]> git.proxmox.com Git - rustc.git/blob - src/llvm/lib/Transforms/Scalar/SROA.cpp
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / lib / Transforms / Scalar / SROA.cpp
1 //===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 /// This transformation implements the well known scalar replacement of
11 /// aggregates transformation. It tries to identify promotable elements of an
12 /// aggregate alloca, and promote them to registers. It will also try to
13 /// convert uses of an element (or set of elements) of an alloca into a vector
14 /// or bitfield-style integer scalar if appropriate.
15 ///
16 /// It works to do this with minimal slicing of the alloca so that regions
17 /// which are merely transferred in and out of external memory remain unchanged
18 /// and are not decomposed to scalar code.
19 ///
20 /// Because this also performs alloca promotion, it can be thought of as also
21 /// serving the purpose of SSA formation. The algorithm iterates on the
22 /// function until all opportunities for promotion have been realized.
23 ///
24 //===----------------------------------------------------------------------===//
25
26 #include "llvm/Transforms/Scalar.h"
27 #include "llvm/ADT/STLExtras.h"
28 #include "llvm/ADT/SetVector.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/Analysis/AssumptionCache.h"
32 #include "llvm/Analysis/Loads.h"
33 #include "llvm/Analysis/PtrUseVisitor.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DIBuilder.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/DebugInfo.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Dominators.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/IRBuilder.h"
43 #include "llvm/IR/InstVisitor.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/LLVMContext.h"
47 #include "llvm/IR/Operator.h"
48 #include "llvm/Pass.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Compiler.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/MathExtras.h"
54 #include "llvm/Support/TimeValue.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include "llvm/Transforms/Utils/Local.h"
57 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
58 #include "llvm/Transforms/Utils/SSAUpdater.h"
59
60 #if __cplusplus >= 201103L && !defined(NDEBUG)
61 // We only use this for a debug check in C++11
62 #include <random>
63 #endif
64
65 using namespace llvm;
66
67 #define DEBUG_TYPE "sroa"
68
69 STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement");
70 STATISTIC(NumAllocaPartitions, "Number of alloca partitions formed");
71 STATISTIC(MaxPartitionsPerAlloca, "Maximum number of partitions per alloca");
72 STATISTIC(NumAllocaPartitionUses, "Number of alloca partition uses rewritten");
73 STATISTIC(MaxUsesPerAllocaPartition, "Maximum number of uses of a partition");
74 STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced");
75 STATISTIC(NumPromoted, "Number of allocas promoted to SSA values");
76 STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion");
77 STATISTIC(NumDeleted, "Number of instructions deleted");
78 STATISTIC(NumVectorized, "Number of vectorized aggregates");
79
80 /// Hidden option to force the pass to not use DomTree and mem2reg, instead
81 /// forming SSA values through the SSAUpdater infrastructure.
82 static cl::opt<bool> ForceSSAUpdater("force-ssa-updater", cl::init(false),
83 cl::Hidden);
84
85 /// Hidden option to enable randomly shuffling the slices to help uncover
86 /// instability in their order.
87 static cl::opt<bool> SROARandomShuffleSlices("sroa-random-shuffle-slices",
88 cl::init(false), cl::Hidden);
89
90 /// Hidden option to experiment with completely strict handling of inbounds
91 /// GEPs.
92 static cl::opt<bool> SROAStrictInbounds("sroa-strict-inbounds", cl::init(false),
93 cl::Hidden);
94
95 namespace {
96 /// \brief A custom IRBuilder inserter which prefixes all names if they are
97 /// preserved.
98 template <bool preserveNames = true>
99 class IRBuilderPrefixedInserter
100 : public IRBuilderDefaultInserter<preserveNames> {
101 std::string Prefix;
102
103 public:
104 void SetNamePrefix(const Twine &P) { Prefix = P.str(); }
105
106 protected:
107 void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB,
108 BasicBlock::iterator InsertPt) const {
109 IRBuilderDefaultInserter<preserveNames>::InsertHelper(
110 I, Name.isTriviallyEmpty() ? Name : Prefix + Name, BB, InsertPt);
111 }
112 };
113
114 // Specialization for not preserving the name is trivial.
115 template <>
116 class IRBuilderPrefixedInserter<false>
117 : public IRBuilderDefaultInserter<false> {
118 public:
119 void SetNamePrefix(const Twine &P) {}
120 };
121
122 /// \brief Provide a typedef for IRBuilder that drops names in release builds.
123 #ifndef NDEBUG
124 typedef llvm::IRBuilder<true, ConstantFolder, IRBuilderPrefixedInserter<true>>
125 IRBuilderTy;
126 #else
127 typedef llvm::IRBuilder<false, ConstantFolder, IRBuilderPrefixedInserter<false>>
128 IRBuilderTy;
129 #endif
130 }
131
132 namespace {
133 /// \brief A used slice of an alloca.
134 ///
135 /// This structure represents a slice of an alloca used by some instruction. It
136 /// stores both the begin and end offsets of this use, a pointer to the use
137 /// itself, and a flag indicating whether we can classify the use as splittable
138 /// or not when forming partitions of the alloca.
139 class Slice {
140 /// \brief The beginning offset of the range.
141 uint64_t BeginOffset;
142
143 /// \brief The ending offset, not included in the range.
144 uint64_t EndOffset;
145
146 /// \brief Storage for both the use of this slice and whether it can be
147 /// split.
148 PointerIntPair<Use *, 1, bool> UseAndIsSplittable;
149
150 public:
151 Slice() : BeginOffset(), EndOffset() {}
152 Slice(uint64_t BeginOffset, uint64_t EndOffset, Use *U, bool IsSplittable)
153 : BeginOffset(BeginOffset), EndOffset(EndOffset),
154 UseAndIsSplittable(U, IsSplittable) {}
155
156 uint64_t beginOffset() const { return BeginOffset; }
157 uint64_t endOffset() const { return EndOffset; }
158
159 bool isSplittable() const { return UseAndIsSplittable.getInt(); }
160 void makeUnsplittable() { UseAndIsSplittable.setInt(false); }
161
162 Use *getUse() const { return UseAndIsSplittable.getPointer(); }
163
164 bool isDead() const { return getUse() == nullptr; }
165 void kill() { UseAndIsSplittable.setPointer(nullptr); }
166
167 /// \brief Support for ordering ranges.
168 ///
169 /// This provides an ordering over ranges such that start offsets are
170 /// always increasing, and within equal start offsets, the end offsets are
171 /// decreasing. Thus the spanning range comes first in a cluster with the
172 /// same start position.
173 bool operator<(const Slice &RHS) const {
174 if (beginOffset() < RHS.beginOffset())
175 return true;
176 if (beginOffset() > RHS.beginOffset())
177 return false;
178 if (isSplittable() != RHS.isSplittable())
179 return !isSplittable();
180 if (endOffset() > RHS.endOffset())
181 return true;
182 return false;
183 }
184
185 /// \brief Support comparison with a single offset to allow binary searches.
186 friend LLVM_ATTRIBUTE_UNUSED bool operator<(const Slice &LHS,
187 uint64_t RHSOffset) {
188 return LHS.beginOffset() < RHSOffset;
189 }
190 friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset,
191 const Slice &RHS) {
192 return LHSOffset < RHS.beginOffset();
193 }
194
195 bool operator==(const Slice &RHS) const {
196 return isSplittable() == RHS.isSplittable() &&
197 beginOffset() == RHS.beginOffset() && endOffset() == RHS.endOffset();
198 }
199 bool operator!=(const Slice &RHS) const { return !operator==(RHS); }
200 };
201 } // end anonymous namespace
202
203 namespace llvm {
204 template <typename T> struct isPodLike;
205 template <> struct isPodLike<Slice> { static const bool value = true; };
206 }
207
208 namespace {
209 /// \brief Representation of the alloca slices.
210 ///
211 /// This class represents the slices of an alloca which are formed by its
212 /// various uses. If a pointer escapes, we can't fully build a representation
213 /// for the slices used and we reflect that in this structure. The uses are
214 /// stored, sorted by increasing beginning offset and with unsplittable slices
215 /// starting at a particular offset before splittable slices.
216 class AllocaSlices {
217 public:
218 /// \brief Construct the slices of a particular alloca.
219 AllocaSlices(const DataLayout &DL, AllocaInst &AI);
220
221 /// \brief Test whether a pointer to the allocation escapes our analysis.
222 ///
223 /// If this is true, the slices are never fully built and should be
224 /// ignored.
225 bool isEscaped() const { return PointerEscapingInstr; }
226
227 /// \brief Support for iterating over the slices.
228 /// @{
229 typedef SmallVectorImpl<Slice>::iterator iterator;
230 typedef iterator_range<iterator> range;
231 iterator begin() { return Slices.begin(); }
232 iterator end() { return Slices.end(); }
233
234 typedef SmallVectorImpl<Slice>::const_iterator const_iterator;
235 typedef iterator_range<const_iterator> const_range;
236 const_iterator begin() const { return Slices.begin(); }
237 const_iterator end() const { return Slices.end(); }
238 /// @}
239
240 /// \brief Erase a range of slices.
241 void erase(iterator Start, iterator Stop) { Slices.erase(Start, Stop); }
242
243 /// \brief Insert new slices for this alloca.
244 ///
245 /// This moves the slices into the alloca's slices collection, and re-sorts
246 /// everything so that the usual ordering properties of the alloca's slices
247 /// hold.
248 void insert(ArrayRef<Slice> NewSlices) {
249 int OldSize = Slices.size();
250 std::move(NewSlices.begin(), NewSlices.end(), std::back_inserter(Slices));
251 auto SliceI = Slices.begin() + OldSize;
252 std::sort(SliceI, Slices.end());
253 std::inplace_merge(Slices.begin(), SliceI, Slices.end());
254 }
255
256 // Forward declare an iterator to befriend it.
257 class partition_iterator;
258
259 /// \brief A partition of the slices.
260 ///
261 /// An ephemeral representation for a range of slices which can be viewed as
262 /// a partition of the alloca. This range represents a span of the alloca's
263 /// memory which cannot be split, and provides access to all of the slices
264 /// overlapping some part of the partition.
265 ///
266 /// Objects of this type are produced by traversing the alloca's slices, but
267 /// are only ephemeral and not persistent.
268 class Partition {
269 private:
270 friend class AllocaSlices;
271 friend class AllocaSlices::partition_iterator;
272
273 /// \brief The begining and ending offsets of the alloca for this partition.
274 uint64_t BeginOffset, EndOffset;
275
276 /// \brief The start end end iterators of this partition.
277 iterator SI, SJ;
278
279 /// \brief A collection of split slice tails overlapping the partition.
280 SmallVector<Slice *, 4> SplitTails;
281
282 /// \brief Raw constructor builds an empty partition starting and ending at
283 /// the given iterator.
284 Partition(iterator SI) : SI(SI), SJ(SI) {}
285
286 public:
287 /// \brief The start offset of this partition.
288 ///
289 /// All of the contained slices start at or after this offset.
290 uint64_t beginOffset() const { return BeginOffset; }
291
292 /// \brief The end offset of this partition.
293 ///
294 /// All of the contained slices end at or before this offset.
295 uint64_t endOffset() const { return EndOffset; }
296
297 /// \brief The size of the partition.
298 ///
299 /// Note that this can never be zero.
300 uint64_t size() const {
301 assert(BeginOffset < EndOffset && "Partitions must span some bytes!");
302 return EndOffset - BeginOffset;
303 }
304
305 /// \brief Test whether this partition contains no slices, and merely spans
306 /// a region occupied by split slices.
307 bool empty() const { return SI == SJ; }
308
309 /// \name Iterate slices that start within the partition.
310 /// These may be splittable or unsplittable. They have a begin offset >= the
311 /// partition begin offset.
312 /// @{
313 // FIXME: We should probably define a "concat_iterator" helper and use that
314 // to stitch together pointee_iterators over the split tails and the
315 // contiguous iterators of the partition. That would give a much nicer
316 // interface here. We could then additionally expose filtered iterators for
317 // split, unsplit, and unsplittable splices based on the usage patterns.
318 iterator begin() const { return SI; }
319 iterator end() const { return SJ; }
320 /// @}
321
322 /// \brief Get the sequence of split slice tails.
323 ///
324 /// These tails are of slices which start before this partition but are
325 /// split and overlap into the partition. We accumulate these while forming
326 /// partitions.
327 ArrayRef<Slice *> splitSliceTails() const { return SplitTails; }
328 };
329
330 /// \brief An iterator over partitions of the alloca's slices.
331 ///
332 /// This iterator implements the core algorithm for partitioning the alloca's
333 /// slices. It is a forward iterator as we don't support backtracking for
334 /// efficiency reasons, and re-use a single storage area to maintain the
335 /// current set of split slices.
336 ///
337 /// It is templated on the slice iterator type to use so that it can operate
338 /// with either const or non-const slice iterators.
339 class partition_iterator
340 : public iterator_facade_base<partition_iterator,
341 std::forward_iterator_tag, Partition> {
342 friend class AllocaSlices;
343
344 /// \brief Most of the state for walking the partitions is held in a class
345 /// with a nice interface for examining them.
346 Partition P;
347
348 /// \brief We need to keep the end of the slices to know when to stop.
349 AllocaSlices::iterator SE;
350
351 /// \brief We also need to keep track of the maximum split end offset seen.
352 /// FIXME: Do we really?
353 uint64_t MaxSplitSliceEndOffset;
354
355 /// \brief Sets the partition to be empty at given iterator, and sets the
356 /// end iterator.
357 partition_iterator(AllocaSlices::iterator SI, AllocaSlices::iterator SE)
358 : P(SI), SE(SE), MaxSplitSliceEndOffset(0) {
359 // If not already at the end, advance our state to form the initial
360 // partition.
361 if (SI != SE)
362 advance();
363 }
364
365 /// \brief Advance the iterator to the next partition.
366 ///
367 /// Requires that the iterator not be at the end of the slices.
368 void advance() {
369 assert((P.SI != SE || !P.SplitTails.empty()) &&
370 "Cannot advance past the end of the slices!");
371
372 // Clear out any split uses which have ended.
373 if (!P.SplitTails.empty()) {
374 if (P.EndOffset >= MaxSplitSliceEndOffset) {
375 // If we've finished all splits, this is easy.
376 P.SplitTails.clear();
377 MaxSplitSliceEndOffset = 0;
378 } else {
379 // Remove the uses which have ended in the prior partition. This
380 // cannot change the max split slice end because we just checked that
381 // the prior partition ended prior to that max.
382 P.SplitTails.erase(
383 std::remove_if(
384 P.SplitTails.begin(), P.SplitTails.end(),
385 [&](Slice *S) { return S->endOffset() <= P.EndOffset; }),
386 P.SplitTails.end());
387 assert(std::any_of(P.SplitTails.begin(), P.SplitTails.end(),
388 [&](Slice *S) {
389 return S->endOffset() == MaxSplitSliceEndOffset;
390 }) &&
391 "Could not find the current max split slice offset!");
392 assert(std::all_of(P.SplitTails.begin(), P.SplitTails.end(),
393 [&](Slice *S) {
394 return S->endOffset() <= MaxSplitSliceEndOffset;
395 }) &&
396 "Max split slice end offset is not actually the max!");
397 }
398 }
399
400 // If P.SI is already at the end, then we've cleared the split tail and
401 // now have an end iterator.
402 if (P.SI == SE) {
403 assert(P.SplitTails.empty() && "Failed to clear the split slices!");
404 return;
405 }
406
407 // If we had a non-empty partition previously, set up the state for
408 // subsequent partitions.
409 if (P.SI != P.SJ) {
410 // Accumulate all the splittable slices which started in the old
411 // partition into the split list.
412 for (Slice &S : P)
413 if (S.isSplittable() && S.endOffset() > P.EndOffset) {
414 P.SplitTails.push_back(&S);
415 MaxSplitSliceEndOffset =
416 std::max(S.endOffset(), MaxSplitSliceEndOffset);
417 }
418
419 // Start from the end of the previous partition.
420 P.SI = P.SJ;
421
422 // If P.SI is now at the end, we at most have a tail of split slices.
423 if (P.SI == SE) {
424 P.BeginOffset = P.EndOffset;
425 P.EndOffset = MaxSplitSliceEndOffset;
426 return;
427 }
428
429 // If the we have split slices and the next slice is after a gap and is
430 // not splittable immediately form an empty partition for the split
431 // slices up until the next slice begins.
432 if (!P.SplitTails.empty() && P.SI->beginOffset() != P.EndOffset &&
433 !P.SI->isSplittable()) {
434 P.BeginOffset = P.EndOffset;
435 P.EndOffset = P.SI->beginOffset();
436 return;
437 }
438 }
439
440 // OK, we need to consume new slices. Set the end offset based on the
441 // current slice, and step SJ past it. The beginning offset of the
442 // parttion is the beginning offset of the next slice unless we have
443 // pre-existing split slices that are continuing, in which case we begin
444 // at the prior end offset.
