegateValue(I->getOperand(1), BI));
939
940 // We must move the add instruction here, because the neg instructions do
941 // not dominate the old add instruction in general. By moving it, we are
942 // assured that the neg instructions we just inserted dominate the
943 // instruction we are about to insert after them.
944 //
945 I->moveBefore(BI);
946 I->setName(I->getName()+".neg");
947 return I;
948 }
949
950 // Okay, we need to materialize a negated version of V with an instruction.
951 // Scan the use lists of V to see if we have one already.
952 for (User *U : V->users()) {
953 if (!BinaryOperator::isNeg(U) && !BinaryOperator::isFNeg(U))
954 continue;
955
956 // We found one! Now we have to make sure that the definition dominates
957 // this use. We do this by moving it to the entry block (if it is a
958 // non-instruction value) or right after the definition. These negates will
959 // be zapped by reassociate later, so we don't need much finesse here.
960 BinaryOperator *TheNeg = cast<BinaryOperator>(U);
961
962 // Verify that the negate is in this function, V might be a constant expr.
963 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
964 continue;
965
966 BasicBlock::iterator InsertPt;
967 if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
968 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
969 InsertPt = II->getNormalDest()->begin();
970 } else {
971 InsertPt = InstInput;
972 ++InsertPt;
973 }
974 while (isa<PHINode>(InsertPt)) ++InsertPt;
975 } else {
976 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
977 }
978 TheNeg->moveBefore(InsertPt);
979 return TheNeg;
980 }
981
982 // Insert a 'neg' instruction that subtracts the value from zero to get the
983 // negation.
984 return CreateNeg(V, V->getName() + ".neg", BI, BI);
985 }
986
987 /// ShouldBreakUpSubtract - Return true if we should break up this subtract of
988 /// X-Y into (X + -Y).
989 static bool ShouldBreakUpSubtract(Instruction *Sub) {
990 // If this is a negation, we can't split it up!
991 if (BinaryOperator::isNeg(Sub) || BinaryOperator::isFNeg(Sub))
992 return false;
993
994 // Don't breakup X - undef.
995 if (isa<UndefValue>(Sub->getOperand(1)))
996 return false;
997
998 // Don't bother to break this up unless either the LHS is an associable add or
999 // subtract or if this is only used by one.
1000 Value *V0 = Sub->getOperand(0);
1001 if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
1002 isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
1003 return true;
1004 Value *V1 = Sub->getOperand(1);
1005 if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
1006 isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
1007 return true;
1008 Value *VB = Sub->user_back();
1009 if (Sub->hasOneUse() &&
1010 (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
1011 isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
1012 return true;
1013
1014 return false;
1015 }
1016
1017 /// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
1018 /// only used by an add, transform this into (X+(0-Y)) to promote better
1019 /// reassociation.
1020 static BinaryOperator *BreakUpSubtract(Instruction *Sub) {
1021 // Convert a subtract into an add and a neg instruction. This allows sub
1022 // instructions to be commuted with other add instructions.
1023 //
1024 // Calculate the negative value of Operand 1 of the sub instruction,
1025 // and set it as the RHS of the add instruction we just made.
1026 //
1027 Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
1028 BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub);
1029 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
1030 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
1031 New->takeName(Sub);
1032
1033 // Everyone now refers to the add instruction.
1034 Sub->replaceAllUsesWith(New);
1035 New->setDebugLoc(Sub->getDebugLoc());
1036
1037 DEBUG(dbgs() << "Negated: " << *New << '\n');
1038 return New;
1039 }
1040
1041 /// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
1042 /// by one, change this into a multiply by a constant to assist with further
1043 /// reassociation.
1044 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
1045 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
1046 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
1047
1048 BinaryOperator *Mul =
1049 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
1050 Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
1051 Mul->takeName(Shl);
1052
1053 // Everyone now refers to the mul instruction.
1054 Shl->replaceAllUsesWith(Mul);
1055 Mul->setDebugLoc(Shl->getDebugLoc());
1056
1057 // We can safely preserve the nuw flag in all cases. It's also safe to turn a
1058 // nuw nsw shl into a nuw nsw mul. However, nsw in isolation requires special
1059 // handling.
1060 bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap();
1061 bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap();
1062 if (NSW && NUW)
1063 Mul->setHasNoSignedWrap(true);
1064 Mul->setHasNoUnsignedWrap(NUW);
1065 return Mul;
1066 }
1067
1068 /// FindInOperandList - Scan backwards and forwards among values with the same
1069 /// rank as element i to see if X exists. If X does not exist, return i. This
1070 /// is useful when scanning for 'x' when we see '-x' because they both get the
1071 /// same rank.
1072 static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
1073 Value *X) {
1074 unsigned XRank = Ops[i].Rank;
1075 unsigned e = Ops.size();
1076 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
1077 if (Ops[j].Op == X)
1078 return j;
1079 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
1080 if (Instruction *I2 = dyn_cast<Instruction>(X))
1081 if (I1->isIdenticalTo(I2))
1082 return j;
1083 }
1084 // Scan backwards.
1085 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
1086 if (Ops[j].Op == X)
1087 return j;
1088 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
1089 if (Instruction *I2 = dyn_cast<Instruction>(X))
1090 if (I1->isIdenticalTo(I2))
1091 return j;
1092 }
1093 return i;
1094 }
1095
1096 /// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
1097 /// and returning the result. Insert the tree before I.
1098 static Value *EmitAddTreeOfValues(Instruction *I,
1099 SmallVectorImpl<WeakVH> &Ops){
1100 if (Ops.size() == 1) return Ops.back();
1101
1102 Value *V1 = Ops.back();
1103 Ops.pop_back();
1104 Value *V2 = EmitAddTreeOfValues(I, Ops);
1105 return CreateAdd(V2, V1, "tmp", I, I);
1106 }
1107
1108 /// RemoveFactorFromExpression - If V is an expression tree that is a
1109 /// multiplication sequence, and if this sequence contains a multiply by Factor,
1110 /// remove Factor from the tree and return the new tree.
1111 Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
1112 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1113 if (!BO)
1114 return nullptr;
1115
1116 SmallVector<RepeatedValue, 8> Tree;
1117 MadeChange |= LinearizeExprTree(BO, Tree);
1118 SmallVector<ValueEntry, 8> Factors;
1119 Factors.reserve(Tree.size());
1120 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1121 RepeatedValue E = Tree[i];
1122 Factors.append(E.second.getZExtValue(),
1123 ValueEntry(getRank(E.first), E.first));
1124 }
1125
1126 bool FoundFactor = false;
1127 bool NeedsNegate = false;
1128 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1129 if (Factors[i].Op == Factor) {
1130 FoundFactor = true;
1131 Factors.erase(Factors.begin()+i);
1132 break;
1133 }
1134
1135 // If this is a negative version of this factor, remove it.
1136 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
1137 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
1138 if (FC1->getValue() == -FC2->getValue()) {
1139 FoundFactor = NeedsNegate = true;
1140 Factors.erase(Factors.begin()+i);
1141 break;
1142 }
1143 } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
1144 if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
1145 APFloat F1(FC1->getValueAPF());
1146 APFloat F2(FC2->getValueAPF());
1147 F2.changeSign();
1148 if (F1.compare(F2) == APFloat::cmpEqual) {
1149 FoundFactor = NeedsNegate = true;
1150 Factors.erase(Factors.begin() + i);
1151 break;
1152 }
1153 }
1154 }
1155 }
1156
1157 if (!FoundFactor) {
1158 // Make sure to restore the operands to the expression tree.
1159 RewriteExprTree(BO, Factors);
1160 return nullptr;
1161 }
1162
1163 BasicBlock::iterator InsertPt = BO; ++InsertPt;
1164
1165 // If this was just a single multiply, remove the multiply and return the only
1166 // remaining operand.
1167 if (Factors.size() == 1) {
1168 RedoInsts.insert(BO);
1169 V = Factors[0].Op;
1170 } else {
1171 RewriteExprTree(BO, Factors);
1172 V = BO;
1173 }
1174
1175 if (NeedsNegate)
1176 V = CreateNeg(V, "neg", InsertPt, BO);
1177
1178 return V;
1179 }
1180
1181 /// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
1182 /// add its operands as factors, otherwise add V to the list of factors.
1183 ///
1184 /// Ops is the top-level list of add operands we're trying to factor.
1185 static void FindSingleUseMultiplyFactors(Value *V,
1186 SmallVectorImpl<Value*> &Factors,
1187 const SmallVectorImpl<ValueEntry> &Ops) {
1188 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1189 if (!BO) {
1190 Factors.push_back(V);
1191 return;
1192 }
1193
1194 // Otherwise, add the LHS and RHS to the list of factors.
1195 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops);
1196 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops);
1197 }
1198
1199 /// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
1200 /// instruction. This optimizes based on identities. If it can be reduced to
1201 /// a single Value, it is returned, otherwise the Ops list is mutated as
1202 /// necessary.
1203 static Value *OptimizeAndOrXor(unsigned Opcode,
1204 SmallVectorImpl<ValueEntry> &Ops) {
1205 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1206 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1207 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1208 // First, check for X and ~X in the operand list.
1209 assert(i < Ops.size());
1210 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
1211 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
1212 unsigned FoundX = FindInOperandList(Ops, i, X);
1213 if (FoundX != i) {
1214 if (Opcode == Instruction::And) // ...&X&~X = 0
1215 return Constant::getNullValue(X->getType());
1216
1217 if (Opcode == Instruction::Or) // ...|X|~X = -1
1218 return Constant::getAllOnesValue(X->getType());
1219 }
1220 }
1221
1222 // Next, check for duplicate pairs of values, which we assume are next to
1223 // each other, due to our sorting criteria.
1224 assert(i < Ops.size());
1225 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1226 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
1227 // Drop duplicate values for And and Or.
1228 Ops.erase(Ops.begin()+i);
1229 --i; --e;
1230 ++NumAnnihil;
1231 continue;
1232 }
1233
1234 // Drop pairs of values for Xor.
1235 assert(Opcode == Instruction::Xor);
1236 if (e == 2)
1237 return Constant::getNullValue(Ops[0].Op->getType());
1238
1239 // Y ^ X^X -> Y
1240 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1241 i -= 1; e -= 2;
1242 ++NumAnnihil;
1243 }
1244 }
1245 return nullptr;
1246 }
1247
1248 /// Helper funciton of CombineXorOpnd(). It creates a bitwise-and
1249 /// instruction with the given two operands, and return the resulting
1250 /// instruction. There are two special cases: 1) if the constant operand is 0,
1251 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1252 /// be returned.
1253 static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
1254 const APInt &ConstOpnd) {
1255 if (ConstOpnd != 0) {
1256 if (!ConstOpnd.isAllOnesValue()) {
1257 LLVMContext &Ctx = Opnd->getType()->getContext();
1258 Instruction *I;
1259 I = BinaryOperator::CreateAnd(Opnd, ConstantInt::get(Ctx, ConstOpnd),
1260 "and.ra", InsertBefore);
1261 I->setDebugLoc(InsertBefore->getDebugLoc());
1262 return I;
1263 }
1264 return Opnd;
1265 }
1266 return nullptr;
1267 }
1268
1269 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1270 // into "R ^ C", where C would be 0, and R is a symbolic value.
1271 //
1272 // If it was successful, true is returned, and the "R" and "C" is returned
1273 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1274 // and both "Res" and "ConstOpnd" remain unchanged.
1275 //
1276 bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1277 APInt &ConstOpnd, Value *&Res) {
1278 // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
1279 // = ((x | c1) ^ c1) ^ (c1 ^ c2)
1280 // = (x & ~c1) ^ (c1 ^ c2)
1281 // It is useful only when c1 == c2.
1282 if (Opnd1->isOrExpr() && Opnd1->getConstPart() != 0) {
1283 if (!Opnd1->getValue()->hasOneUse())
1284 return false;
1285
1286 const APInt &C1 = Opnd1->getConstPart();
1287 if (C1 != ConstOpnd)
1288 return false;
1289
1290 Value *X = Opnd1->getSymbolicPart();
1291 Res = createAndInstr(I, X, ~C1);
1292 // ConstOpnd was C2, now C1 ^ C2.