445 P.BeginOffset = P.SplitTails.empty() ? P.SI->beginOffset() : P.EndOffset;
446 P.EndOffset = P.SI->endOffset();
447 ++P.SJ;
448
449 // There are two strategies to form a partition based on whether the
450 // partition starts with an unsplittable slice or a splittable slice.
451 if (!P.SI->isSplittable()) {
452 // When we're forming an unsplittable region, it must always start at
453 // the first slice and will extend through its end.
454 assert(P.BeginOffset == P.SI->beginOffset());
455
456 // Form a partition including all of the overlapping slices with this
457 // unsplittable slice.
458 while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) {
459 if (!P.SJ->isSplittable())
460 P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset());
461 ++P.SJ;
462 }
463
464 // We have a partition across a set of overlapping unsplittable
465 // partitions.
466 return;
467 }
468
469 // If we're starting with a splittable slice, then we need to form
470 // a synthetic partition spanning it and any other overlapping splittable
471 // splices.
472 assert(P.SI->isSplittable() && "Forming a splittable partition!");
473
474 // Collect all of the overlapping splittable slices.
475 while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset &&
476 P.SJ->isSplittable()) {
477 P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset());
478 ++P.SJ;
479 }
480
481 // Back upiP.EndOffset if we ended the span early when encountering an
482 // unsplittable slice. This synthesizes the early end offset of
483 // a partition spanning only splittable slices.
484 if (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) {
485 assert(!P.SJ->isSplittable());
486 P.EndOffset = P.SJ->beginOffset();
487 }
488 }
489
490 public:
491 bool operator==(const partition_iterator &RHS) const {
492 assert(SE == RHS.SE &&
493 "End iterators don't match between compared partition iterators!");
494
495 // The observed positions of partitions is marked by the P.SI iterator and
496 // the emptyness of the split slices. The latter is only relevant when
497 // P.SI == SE, as the end iterator will additionally have an empty split
498 // slices list, but the prior may have the same P.SI and a tail of split
499 // slices.
500 if (P.SI == RHS.P.SI &&
501 P.SplitTails.empty() == RHS.P.SplitTails.empty()) {
502 assert(P.SJ == RHS.P.SJ &&
503 "Same set of slices formed two different sized partitions!");
504 assert(P.SplitTails.size() == RHS.P.SplitTails.size() &&
505 "Same slice position with differently sized non-empty split "
506 "slice tails!");
507 return true;
508 }
509 return false;
510 }
511
512 partition_iterator &operator++() {
513 advance();
514 return *this;
515 }
516
517 Partition &operator*() { return P; }
518 };
519
520 /// \brief A forward range over the partitions of the alloca's slices.
521 ///
522 /// This accesses an iterator range over the partitions of the alloca's
523 /// slices. It computes these partitions on the fly based on the overlapping
524 /// offsets of the slices and the ability to split them. It will visit "empty"
525 /// partitions to cover regions of the alloca only accessed via split
526 /// slices.
527 iterator_range<partition_iterator> partitions() {
528 return make_range(partition_iterator(begin(), end()),
529 partition_iterator(end(), end()));
530 }
531
532 /// \brief Access the dead users for this alloca.
533 ArrayRef<Instruction *> getDeadUsers() const { return DeadUsers; }
534
535 /// \brief Access the dead operands referring to this alloca.
536 ///
537 /// These are operands which have cannot actually be used to refer to the
538 /// alloca as they are outside its range and the user doesn't correct for
539 /// that. These mostly consist of PHI node inputs and the like which we just
540 /// need to replace with undef.
541 ArrayRef<Use *> getDeadOperands() const { return DeadOperands; }
542
543 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
544 void print(raw_ostream &OS, const_iterator I, StringRef Indent = " ") const;
545 void printSlice(raw_ostream &OS, const_iterator I,
546 StringRef Indent = " ") const;
547 void printUse(raw_ostream &OS, const_iterator I,
548 StringRef Indent = " ") const;
549 void print(raw_ostream &OS) const;
550 void dump(const_iterator I) const;
551 void dump() const;
552 #endif
553
554 private:
555 template <typename DerivedT, typename RetT = void> class BuilderBase;
556 class SliceBuilder;
557 friend class AllocaSlices::SliceBuilder;
558
559 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
560 /// \brief Handle to alloca instruction to simplify method interfaces.
561 AllocaInst &AI;
562 #endif
563
564 /// \brief The instruction responsible for this alloca not having a known set
565 /// of slices.
566 ///
567 /// When an instruction (potentially) escapes the pointer to the alloca, we
568 /// store a pointer to that here and abort trying to form slices of the
569 /// alloca. This will be null if the alloca slices are analyzed successfully.
570 Instruction *PointerEscapingInstr;
571
572 /// \brief The slices of the alloca.
573 ///
574 /// We store a vector of the slices formed by uses of the alloca here. This
575 /// vector is sorted by increasing begin offset, and then the unsplittable
576 /// slices before the splittable ones. See the Slice inner class for more
577 /// details.
578 SmallVector<Slice, 8> Slices;
579
580 /// \brief Instructions which will become dead if we rewrite the alloca.
581 ///
582 /// Note that these are not separated by slice. This is because we expect an
583 /// alloca to be completely rewritten or not rewritten at all. If rewritten,
584 /// all these instructions can simply be removed and replaced with undef as
585 /// they come from outside of the allocated space.
586 SmallVector<Instruction *, 8> DeadUsers;
587
588 /// \brief Operands which will become dead if we rewrite the alloca.
589 ///
590 /// These are operands that in their particular use can be replaced with
591 /// undef when we rewrite the alloca. These show up in out-of-bounds inputs
592 /// to PHI nodes and the like. They aren't entirely dead (there might be
593 /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we
594 /// want to swap this particular input for undef to simplify the use lists of
595 /// the alloca.
596 SmallVector<Use *, 8> DeadOperands;
597 };
598 }
599
600 static Value *foldSelectInst(SelectInst &SI) {
601 // If the condition being selected on is a constant or the same value is
602 // being selected between, fold the select. Yes this does (rarely) happen
603 // early on.
604 if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition()))
605 return SI.getOperand(1 + CI->isZero());
606 if (SI.getOperand(1) == SI.getOperand(2))
607 return SI.getOperand(1);
608
609 return nullptr;
610 }
611
612 /// \brief A helper that folds a PHI node or a select.
613 static Value *foldPHINodeOrSelectInst(Instruction &I) {
614 if (PHINode *PN = dyn_cast<PHINode>(&I)) {
615 // If PN merges together the same value, return that value.
616 return PN->hasConstantValue();
617 }
618 return foldSelectInst(cast<SelectInst>(I));
619 }
620
621 /// \brief Builder for the alloca slices.
622 ///
623 /// This class builds a set of alloca slices by recursively visiting the uses
624 /// of an alloca and making a slice for each load and store at each offset.
625 class AllocaSlices::SliceBuilder : public PtrUseVisitor<SliceBuilder> {
626 friend class PtrUseVisitor<SliceBuilder>;
627 friend class InstVisitor<SliceBuilder>;
628 typedef PtrUseVisitor<SliceBuilder> Base;
629
630 const uint64_t AllocSize;
631 AllocaSlices &AS;
632
633 SmallDenseMap<Instruction *, unsigned> MemTransferSliceMap;
634 SmallDenseMap<Instruction *, uint64_t> PHIOrSelectSizes;
635
636 /// \brief Set to de-duplicate dead instructions found in the use walk.
637 SmallPtrSet<Instruction *, 4> VisitedDeadInsts;
638
639 public:
640 SliceBuilder(const DataLayout &DL, AllocaInst &AI, AllocaSlices &AS)
641 : PtrUseVisitor<SliceBuilder>(DL),
642 AllocSize(DL.getTypeAllocSize(AI.getAllocatedType())), AS(AS) {}
643
644 private:
645 void markAsDead(Instruction &I) {
646 if (VisitedDeadInsts.insert(&I).second)
647 AS.DeadUsers.push_back(&I);
648 }
649
650 void insertUse(Instruction &I, const APInt &Offset, uint64_t Size,
651 bool IsSplittable = false) {
652 // Completely skip uses which have a zero size or start either before or
653 // past the end of the allocation.
654 if (Size == 0 || Offset.uge(AllocSize)) {
655 DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @" << Offset
656 << " which has zero size or starts outside of the "
657 << AllocSize << " byte alloca:\n"
658 << " alloca: " << AS.AI << "\n"
659 << " use: " << I << "\n");
660 return markAsDead(I);
661 }
662
663 uint64_t BeginOffset = Offset.getZExtValue();
664 uint64_t EndOffset = BeginOffset + Size;
665
666 // Clamp the end offset to the end of the allocation. Note that this is
667 // formulated to handle even the case where "BeginOffset + Size" overflows.
668 // This may appear superficially to be something we could ignore entirely,
669 // but that is not so! There may be widened loads or PHI-node uses where
670 // some instructions are dead but not others. We can't completely ignore
671 // them, and so have to record at least the information here.
672 assert(AllocSize >= BeginOffset); // Established above.
673 if (Size > AllocSize - BeginOffset) {
674 DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" << Offset
675 << " to remain within the " << AllocSize << " byte alloca:\n"
676 << " alloca: " << AS.AI << "\n"
677 << " use: " << I << "\n");
678 EndOffset = AllocSize;
679 }
680
681 AS.Slices.push_back(Slice(BeginOffset, EndOffset, U, IsSplittable));
682 }
683
684 void visitBitCastInst(BitCastInst &BC) {
685 if (BC.use_empty())
686 return markAsDead(BC);
687
688 return Base::visitBitCastInst(BC);
689 }
690
691 void visitGetElementPtrInst(GetElementPtrInst &GEPI) {
692 if (GEPI.use_empty())
693 return markAsDead(GEPI);
694
695 if (SROAStrictInbounds && GEPI.isInBounds()) {
696 // FIXME: This is a manually un-factored variant of the basic code inside
697 // of GEPs with checking of the inbounds invariant specified in the
698 // langref in a very strict sense. If we ever want to enable
699 // SROAStrictInbounds, this code should be factored cleanly into
700 // PtrUseVisitor, but it is easier to experiment with SROAStrictInbounds
701 // by writing out the code here where we have tho underlying allocation
702 // size readily available.
703 APInt GEPOffset = Offset;
704 for (gep_type_iterator GTI = gep_type_begin(GEPI),
705 GTE = gep_type_end(GEPI);
706 GTI != GTE; ++GTI) {
707 ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
708 if (!OpC)
709 break;
710
711 // Handle a struct index, which adds its field offset to the pointer.
712 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
713 unsigned ElementIdx = OpC->getZExtValue();
714 const StructLayout *SL = DL.getStructLayout(STy);
715 GEPOffset +=
716 APInt(Offset.getBitWidth(), SL->getElementOffset(ElementIdx));
717 } else {
718 // For array or vector indices, scale the index by the size of the
719 // type.
720 APInt Index = OpC->getValue().sextOrTrunc(Offset.getBitWidth());
721 GEPOffset += Index * APInt(Offset.getBitWidth(),
722 DL.getTypeAllocSize(GTI.getIndexedType()));
723 }
724
725 // If this index has computed an intermediate pointer which is not
726 // inbounds, then the result of the GEP is a poison value and we can
727 // delete it and all uses.
728 if (GEPOffset.ugt(AllocSize))
729 return markAsDead(GEPI);
730 }
731 }
732
733 return Base::visitGetElementPtrInst(GEPI);
734 }
735
736 void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset,
737 uint64_t Size, bool IsVolatile) {
738 // We allow splitting of non-volatile loads and stores where the type is an
739 // integer type. These may be used to implement 'memcpy' or other "transfer
740 // of bits" patterns.
741 bool IsSplittable = Ty->isIntegerTy() && !IsVolatile;
742
743 insertUse(I, Offset, Size, IsSplittable);
744 }
745
746 void visitLoadInst(LoadInst &LI) {
747 assert((!LI.isSimple() || LI.getType()->isSingleValueType()) &&
748 "All simple FCA loads should have been pre-split");
749
750 if (!IsOffsetKnown)
751 return PI.setAborted(&LI);
752
753 uint64_t Size = DL.getTypeStoreSize(LI.getType());
754 return handleLoadOrStore(LI.getType(), LI, Offset, Size, LI.isVolatile());
755 }
756
757 void visitStoreInst(StoreInst &SI) {
758 Value *ValOp = SI.getValueOperand();
759 if (ValOp == *U)
760 return PI.setEscapedAndAborted(&SI);
761 if (!IsOffsetKnown)
762 return PI.setAborted(&SI);
763
764 uint64_t Size = DL.getTypeStoreSize(ValOp->getType());
765
766 // If this memory access can be shown to *statically* extend outside the
767 // bounds of of the allocation, it's behavior is undefined, so simply
768 // ignore it. Note that this is more strict than the generic clamping
769 // behavior of insertUse. We also try to handle cases which might run the
770 // risk of overflow.
771 // FIXME: We should instead consider the pointer to have escaped if this
772 // function is being instrumented for addressing bugs or race conditions.
773 if (Size > AllocSize || Offset.ugt(AllocSize - Size)) {
774 DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte store @" << Offset
775 << " which extends past the end of the " << AllocSize
776 << " byte alloca:\n"
777 << " alloca: " << AS.AI << "\n"
778 << " use: " << SI << "\n");
779 return markAsDead(SI);
780 }
781
782 assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) &&
783 "All simple FCA stores should have been pre-split");
784 handleLoadOrStore(ValOp->getType(), SI, Offset, Size, SI.isVolatile());
785 }
786
787 void visitMemSetInst(MemSetInst &II) {
788 assert(II.getRawDest() == *U && "Pointer use is not the destination?");
789 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
790 if ((Length && Length->getValue() == 0) ||
791 (IsOffsetKnown && Offset.uge(AllocSize)))
792 // Zero-length mem transfer intrinsics can be ignored entirely.
793 return markAsDead(II);
794
795 if (!IsOffsetKnown)
796 return PI.setAborted(&II);
797
798 insertUse(II, Offset, Length ? Length->getLimitedValue()
799 : AllocSize - Offset.getLimitedValue(),
800 (bool)Length);
801 }
802
803 void visitMemTransferInst(MemTransferInst &II) {
804 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
805 if (Length && Length->getValue() == 0)
806 // Zero-length mem transfer intrinsics can be ignored entirely.
807 return markAsDead(II);
808
809 // Because we can visit these intrinsics twice, also check to see if the
810 // first time marked this instruction as dead. If so, skip it.
811 if (VisitedDeadInsts.count(&II))
812 return;
813
814 if (!IsOffsetKnown)
815 return PI.setAborted(&II);
816
817 // This side of the transfer is completely out-of-bounds, and so we can
818 // nuke the entire transfer. However, we also need to nuke the other side
819 // if already added to our partitions.
820 // FIXME: Yet another place we really should bypass this when
821 // instrumenting for ASan.
822 if (Offset.uge(AllocSize)) {
823 SmallDenseMap<Instruction *, unsigned>::iterator MTPI =
824 MemTransferSliceMap.find(&II);
825 if (MTPI != MemTransferSliceMap.end())
826 AS.Slices[MTPI->second].kill();
827 return markAsDead(II);
828 }
829
830 uint64_t RawOffset = Offset.getLimitedValue();
831 uint64_t Size = Length ? Length->getLimitedValue() : AllocSize - RawOffset;
832
833 // Check for the special case where the same exact value is used for both
834 // source and dest.
835 if (*U == II.getRawDest() && *U == II.getRawSource()) {
836 // For non-volatile transfers this is a no-op.
837 if (!II.isVolatile())
838 return markAsDead(II);
839
840 return insertUse(II, Offset, Size, /*IsSplittable=*/false);
841 }
842
843 // If we have seen both source and destination for a mem transfer, then
844 // they both point to the same alloca.
845 bool Inserted;
846 SmallDenseMap<Instruction *, unsigned>::iterator MTPI;
847 std::tie(MTPI, Inserted) =
848 MemTransferSliceMap.insert(std::make_pair(&II, AS.Slices.size()));
849 unsigned PrevIdx = MTPI->second;
850 if (!Inserted) {
851 Slice &PrevP = AS.Slices[PrevIdx];
852
853 // Check if the begin offsets match and this is a non-volatile transfer.
854 // In that case, we can completely elide the transfer.
855 if (!II.isVolatile() && PrevP.beginOffset() == RawOffset) {
856 PrevP.kill();
857 return markAsDead(II);
858 }
859
860 // Otherwise we have an offset transfer within the same alloca. We can't
861 // split those.
862 PrevP.makeUnsplittable();
863 }
864
865 // Insert the use now that we've fixed up the splittable nature.
866 insertUse(II, Offset, Size, /*IsSplittable=*/Inserted && Length);
867
868 // Check that we ended up with a valid index in the map.
869 assert(AS.Slices[PrevIdx].getUse()->getUser() == &II &&
870 "Map index doesn't point back to a slice with this user.");
871 }
872
873 // Disable SRoA for any intrinsics except for lifetime invariants.
874 // FIXME: What about debug intrinsics? This matches old behavior, but
875 // doesn't make sense.