1293 ConstOpnd ^= C1;
1294
1295 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1296 RedoInsts.insert(T);
1297 return true;
1298 }
1299 return false;
1300 }
1301
1302
1303 // Helper function of OptimizeXor(). It tries to simplify
1304 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
1305 // symbolic value.
1306 //
1307 // If it was successful, true is returned, and the "R" and "C" is returned
1308 // via "Res" and "ConstOpnd", respectively (If the entire expression is
1309 // evaluated to a constant, the Res is set to NULL); otherwise, false is
1310 // returned, and both "Res" and "ConstOpnd" remain unchanged.
1311 bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
1312 APInt &ConstOpnd, Value *&Res) {
1313 Value *X = Opnd1->getSymbolicPart();
1314 if (X != Opnd2->getSymbolicPart())
1315 return false;
1316
1317 // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1318 int DeadInstNum = 1;
1319 if (Opnd1->getValue()->hasOneUse())
1320 DeadInstNum++;
1321 if (Opnd2->getValue()->hasOneUse())
1322 DeadInstNum++;
1323
1324 // Xor-Rule 2:
1325 // (x | c1) ^ (x & c2)
1326 // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1327 // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1
1328 // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3
1329 //
1330 if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
1331 if (Opnd2->isOrExpr())
1332 std::swap(Opnd1, Opnd2);
1333
1334 const APInt &C1 = Opnd1->getConstPart();
1335 const APInt &C2 = Opnd2->getConstPart();
1336 APInt C3((~C1) ^ C2);
1337
1338 // Do not increase code size!
1339 if (C3 != 0 && !C3.isAllOnesValue()) {
1340 int NewInstNum = ConstOpnd != 0 ? 1 : 2;
1341 if (NewInstNum > DeadInstNum)
1342 return false;
1343 }
1344
1345 Res = createAndInstr(I, X, C3);
1346 ConstOpnd ^= C1;
1347
1348 } else if (Opnd1->isOrExpr()) {
1349 // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1350 //
1351 const APInt &C1 = Opnd1->getConstPart();
1352 const APInt &C2 = Opnd2->getConstPart();
1353 APInt C3 = C1 ^ C2;
1354
1355 // Do not increase code size
1356 if (C3 != 0 && !C3.isAllOnesValue()) {
1357 int NewInstNum = ConstOpnd != 0 ? 1 : 2;
1358 if (NewInstNum > DeadInstNum)
1359 return false;
1360 }
1361
1362 Res = createAndInstr(I, X, C3);
1363 ConstOpnd ^= C3;
1364 } else {
1365 // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1366 //
1367 const APInt &C1 = Opnd1->getConstPart();
1368 const APInt &C2 = Opnd2->getConstPart();
1369 APInt C3 = C1 ^ C2;
1370 Res = createAndInstr(I, X, C3);
1371 }
1372
1373 // Put the original operands in the Redo list; hope they will be deleted
1374 // as dead code.
1375 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1376 RedoInsts.insert(T);
1377 if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
1378 RedoInsts.insert(T);
1379
1380 return true;
1381 }
1382
1383 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1384 /// to a single Value, it is returned, otherwise the Ops list is mutated as
1385 /// necessary.
1386 Value *Reassociate::OptimizeXor(Instruction *I,
1387 SmallVectorImpl<ValueEntry> &Ops) {
1388 if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
1389 return V;
1390
1391 if (Ops.size() == 1)
1392 return nullptr;
1393
1394 SmallVector<XorOpnd, 8> Opnds;
1395 SmallVector<XorOpnd*, 8> OpndPtrs;
1396 Type *Ty = Ops[0].Op->getType();
1397 APInt ConstOpnd(Ty->getIntegerBitWidth(), 0);
1398
1399 // Step 1: Convert ValueEntry to XorOpnd
1400 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1401 Value *V = Ops[i].Op;
1402 if (!isa<ConstantInt>(V)) {
1403 XorOpnd O(V);
1404 O.setSymbolicRank(getRank(O.getSymbolicPart()));
1405 Opnds.push_back(O);
1406 } else
1407 ConstOpnd ^= cast<ConstantInt>(V)->getValue();
1408 }
1409
1410 // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1411 // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1412 // the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1413 // with the previous loop --- the iterator of the "Opnds" may be invalidated
1414 // when new elements are added to the vector.
1415 for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
1416 OpndPtrs.push_back(&Opnds[i]);
1417
1418 // Step 2: Sort the Xor-Operands in a way such that the operands containing
1419 // the same symbolic value cluster together. For instance, the input operand
1420 // sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1421 // ("x | 123", "x & 789", "y & 456").
1422 std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(), XorOpnd::PtrSortFunctor());
1423
1424 // Step 3: Combine adjacent operands
1425 XorOpnd *PrevOpnd = nullptr;
1426 bool Changed = false;
1427 for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
1428 XorOpnd *CurrOpnd = OpndPtrs[i];
1429 // The combined value
1430 Value *CV;
1431
1432 // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
1433 if (ConstOpnd != 0 && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
1434 Changed = true;
1435 if (CV)
1436 *CurrOpnd = XorOpnd(CV);
1437 else {
1438 CurrOpnd->Invalidate();
1439 continue;
1440 }
1441 }
1442
1443 if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
1444 PrevOpnd = CurrOpnd;
1445 continue;
1446 }
1447
1448 // step 3.2: When previous and current operands share the same symbolic
1449 // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
1450 //
1451 if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
1452 // Remove previous operand
1453 PrevOpnd->Invalidate();
1454 if (CV) {
1455 *CurrOpnd = XorOpnd(CV);
1456 PrevOpnd = CurrOpnd;
1457 } else {
1458 CurrOpnd->Invalidate();
1459 PrevOpnd = nullptr;
1460 }
1461 Changed = true;
1462 }
1463 }
1464
1465 // Step 4: Reassemble the Ops
1466 if (Changed) {
1467 Ops.clear();
1468 for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
1469 XorOpnd &O = Opnds[i];
1470 if (O.isInvalid())
1471 continue;
1472 ValueEntry VE(getRank(O.getValue()), O.getValue());
1473 Ops.push_back(VE);
1474 }
1475 if (ConstOpnd != 0) {
1476 Value *C = ConstantInt::get(Ty->getContext(), ConstOpnd);
1477 ValueEntry VE(getRank(C), C);
1478 Ops.push_back(VE);
1479 }
1480 int Sz = Ops.size();
1481 if (Sz == 1)
1482 return Ops.back().Op;
1483 else if (Sz == 0) {
1484 assert(ConstOpnd == 0);
1485 return ConstantInt::get(Ty->getContext(), ConstOpnd);
1486 }
1487 }
1488
1489 return nullptr;
1490 }
1491
1492 /// OptimizeAdd - Optimize a series of operands to an 'add' instruction. This
1493 /// optimizes based on identities. If it can be reduced to a single Value, it
1494 /// is returned, otherwise the Ops list is mutated as necessary.