876 void visitIntrinsicInst(IntrinsicInst &II) {
877 if (!IsOffsetKnown)
878 return PI.setAborted(&II);
879
880 if (II.getIntrinsicID() == Intrinsic::lifetime_start ||
881 II.getIntrinsicID() == Intrinsic::lifetime_end) {
882 ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
883 uint64_t Size = std::min(AllocSize - Offset.getLimitedValue(),
884 Length->getLimitedValue());
885 insertUse(II, Offset, Size, true);
886 return;
887 }
888
889 Base::visitIntrinsicInst(II);
890 }
891
892 Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) {
893 // We consider any PHI or select that results in a direct load or store of
894 // the same offset to be a viable use for slicing purposes. These uses
895 // are considered unsplittable and the size is the maximum loaded or stored
896 // size.
897 SmallPtrSet<Instruction *, 4> Visited;
898 SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses;
899 Visited.insert(Root);
900 Uses.push_back(std::make_pair(cast<Instruction>(*U), Root));
901 // If there are no loads or stores, the access is dead. We mark that as
902 // a size zero access.
903 Size = 0;
904 do {
905 Instruction *I, *UsedI;
906 std::tie(UsedI, I) = Uses.pop_back_val();
907
908 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
909 Size = std::max(Size, DL.getTypeStoreSize(LI->getType()));
910 continue;
911 }
912 if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
913 Value *Op = SI->getOperand(0);
914 if (Op == UsedI)
915 return SI;
916 Size = std::max(Size, DL.getTypeStoreSize(Op->getType()));
917 continue;
918 }
919
920 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
921 if (!GEP->hasAllZeroIndices())
922 return GEP;
923 } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) &&
924 !isa<SelectInst>(I)) {
925 return I;
926 }
927
928 for (User *U : I->users())
929 if (Visited.insert(cast<Instruction>(U)).second)
930 Uses.push_back(std::make_pair(I, cast<Instruction>(U)));
931 } while (!Uses.empty());
932
933 return nullptr;
934 }
935
936 void visitPHINodeOrSelectInst(Instruction &I) {
937 assert(isa<PHINode>(I) || isa<SelectInst>(I));
938 if (I.use_empty())
939 return markAsDead(I);
940
941 // TODO: We could use SimplifyInstruction here to fold PHINodes and
942 // SelectInsts. However, doing so requires to change the current
943 // dead-operand-tracking mechanism. For instance, suppose neither loading
944 // from %U nor %other traps. Then "load (select undef, %U, %other)" does not
945 // trap either. However, if we simply replace %U with undef using the
946 // current dead-operand-tracking mechanism, "load (select undef, undef,
947 // %other)" may trap because the select may return the first operand
948 // "undef".
949 if (Value *Result = foldPHINodeOrSelectInst(I)) {
950 if (Result == *U)
951 // If the result of the constant fold will be the pointer, recurse
952 // through the PHI/select as if we had RAUW'ed it.
953 enqueueUsers(I);
954 else
955 // Otherwise the operand to the PHI/select is dead, and we can replace
956 // it with undef.
957 AS.DeadOperands.push_back(U);
958
959 return;
960 }
961
962 if (!IsOffsetKnown)
963 return PI.setAborted(&I);
964
965 // See if we already have computed info on this node.
966 uint64_t &Size = PHIOrSelectSizes[&I];
967 if (!Size) {
968 // This is a new PHI/Select, check for an unsafe use of it.
969 if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&I, Size))
970 return PI.setAborted(UnsafeI);
971 }
972
973 // For PHI and select operands outside the alloca, we can't nuke the entire
974 // phi or select -- the other side might still be relevant, so we special
975 // case them here and use a separate structure to track the operands
976 // themselves which should be replaced with undef.
977 // FIXME: This should instead be escaped in the event we're instrumenting
978 // for address sanitization.
979 if (Offset.uge(AllocSize)) {
980 AS.DeadOperands.push_back(U);
981 return;
982 }
983
984 insertUse(I, Offset, Size);
985 }
986
987 void visitPHINode(PHINode &PN) { visitPHINodeOrSelectInst(PN); }
988
989 void visitSelectInst(SelectInst &SI) { visitPHINodeOrSelectInst(SI); }
990
991 /// \brief Disable SROA entirely if there are unhandled users of the alloca.
992 void visitInstruction(Instruction &I) { PI.setAborted(&I); }
993 };
994
995 AllocaSlices::AllocaSlices(const DataLayout &DL, AllocaInst &AI)
996 :
997 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
998 AI(AI),
999 #endif
1000 PointerEscapingInstr(nullptr) {
1001 SliceBuilder PB(DL, AI, *this);
1002 SliceBuilder::PtrInfo PtrI = PB.visitPtr(AI);
1003 if (PtrI.isEscaped() || PtrI.isAborted()) {
1004 // FIXME: We should sink the escape vs. abort info into the caller nicely,
1005 // possibly by just storing the PtrInfo in the AllocaSlices.
1006 PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst()
1007 : PtrI.getAbortingInst();
1008 assert(PointerEscapingInstr && "Did not track a bad instruction");
1009 return;
1010 }
1011
1012 Slices.erase(std::remove_if(Slices.begin(), Slices.end(),
1013 [](const Slice &S) {
1014 return S.isDead();
1015 }),
1016 Slices.end());
1017
1018 #if __cplusplus >= 201103L && !defined(NDEBUG)
1019 if (SROARandomShuffleSlices) {
1020 std::mt19937 MT(static_cast<unsigned>(sys::TimeValue::now().msec()));
1021 std::shuffle(Slices.begin(), Slices.end(), MT);
1022 }
1023 #endif
1024
1025 // Sort the uses. This arranges for the offsets to be in ascending order,
1026 // and the sizes to be in descending order.
1027 std::sort(Slices.begin(), Slices.end());
1028 }
1029
1030 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1031
1032 void AllocaSlices::print(raw_ostream &OS, const_iterator I,
1033 StringRef Indent) const {
1034 printSlice(OS, I, Indent);
1035 OS << "\n";
1036 printUse(OS, I, Indent);
1037 }
1038
1039 void AllocaSlices::printSlice(raw_ostream &OS, const_iterator I,
1040 StringRef Indent) const {
1041 OS << Indent << "[" << I->beginOffset() << "," << I->endOffset() << ")"
1042 << " slice #" << (I - begin())
1043 << (I->isSplittable() ? " (splittable)" : "");
1044 }
1045
1046 void AllocaSlices::printUse(raw_ostream &OS, const_iterator I,
1047 StringRef Indent) const {
1048 OS << Indent << " used by: " << *I->getUse()->getUser() << "\n";
1049 }
1050
1051 void AllocaSlices::print(raw_ostream &OS) const {
1052 if (PointerEscapingInstr) {
1053 OS << "Can't analyze slices for alloca: " << AI << "\n"
1054 << " A pointer to this alloca escaped by:\n"
1055 << " " << *PointerEscapingInstr << "\n";
1056 return;
1057 }
1058
1059 OS << "Slices of alloca: " << AI << "\n";
1060 for (const_iterator I = begin(), E = end(); I != E; ++I)
1061 print(OS, I);
1062 }
1063
1064 LLVM_DUMP_METHOD void AllocaSlices::dump(const_iterator I) const {
1065 print(dbgs(), I);
1066 }
1067 LLVM_DUMP_METHOD void AllocaSlices::dump() const { print(dbgs()); }
1068
1069 #endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1070
1071 namespace {
1072 /// \brief Implementation of LoadAndStorePromoter for promoting allocas.
1073 ///
1074 /// This subclass of LoadAndStorePromoter adds overrides to handle promoting
1075 /// the loads and stores of an alloca instruction, as well as updating its
1076 /// debug information. This is used when a domtree is unavailable and thus
1077 /// mem2reg in its full form can't be used to handle promotion of allocas to
1078 /// scalar values.
1079 class AllocaPromoter : public LoadAndStorePromoter {
1080 AllocaInst &AI;
1081 DIBuilder &DIB;
1082
1083 SmallVector<DbgDeclareInst *, 4> DDIs;
1084 SmallVector<DbgValueInst *, 4> DVIs;
1085
1086 public:
1087 AllocaPromoter(const SmallVectorImpl<Instruction *> &Insts, SSAUpdater &S,
1088 AllocaInst &AI, DIBuilder &DIB)
1089 : LoadAndStorePromoter(Insts, S), AI(AI), DIB(DIB) {}
1090
1091 void run(const SmallVectorImpl<Instruction *> &Insts) {
1092 // Retain the debug information attached to the alloca for use when
1093 // rewriting loads and stores.
1094 if (auto *L = LocalAsMetadata::getIfExists(&AI)) {
1095 if (auto *DebugNode = MetadataAsValue::getIfExists(AI.getContext(), L)) {
1096 for (User *U : DebugNode->users())
1097 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
1098 DDIs.push_back(DDI);
1099 else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
1100 DVIs.push_back(DVI);
1101 }
1102 }
1103
1104 LoadAndStorePromoter::run(Insts);
1105
1106 // While we have the debug information, clear it off of the alloca. The
1107 // caller takes care of deleting the alloca.
1108 while (!DDIs.empty())
1109 DDIs.pop_back_val()->eraseFromParent();
1110 while (!DVIs.empty())
1111 DVIs.pop_back_val()->eraseFromParent();
1112 }
1113
1114 bool
1115 isInstInList(Instruction *I,
1116 const SmallVectorImpl<Instruction *> &Insts) const override {
1117 Value *Ptr;
1118 if (LoadInst *LI = dyn_cast<LoadInst>(I))
1119 Ptr = LI->getOperand(0);
1120 else
1121 Ptr = cast<StoreInst>(I)->getPointerOperand();
1122
1123 // Only used to detect cycles, which will be rare and quickly found as
1124 // we're walking up a chain of defs rather than down through uses.
1125 SmallPtrSet<Value *, 4> Visited;
1126
1127 do {
1128 if (Ptr == &AI)
1129 return true;
1130
1131 if (BitCastInst *BCI = dyn_cast<BitCastInst>(Ptr))
1132 Ptr = BCI->getOperand(0);
1133 else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr))
1134 Ptr = GEPI->getPointerOperand();
1135 else
1136 return false;
1137
1138 } while (Visited.insert(Ptr).second);
1139
1140 return false;
1141 }
1142
1143 void updateDebugInfo(Instruction *Inst) const override {
1144 for (DbgDeclareInst *DDI : DDIs)
1145 if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
1146 ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1147 else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
1148 ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1149 for (DbgValueInst *DVI : DVIs) {
1150 Value *Arg = nullptr;
1151 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
1152 // If an argument is zero extended then use argument directly. The ZExt
1153 // may be zapped by an optimization pass in future.
1154 if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
1155 Arg = dyn_cast<Argument>(ZExt->getOperand(0));
1156 else if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
1157 Arg = dyn_cast<Argument>(SExt->getOperand(0));
1158 if (!Arg)
1159 Arg = SI->getValueOperand();
1160 } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
1161 Arg = LI->getPointerOperand();
1162 } else {
1163 continue;
1164 }
1165 Instruction *DbgVal =
1166 DIB.insertDbgValueIntrinsic(Arg, 0, DIVariable(DVI->getVariable()),
1167 DIExpression(DVI->getExpression()), Inst);
1168 DbgVal->setDebugLoc(DVI->getDebugLoc());
1169 }
1170 }
1171 };
1172 } // end anon namespace
1173
1174 namespace {
1175 /// \brief An optimization pass providing Scalar Replacement of Aggregates.
1176 ///
1177 /// This pass takes allocations which can be completely analyzed (that is, they
1178 /// don't escape) and tries to turn them into scalar SSA values. There are
1179 /// a few steps to this process.
1180 ///
1181 /// 1) It takes allocations of aggregates and analyzes the ways in which they
1182 /// are used to try to split them into smaller allocations, ideally of
1183 /// a single scalar data type. It will split up memcpy and memset accesses
1184 /// as necessary and try to isolate individual scalar accesses.
1185 /// 2) It will transform accesses into forms which are suitable for SSA value
1186 /// promotion. This can be replacing a memset with a scalar store of an
1187 /// integer value, or it can involve speculating operations on a PHI or
1188 /// select to be a PHI or select of the results.
1189 /// 3) Finally, this will try to detect a pattern of accesses which map cleanly
1190 /// onto insert and extract operations on a vector value, and convert them to
1191 /// this form. By doing so, it will enable promotion of vector aggregates to
1192 /// SSA vector values.
1193 class SROA : public FunctionPass {
1194 const bool RequiresDomTree;
1195
1196 LLVMContext *C;
1197 const DataLayout *DL;
1198 DominatorTree *DT;
1199 AssumptionCache *AC;
1200
1201 /// \brief Worklist of alloca instructions to simplify.
1202 ///
1203 /// Each alloca in the function is added to this. Each new alloca formed gets
1204 /// added to it as well to recursively simplify unless that alloca can be
1205 /// directly promoted. Finally, each time we rewrite a use of an alloca other
1206 /// the one being actively rewritten, we add it back onto the list if not
1207 /// already present to ensure it is re-visited.
1208 SetVector<AllocaInst *, SmallVector<AllocaInst *, 16>> Worklist;
1209
1210 /// \brief A collection of instructions to delete.
1211 /// We try to batch deletions to simplify code and make things a bit more
1212 /// efficient.
1213 SetVector<Instruction *, SmallVector<Instruction *, 8>> DeadInsts;
1214
1215 /// \brief Post-promotion worklist.
1216 ///
1217 /// Sometimes we discover an alloca which has a high probability of becoming
1218 /// viable for SROA after a round of promotion takes place. In those cases,
1219 /// the alloca is enqueued here for re-processing.
1220 ///
1221 /// Note that we have to be very careful to clear allocas out of this list in
1222 /// the event they are deleted.
1223 SetVector<AllocaInst *, SmallVector<AllocaInst *, 16>> PostPromotionWorklist;
1224
1225 /// \brief A collection of alloca instructions we can directly promote.
1226 std::vector<AllocaInst *> PromotableAllocas;
1227
1228 /// \brief A worklist of PHIs to speculate prior to promoting allocas.
1229 ///
1230 /// All of these PHIs have been checked for the safety of speculation and by
1231 /// being speculated will allow promoting allocas currently in the promotable
1232 /// queue.
1233 SetVector<PHINode *, SmallVector<PHINode *, 2>> SpeculatablePHIs;
1234
1235 /// \brief A worklist of select instructions to speculate prior to promoting
1236 /// allocas.
1237 ///
1238 /// All of these select instructions have been checked for the safety of
1239 /// speculation and by being speculated will allow promoting allocas
1240 /// currently in the promotable queue.
1241 SetVector<SelectInst *, SmallVector<SelectInst *, 2>> SpeculatableSelects;
1242
1243 public:
1244 SROA(bool RequiresDomTree = true)
1245 : FunctionPass(ID), RequiresDomTree(RequiresDomTree), C(nullptr),
1246 DL(nullptr), DT(nullptr) {
1247 initializeSROAPass(*PassRegistry::getPassRegistry());
1248 }
1249 bool runOnFunction(Function &F) override;
1250 void getAnalysisUsage(AnalysisUsage &AU) const override;
1251
1252 const char *getPassName() const override { return "SROA"; }
1253 static char ID;
1254
1255 private:
1256 friend class PHIOrSelectSpeculator;
1257 friend class AllocaSliceRewriter;
1258
1259 bool presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS);
1260 bool rewritePartition(AllocaInst &AI, AllocaSlices &AS,
1261 AllocaSlices::Partition &P);
1262 bool splitAlloca(AllocaInst &AI, AllocaSlices &AS);
1263 bool runOnAlloca(AllocaInst &AI);
1264 void clobberUse(Use &U);
1265 void deleteDeadInstructions(SmallPtrSetImpl<AllocaInst *> &DeletedAllocas);
1266 bool promoteAllocas(Function &F);
1267 };
1268 }
1269
1270 char SROA::ID = 0;
1271
1272 FunctionPass *llvm::createSROAPass(bool RequiresDomTree) {
1273 return new SROA(RequiresDomTree);
1274 }
1275
1276 INITIALIZE_PASS_BEGIN(SROA, "sroa", "Scalar Replacement Of Aggregates", false,
1277 false)
1278 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1279 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1280 INITIALIZE_PASS_END(SROA, "sroa", "Scalar Replacement Of Aggregates", false,
1281 false)
1282
1283 /// Walk the range of a partitioning looking for a common type to cover this
1284 /// sequence of slices.
1285 static Type *findCommonType(AllocaSlices::const_iterator B,
1286 AllocaSlices::const_iterator E,
1287 uint64_t EndOffset) {
1288 Type *Ty = nullptr;
1289 bool TyIsCommon = true;
1290 IntegerType *ITy = nullptr;
1291
1292 // Note that we need to look at *every* alloca slice's Use to ensure we
1293 // always get consistent results regardless of the order of slices.