1495 Value *Reassociate::OptimizeAdd(Instruction *I,
1496 SmallVectorImpl<ValueEntry> &Ops) {
1497 // Scan the operand lists looking for X and -X pairs. If we find any, we
1498 // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it,
1499 // scan for any
1500 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
1501
1502 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1503 Value *TheOp = Ops[i].Op;
1504 // Check to see if we've seen this operand before. If so, we factor all
1505 // instances of the operand together. Due to our sorting criteria, we know
1506 // that these need to be next to each other in the vector.
1507 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1508 // Rescan the list, remove all instances of this operand from the expr.
1509 unsigned NumFound = 0;
1510 do {
1511 Ops.erase(Ops.begin()+i);
1512 ++NumFound;
1513 } while (i != Ops.size() && Ops[i].Op == TheOp);
1514
1515 DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
1516 ++NumFactor;
1517
1518 // Insert a new multiply.
1519 Type *Ty = TheOp->getType();
1520 Constant *C = Ty->isIntegerTy() ? ConstantInt::get(Ty, NumFound)
1521 : ConstantFP::get(Ty, NumFound);
1522 Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);
1523
1524 // Now that we have inserted a multiply, optimize it. This allows us to
1525 // handle cases that require multiple factoring steps, such as this:
1526 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
1527 RedoInsts.insert(Mul);
1528
1529 // If every add operand was a duplicate, return the multiply.
1530 if (Ops.empty())
1531 return Mul;
1532
1533 // Otherwise, we had some input that didn't have the dupe, such as
1534 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of
1535 // things being added by this operation.
1536 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
1537
1538 --i;
1539 e = Ops.size();
1540 continue;
1541 }
1542
1543 // Check for X and -X or X and ~X in the operand list.
1544 if (!BinaryOperator::isNeg(TheOp) && !BinaryOperator::isFNeg(TheOp) &&
1545 !BinaryOperator::isNot(TheOp))
1546 continue;
1547
1548 Value *X = nullptr;
1549 if (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp))
1550 X = BinaryOperator::getNegArgument(TheOp);
1551 else if (BinaryOperator::isNot(TheOp))
1552 X = BinaryOperator::getNotArgument(TheOp);
1553
1554 unsigned FoundX = FindInOperandList(Ops, i, X);
1555 if (FoundX == i)
1556 continue;
1557
1558 // Remove X and -X from the operand list.
1559 if (Ops.size() == 2 &&
1560 (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp)))
1561 return Constant::getNullValue(X->getType());
1562
1563 // Remove X and ~X from the operand list.
1564 if (Ops.size() == 2 && BinaryOperator::isNot(TheOp))
1565 return Constant::getAllOnesValue(X->getType());
1566
1567 Ops.erase(Ops.begin()+i);
1568 if (i < FoundX)
1569 --FoundX;
1570 else
1571 --i; // Need to back up an extra one.
1572 Ops.erase(Ops.begin()+FoundX);
1573 ++NumAnnihil;
1574 --i; // Revisit element.
1575 e -= 2; // Removed two elements.
1576
1577 // if X and ~X we append -1 to the operand list.
1578 if (BinaryOperator::isNot(TheOp)) {
1579 Value *V = Constant::getAllOnesValue(X->getType());
1580 Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
1581 e += 1;
1582 }
1583 }
1584
1585 // Scan the operand list, checking to see if there are any common factors
1586 // between operands. Consider something like A*A+A*B*C+D. We would like to
1587 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1588 // To efficiently find this, we count the number of times a factor occurs
1589 // for any ADD operands that are MULs.
1590 DenseMap<Value*, unsigned> FactorOccurrences;
1591
1592 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1593 // where they are actually the same multiply.
1594 unsigned MaxOcc = 0;
1595 Value *MaxOccVal = nullptr;
1596 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1597 BinaryOperator *BOp =
1598 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
1599 if (!BOp)
1600 continue;
1601
1602 // Compute all of the factors of this added value.
1603 SmallVector<Value*, 8> Factors;
1604 FindSingleUseMultiplyFactors(BOp, Factors, Ops);
1605 assert(Factors.size() > 1 && "Bad linearize!");
1606
1607 // Add one to FactorOccurrences for each unique factor in this op.
1608 SmallPtrSet<Value*, 8> Duplicates;
1609 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1610 Value *Factor = Factors[i];
1611 if (!Duplicates.insert(Factor).second)
1612 continue;
1613
1614 unsigned Occ = ++FactorOccurrences[Factor];
1615 if (Occ > MaxOcc) {
1616 MaxOcc = Occ;
1617 MaxOccVal = Factor;
1618 }
1619
1620 // If Factor is a negative constant, add the negated value as a factor
1621 // because we can percolate the negate out. Watch for minint, which
1622 // cannot be positivified.
1623 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
1624 if (CI->isNegative() && !CI->isMinValue(true)) {
1625 Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1626 assert(!Duplicates.count(Factor) &&
1627 "Shouldn't have two constant factors, missed a canonicalize");
1628 unsigned Occ = ++FactorOccurrences[Factor];
1629 if (Occ > MaxOcc) {
1630 MaxOcc = Occ;
1631 MaxOccVal = Factor;
1632 }
1633 }
1634 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
1635 if (CF->isNegative()) {
1636 APFloat F(CF->getValueAPF());
1637 F.changeSign();
1638 Factor = ConstantFP::get(CF->getContext(), F);
1639 assert(!Duplicates.count(Factor) &&
1640 "Shouldn't have two constant factors, missed a canonicalize");
1641 unsigned Occ = ++FactorOccurrences[Factor];
1642 if (Occ > MaxOcc) {
1643 MaxOcc = Occ;
1644 MaxOccVal = Factor;
1645 }
1646 }
1647 }
1648 }
1649 }
1650
1651 // If any factor occurred more than one time, we can pull it out.
1652 if (MaxOcc > 1) {
1653 DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
1654 ++NumFactor;
1655
1656 // Create a new instruction that uses the MaxOccVal twice. If we don't do
1657 // this, we could otherwise run into situations where removing a factor
1658 // from an expression will drop a use of maxocc, and this can cause
1659 // RemoveFactorFromExpression on successive values to behave differently.
1660 Instruction *DummyInst =
1661 I->getType()->isIntegerTy()
1662 ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
1663 : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
1664
1665 SmallVector<WeakVH, 4> NewMulOps;
1666 for (unsigned i = 0; i != Ops.size(); ++i) {
1667 // Only try to remove factors from expressions we're allowed to.
1668 BinaryOperator *BOp =
1669 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
1670 if (!BOp)
1671 continue;
1672
1673 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
1674 // The factorized operand may occur several times. Convert them all in
1675 // one fell swoop.
1676 for (unsigned j = Ops.size(); j != i;) {
1677 --j;
1678 if (Ops[j].Op == Ops[i].Op) {
1679 NewMulOps.push_back(V);
1680 Ops.erase(Ops.begin()+j);
1681 }
1682 }
1683 --i;
1684 }
1685 }
1686
1687 // No need for extra uses anymore.
1688 delete DummyInst;
1689
1690 unsigned NumAddedValues = NewMulOps.size();
1691 Value *V = EmitAddTreeOfValues(I, NewMulOps);
1692
1693 // Now that we have inserted the add tree, optimize it. This allows us to
1694 // handle cases that require multiple factoring steps, such as this:
1695 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
1696 assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
1697 (void)NumAddedValues;
1698 if (Instruction *VI = dyn_cast<Instruction>(V))
1699 RedoInsts.insert(VI);
1700
1701 // Create the multiply.
1702 Instruction *V2 = CreateMul(V, MaxOccVal, "tmp", I, I);
1703
1704 // Rerun associate on the multiply in case the inner expression turned into
1705 // a multiply. We want to make sure that we keep things in canonical form.
1706 RedoInsts.insert(V2);
1707
1708 // If every add operand included the factor (e.g. "A*B + A*C"), then the
1709 // entire result expression is just the multiply "A*(B+C)".
1710 if (Ops.empty())
1711 return V2;
1712
1713 // Otherwise, we had some input that didn't have the factor, such as
1714 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
1715 // things being added by this operation.
1716 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1717 }
1718
1719 return nullptr;
1720 }
1721
1722 /// \brief Build up a vector of value/power pairs factoring a product.
1723 ///
1724 /// Given a series of multiplication operands, build a vector of factors and
1725 /// the powers each is raised to when forming the final product. Sort them in
1726 /// the order of descending power.
1727 ///
1728 /// (x*x) -> [(x, 2)]
1729 /// ((x*x)*x) -> [(x, 3)]
1730 /// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1731 ///
1732 /// \returns Whether any factors have a power greater than one.
1733 bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1734 SmallVectorImpl<Factor> &Factors) {
1735 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1736 // Compute the sum of powers of simplifiable factors.
1737 unsigned FactorPowerSum = 0;
1738 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1739 Value *Op = Ops[Idx-1].Op;
1740
1741 // Count the number of occurrences of this value.
1742 unsigned Count = 1;
1743 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1744 ++Count;
1745 // Track for simplification all factors which occur 2 or more times.
1746 if (Count > 1)
1747 FactorPowerSum += Count;
1748 }
1749
1750 // We can only simplify factors if the sum of the powers of our simplifiable
1751 // factors is 4 or higher. When that is the case, we will *always* have
1752 // a simplification. This is an important invariant to prevent cyclicly
1753 // trying to simplify already minimal formations.
1754 if (FactorPowerSum < 4)
1755 return false;
1756
1757 // Now gather the simplifiable factors, removing them from Ops.
1758 FactorPowerSum = 0;
1759 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1760 Value *Op = Ops[Idx-1].Op;
1761
1762 // Count the number of occurrences of this value.
1763 unsigned Count = 1;
1764 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1765 ++Count;
1766 if (Count == 1)
1767 continue;
1768 // Move an even number of occurrences to Factors.
1769 Count &= ~1U;
1770 Idx -= Count;
1771 FactorPowerSum += Count;
1772 Factors.push_back(Factor(Op, Count));
1773 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
1774 }
1775
1776 // None of the adjustments above should have reduced the sum of factor powers
1777 // below our mininum of '4'.
1778 assert(FactorPowerSum >= 4);
1779
1780 std::stable_sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter());
1781 return true;
1782 }
1783
1784 /// \brief Build a tree of multiplies, computing the product of Ops.
1785 static Value *buildMultiplyTree(IRBuilder<> &Builder,
1786 SmallVectorImpl<Value*> &Ops) {
1787 if (Ops.size() == 1)
1788 return Ops.back();
1789
1790 Value *LHS = Ops.pop_back_val();
1791 do {
1792 if (LHS->getType()->isIntegerTy())
1793 LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1794 else
1795 LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
1796 } while (!Ops.empty());
1797
1798 return LHS;
1799 }
1800
1801 /// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1802 ///
1803 /// Given a vector of values raised to various powers, where no two values are
1804 /// equal and the powers are sorted in decreasing order, compute the minimal
1805 /// DAG of multiplies to compute the final product, and return that product
1806 /// value.