1294 for (AllocaSlices::const_iterator I = B; I != E; ++I) {
1295 Use *U = I->getUse();
1296 if (isa<IntrinsicInst>(*U->getUser()))
1297 continue;
1298 if (I->beginOffset() != B->beginOffset() || I->endOffset() != EndOffset)
1299 continue;
1300
1301 Type *UserTy = nullptr;
1302 if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
1303 UserTy = LI->getType();
1304 } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
1305 UserTy = SI->getValueOperand()->getType();
1306 }
1307
1308 if (IntegerType *UserITy = dyn_cast_or_null<IntegerType>(UserTy)) {
1309 // If the type is larger than the partition, skip it. We only encounter
1310 // this for split integer operations where we want to use the type of the
1311 // entity causing the split. Also skip if the type is not a byte width
1312 // multiple.
1313 if (UserITy->getBitWidth() % 8 != 0 ||
1314 UserITy->getBitWidth() / 8 > (EndOffset - B->beginOffset()))
1315 continue;
1316
1317 // Track the largest bitwidth integer type used in this way in case there
1318 // is no common type.
1319 if (!ITy || ITy->getBitWidth() < UserITy->getBitWidth())
1320 ITy = UserITy;
1321 }
1322
1323 // To avoid depending on the order of slices, Ty and TyIsCommon must not
1324 // depend on types skipped above.
1325 if (!UserTy || (Ty && Ty != UserTy))
1326 TyIsCommon = false; // Give up on anything but an iN type.
1327 else
1328 Ty = UserTy;
1329 }
1330
1331 return TyIsCommon ? Ty : ITy;
1332 }
1333
1334 /// PHI instructions that use an alloca and are subsequently loaded can be
1335 /// rewritten to load both input pointers in the pred blocks and then PHI the
1336 /// results, allowing the load of the alloca to be promoted.
1337 /// From this:
1338 /// %P2 = phi [i32* %Alloca, i32* %Other]
1339 /// %V = load i32* %P2
1340 /// to:
1341 /// %V1 = load i32* %Alloca -> will be mem2reg'd
1342 /// ...
1343 /// %V2 = load i32* %Other
1344 /// ...
1345 /// %V = phi [i32 %V1, i32 %V2]
1346 ///
1347 /// We can do this to a select if its only uses are loads and if the operands
1348 /// to the select can be loaded unconditionally.
1349 ///
1350 /// FIXME: This should be hoisted into a generic utility, likely in
1351 /// Transforms/Util/Local.h
1352 static bool isSafePHIToSpeculate(PHINode &PN, const DataLayout *DL = nullptr) {
1353 // For now, we can only do this promotion if the load is in the same block
1354 // as the PHI, and if there are no stores between the phi and load.
1355 // TODO: Allow recursive phi users.
1356 // TODO: Allow stores.
1357 BasicBlock *BB = PN.getParent();
1358 unsigned MaxAlign = 0;
1359 bool HaveLoad = false;
1360 for (User *U : PN.users()) {
1361 LoadInst *LI = dyn_cast<LoadInst>(U);
1362 if (!LI || !LI->isSimple())
1363 return false;
1364
1365 // For now we only allow loads in the same block as the PHI. This is
1366 // a common case that happens when instcombine merges two loads through
1367 // a PHI.
1368 if (LI->getParent() != BB)
1369 return false;
1370
1371 // Ensure that there are no instructions between the PHI and the load that
1372 // could store.
1373 for (BasicBlock::iterator BBI = &PN; &*BBI != LI; ++BBI)
1374 if (BBI->mayWriteToMemory())
1375 return false;
1376
1377 MaxAlign = std::max(MaxAlign, LI->getAlignment());
1378 HaveLoad = true;
1379 }
1380
1381 if (!HaveLoad)
1382 return false;
1383
1384 // We can only transform this if it is safe to push the loads into the
1385 // predecessor blocks. The only thing to watch out for is that we can't put
1386 // a possibly trapping load in the predecessor if it is a critical edge.
1387 for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1388 TerminatorInst *TI = PN.getIncomingBlock(Idx)->getTerminator();
1389 Value *InVal = PN.getIncomingValue(Idx);
1390
1391 // If the value is produced by the terminator of the predecessor (an
1392 // invoke) or it has side-effects, there is no valid place to put a load
1393 // in the predecessor.
1394 if (TI == InVal || TI->mayHaveSideEffects())
1395 return false;
1396
1397 // If the predecessor has a single successor, then the edge isn't
1398 // critical.
1399 if (TI->getNumSuccessors() == 1)
1400 continue;
1401
1402 // If this pointer is always safe to load, or if we can prove that there
1403 // is already a load in the block, then we can move the load to the pred
1404 // block.
1405 if (InVal->isDereferenceablePointer(DL) ||
1406 isSafeToLoadUnconditionally(InVal, TI, MaxAlign, DL))
1407 continue;
1408
1409 return false;
1410 }
1411
1412 return true;
1413 }
1414
1415 static void speculatePHINodeLoads(PHINode &PN) {
1416 DEBUG(dbgs() << " original: " << PN << "\n");
1417
1418 Type *LoadTy = cast<PointerType>(PN.getType())->getElementType();
1419 IRBuilderTy PHIBuilder(&PN);
1420 PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(),
1421 PN.getName() + ".sroa.speculated");
1422
1423 // Get the AA tags and alignment to use from one of the loads. It doesn't
1424 // matter which one we get and if any differ.
1425 LoadInst *SomeLoad = cast<LoadInst>(PN.user_back());
1426
1427 AAMDNodes AATags;
1428 SomeLoad->getAAMetadata(AATags);
1429 unsigned Align = SomeLoad->getAlignment();
1430
1431 // Rewrite all loads of the PN to use the new PHI.
1432 while (!PN.use_empty()) {
1433 LoadInst *LI = cast<LoadInst>(PN.user_back());
1434 LI->replaceAllUsesWith(NewPN);
1435 LI->eraseFromParent();
1436 }
1437
1438 // Inject loads into all of the pred blocks.
1439 for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1440 BasicBlock *Pred = PN.getIncomingBlock(Idx);
1441 TerminatorInst *TI = Pred->getTerminator();
1442 Value *InVal = PN.getIncomingValue(Idx);
1443 IRBuilderTy PredBuilder(TI);
1444
1445 LoadInst *Load = PredBuilder.CreateLoad(
1446 InVal, (PN.getName() + ".sroa.speculate.load." + Pred->getName()));
1447 ++NumLoadsSpeculated;
1448 Load->setAlignment(Align);
1449 if (AATags)
1450 Load->setAAMetadata(AATags);
1451 NewPN->addIncoming(Load, Pred);
1452 }
1453
1454 DEBUG(dbgs() << " speculated to: " << *NewPN << "\n");
1455 PN.eraseFromParent();
1456 }
1457
1458 /// Select instructions that use an alloca and are subsequently loaded can be
1459 /// rewritten to load both input pointers and then select between the result,
1460 /// allowing the load of the alloca to be promoted.
1461 /// From this:
1462 /// %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1463 /// %V = load i32* %P2
1464 /// to:
1465 /// %V1 = load i32* %Alloca -> will be mem2reg'd
1466 /// %V2 = load i32* %Other
1467 /// %V = select i1 %cond, i32 %V1, i32 %V2
1468 ///
1469 /// We can do this to a select if its only uses are loads and if the operand
1470 /// to the select can be loaded unconditionally.
1471 static bool isSafeSelectToSpeculate(SelectInst &SI,
1472 const DataLayout *DL = nullptr) {
1473 Value *TValue = SI.getTrueValue();
1474 Value *FValue = SI.getFalseValue();
1475 bool TDerefable = TValue->isDereferenceablePointer(DL);
1476 bool FDerefable = FValue->isDereferenceablePointer(DL);
1477
1478 for (User *U : SI.users()) {
1479 LoadInst *LI = dyn_cast<LoadInst>(U);
1480 if (!LI || !LI->isSimple())
1481 return false;
1482
1483 // Both operands to the select need to be dereferencable, either
1484 // absolutely (e.g. allocas) or at this point because we can see other
1485 // accesses to it.
1486 if (!TDerefable &&
1487 !isSafeToLoadUnconditionally(TValue, LI, LI->getAlignment(), DL))
1488 return false;
1489 if (!FDerefable &&
1490 !isSafeToLoadUnconditionally(FValue, LI, LI->getAlignment(), DL))
1491 return false;
1492 }
1493
1494 return true;
1495 }
1496
1497 static void speculateSelectInstLoads(SelectInst &SI) {
1498 DEBUG(dbgs() << " original: " << SI << "\n");
1499
1500 IRBuilderTy IRB(&SI);
1501 Value *TV = SI.getTrueValue();
1502 Value *FV = SI.getFalseValue();
1503 // Replace the loads of the select with a select of two loads.
1504 while (!SI.use_empty()) {
1505 LoadInst *LI = cast<LoadInst>(SI.user_back());
1506 assert(LI->isSimple() && "We only speculate simple loads");
1507
1508 IRB.SetInsertPoint(LI);
1509 LoadInst *TL =
1510 IRB.CreateLoad(TV, LI->getName() + ".sroa.speculate.load.true");
1511 LoadInst *FL =
1512 IRB.CreateLoad(FV, LI->getName() + ".sroa.speculate.load.false");
1513 NumLoadsSpeculated += 2;
1514
1515 // Transfer alignment and AA info if present.
1516 TL->setAlignment(LI->getAlignment());
1517 FL->setAlignment(LI->getAlignment());
1518
1519 AAMDNodes Tags;
1520 LI->getAAMetadata(Tags);
1521 if (Tags) {
1522 TL->setAAMetadata(Tags);
1523 FL->setAAMetadata(Tags);
1524 }
1525
1526 Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL,
1527 LI->getName() + ".sroa.speculated");
1528
1529 DEBUG(dbgs() << " speculated to: " << *V << "\n");
1530 LI->replaceAllUsesWith(V);
1531 LI->eraseFromParent();
1532 }
1533 SI.eraseFromParent();
1534 }
1535
1536 /// \brief Build a GEP out of a base pointer and indices.
1537 ///
1538 /// This will return the BasePtr if that is valid, or build a new GEP
1539 /// instruction using the IRBuilder if GEP-ing is needed.
1540 static Value *buildGEP(IRBuilderTy &IRB, Value *BasePtr,
1541 SmallVectorImpl<Value *> &Indices, Twine NamePrefix) {
1542 if (Indices.empty())
1543 return BasePtr;
1544
1545 // A single zero index is a no-op, so check for this and avoid building a GEP
1546 // in that case.
1547 if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero())
1548 return BasePtr;
1549
1550 return IRB.CreateInBoundsGEP(BasePtr, Indices, NamePrefix + "sroa_idx");
1551 }
1552
1553 /// \brief Get a natural GEP off of the BasePtr walking through Ty toward
1554 /// TargetTy without changing the offset of the pointer.
1555 ///
1556 /// This routine assumes we've already established a properly offset GEP with
1557 /// Indices, and arrived at the Ty type. The goal is to continue to GEP with
1558 /// zero-indices down through type layers until we find one the same as
1559 /// TargetTy. If we can't find one with the same type, we at least try to use
1560 /// one with the same size. If none of that works, we just produce the GEP as
1561 /// indicated by Indices to have the correct offset.
1562 static Value *getNaturalGEPWithType(IRBuilderTy &IRB, const DataLayout &DL,
1563 Value *BasePtr, Type *Ty, Type *TargetTy,
1564 SmallVectorImpl<Value *> &Indices,
1565 Twine NamePrefix) {
1566 if (Ty == TargetTy)
1567 return buildGEP(IRB, BasePtr, Indices, NamePrefix);
1568
1569 // Pointer size to use for the indices.
1570 unsigned PtrSize = DL.getPointerTypeSizeInBits(BasePtr->getType());
1571
1572 // See if we can descend into a struct and locate a field with the correct
1573 // type.
1574 unsigned NumLayers = 0;
1575 Type *ElementTy = Ty;
1576 do {
1577 if (ElementTy->isPointerTy())
1578 break;
1579
1580 if (ArrayType *ArrayTy = dyn_cast<ArrayType>(ElementTy)) {
1581 ElementTy = ArrayTy->getElementType();
1582 Indices.push_back(IRB.getIntN(PtrSize, 0));
1583 } else if (VectorType *VectorTy = dyn_cast<VectorType>(ElementTy)) {
1584 ElementTy = VectorTy->getElementType();
1585 Indices.push_back(IRB.getInt32(0));
1586 } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) {
1587 if (STy->element_begin() == STy->element_end())
1588 break; // Nothing left to descend into.
1589 ElementTy = *STy->element_begin();
1590 Indices.push_back(IRB.getInt32(0));
1591 } else {
1592 break;
1593 }
1594 ++NumLayers;
1595 } while (ElementTy != TargetTy);
1596 if (ElementTy != TargetTy)
1597 Indices.erase(Indices.end() - NumLayers, Indices.end());
1598
1599 return buildGEP(IRB, BasePtr, Indices, NamePrefix);
1600 }
1601
1602 /// \brief Recursively compute indices for a natural GEP.
1603 ///
1604 /// This is the recursive step for getNaturalGEPWithOffset that walks down the
1605 /// element types adding appropriate indices for the GEP.
1606 static Value *getNaturalGEPRecursively(IRBuilderTy &IRB, const DataLayout &DL,
1607 Value *Ptr, Type *Ty, APInt &Offset,
1608 Type *TargetTy,
1609 SmallVectorImpl<Value *> &Indices,
1610 Twine NamePrefix) {
1611 if (Offset == 0)
1612 return getNaturalGEPWithType(IRB, DL, Ptr, Ty, TargetTy, Indices,
1613 NamePrefix);
1614
1615 // We can't recurse through pointer types.
1616 if (Ty->isPointerTy())
1617 return nullptr;
1618
1619 // We try to analyze GEPs over vectors here, but note that these GEPs are
1620 // extremely poorly defined currently. The long-term goal is to remove GEPing
1621 // over a vector from the IR completely.
1622 if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) {
1623 unsigned ElementSizeInBits = DL.getTypeSizeInBits(VecTy->getScalarType());
1624 if (ElementSizeInBits % 8 != 0) {
1625 // GEPs over non-multiple of 8 size vector elements are invalid.
1626 return nullptr;
1627 }
1628 APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8);
1629 APInt NumSkippedElements = Offset.sdiv(ElementSize);
1630 if (NumSkippedElements.ugt(VecTy->getNumElements()))
1631 return nullptr;
1632 Offset -= NumSkippedElements * ElementSize;
1633 Indices.push_back(IRB.getInt(NumSkippedElements));
1634 return getNaturalGEPRecursively(IRB, DL, Ptr, VecTy->getElementType(),
1635 Offset, TargetTy, Indices, NamePrefix);
1636 }
1637
1638 if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
1639 Type *ElementTy = ArrTy->getElementType();
1640 APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy));
1641 APInt NumSkippedElements = Offset.sdiv(ElementSize);
1642 if (NumSkippedElements.ugt(ArrTy->getNumElements()))
1643 return nullptr;
1644
1645 Offset -= NumSkippedElements * ElementSize;
1646 Indices.push_back(IRB.getInt(NumSkippedElements));
1647 return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
1648 Indices, NamePrefix);
1649 }
1650
1651 StructType *STy = dyn_cast<StructType>(Ty);
1652 if (!STy)
1653 return nullptr;
1654
1655 const StructLayout *SL = DL.getStructLayout(STy);
1656 uint64_t StructOffset = Offset.getZExtValue();
1657 if (StructOffset >= SL->getSizeInBytes())
1658 return nullptr;
1659 unsigned Index = SL->getElementContainingOffset(StructOffset);
1660 Offset -= APInt(Offset.getBitWidth(), SL->getElementOffset(Index));
1661 Type *ElementTy = STy->getElementType(Index);
1662 if (Offset.uge(DL.getTypeAllocSize(ElementTy)))
1663 return nullptr; // The offset points into alignment padding.
1664
1665 Indices.push_back(IRB.getInt32(Index));
1666 return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
1667 Indices, NamePrefix);
1668 }
1669
1670 /// \brief Get a natural GEP from a base pointer to a particular offset and
1671 /// resulting in a particular type.
1672 ///
1673 /// The goal is to produce a "natural" looking GEP that works with the existing
1674 /// composite types to arrive at the appropriate offset and element type for
1675 /// a pointer. TargetTy is the element type the returned GEP should point-to if
1676 /// possible. We recurse by decreasing Offset, adding the appropriate index to
1677 /// Indices, and setting Ty to the result subtype.
1678 ///
1679 /// If no natural GEP can be constructed, this function returns null.
1680 static Value *getNaturalGEPWithOffset(IRBuilderTy &IRB, const DataLayout &DL,
1681 Value *Ptr, APInt Offset, Type *TargetTy,
1682 SmallVectorImpl<Value *> &Indices,
1683 Twine NamePrefix) {
1684 PointerType *Ty = cast<PointerType>(Ptr->getType());
1685
1686 // Don't consider any GEPs through an i8* as natural unless the TargetTy is
1687 // an i8.