1807 Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1808 SmallVectorImpl<Factor> &Factors) {
1809 assert(Factors[0].Power);
1810 SmallVector<Value *, 4> OuterProduct;
1811 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1812 Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1813 if (Factors[Idx].Power != Factors[LastIdx].Power) {
1814 LastIdx = Idx;
1815 continue;
1816 }
1817
1818 // We want to multiply across all the factors with the same power so that
1819 // we can raise them to that power as a single entity. Build a mini tree
1820 // for that.
1821 SmallVector<Value *, 4> InnerProduct;
1822 InnerProduct.push_back(Factors[LastIdx].Base);
1823 do {
1824 InnerProduct.push_back(Factors[Idx].Base);
1825 ++Idx;
1826 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1827
1828 // Reset the base value of the first factor to the new expression tree.
1829 // We'll remove all the factors with the same power in a second pass.
1830 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1831 if (Instruction *MI = dyn_cast<Instruction>(M))
1832 RedoInsts.insert(MI);
1833
1834 LastIdx = Idx;
1835 }
1836 // Unique factors with equal powers -- we've folded them into the first one's
1837 // base.
1838 Factors.erase(std::unique(Factors.begin(), Factors.end(),
1839 Factor::PowerEqual()),
1840 Factors.end());
1841
1842 // Iteratively collect the base of each factor with an add power into the
1843 // outer product, and halve each power in preparation for squaring the
1844 // expression.
1845 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1846 if (Factors[Idx].Power & 1)
1847 OuterProduct.push_back(Factors[Idx].Base);
1848 Factors[Idx].Power >>= 1;
1849 }
1850 if (Factors[0].Power) {
1851 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1852 OuterProduct.push_back(SquareRoot);
1853 OuterProduct.push_back(SquareRoot);
1854 }
1855 if (OuterProduct.size() == 1)
1856 return OuterProduct.front();
1857
1858 Value *V = buildMultiplyTree(Builder, OuterProduct);
1859 return V;
1860 }
1861
1862 Value *Reassociate::OptimizeMul(BinaryOperator *I,
1863 SmallVectorImpl<ValueEntry> &Ops) {
1864 // We can only optimize the multiplies when there is a chain of more than
1865 // three, such that a balanced tree might require fewer total multiplies.
1866 if (Ops.size() < 4)
1867 return nullptr;
1868
1869 // Try to turn linear trees of multiplies without other uses of the
1870 // intermediate stages into minimal multiply DAGs with perfect sub-expression
1871 // re-use.
1872 SmallVector<Factor, 4> Factors;
1873 if (!collectMultiplyFactors(Ops, Factors))
1874 return nullptr; // All distinct factors, so nothing left for us to do.
1875
1876 IRBuilder<> Builder(I);
1877 Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1878 if (Ops.empty())
1879 return V;
1880
1881 ValueEntry NewEntry = ValueEntry(getRank(V), V);
1882 Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
1883 return nullptr;
1884 }
1885
1886 Value *Reassociate::OptimizeExpression(BinaryOperator *I,
1887 SmallVectorImpl<ValueEntry> &Ops) {
1888 // Now that we have the linearized expression tree, try to optimize it.
1889 // Start by folding any constants that we found.
1890 Constant *Cst = nullptr;
1891 unsigned Opcode = I->getOpcode();
1892 while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
1893 Constant *C = cast<Constant>(Ops.pop_back_val().Op);
1894 Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
1895 }
1896 // If there was nothing but constants then we are done.
1897 if (Ops.empty())
1898 return Cst;
1899
1900 // Put the combined constant back at the end of the operand list, except if
1901 // there is no point. For example, an add of 0 gets dropped here, while a
1902 // multiplication by zero turns the whole expression into zero.
1903 if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
1904 if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
1905 return Cst;
1906 Ops.push_back(ValueEntry(0, Cst));
1907 }
1908
1909 if (Ops.size() == 1) return Ops[0].Op;
1910
1911 // Handle destructive annihilation due to identities between elements in the
1912 // argument list here.
1913 unsigned NumOps = Ops.size();
1914 switch (Opcode) {
1915 default: break;
1916 case Instruction::And:
1917 case Instruction::Or:
1918 if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1919 return Result;
1920 break;
1921
1922 case Instruction::Xor:
1923 if (Value *Result = OptimizeXor(I, Ops))
1924 return Result;
1925 break;
1926
1927 case Instruction::Add:
1928 case Instruction::FAdd:
1929 if (Value *Result = OptimizeAdd(I, Ops))
1930 return Result;
1931 break;
1932
1933 case Instruction::Mul:
1934 case Instruction::FMul:
1935 if (Value *Result = OptimizeMul(I, Ops))
1936 return Result;
1937 break;
1938 }
1939
1940 if (Ops.size() != NumOps)
1941 return OptimizeExpression(I, Ops);
1942 return nullptr;
1943 }
1944
1945 /// EraseInst - Zap the given instruction, adding interesting operands to the
1946 /// work list.
1947 void Reassociate::EraseInst(Instruction *I) {
1948 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1949 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1950 // Erase the dead instruction.
1951 ValueRankMap.erase(I);
1952 RedoInsts.remove(I);
1953 I->eraseFromParent();
1954 // Optimize its operands.
1955 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
1956 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1957 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1958 // If this is a node in an expression tree, climb to the expression root
1959 // and add that since that's where optimization actually happens.
1960 unsigned Opcode = Op->getOpcode();
1961 while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
1962 Visited.insert(Op).second)
1963 Op = Op->user_back();
1964 RedoInsts.insert(Op);
1965 }
1966 }
1967
1968 // Canonicalize expressions of the following form:
1969 // x + (-Constant * y) -> x - (Constant * y)
1970 // x - (-Constant * y) -> x + (Constant * y)
1971 Instruction *Reassociate::canonicalizeNegConstExpr(Instruction *I) {
1972 if (!I->hasOneUse() || I->getType()->isVectorTy())
1973 return nullptr;
1974
1975 // Must be a mul, fmul, or fdiv instruction.
1976 unsigned Opcode = I->getOpcode();
1977 if (Opcode != Instruction::Mul && Opcode != Instruction::FMul &&
1978 Opcode != Instruction::FDiv)
1979 return nullptr;
1980
1981 // Must have at least one constant operand.