1688 if (Ty == IRB.getInt8PtrTy(Ty->getAddressSpace()) && TargetTy->isIntegerTy(8))
1689 return nullptr;
1690
1691 Type *ElementTy = Ty->getElementType();
1692 if (!ElementTy->isSized())
1693 return nullptr; // We can't GEP through an unsized element.
1694 APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy));
1695 if (ElementSize == 0)
1696 return nullptr; // Zero-length arrays can't help us build a natural GEP.
1697 APInt NumSkippedElements = Offset.sdiv(ElementSize);
1698
1699 Offset -= NumSkippedElements * ElementSize;
1700 Indices.push_back(IRB.getInt(NumSkippedElements));
1701 return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
1702 Indices, NamePrefix);
1703 }
1704
1705 /// \brief Compute an adjusted pointer from Ptr by Offset bytes where the
1706 /// resulting pointer has PointerTy.
1707 ///
1708 /// This tries very hard to compute a "natural" GEP which arrives at the offset
1709 /// and produces the pointer type desired. Where it cannot, it will try to use
1710 /// the natural GEP to arrive at the offset and bitcast to the type. Where that
1711 /// fails, it will try to use an existing i8* and GEP to the byte offset and
1712 /// bitcast to the type.
1713 ///
1714 /// The strategy for finding the more natural GEPs is to peel off layers of the
1715 /// pointer, walking back through bit casts and GEPs, searching for a base
1716 /// pointer from which we can compute a natural GEP with the desired
1717 /// properties. The algorithm tries to fold as many constant indices into
1718 /// a single GEP as possible, thus making each GEP more independent of the
1719 /// surrounding code.
1720 static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr,
1721 APInt Offset, Type *PointerTy, Twine NamePrefix) {
1722 // Even though we don't look through PHI nodes, we could be called on an
1723 // instruction in an unreachable block, which may be on a cycle.
1724 SmallPtrSet<Value *, 4> Visited;
1725 Visited.insert(Ptr);
1726 SmallVector<Value *, 4> Indices;
1727
1728 // We may end up computing an offset pointer that has the wrong type. If we
1729 // never are able to compute one directly that has the correct type, we'll
1730 // fall back to it, so keep it and the base it was computed from around here.
1731 Value *OffsetPtr = nullptr;
1732 Value *OffsetBasePtr;
1733
1734 // Remember any i8 pointer we come across to re-use if we need to do a raw
1735 // byte offset.
1736 Value *Int8Ptr = nullptr;
1737 APInt Int8PtrOffset(Offset.getBitWidth(), 0);
1738
1739 Type *TargetTy = PointerTy->getPointerElementType();
1740
1741 do {
1742 // First fold any existing GEPs into the offset.
1743 while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
1744 APInt GEPOffset(Offset.getBitWidth(), 0);
1745 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
1746 break;
1747 Offset += GEPOffset;
1748 Ptr = GEP->getPointerOperand();
1749 if (!Visited.insert(Ptr).second)
1750 break;
1751 }
1752
1753 // See if we can perform a natural GEP here.
1754 Indices.clear();
1755 if (Value *P = getNaturalGEPWithOffset(IRB, DL, Ptr, Offset, TargetTy,
1756 Indices, NamePrefix)) {
1757 // If we have a new natural pointer at the offset, clear out any old
1758 // offset pointer we computed. Unless it is the base pointer or
1759 // a non-instruction, we built a GEP we don't need. Zap it.
1760 if (OffsetPtr && OffsetPtr != OffsetBasePtr)
1761 if (Instruction *I = dyn_cast<Instruction>(OffsetPtr)) {
1762 assert(I->use_empty() && "Built a GEP with uses some how!");
1763 I->eraseFromParent();
1764 }
1765 OffsetPtr = P;
1766 OffsetBasePtr = Ptr;
1767 // If we also found a pointer of the right type, we're done.
1768 if (P->getType() == PointerTy)
1769 return P;
1770 }
1771
1772 // Stash this pointer if we've found an i8*.
1773 if (Ptr->getType()->isIntegerTy(8)) {
1774 Int8Ptr = Ptr;
1775 Int8PtrOffset = Offset;
1776 }
1777
1778 // Peel off a layer of the pointer and update the offset appropriately.
1779 if (Operator::getOpcode(Ptr) == Instruction::BitCast) {
1780 Ptr = cast<Operator>(Ptr)->getOperand(0);
1781 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
1782 if (GA->mayBeOverridden())
1783 break;
1784 Ptr = GA->getAliasee();
1785 } else {
1786 break;
1787 }
1788 assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!");
1789 } while (Visited.insert(Ptr).second);
1790
1791 if (!OffsetPtr) {
1792 if (!Int8Ptr) {
1793 Int8Ptr = IRB.CreateBitCast(
1794 Ptr, IRB.getInt8PtrTy(PointerTy->getPointerAddressSpace()),
1795 NamePrefix + "sroa_raw_cast");
1796 Int8PtrOffset = Offset;
1797 }
1798
1799 OffsetPtr = Int8PtrOffset == 0
1800 ? Int8Ptr
1801 : IRB.CreateInBoundsGEP(Int8Ptr, IRB.getInt(Int8PtrOffset),
1802 NamePrefix + "sroa_raw_idx");
1803 }
1804 Ptr = OffsetPtr;
1805
1806 // On the off chance we were targeting i8*, guard the bitcast here.
1807 if (Ptr->getType() != PointerTy)
1808 Ptr = IRB.CreateBitCast(Ptr, PointerTy, NamePrefix + "sroa_cast");
1809
1810 return Ptr;
1811 }
1812
1813 /// \brief Compute the adjusted alignment for a load or store from an offset.
1814 static unsigned getAdjustedAlignment(Instruction *I, uint64_t Offset,
1815 const DataLayout &DL) {
1816 unsigned Alignment;
1817 Type *Ty;
1818 if (auto *LI = dyn_cast<LoadInst>(I)) {
1819 Alignment = LI->getAlignment();
1820 Ty = LI->getType();
1821 } else if (auto *SI = dyn_cast<StoreInst>(I)) {
1822 Alignment = SI->getAlignment();
1823 Ty = SI->getValueOperand()->getType();
1824 } else {
1825 llvm_unreachable("Only loads and stores are allowed!");
1826 }
1827
1828 if (!Alignment)
1829 Alignment = DL.getABITypeAlignment(Ty);
1830
1831 return MinAlign(Alignment, Offset);
1832 }
1833
1834 /// \brief Test whether we can convert a value from the old to the new type.
1835 ///
1836 /// This predicate should be used to guard calls to convertValue in order to
1837 /// ensure that we only try to convert viable values. The strategy is that we
1838 /// will peel off single element struct and array wrappings to get to an
1839 /// underlying value, and convert that value.
1840 static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) {
1841 if (OldTy == NewTy)
1842 return true;
1843 if (IntegerType *OldITy = dyn_cast<IntegerType>(OldTy))
1844 if (IntegerType *NewITy = dyn_cast<IntegerType>(NewTy))
1845 if (NewITy->getBitWidth() >= OldITy->getBitWidth())
1846 return true;
1847 if (DL.getTypeSizeInBits(NewTy) != DL.getTypeSizeInBits(OldTy))
1848 return false;
1849 if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType())
1850 return false;
1851
1852 // We can convert pointers to integers and vice-versa. Same for vectors
1853 // of pointers and integers.
1854 OldTy = OldTy->getScalarType();
1855 NewTy = NewTy->getScalarType();
1856 if (NewTy->isPointerTy() || OldTy->isPointerTy()) {
1857 if (NewTy->isPointerTy() && OldTy->isPointerTy())
1858 return true;
1859 if (NewTy->isIntegerTy() || OldTy->isIntegerTy())
1860 return true;
1861 return false;
1862 }
1863
1864 return true;
1865 }
1866
1867 /// \brief Generic routine to convert an SSA value to a value of a different
1868 /// type.
1869 ///
1870 /// This will try various different casting techniques, such as bitcasts,
1871 /// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test
1872 /// two types for viability with this routine.
1873 static Value *convertValue(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
1874 Type *NewTy) {
1875 Type *OldTy = V->getType();
1876 assert(canConvertValue(DL, OldTy, NewTy) && "Value not convertable to type");
1877
1878 if (OldTy == NewTy)
1879 return V;
1880
1881 if (IntegerType *OldITy = dyn_cast<IntegerType>(OldTy))
1882 if (IntegerType *NewITy = dyn_cast<IntegerType>(NewTy))
1883 if (NewITy->getBitWidth() > OldITy->getBitWidth())
1884 return IRB.CreateZExt(V, NewITy);
1885
1886 // See if we need inttoptr for this type pair. A cast involving both scalars
1887 // and vectors requires and additional bitcast.
1888 if (OldTy->getScalarType()->isIntegerTy() &&
1889 NewTy->getScalarType()->isPointerTy()) {
1890 // Expand <2 x i32> to i8* --> <2 x i32> to i64 to i8*
1891 if (OldTy->isVectorTy() && !NewTy->isVectorTy())
1892 return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)),
1893 NewTy);
1894
1895 // Expand i128 to <2 x i8*> --> i128 to <2 x i64> to <2 x i8*>
1896 if (!OldTy->isVectorTy() && NewTy->isVectorTy())
1897 return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)),
1898 NewTy);
1899
1900 return IRB.CreateIntToPtr(V, NewTy);
1901 }
1902
1903 // See if we need ptrtoint for this type pair. A cast involving both scalars
1904 // and vectors requires and additional bitcast.
1905 if (OldTy->getScalarType()->isPointerTy() &&
1906 NewTy->getScalarType()->isIntegerTy()) {
1907 // Expand <2 x i8*> to i128 --> <2 x i8*> to <2 x i64> to i128
1908 if (OldTy->isVectorTy() && !NewTy->isVectorTy())
1909 return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)),
1910 NewTy);
1911
1912 // Expand i8* to <2 x i32> --> i8* to i64 to <2 x i32>
1913 if (!OldTy->isVectorTy() && NewTy->isVectorTy())
1914 return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)),
1915 NewTy);
1916
1917 return IRB.CreatePtrToInt(V, NewTy);
1918 }
1919
1920 return IRB.CreateBitCast(V, NewTy);
1921 }
1922
1923 /// \brief Test whether the given slice use can be promoted to a vector.
1924 ///
1925 /// This function is called to test each entry in a partioning which is slated
1926 /// for a single slice.
1927 static bool isVectorPromotionViableForSlice(AllocaSlices::Partition &P,
1928 const Slice &S, VectorType *Ty,
1929 uint64_t ElementSize,
1930 const DataLayout &DL) {
1931 // First validate the slice offsets.
1932 uint64_t BeginOffset =
1933 std::max(S.beginOffset(), P.beginOffset()) - P.beginOffset();
1934 uint64_t BeginIndex = BeginOffset / ElementSize;
1935 if (BeginIndex * ElementSize != BeginOffset ||
1936 BeginIndex >= Ty->getNumElements())
1937 return false;
1938 uint64_t EndOffset =
1939 std::min(S.endOffset(), P.endOffset()) - P.beginOffset();
1940 uint64_t EndIndex = EndOffset / ElementSize;
1941 if (EndIndex * ElementSize != EndOffset || EndIndex > Ty->getNumElements())
1942 return false;
1943
1944 assert(EndIndex > BeginIndex && "Empty vector!");
1945 uint64_t NumElements = EndIndex - BeginIndex;
1946 Type *SliceTy = (NumElements == 1)
1947 ? Ty->getElementType()
1948 : VectorType::get(Ty->getElementType(), NumElements);
1949
1950 Type *SplitIntTy =
1951 Type::getIntNTy(Ty->getContext(), NumElements * ElementSize * 8);
1952
1953 Use *U = S.getUse();
1954
1955 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
1956 if (MI->isVolatile())
1957 return false;
1958 if (!S.isSplittable())
1959 return false; // Skip any unsplittable intrinsics.
1960 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
1961 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
1962 II->getIntrinsicID() != Intrinsic::lifetime_end)
1963 return false;
1964 } else if (U->get()->getType()->getPointerElementType()->isStructTy()) {
1965 // Disable vector promotion when there are loads or stores of an FCA.
1966 return false;
1967 } else if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
1968 if (LI->isVolatile())
1969 return false;
1970 Type *LTy = LI->getType();
1971 if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) {
1972 assert(LTy->isIntegerTy());
1973 LTy = SplitIntTy;
1974 }
1975 if (!canConvertValue(DL, SliceTy, LTy))
1976 return false;
1977 } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
1978 if (SI->isVolatile())
1979 return false;
1980 Type *STy = SI->getValueOperand()->getType();
1981 if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) {
1982 assert(STy->isIntegerTy());
1983 STy = SplitIntTy;
1984 }
1985 if (!canConvertValue(DL, STy, SliceTy))
1986 return false;
1987 } else {
1988 return false;
1989 }
1990
1991 return true;
1992 }
1993
1994 /// \brief Test whether the given alloca partitioning and range of slices can be
1995 /// promoted to a vector.
1996 ///
1997 /// This is a quick test to check whether we can rewrite a particular alloca
1998 /// partition (and its newly formed alloca) into a vector alloca with only
1999 /// whole-vector loads and stores such that it could be promoted to a vector
2000 /// SSA value. We only can ensure this for a limited set of operations, and we
2001 /// don't want to do the rewrites unless we are confident that the result will
2002 /// be promotable, so we have an early test here.
2003 static VectorType *isVectorPromotionViable(AllocaSlices::Partition &P,
2004 const DataLayout &DL) {
2005 // Collect the candidate types for vector-based promotion. Also track whether
2006 // we have different element types.
2007 SmallVector<VectorType *, 4> CandidateTys;
2008 Type *CommonEltTy = nullptr;
2009 bool HaveCommonEltTy = true;
2010 auto CheckCandidateType = [&](Type *Ty) {
2011 if (auto *VTy = dyn_cast<VectorType>(Ty)) {
2012 CandidateTys.push_back(VTy);
2013 if (!CommonEltTy)
2014 CommonEltTy = VTy->getElementType();
2015 else if (CommonEltTy != VTy->getElementType())
2016 HaveCommonEltTy = false;
2017 }
2018 };
2019 // Consider any loads or stores that are the exact size of the slice.
2020 for (const Slice &S : P)
2021 if (S.beginOffset() == P.beginOffset() &&
2022 S.endOffset() == P.endOffset()) {
2023 if (auto *LI = dyn_cast<LoadInst>(S.getUse()->getUser()))
2024 CheckCandidateType(LI->getType());
2025 else if (auto *SI = dyn_cast<StoreInst>(S.getUse()->getUser()))
2026 CheckCandidateType(SI->getValueOperand()->getType());
2027 }
2028
2029 // If we didn't find a vector type, nothing to do here.
2030 if (CandidateTys.empty())
2031 return nullptr;
2032
2033 // Remove non-integer vector types if we had multiple common element types.
2034 // FIXME: It'd be nice to replace them with integer vector types, but we can't
2035 // do that until all the backends are known to produce good code for all
2036 // integer vector types.
2037 if (!HaveCommonEltTy) {
2038 CandidateTys.erase(std::remove_if(CandidateTys.begin(), CandidateTys.end(),
2039 [](VectorType *VTy) {
2040 return !VTy->getElementType()->isIntegerTy();
2041 }),
2042 CandidateTys.end());
2043
2044 // If there were no integer vector types, give up.
2045 if (CandidateTys.empty())
2046 return nullptr;
2047
2048 // Rank the remaining candidate vector types. This is easy because we know
2049 // they're all integer vectors. We sort by ascending number of elements.
2050 auto RankVectorTypes = [&DL](VectorType *RHSTy, VectorType *LHSTy) {
2051 assert(DL.getTypeSizeInBits(RHSTy) == DL.getTypeSizeInBits(LHSTy) &&
2052 "Cannot have vector types of different sizes!");
2053 assert(RHSTy->getElementType()->isIntegerTy() &&
2054 "All non-integer types eliminated!");
2055 assert(LHSTy->getElementType()->isIntegerTy() &&
2056 "All non-integer types eliminated!");
2057 return RHSTy->getNumElements() < LHSTy->getNumElements();
2058 };
2059 std::sort(CandidateTys.begin(), CandidateTys.end(), RankVectorTypes);
2060 CandidateTys.erase(
2061 std::unique(CandidateTys.begin(), CandidateTys.end(), RankVectorTypes),
2062 CandidateTys.end());
2063 } else {
2064 // The only way to have the same element type in every vector type is to
2065 // have the same vector type. Check that and remove all but one.
2066 #ifndef NDEBUG
2067 for (VectorType *VTy : CandidateTys) {
2068 assert(VTy->getElementType() == CommonEltTy &&
2069 "Unaccounted for element type!");
2070 assert(VTy == CandidateTys[0] &&
2071 "Different vector types with the same element type!");
2072 }
2073 #endif
2074 CandidateTys.resize(1);
2075 }
2076
2077 // Try each vector type, and return the one which works.
2078 auto CheckVectorTypeForPromotion = [&](VectorType *VTy) {
2079 uint64_t ElementSize = DL.getTypeSizeInBits(VTy->getElementType());
2080
2081 // While the definition of LLVM vectors is bitpacked, we don't support sizes
2082 // that aren't byte sized.
2083 if (ElementSize % 8)
2084 return false;
2085 assert((DL.getTypeSizeInBits(VTy) % 8) == 0 &&
2086 "vector size not a multiple of element size?");
2087 ElementSize /= 8;
2088
2089 for (const Slice &S : P)
2090 if (!isVectorPromotionViableForSlice(P, S, VTy, ElementSize, DL))
2091 return false;
2092
2093 for (const Slice *S : P.splitSliceTails())
2094 if (!isVectorPromotionViableForSlice(P, *S, VTy, ElementSize, DL))
2095 return false;
2096
2097 return true;
2098 };
2099 for (VectorType *VTy : CandidateTys)
2100 if (CheckVectorTypeForPromotion(VTy))
2101 return VTy;
2102
2103 return nullptr;
2104 }
2105
2106 /// \brief Test whether a slice of an alloca is valid for integer widening.
2107 ///
2108 /// This implements the necessary checking for the \c isIntegerWideningViable
2109 /// test below on a single slice of the alloca.
2110 static bool isIntegerWideningViableForSlice(const Slice &S,
2111 uint64_t AllocBeginOffset,
2112 Type *AllocaTy,
2113 const DataLayout &DL,
2114 bool &WholeAllocaOp) {
2115 uint64_t Size = DL.getTypeStoreSize(AllocaTy);
2116
2117 uint64_t RelBegin = S.beginOffset() - AllocBeginOffset;
2118 uint64_t RelEnd = S.endOffset() - AllocBeginOffset;
2119
2120 // We can't reasonably handle cases where the load or store extends past
2121 // the end of the aloca's type and into its padding.
2122 if (RelEnd > Size)
2123 return false;
2124
2125 Use *U = S.getUse();
2126
2127 if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
2128 if (LI->isVolatile())
2129 return false;
2130 // Note that we don't count vector loads or stores as whole-alloca
2131 // operations which enable integer widening because we would prefer to use
2132 // vector widening instead.
2133 if (!isa<VectorType>(LI->getType()) && RelBegin == 0 && RelEnd == Size)
2134 WholeAllocaOp = true;
2135 if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) {
2136 if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy))
2137 return false;
2138 } else if (RelBegin != 0 || RelEnd != Size ||
2139 !canConvertValue(DL, AllocaTy, LI->getType())) {
2140 // Non-integer loads need to be convertible from the alloca type so that
2141 // they are promotable.
2142 return false;
2143 }
2144 } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
2145 Type *ValueTy = SI->getValueOperand()->getType();
2146 if (SI->isVolatile())
2147 return false;
2148 // Note that we don't count vector loads or stores as whole-alloca
2149 // operations which enable integer widening because we would prefer to use
2150 // vector widening instead.
2151 if (!isa<VectorType>(ValueTy) && RelBegin == 0 && RelEnd == Size)
2152 WholeAllocaOp = true;
2153 if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) {
2154 if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy))
2155 return false;
2156 } else if (RelBegin != 0 || RelEnd != Size ||
2157 !canConvertValue(DL, ValueTy, AllocaTy)) {
2158 // Non-integer stores need to be convertible to the alloca type so that
2159 // they are promotable.
2160 return false;
2161 }
2162 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
2163 if (MI->isVolatile() || !isa<Constant>(MI->getLength()))
2164 return false;
2165 if (!S.isSplittable())
2166 return false; // Skip any unsplittable intrinsics.
2167 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
2168 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
2169 II->getIntrinsicID() != Intrinsic::lifetime_end)
2170 return false;
2171 } else {
2172 return false;
2173 }
2174
2175 return true;
2176 }
2177
2178 /// \brief Test whether the given alloca partition's integer operations can be
2179 /// widened to promotable ones.
2180 ///
2181 /// This is a quick test to check whether we can rewrite the integer loads and
2182 /// stores to a particular alloca into wider loads and stores and be able to
2183 /// promote the resulting alloca.
2184 static bool isIntegerWideningViable(AllocaSlices::Partition &P, Type *AllocaTy,
2185 const DataLayout &DL) {
2186 uint64_t SizeInBits = DL.getTypeSizeInBits(AllocaTy);
2187 // Don't create integer types larger than the maximum bitwidth.
2188 if (SizeInBits > IntegerType::MAX_INT_BITS)
2189 return false;
2190
2191 // Don't try to handle allocas with bit-padding.
2192 if (SizeInBits != DL.getTypeStoreSizeInBits(AllocaTy))
2193 return false;
2194
2195 // We need to ensure that an integer type with the appropriate bitwidth can
2196 // be converted to the alloca type, whatever that is. We don't want to force
2197 // the alloca itself to have an integer type if there is a more suitable one.
2198 Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits);
2199 if (!canConvertValue(DL, AllocaTy, IntTy) ||
2200 !canConvertValue(DL, IntTy, AllocaTy))
2201 return false;
2202
2203 // While examining uses, we ensure that the alloca has a covering load or
2204 // store. We don't want to widen the integer operations only to fail to
2205 // promote due to some other unsplittable entry (which we may make splittable
2206 // later). However, if there are only splittable uses, go ahead and assume
2207 // that we cover the alloca.
2208 // FIXME: We shouldn't consider split slices that happen to start in the
2209 // partition here...
2210 bool WholeAllocaOp =
2211 P.begin() != P.end() ? false : DL.isLegalInteger(SizeInBits);
2212
2213 for (const Slice &S : P)
2214 if (!isIntegerWideningViableForSlice(S, P.beginOffset(), AllocaTy, DL,
2215 WholeAllocaOp))
2216 return false;
2217
2218 for (const Slice *S : P.splitSliceTails())
2219 if (!isIntegerWideningViableForSlice(*S, P.beginOffset(), AllocaTy, DL,
2220 WholeAllocaOp))
2221 return false;
2222
2223 return WholeAllocaOp;
2224 }
2225
2226 static Value *extractInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
2227 IntegerType *Ty, uint64_t Offset,
2228 const Twine &Name) {
2229 DEBUG(dbgs() << " start: " << *V << "\n");
2230 IntegerType *IntTy = cast<IntegerType>(V->getType());
2231 assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) &&
2232 "Element extends past full value");
2233 uint64_t ShAmt = 8 * Offset;
2234 if (DL.isBigEndian())
2235 ShAmt = 8 * (DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset);
2236 if (ShAmt) {
2237 V = IRB.CreateLShr(V, ShAmt, Name + ".shift");
2238 DEBUG(dbgs() << " shifted: " << *V << "\n");
2239 }
2240 assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
2241 "Cannot extract to a larger integer!");
2242 if (Ty != IntTy) {
2243 V = IRB.CreateTrunc(V, Ty, Name + ".trunc");
2244 DEBUG(dbgs() << " trunced: " << *V << "\n");
2245 }
2246 return V;
2247 }
2248
2249 static Value *insertInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *Old,
2250 Value *V, uint64_t Offset, const Twine &Name) {
2251 IntegerType *IntTy = cast<IntegerType>(Old->getType());
2252 IntegerType *Ty = cast<IntegerType>(V->getType());
2253 assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
2254 "Cannot insert a larger integer!");
2255 DEBUG(dbgs() << " start: " << *V << "\n");
2256 if (Ty != IntTy) {
2257 V = IRB.CreateZExt(V, IntTy, Name + ".ext");
2258 DEBUG(dbgs() << " extended: " << *V << "\n");
2259 }
2260 assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) &&
2261 "Element store outside of alloca store");
2262 uint64_t ShAmt = 8 * Offset;
2263 if (DL.isBigEndian())
2264 ShAmt = 8 * (DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset);
2265 if (ShAmt) {
2266 V = IRB.CreateShl(V, ShAmt, Name + ".shift");
2267 DEBUG(dbgs() << " shifted: " << *V << "\n");
2268 }
2269
2270 if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) {
2271 APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt);
2272 Old = IRB.CreateAnd(Old, Mask, Name + ".mask");
2273 DEBUG(dbgs() << " masked: " << *Old << "\n");
2274 V = IRB.CreateOr(Old, V, Name + ".insert");
2275 DEBUG(dbgs() << " inserted: " << *V << "\n");
2276 }
2277 return V;
2278 }
2279
2280 static Value *extractVector(IRBuilderTy &IRB, Value *V, unsigned BeginIndex,
2281 unsigned EndIndex, const Twine &Name) {
2282 VectorType *VecTy = cast<VectorType>(V->getType());
2283 unsigned NumElements = EndIndex - BeginIndex;
2284 assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2285
2286 if (NumElements == VecTy->getNumElements())
2287 return V;
2288
2289 if (NumElements == 1) {
2290 V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex),
2291 Name + ".extract");
2292 DEBUG(dbgs() << " extract: " << *V << "\n");
2293 return V;
2294 }
2295
2296 SmallVector<Constant *, 8> Mask;
2297 Mask.reserve(NumElements);
2298 for (unsigned i = BeginIndex; i != EndIndex; ++i)
2299 Mask.push_back(IRB.getInt32(i));
2300 V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
2301 ConstantVector::get(Mask), Name + ".extract");
2302 DEBUG(dbgs() << " shuffle: " << *V << "\n");
2303 return V;
2304 }
2305
2306 static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V,
2307 unsigned BeginIndex, const Twine &Name) {
2308 VectorType *VecTy = cast<VectorType>(Old->getType());
2309 assert(VecTy && "Can only insert a vector into a vector");
2310
2311 VectorType *Ty = dyn_cast<VectorType>(V->getType());
2312 if (!Ty) {
2313 // Single element to insert.
2314 V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex),
2315 Name + ".insert");
2316 DEBUG(dbgs() << " insert: " << *V << "\n");
2317 return V;
2318 }
2319
2320 assert(Ty->getNumElements() <= VecTy->getNumElements() &&
2321 "Too many elements!");
2322 if (Ty->getNumElements() == VecTy->getNumElements()) {
2323 assert(V->getType() == VecTy && "Vector type mismatch");
2324 return V;
2325 }
2326 unsigned EndIndex = BeginIndex + Ty->getNumElements();
2327
2328 // When inserting a smaller vector into the larger to store, we first
2329 // use a shuffle vector to widen it with undef elements, and then
2330 // a second shuffle vector to select between the loaded vector and the
2331 // incoming vector.
2332 SmallVector<Constant *, 8> Mask;
2333 Mask.reserve(VecTy->getNumElements());
2334 for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
2335 if (i >= BeginIndex && i < EndIndex)
2336 Mask.push_back(IRB.getInt32(i - BeginIndex));
2337 else
2338 Mask.push_back(UndefValue::get(IRB.getInt32Ty()));
2339 V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
2340 ConstantVector::get(Mask), Name + ".expand");
2341 DEBUG(dbgs() << " shuffle: " << *V << "\n");
2342
2343 Mask.clear();
2344 for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
2345 Mask.push_back(IRB.getInt1(i >= BeginIndex && i < EndIndex));
2346
2347 V = IRB.CreateSelect(ConstantVector::get(Mask), V, Old, Name + "blend");
2348
2349 DEBUG(dbgs() << " blend: " << *V << "\n");
2350 return V;
2351 }
2352
2353 namespace {
2354 /// \brief Visitor to rewrite instructions using p particular slice of an alloca
2355 /// to use a new alloca.
2356 ///
2357 /// Also implements the rewriting to vector-based accesses when the partition
2358 /// passes the isVectorPromotionViable predicate. Most of the rewriting logic
2359 /// lives here.
2360 class AllocaSliceRewriter : public InstVisitor<AllocaSliceRewriter, bool> {
2361 // Befriend the base class so it can delegate to private visit methods.
2362 friend class llvm::InstVisitor<AllocaSliceRewriter, bool>;
2363 typedef llvm::InstVisitor<AllocaSliceRewriter, bool> Base;
2364
2365 const DataLayout &DL;
2366 AllocaSlices &AS;
2367 SROA &Pass;
2368 AllocaInst &OldAI, &NewAI;
2369 const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset;
2370 Type *NewAllocaTy;
2371
2372 // This is a convenience and flag variable that will be null unless the new
2373 // alloca's integer operations should be widened to this integer type due to
2374 // passing isIntegerWideningViable above. If it is non-null, the desired
2375 // integer type will be stored here for easy access during rewriting.
2376 IntegerType *IntTy;
2377
2378 // If we are rewriting an alloca partition which can be written as pure
2379 // vector operations, we stash extra information here. When VecTy is
2380 // non-null, we have some strict guarantees about the rewritten alloca:
2381 // - The new alloca is exactly the size of the vector type here.
2382 // - The accesses all either map to the entire vector or to a single
2383 // element.
2384 // - The set of accessing instructions is only one of those handled above
2385 // in isVectorPromotionViable. Generally these are the same access kinds
2386 // which are promotable via mem2reg.
2387 VectorType *VecTy;
2388 Type *ElementTy;
2389 uint64_t ElementSize;
2390
2391 // The original offset of the slice currently being rewritten relative to
2392 // the original alloca.
2393 uint64_t BeginOffset, EndOffset;
2394 // The new offsets of the slice currently being rewritten relative to the
2395 // original alloca.
2396 uint64_t NewBeginOffset, NewEndOffset;
2397
2398 uint64_t SliceSize;
2399 bool IsSplittable;
2400 bool IsSplit;
2401 Use *OldUse;
2402 Instruction *OldPtr;
2403
2404 // Track post-rewrite users which are PHI nodes and Selects.
2405 SmallPtrSetImpl<PHINode *> &PHIUsers;
2406 SmallPtrSetImpl<SelectInst *> &SelectUsers;
2407
2408 // Utility IR builder, whose name prefix is setup for each visited use, and
2409 // the insertion point is set to point to the user.
2410 IRBuilderTy IRB;
2411
2412 public:
2413 AllocaSliceRewriter(const DataLayout &DL, AllocaSlices &AS, SROA &Pass,
2414 AllocaInst &OldAI, AllocaInst &NewAI,
2415 uint64_t NewAllocaBeginOffset,
2416 uint64_t NewAllocaEndOffset, bool IsIntegerPromotable,
2417 VectorType *PromotableVecTy,
2418 SmallPtrSetImpl<PHINode *> &PHIUsers,
2419 SmallPtrSetImpl<SelectInst *> &SelectUsers)
2420 : DL(DL), AS(AS), Pass(Pass), OldAI(OldAI), NewAI(NewAI),
2421 NewAllocaBeginOffset(NewAllocaBeginOffset),
2422 NewAllocaEndOffset(NewAllocaEndOffset),
2423 NewAllocaTy(NewAI.getAllocatedType()),
2424 IntTy(IsIntegerPromotable
2425 ? Type::getIntNTy(
2426 NewAI.getContext(),
2427 DL.getTypeSizeInBits(NewAI.getAllocatedType()))
2428 : nullptr),
2429 VecTy(PromotableVecTy),
2430 ElementTy(VecTy ? VecTy->getElementType() : nullptr),
2431 ElementSize(VecTy ? DL.getTypeSizeInBits(ElementTy) / 8 : 0),
2432 BeginOffset(), EndOffset(), IsSplittable(), IsSplit(), OldUse(),
2433 OldPtr(), PHIUsers(PHIUsers), SelectUsers(SelectUsers),
2434 IRB(NewAI.getContext(), ConstantFolder()) {
2435 if (VecTy) {
2436 assert((DL.getTypeSizeInBits(ElementTy) % 8) == 0 &&
2437 "Only multiple-of-8 sized vector elements are viable");
2438 ++NumVectorized;
2439 }
2440 assert((!IntTy && !VecTy) || (IntTy && !VecTy) || (!IntTy && VecTy));
2441 }
2442
2443 bool visit(AllocaSlices::const_iterator I) {
2444 bool CanSROA = true;
2445 BeginOffset = I->beginOffset();
2446 EndOffset = I->endOffset();
2447 IsSplittable = I->isSplittable();
2448 IsSplit =
2449 BeginOffset < NewAllocaBeginOffset || EndOffset > NewAllocaEndOffset;
2450 DEBUG(dbgs() << " rewriting " << (IsSplit ? "split " : ""));
2451 DEBUG(AS.printSlice(dbgs(), I, ""));
2452 DEBUG(dbgs() << "\n");
2453
2454 // Compute the intersecting offset range.
2455 assert(BeginOffset < NewAllocaEndOffset);
2456 assert(EndOffset > NewAllocaBeginOffset);
2457 NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
2458 NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
2459
2460 SliceSize = NewEndOffset - NewBeginOffset;
2461
2462 OldUse = I->getUse();
2463 OldPtr = cast<Instruction>(OldUse->get());
2464
2465 Instruction *OldUserI = cast<Instruction>(OldUse->getUser());
2466 IRB.SetInsertPoint(OldUserI);
2467 IRB.SetCurrentDebugLocation(OldUserI->getDebugLoc());
2468 IRB.SetNamePrefix(Twine(NewAI.getName()) + "." + Twine(BeginOffset) + ".");
2469
2470 CanSROA &= visit(cast<Instruction>(OldUse->getUser()));
2471 if (VecTy || IntTy)
2472 assert(CanSROA);
2473 return CanSROA;
2474 }
2475
2476 private:
2477 // Make sure the other visit overloads are visible.