1982 Constant *C0 = dyn_cast<Constant>(I->getOperand(0));
1983 Constant *C1 = dyn_cast<Constant>(I->getOperand(1));
1984 if (!C0 && !C1)
1985 return nullptr;
1986
1987 // Must be a negative ConstantInt or ConstantFP.
1988 Constant *C = C0 ? C0 : C1;
1989 unsigned ConstIdx = C0 ? 0 : 1;
1990 if (auto *CI = dyn_cast<ConstantInt>(C)) {
1991 if (!CI->isNegative())
1992 return nullptr;
1993 } else if (auto *CF = dyn_cast<ConstantFP>(C)) {
1994 if (!CF->isNegative())
1995 return nullptr;
1996 } else
1997 return nullptr;
1998
1999 // User must be a binary operator with one or more uses.
2000 Instruction *User = I->user_back();
2001 if (!isa<BinaryOperator>(User) || !User->getNumUses())
2002 return nullptr;
2003
2004 unsigned UserOpcode = User->getOpcode();
2005 if (UserOpcode != Instruction::Add && UserOpcode != Instruction::FAdd &&
2006 UserOpcode != Instruction::Sub && UserOpcode != Instruction::FSub)
2007 return nullptr;
2008
2009 // Subtraction is not commutative. Explicitly, the following transform is
2010 // not valid: (-Constant * y) - x -> x + (Constant * y)
2011 if (!User->isCommutative() && User->getOperand(1) != I)
2012 return nullptr;
2013
2014 // Change the sign of the constant.
2015 if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
2016 I->setOperand(ConstIdx, ConstantInt::get(CI->getContext(), -CI->getValue()));
2017 else {
2018 ConstantFP *CF = cast<ConstantFP>(C);
2019 APFloat Val = CF->getValueAPF();
2020 Val.changeSign();
2021 I->setOperand(ConstIdx, ConstantFP::get(CF->getContext(), Val));
2022 }
2023
2024 // Canonicalize I to RHS to simplify the next bit of logic. E.g.,
2025 // ((-Const*y) + x) -> (x + (-Const*y)).
2026 if (User->getOperand(0) == I && User->isCommutative())
2027 cast<BinaryOperator>(User)->swapOperands();
2028
2029 Value *Op0 = User->getOperand(0);
2030 Value *Op1 = User->getOperand(1);
2031 BinaryOperator *NI;
2032 switch(UserOpcode) {
2033 default:
2034 llvm_unreachable("Unexpected Opcode!");
2035 case Instruction::Add:
2036 NI = BinaryOperator::CreateSub(Op0, Op1);
2037 break;
2038 case Instruction::Sub:
2039 NI = BinaryOperator::CreateAdd(Op0, Op1);
2040 break;
2041 case Instruction::FAdd:
2042 NI = BinaryOperator::CreateFSub(Op0, Op1);
2043 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
2044 break;
2045 case Instruction::FSub:
2046 NI = BinaryOperator::CreateFAdd(Op0, Op1);
2047 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
2048 break;
2049 }
2050
2051 NI->insertBefore(User);
2052 NI->setName(User->getName());
2053 User->replaceAllUsesWith(NI);
2054 NI->setDebugLoc(I->getDebugLoc());
2055 RedoInsts.insert(I);
2056 MadeChange = true;
2057 return NI;
2058 }
2059
2060 /// OptimizeInst - Inspect and optimize the given instruction. Note that erasing
2061 /// instructions is not allowed.
2062 void Reassociate::OptimizeInst(Instruction *I) {
2063 // Only consider operations that we understand.
2064 if (!isa<BinaryOperator>(I))
2065 return;
2066
2067 if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
2068 // If an operand of this shift is a reassociable multiply, or if the shift
2069 // is used by a reassociable multiply or add, turn into a multiply.
2070 if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
2071 (I->hasOneUse() &&
2072 (isReassociableOp(I->user_back(), Instruction::Mul) ||
2073 isReassociableOp(I->user_back(), Instruction::Add)))) {
2074 Instruction *NI = ConvertShiftToMul(I);
2075 RedoInsts.insert(I);
2076 MadeChange = true;
2077 I = NI;
2078 }
2079
2080 // Canonicalize negative constants out of expressions.
2081 if (Instruction *Res = canonicalizeNegConstExpr(I))
2082 I = Res;
2083
2084 // Commute binary operators, to canonicalize the order of their operands.
2085 // This can potentially expose more CSE opportunities, and makes writing other
2086 // transformations simpler.
2087 if (I->isCommutative())
2088 canonicalizeOperands(I);
2089
2090 // Don't optimize vector instructions.
2091 if (I->getType()->isVectorTy())
2092 return;
2093
2094 // Don't optimize floating point instructions that don't have unsafe algebra.
2095 if (I->getType()->isFloatingPointTy() && !I->hasUnsafeAlgebra())
2096 return;
2097
2098 // Do not reassociate boolean (i1) expressions. We want to preserve the
2099 // original order of evaluation for short-circuited comparisons that
2100 // SimplifyCFG has folded to AND/OR expressions. If the expression
2101 // is not further optimized, it is likely to be transformed back to a
2102 // short-circuited form for code gen, and the source order may have been
2103 // optimized for the most likely conditions.
2104 if (I->getType()->isIntegerTy(1))
2105 return;
2106
2107 // If this is a subtract instruction which is not already in negate form,
2108 // see if we can convert it to X+-Y.
2109 if (I->getOpcode() == Instruction::Sub) {
2110 if (ShouldBreakUpSubtract(I)) {
2111 Instruction *NI = BreakUpSubtract(I);
2112 RedoInsts.insert(I);
2113 MadeChange = true;
2114 I = NI;
2115 } else if (BinaryOperator::isNeg(I)) {
2116 // Otherwise, this is a negation. See if the operand is a multiply tree
2117 // and if this is not an inner node of a multiply tree.