2478 using Base::visit;
2479
2480 // Every instruction which can end up as a user must have a rewrite rule.
2481 bool visitInstruction(Instruction &I) {
2482 DEBUG(dbgs() << " !!!! Cannot rewrite: " << I << "\n");
2483 llvm_unreachable("No rewrite rule for this instruction!");
2484 }
2485
2486 Value *getNewAllocaSlicePtr(IRBuilderTy &IRB, Type *PointerTy) {
2487 // Note that the offset computation can use BeginOffset or NewBeginOffset
2488 // interchangeably for unsplit slices.
2489 assert(IsSplit || BeginOffset == NewBeginOffset);
2490 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2491
2492 #ifndef NDEBUG
2493 StringRef OldName = OldPtr->getName();
2494 // Skip through the last '.sroa.' component of the name.
2495 size_t LastSROAPrefix = OldName.rfind(".sroa.");
2496 if (LastSROAPrefix != StringRef::npos) {
2497 OldName = OldName.substr(LastSROAPrefix + strlen(".sroa."));
2498 // Look for an SROA slice index.
2499 size_t IndexEnd = OldName.find_first_not_of("0123456789");
2500 if (IndexEnd != StringRef::npos && OldName[IndexEnd] == '.') {
2501 // Strip the index and look for the offset.
2502 OldName = OldName.substr(IndexEnd + 1);
2503 size_t OffsetEnd = OldName.find_first_not_of("0123456789");
2504 if (OffsetEnd != StringRef::npos && OldName[OffsetEnd] == '.')
2505 // Strip the offset.
2506 OldName = OldName.substr(OffsetEnd + 1);
2507 }
2508 }
2509 // Strip any SROA suffixes as well.
2510 OldName = OldName.substr(0, OldName.find(".sroa_"));
2511 #endif
2512
2513 return getAdjustedPtr(IRB, DL, &NewAI,
2514 APInt(DL.getPointerSizeInBits(), Offset), PointerTy,
2515 #ifndef NDEBUG
2516 Twine(OldName) + "."
2517 #else
2518 Twine()
2519 #endif
2520 );
2521 }
2522
2523 /// \brief Compute suitable alignment to access this slice of the *new*
2524 /// alloca.
2525 ///
2526 /// You can optionally pass a type to this routine and if that type's ABI
2527 /// alignment is itself suitable, this will return zero.
2528 unsigned getSliceAlign(Type *Ty = nullptr) {
2529 unsigned NewAIAlign = NewAI.getAlignment();
2530 if (!NewAIAlign)
2531 NewAIAlign = DL.getABITypeAlignment(NewAI.getAllocatedType());
2532 unsigned Align =
2533 MinAlign(NewAIAlign, NewBeginOffset - NewAllocaBeginOffset);
2534 return (Ty && Align == DL.getABITypeAlignment(Ty)) ? 0 : Align;
2535 }
2536
2537 unsigned getIndex(uint64_t Offset) {
2538 assert(VecTy && "Can only call getIndex when rewriting a vector");
2539 uint64_t RelOffset = Offset - NewAllocaBeginOffset;
2540 assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds");
2541 uint32_t Index = RelOffset / ElementSize;
2542 assert(Index * ElementSize == RelOffset);
2543 return Index;
2544 }
2545
2546 void deleteIfTriviallyDead(Value *V) {
2547 Instruction *I = cast<Instruction>(V);
2548 if (isInstructionTriviallyDead(I))
2549 Pass.DeadInsts.insert(I);
2550 }
2551
2552 Value *rewriteVectorizedLoadInst() {
2553 unsigned BeginIndex = getIndex(NewBeginOffset);
2554 unsigned EndIndex = getIndex(NewEndOffset);
2555 assert(EndIndex > BeginIndex && "Empty vector!");
2556
2557 Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load");
2558 return extractVector(IRB, V, BeginIndex, EndIndex, "vec");
2559 }
2560
2561 Value *rewriteIntegerLoad(LoadInst &LI) {
2562 assert(IntTy && "We cannot insert an integer to the alloca");
2563 assert(!LI.isVolatile());
2564 Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load");
2565 V = convertValue(DL, IRB, V, IntTy);
2566 assert(NewBeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2567 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2568 if (Offset > 0 || NewEndOffset < NewAllocaEndOffset)
2569 V = extractInteger(DL, IRB, V, cast<IntegerType>(LI.getType()), Offset,
2570 "extract");
2571 return V;
2572 }
2573
2574 bool visitLoadInst(LoadInst &LI) {
2575 DEBUG(dbgs() << " original: " << LI << "\n");
2576 Value *OldOp = LI.getOperand(0);
2577 assert(OldOp == OldPtr);
2578
2579 Type *TargetTy = IsSplit ? Type::getIntNTy(LI.getContext(), SliceSize * 8)
2580 : LI.getType();
2581 bool IsPtrAdjusted = false;
2582 Value *V;
2583 if (VecTy) {
2584 V = rewriteVectorizedLoadInst();
2585 } else if (IntTy && LI.getType()->isIntegerTy()) {
2586 V = rewriteIntegerLoad(LI);
2587 } else if (NewBeginOffset == NewAllocaBeginOffset &&
2588 canConvertValue(DL, NewAllocaTy, LI.getType())) {
2589 V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), LI.isVolatile(),
2590 LI.getName());
2591 } else {
2592 Type *LTy = TargetTy->getPointerTo();
2593 V = IRB.CreateAlignedLoad(getNewAllocaSlicePtr(IRB, LTy),
2594 getSliceAlign(TargetTy), LI.isVolatile(),
2595 LI.getName());
2596 IsPtrAdjusted = true;
2597 }
2598 V = convertValue(DL, IRB, V, TargetTy);
2599
2600 if (IsSplit) {
2601 assert(!LI.isVolatile());
2602 assert(LI.getType()->isIntegerTy() &&
2603 "Only integer type loads and stores are split");
2604 assert(SliceSize < DL.getTypeStoreSize(LI.getType()) &&
2605 "Split load isn't smaller than original load");
2606 assert(LI.getType()->getIntegerBitWidth() ==
2607 DL.getTypeStoreSizeInBits(LI.getType()) &&
2608 "Non-byte-multiple bit width");
2609 // Move the insertion point just past the load so that we can refer to it.
2610 IRB.SetInsertPoint(std::next(BasicBlock::iterator(&LI)));
2611 // Create a placeholder value with the same type as LI to use as the
2612 // basis for the new value. This allows us to replace the uses of LI with
2613 // the computed value, and then replace the placeholder with LI, leaving
2614 // LI only used for this computation.
2615 Value *Placeholder =
2616 new LoadInst(UndefValue::get(LI.getType()->getPointerTo()));
2617 V = insertInteger(DL, IRB, Placeholder, V, NewBeginOffset - BeginOffset,
2618 "insert");
2619 LI.replaceAllUsesWith(V);
2620 Placeholder->replaceAllUsesWith(&LI);
2621 delete Placeholder;
2622 } else {
2623 LI.replaceAllUsesWith(V);
2624 }
2625
2626 Pass.DeadInsts.insert(&LI);
2627 deleteIfTriviallyDead(OldOp);
2628 DEBUG(dbgs() << " to: " << *V << "\n");
2629 return !LI.isVolatile() && !IsPtrAdjusted;
2630 }
2631
2632 bool rewriteVectorizedStoreInst(Value *V, StoreInst &SI, Value *OldOp) {
2633 if (V->getType() != VecTy) {
2634 unsigned BeginIndex = getIndex(NewBeginOffset);
2635 unsigned EndIndex = getIndex(NewEndOffset);
2636 assert(EndIndex > BeginIndex && "Empty vector!");
2637 unsigned NumElements = EndIndex - BeginIndex;
2638 assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2639 Type *SliceTy = (NumElements == 1)
2640 ? ElementTy
2641 : VectorType::get(ElementTy, NumElements);
2642 if (V->getType() != SliceTy)
2643 V = convertValue(DL, IRB, V, SliceTy);
2644
2645 // Mix in the existing elements.
2646 Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load");
2647 V = insertVector(IRB, Old, V, BeginIndex, "vec");
2648 }
2649 StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
2650 Pass.DeadInsts.insert(&SI);
2651
2652 (void)Store;
2653 DEBUG(dbgs() << " to: " << *Store << "\n");
2654 return true;
2655 }
2656
2657 bool rewriteIntegerStore(Value *V, StoreInst &SI) {
2658 assert(IntTy && "We cannot extract an integer from the alloca");
2659 assert(!SI.isVolatile());
2660 if (DL.getTypeSizeInBits(V->getType()) != IntTy->getBitWidth()) {
2661 Value *Old =
2662 IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload");
2663 Old = convertValue(DL, IRB, Old, IntTy);
2664 assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2665 uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
2666 V = insertInteger(DL, IRB, Old, SI.getValueOperand(), Offset, "insert");
2667 }
2668 V = convertValue(DL, IRB, V, NewAllocaTy);
2669 StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
2670 Pass.DeadInsts.insert(&SI);
2671 (void)Store;
2672 DEBUG(dbgs() << " to: " << *Store << "\n");
2673 return true;
2674 }
2675
2676 bool visitStoreInst(StoreInst &SI) {
2677 DEBUG(dbgs() << " original: " << SI << "\n");
2678 Value *OldOp = SI.getOperand(1);
2679 assert(OldOp == OldPtr);
2680
2681 Value *V = SI.getValueOperand();
2682
2683 // Strip all inbounds GEPs and pointer casts to try to dig out any root
2684 // alloca that should be re-examined after promoting this alloca.
2685 if (V->getType()->isPointerTy())
2686 if (AllocaInst *AI = dyn_cast<AllocaInst>(V->stripInBoundsOffsets()))
2687 Pass.PostPromotionWorklist.insert(AI);
2688
2689 if (SliceSize < DL.getTypeStoreSize(V->getType())) {
2690 assert(!SI.isVolatile());
2691 assert(V->getType()->isIntegerTy() &&
2692 "Only integer type loads and stores are split");
2693 assert(V->getType()->getIntegerBitWidth() ==
2694 DL.getTypeStoreSizeInBits(V->getType()) &&
2695 "Non-byte-multiple bit width");
2696 IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), SliceSize * 8);
2697 V = extractInteger(DL, IRB, V, NarrowTy, NewBeginOffset - BeginOffset,
2698 "extract");
2699 }
2700
2701 if (VecTy)
2702 return rewriteVectorizedStoreInst(V, SI, OldOp);
2703 if (IntTy && V->getType()->isIntegerTy())
2704 return rewriteIntegerStore(V, SI);
2705
2706 StoreInst *NewSI;
2707 if (NewBeginOffset == NewAllocaBeginOffset &&
2708 NewEndOffset == NewAllocaEndOffset &&
2709 canConvertValue(DL, V->getType(), NewAllocaTy)) {
2710 V = convertValue(DL, IRB, V, NewAllocaTy);
2711 NewSI = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
2712 SI.isVolatile());
2713 } else {
2714 Value *NewPtr = getNewAllocaSlicePtr(IRB, V->getType()->getPointerTo());
2715 NewSI = IRB.CreateAlignedStore(V, NewPtr, getSliceAlign(V->getType()),
2716 SI.isVolatile());
2717 }
2718 (void)NewSI;
2719 Pass.DeadInsts.insert(&SI);
2720 deleteIfTriviallyDead(OldOp);
2721
2722 DEBUG(dbgs() << " to: " << *NewSI << "\n");
2723 return NewSI->getPointerOperand() == &NewAI && !SI.isVolatile();
2724 }
2725
2726 /// \brief Compute an integer value from splatting an i8 across the given
2727 /// number of bytes.
2728 ///
2729 /// Note that this routine assumes an i8 is a byte. If that isn't true, don't
2730 /// call this routine.
2731 /// FIXME: Heed the advice above.
2732 ///
2733 /// \param V The i8 value to splat.
2734 /// \param Size The number of bytes in the output (assuming i8 is one byte)
2735 Value *getIntegerSplat(Value *V, unsigned Size) {
2736 assert(Size > 0 && "Expected a positive number of bytes.");
2737 IntegerType *VTy = cast<IntegerType>(V->getType());
2738 assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte");
2739 if (Size == 1)
2740 return V;
2741
2742 Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size * 8);
2743 V = IRB.CreateMul(
2744 IRB.CreateZExt(V, SplatIntTy, "zext"),
2745 ConstantExpr::getUDiv(
2746 Constant::getAllOnesValue(SplatIntTy),
2747 ConstantExpr::getZExt(Constant::getAllOnesValue(V->getType()),
2748 SplatIntTy)),
2749 "isplat");
2750 return V;
2751 }
2752
2753 /// \brief Compute a vector splat for a given element value.
2754 Value *getVectorSplat(Value *V, unsigned NumElements) {
2755 V = IRB.CreateVectorSplat(NumElements, V, "vsplat");
2756 DEBUG(dbgs() << " splat: " << *V << "\n");
2757 return V;
2758 }
2759
2760 bool visitMemSetInst(MemSetInst &II) {
2761 DEBUG(dbgs() << " original: " << II << "\n");
2762 assert(II.getRawDest() == OldPtr);
2763
2764 // If the memset has a variable size, it cannot be split, just adjust the
2765 // pointer to the new alloca.
2766 if (!isa<Constant>(II.getLength())) {
2767 assert(!IsSplit);
2768 assert(NewBeginOffset == BeginOffset);
2769 II.setDest(getNewAllocaSlicePtr(IRB, OldPtr->getType()));
2770 Type *CstTy = II.getAlignmentCst()->getType();
2771 II.setAlignment(ConstantInt::get(CstTy, getSliceAlign()));
2772
2773 deleteIfTriviallyDead(OldPtr);
2774 return false;
2775 }
2776
2777 // Record this instruction for deletion.
2778 Pass.DeadInsts.insert(&II);
2779
2780 Type *AllocaTy = NewAI.getAllocatedType();
2781 Type *ScalarTy = AllocaTy->getScalarType();
2782
2783 // If this doesn't map cleanly onto the alloca type, and that type isn't
2784 // a single value type, just emit a memset.
2785 if (!VecTy && !IntTy &&
2786 (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset ||
2787 SliceSize != DL.getTypeStoreSize(AllocaTy) ||
2788 !AllocaTy->isSingleValueType() ||
2789 !DL.isLegalInteger(DL.getTypeSizeInBits(ScalarTy)) ||
2790 DL.getTypeSizeInBits(ScalarTy) % 8 != 0)) {
2791 Type *SizeTy = II.getLength()->getType();
2792 Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
2793 CallInst *New = IRB.CreateMemSet(
2794 getNewAllocaSlicePtr(IRB, OldPtr->getType()), II.getValue(), Size,
2795 getSliceAlign(), II.isVolatile());
2796 (void)New;
2797 DEBUG(dbgs() << " to: " << *New << "\n");
2798 return false;
2799 }
2800
2801 // If we can represent this as a simple value, we have to build the actual
2802 // value to store, which requires expanding the byte present in memset to
2803 // a sensible representation for the alloca type. This is essentially
2804 // splatting the byte to a sufficiently wide integer, splatting it across
2805 // any desired vector width, and bitcasting to the final type.
2806 Value *V;
2807
2808 if (VecTy) {
2809 // If this is a memset of a vectorized alloca, insert it.
2810 assert(ElementTy == ScalarTy);
2811
2812 unsigned BeginIndex = getIndex(NewBeginOffset);
2813 unsigned EndIndex = getIndex(NewEndOffset);
2814 assert(EndIndex > BeginIndex && "Empty vector!");
2815 unsigned NumElements = EndIndex - BeginIndex;
2816 assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2817
2818 Value *Splat =
2819 getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ElementTy) / 8);
2820 Splat = convertValue(DL, IRB, Splat, ElementTy);
2821 if (NumElements > 1)
2822 Splat = getVectorSplat(Splat, NumElements);
2823
2824 Value *Old =
2825 IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload");
2826 V = insertVector(IRB, Old, Splat, BeginIndex, "vec");
2827 } else if (IntTy) {
2828 // If this is a memset on an alloca where we can widen stores, insert the
2829 // set integer.
2830 assert(!II.isVolatile());
2831
2832 uint64_t Size = NewEndOffset - NewBeginOffset;
2833 V = getIntegerSplat(II.getValue(), Size);
2834
2835 if (IntTy && (BeginOffset != NewAllocaBeginOffset ||
2836 EndOffset != NewAllocaBeginOffset)) {
2837 Value *Old =
2838 IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload");
2839 Old = convertValue(DL, IRB, Old, IntTy);
2840 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2841 V = insertInteger(DL, IRB, Old, V, Offset, "insert");
2842 } else {
2843 assert(V->getType() == IntTy &&
2844 "Wrong type for an alloca wide integer!");
2845 }
2846 V = convertValue(DL, IRB, V, AllocaTy);
2847 } else {
2848 // Established these invariants above.