2118 if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
2119 (!I->hasOneUse() ||
2120 !isReassociableOp(I->user_back(), Instruction::Mul))) {
2121 Instruction *NI = LowerNegateToMultiply(I);
2122 RedoInsts.insert(I);
2123 MadeChange = true;
2124 I = NI;
2125 }
2126 }
2127 } else if (I->getOpcode() == Instruction::FSub) {
2128 if (ShouldBreakUpSubtract(I)) {
2129 Instruction *NI = BreakUpSubtract(I);
2130 RedoInsts.insert(I);
2131 MadeChange = true;
2132 I = NI;
2133 } else if (BinaryOperator::isFNeg(I)) {
2134 // Otherwise, this is a negation. See if the operand is a multiply tree
2135 // and if this is not an inner node of a multiply tree.
2136 if (isReassociableOp(I->getOperand(1), Instruction::FMul) &&
2137 (!I->hasOneUse() ||
2138 !isReassociableOp(I->user_back(), Instruction::FMul))) {
2139 Instruction *NI = LowerNegateToMultiply(I);
2140 RedoInsts.insert(I);
2141 MadeChange = true;
2142 I = NI;
2143 }
2144 }
2145 }
2146
2147 // If this instruction is an associative binary operator, process it.
2148 if (!I->isAssociative()) return;
2149 BinaryOperator *BO = cast<BinaryOperator>(I);
2150
2151 // If this is an interior node of a reassociable tree, ignore it until we
2152 // get to the root of the tree, to avoid N^2 analysis.
2153 unsigned Opcode = BO->getOpcode();
2154 if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode)
2155 return;
2156
2157 // If this is an add tree that is used by a sub instruction, ignore it
2158 // until we process the subtract.
2159 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
2160 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
2161 return;
2162 if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
2163 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
2164 return;
2165
2166 ReassociateExpression(BO);
2167 }
2168
2169 void Reassociate::ReassociateExpression(BinaryOperator *I) {
2170 assert(!I->getType()->isVectorTy() &&
2171 "Reassociation of vector instructions is not supported.");
2172
2173 // First, walk the expression tree, linearizing the tree, collecting the
2174 // operand information.
2175 SmallVector<RepeatedValue, 8> Tree;
2176 MadeChange |= LinearizeExprTree(I, Tree);
2177 SmallVector<ValueEntry, 8> Ops;
2178 Ops.reserve(Tree.size());
2179 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
2180 RepeatedValue E = Tree[i];
2181 Ops.append(E.second.getZExtValue(),
2182 ValueEntry(getRank(E.first), E.first));
2183 }
2184
2185 DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
2186
2187 // Now that we have linearized the tree to a list and have gathered all of
2188 // the operands and their ranks, sort the operands by their rank. Use a
2189 // stable_sort so that values with equal ranks will have their relative
2190 // positions maintained (and so the compiler is deterministic). Note that
2191 // this sorts so that the highest ranking values end up at the beginning of
2192 // the vector.
2193 std::stable_sort(Ops.begin(), Ops.end());
2194
2195 // OptimizeExpression - Now that we have the expression tree in a convenient
2196 // sorted form, optimize it globally if possible.
2197 if (Value *V = OptimizeExpression(I, Ops)) {
2198 if (V == I)
2199 // Self-referential expression in unreachable code.
2200 return;
2201 // This expression tree simplified to something that isn't a tree,
2202 // eliminate it.
2203 DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
2204 I->replaceAllUsesWith(V);
2205 if (Instruction *VI = dyn_cast<Instruction>(V))
2206 VI->setDebugLoc(I->getDebugLoc());
2207 RedoInsts.insert(I);
2208 ++NumAnnihil;
2209 return;
2210 }
2211
2212 // We want to sink immediates as deeply as possible except in the case where
2213 // this is a multiply tree used only by an add, and the immediate is a -1.
2214 // In this case we reassociate to put the negation on the outside so that we
2215 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
2216 if (I->hasOneUse()) {
2217 if (I->getOpcode() == Instruction::Mul &&
2218 cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
2219 isa<ConstantInt>(Ops.back().Op) &&
2220 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
2221 ValueEntry Tmp = Ops.pop_back_val();
2222 Ops.insert(Ops.begin(), Tmp);
2223 } else if (I->getOpcode() == Instruction::FMul &&
2224 cast<Instruction>(I->user_back())->getOpcode() ==
2225 Instruction::FAdd &&
2226 isa<ConstantFP>(Ops.back().Op) &&
2227 cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
2228 ValueEntry Tmp = Ops.pop_back_val();
2229 Ops.insert(Ops.begin(), Tmp);
2230 }
2231 }
2232
2233 DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
2234
2235 if (Ops.size() == 1) {
2236 if (Ops[0].Op == I)
2237 // Self-referential expression in unreachable code.
2238 return;
2239
2240 // This expression tree simplified to something that isn't a tree,
2241 // eliminate it.
2242 I->replaceAllUsesWith(Ops[0].Op);
2243 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
2244 OI->setDebugLoc(I->getDebugLoc());
2245 RedoInsts.insert(I);
2246 return;
2247 }
2248
2249 // Now that we ordered and optimized the expressions, splat them back into
2250 // the expression tree, removing any unneeded nodes.
2251 RewriteExprTree(I, Ops);
2252 }
2253
2254 bool Reassociate::runOnFunction(Function &F) {
2255 if (skipOptnoneFunction(F))
2256 return false;
2257
2258 // Calculate the rank map for F
2259 BuildRankMap(F);
2260
2261 MadeChange = false;
2262 for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
2263 // Optimize every instruction in the basic block.
2264 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; )
2265 if (isInstructionTriviallyDead(II)) {
2266 EraseInst(II++);
2267 } else {
2268 OptimizeInst(II);
2269 assert(II->getParent() == BI && "Moved to a different block!");
2270 ++II;
2271 }
2272
2273 // If this produced extra instructions to optimize, handle them now.
2274 while (!RedoInsts.empty()) {
2275 Instruction *I = RedoInsts.pop_back_val();
2276 if (isInstructionTriviallyDead(I))
2277 EraseInst(I);
2278 else
2279 OptimizeInst(I);
2280 }
2281 }
2282
2283 // We are done with the rank map.
2284 RankMap.clear();
2285 ValueRankMap.clear();
2286
2287 return MadeChange;
2288 }