2849 assert(NewBeginOffset == NewAllocaBeginOffset);
2850 assert(NewEndOffset == NewAllocaEndOffset);
2851
2852 V = getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ScalarTy) / 8);
2853 if (VectorType *AllocaVecTy = dyn_cast<VectorType>(AllocaTy))
2854 V = getVectorSplat(V, AllocaVecTy->getNumElements());
2855
2856 V = convertValue(DL, IRB, V, AllocaTy);
2857 }
2858
2859 Value *New = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
2860 II.isVolatile());
2861 (void)New;
2862 DEBUG(dbgs() << " to: " << *New << "\n");
2863 return !II.isVolatile();
2864 }
2865
2866 bool visitMemTransferInst(MemTransferInst &II) {
2867 // Rewriting of memory transfer instructions can be a bit tricky. We break
2868 // them into two categories: split intrinsics and unsplit intrinsics.
2869
2870 DEBUG(dbgs() << " original: " << II << "\n");
2871
2872 bool IsDest = &II.getRawDestUse() == OldUse;
2873 assert((IsDest && II.getRawDest() == OldPtr) ||
2874 (!IsDest && II.getRawSource() == OldPtr));
2875
2876 unsigned SliceAlign = getSliceAlign();
2877
2878 // For unsplit intrinsics, we simply modify the source and destination
2879 // pointers in place. This isn't just an optimization, it is a matter of
2880 // correctness. With unsplit intrinsics we may be dealing with transfers
2881 // within a single alloca before SROA ran, or with transfers that have
2882 // a variable length. We may also be dealing with memmove instead of
2883 // memcpy, and so simply updating the pointers is the necessary for us to
2884 // update both source and dest of a single call.
2885 if (!IsSplittable) {
2886 Value *AdjustedPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
2887 if (IsDest)
2888 II.setDest(AdjustedPtr);
2889 else
2890 II.setSource(AdjustedPtr);
2891
2892 if (II.getAlignment() > SliceAlign) {
2893 Type *CstTy = II.getAlignmentCst()->getType();
2894 II.setAlignment(
2895 ConstantInt::get(CstTy, MinAlign(II.getAlignment(), SliceAlign)));
2896 }
2897
2898 DEBUG(dbgs() << " to: " << II << "\n");
2899 deleteIfTriviallyDead(OldPtr);
2900 return false;
2901 }
2902 // For split transfer intrinsics we have an incredibly useful assurance:
2903 // the source and destination do not reside within the same alloca, and at
2904 // least one of them does not escape. This means that we can replace
2905 // memmove with memcpy, and we don't need to worry about all manner of
2906 // downsides to splitting and transforming the operations.
2907
2908 // If this doesn't map cleanly onto the alloca type, and that type isn't
2909 // a single value type, just emit a memcpy.
2910 bool EmitMemCpy =
2911 !VecTy && !IntTy &&
2912 (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset ||
2913 SliceSize != DL.getTypeStoreSize(NewAI.getAllocatedType()) ||
2914 !NewAI.getAllocatedType()->isSingleValueType());
2915
2916 // If we're just going to emit a memcpy, the alloca hasn't changed, and the
2917 // size hasn't been shrunk based on analysis of the viable range, this is
2918 // a no-op.
2919 if (EmitMemCpy && &OldAI == &NewAI) {
2920 // Ensure the start lines up.
2921 assert(NewBeginOffset == BeginOffset);
2922
2923 // Rewrite the size as needed.
2924 if (NewEndOffset != EndOffset)
2925 II.setLength(ConstantInt::get(II.getLength()->getType(),
2926 NewEndOffset - NewBeginOffset));
2927 return false;
2928 }
2929 // Record this instruction for deletion.
2930 Pass.DeadInsts.insert(&II);
2931
2932 // Strip all inbounds GEPs and pointer casts to try to dig out any root
2933 // alloca that should be re-examined after rewriting this instruction.
2934 Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest();
2935 if (AllocaInst *AI =
2936 dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets())) {
2937 assert(AI != &OldAI && AI != &NewAI &&
2938 "Splittable transfers cannot reach the same alloca on both ends.");
2939 Pass.Worklist.insert(AI);
2940 }
2941
2942 Type *OtherPtrTy = OtherPtr->getType();
2943 unsigned OtherAS = OtherPtrTy->getPointerAddressSpace();
2944
2945 // Compute the relative offset for the other pointer within the transfer.
2946 unsigned IntPtrWidth = DL.getPointerSizeInBits(OtherAS);
2947 APInt OtherOffset(IntPtrWidth, NewBeginOffset - BeginOffset);
2948 unsigned OtherAlign = MinAlign(II.getAlignment() ? II.getAlignment() : 1,
2949 OtherOffset.zextOrTrunc(64).getZExtValue());
2950
2951 if (EmitMemCpy) {
2952 // Compute the other pointer, folding as much as possible to produce
2953 // a single, simple GEP in most cases.
2954 OtherPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy,
2955 OtherPtr->getName() + ".");
2956
2957 Value *OurPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
2958 Type *SizeTy = II.getLength()->getType();
2959 Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
2960
2961 CallInst *New = IRB.CreateMemCpy(
2962 IsDest ? OurPtr : OtherPtr, IsDest ? OtherPtr : OurPtr, Size,
2963 MinAlign(SliceAlign, OtherAlign), II.isVolatile());
2964 (void)New;
2965 DEBUG(dbgs() << " to: " << *New << "\n");
2966 return false;
2967 }
2968
2969 bool IsWholeAlloca = NewBeginOffset == NewAllocaBeginOffset &&
2970 NewEndOffset == NewAllocaEndOffset;
2971 uint64_t Size = NewEndOffset - NewBeginOffset;
2972 unsigned BeginIndex = VecTy ? getIndex(NewBeginOffset) : 0;
2973 unsigned EndIndex = VecTy ? getIndex(NewEndOffset) : 0;
2974 unsigned NumElements = EndIndex - BeginIndex;
2975 IntegerType *SubIntTy =
2976 IntTy ? Type::getIntNTy(IntTy->getContext(), Size * 8) : nullptr;
2977
2978 // Reset the other pointer type to match the register type we're going to
2979 // use, but using the address space of the original other pointer.
2980 if (VecTy && !IsWholeAlloca) {
2981 if (NumElements == 1)
2982 OtherPtrTy = VecTy->getElementType();
2983 else
2984 OtherPtrTy = VectorType::get(VecTy->getElementType(), NumElements);
2985
2986 OtherPtrTy = OtherPtrTy->getPointerTo(OtherAS);
2987 } else if (IntTy && !IsWholeAlloca) {
2988 OtherPtrTy = SubIntTy->getPointerTo(OtherAS);
2989 } else {
2990 OtherPtrTy = NewAllocaTy->getPointerTo(OtherAS);
2991 }
2992
2993 Value *SrcPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy,
2994 OtherPtr->getName() + ".");
2995 unsigned SrcAlign = OtherAlign;
2996 Value *DstPtr = &NewAI;
2997 unsigned DstAlign = SliceAlign;
2998 if (!IsDest) {
2999 std::swap(SrcPtr, DstPtr);
3000 std::swap(SrcAlign, DstAlign);
3001 }
3002
3003 Value *Src;
3004 if (VecTy && !IsWholeAlloca && !IsDest) {
3005 Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load");
3006 Src = extractVector(IRB, Src, BeginIndex, EndIndex, "vec");
3007 } else if (IntTy && !IsWholeAlloca && !IsDest) {
3008 Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load");
3009 Src = convertValue(DL, IRB, Src, IntTy);
3010 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
3011 Src = extractInteger(DL, IRB, Src, SubIntTy, Offset, "extract");
3012 } else {
3013 Src =
3014 IRB.CreateAlignedLoad(SrcPtr, SrcAlign, II.isVolatile(), "copyload");
3015 }
3016
3017 if (VecTy && !IsWholeAlloca && IsDest) {
3018 Value *Old =
3019 IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload");
3020 Src = insertVector(IRB, Old, Src, BeginIndex, "vec");
3021 } else if (IntTy && !IsWholeAlloca && IsDest) {
3022 Value *Old =
3023 IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload");
3024 Old = convertValue(DL, IRB, Old, IntTy);
3025 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
3026 Src = insertInteger(DL, IRB, Old, Src, Offset, "insert");
3027 Src = convertValue(DL, IRB, Src, NewAllocaTy);
3028 }
3029
3030 StoreInst *Store = cast<StoreInst>(
3031 IRB.CreateAlignedStore(Src, DstPtr, DstAlign, II.isVolatile()));
3032 (void)Store;
3033 DEBUG(dbgs() << " to: " << *Store << "\n");
3034 return !II.isVolatile();
3035 }
3036
3037 bool visitIntrinsicInst(IntrinsicInst &II) {
3038 assert(II.getIntrinsicID() == Intrinsic::lifetime_start ||
3039 II.getIntrinsicID() == Intrinsic::lifetime_end);
3040 DEBUG(dbgs() << " original: " << II << "\n");
3041 assert(II.getArgOperand(1) == OldPtr);
3042
3043 // Record this instruction for deletion.
3044 Pass.DeadInsts.insert(&II);
3045
3046 ConstantInt *Size =
3047 ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()),
3048 NewEndOffset - NewBeginOffset);
3049 Value *Ptr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
3050 Value *New;
3051 if (II.getIntrinsicID() == Intrinsic::lifetime_start)
3052 New = IRB.CreateLifetimeStart(Ptr, Size);
3053 else
3054 New = IRB.CreateLifetimeEnd(Ptr, Size);
3055
3056 (void)New;
3057 DEBUG(dbgs() << " to: " << *New << "\n");
3058 return true;
3059 }
3060
3061 bool visitPHINode(PHINode &PN) {
3062 DEBUG(dbgs() << " original: " << PN << "\n");
3063 assert(BeginOffset >= NewAllocaBeginOffset && "PHIs are unsplittable");
3064 assert(EndOffset <= NewAllocaEndOffset && "PHIs are unsplittable");
3065
3066 // We would like to compute a new pointer in only one place, but have it be
3067 // as local as possible to the PHI. To do that, we re-use the location of
3068 // the old pointer, which necessarily must be in the right position to
3069 // dominate the PHI.
3070 IRBuilderTy PtrBuilder(IRB);
3071 if (isa<PHINode>(OldPtr))
3072 PtrBuilder.SetInsertPoint(OldPtr->getParent()->getFirstInsertionPt());
3073 else
3074 PtrBuilder.SetInsertPoint(OldPtr);
3075 PtrBuilder.SetCurrentDebugLocation(OldPtr->getDebugLoc());
3076
3077 Value *NewPtr = getNewAllocaSlicePtr(PtrBuilder, OldPtr->getType());
3078 // Replace the operands which were using the old pointer.
3079 std::replace(PN.op_begin(), PN.op_end(), cast<Value>(OldPtr), NewPtr);
3080
3081 DEBUG(dbgs() << " to: " << PN << "\n");
3082 deleteIfTriviallyDead(OldPtr);
3083
3084 // PHIs can't be promoted on their own, but often can be speculated. We
3085 // check the speculation outside of the rewriter so that we see the
3086 // fully-rewritten alloca.
3087 PHIUsers.insert(&PN);
3088 return true;
3089 }
3090
3091 bool visitSelectInst(SelectInst &SI) {
3092 DEBUG(dbgs() << " original: " << SI << "\n");
3093 assert((SI.getTrueValue() == OldPtr || SI.getFalseValue() == OldPtr) &&
3094 "Pointer isn't an operand!");
3095 assert(BeginOffset >= NewAllocaBeginOffset && "Selects are unsplittable");
3096 assert(EndOffset <= NewAllocaEndOffset && "Selects are unsplittable");
3097
3098 Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
3099 // Replace the operands which were using the old pointer.
3100 if (SI.getOperand(1) == OldPtr)
3101 SI.setOperand(1, NewPtr);
3102 if (SI.getOperand(2) == OldPtr)
3103 SI.setOperand(2, NewPtr);
3104
3105 DEBUG(dbgs() << " to: " << SI << "\n");
3106 deleteIfTriviallyDead(OldPtr);
3107
3108 // Selects can't be promoted on their own, but often can be speculated. We
3109 // check the speculation outside of the rewriter so that we see the
3110 // fully-rewritten alloca.
3111 SelectUsers.insert(&SI);
3112 return true;
3113 }
3114 };
3115 }
3116
3117 namespace {
3118 /// \brief Visitor to rewrite aggregate loads and stores as scalar.
3119 ///
3120 /// This pass aggressively rewrites all aggregate loads and stores on
3121 /// a particular pointer (or any pointer derived from it which we can identify)
3122 /// with scalar loads and stores.
3123 class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> {
3124 // Befriend the base class so it can delegate to private visit methods.
3125 friend class llvm::InstVisitor<AggLoadStoreRewriter, bool>;
3126
3127 const DataLayout &DL;
3128
3129 /// Queue of pointer uses to analyze and potentially rewrite.
3130 SmallVector<Use *, 8> Queue;
3131
3132 /// Set to prevent us from cycling with phi nodes and loops.
3133 SmallPtrSet<User *, 8> Visited;
3134
3135 /// The current pointer use being rewritten. This is used to dig up the used
3136 /// value (as opposed to the user).
3137 Use *U;
3138
3139 public:
3140 AggLoadStoreRewriter(const DataLayout &DL) : DL(DL) {}
3141
3142 /// Rewrite loads and stores through a pointer and all pointers derived from
3143 /// it.
3144 bool rewrite(Instruction &I) {
3145 DEBUG(dbgs() << " Rewriting FCA loads and stores...\n");
3146 enqueueUsers(I);
3147 bool Changed = false;
3148 while (!Queue.empty()) {
3149 U = Queue.pop_back_val();
3150 Changed |= visit(cast<Instruction>(U->getUser()));
3151 }
3152 return Changed;
3153 }
3154
3155 private:
3156 /// Enqueue all the users of the given instruction for further processing.
3157 /// This uses a set to de-duplicate users.
3158 void enqueueUsers(Instruction &I) {
3159 for (Use &U : I.uses())
3160 if (Visited.insert(U.getUser()).second)
3161 Queue.push_back(&U);
3162 }
3163
3164 // Conservative default is to not rewrite anything.
3165 bool visitInstruction(Instruction &I) { return false; }
3166
3167 /// \brief Generic recursive split emission class.
3168 template <typename Derived> class OpSplitter {
3169 protected:
3170 /// The builder used to form new instructions.
3171 IRBuilderTy IRB;
3172 /// The indices which to be used with insert- or extractvalue to select the
3173 /// appropriate value within the aggregate.
3174 SmallVector<unsigned, 4> Indices;
3175 /// The indices to a GEP instruction which will move Ptr to the correct slot
3176 /// within the aggregate.
3177 SmallVector<Value *, 4> GEPIndices;
3178 /// The base pointer of the original op, used as a base for GEPing the
3179 /// split operations.
3180 Value *Ptr;
3181
3182 /// Initialize the splitter with an insertion point, Ptr and start with a
3183 /// single zero GEP index.
3184 OpSplitter(Instruction *InsertionPoint, Value *Ptr)
3185 : IRB(InsertionPoint), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr) {}
3186
3187 public:
3188 /// \brief Generic recursive split emission routine.
3189 ///
3190 /// This method recursively splits an aggregate op (load or store) into
3191 /// scalar or vector ops. It splits recursively until it hits a single value
3192 /// and emits that single value operation via the template argument.
3193 ///
3194 /// The logic of this routine relies on GEPs and insertvalue and
3195 /// extractvalue all operating with the same fundamental index list, merely
3196 /// formatted differently (GEPs need actual values).
3197 ///
3198 /// \param Ty The type being split recursively into smaller ops.
3199 /// \param Agg The aggregate value being built up or stored, depending on
3200 /// whether this is splitting a load or a store respectively.
3201 void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) {
3202 if (Ty->isSingleValueType())
3203 return static_cast<Derived *>(this)->emitFunc(Ty, Agg, Name);
3204
3205 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
3206 unsigned OldSize = Indices.size();
3207 (void)OldSize;
3208 for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size;
3209 ++Idx) {
3210 assert(Indices.size() == OldSize && "Did not return to the old size");
3211 Indices.push_back(Idx);
3212 GEPIndices.push_back(IRB.getInt32(Idx));
3213 emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx));
3214 GEPIndices.pop_back();
3215 Indices.pop_back();
3216 }
3217 return;
3218 }
3219
3220 if (StructType *STy = dyn_cast<StructType>(Ty)) {
3221 unsigned OldSize = Indices.size();
3222 (void)OldSize;
3223 for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size;
3224 ++Idx) {
3225 assert(Indices.size() == OldSize && "Did not return to the old size");
3226 Indices.push_back(Idx);
3227 GEPIndices.push_back(IRB.getInt32(Idx));
3228 emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx));
3229 GEPIndices.pop_back();
3230 Indices.pop_back();
3231 }
3232 return;
3233 }
3234
3235 llvm_unreachable("Only arrays and structs are aggregate loadable types");
3236 }
3237 };
3238
3239 struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> {
3240 LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr)
3241 : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr) {}
3242
3243 /// Emit a leaf load of a single value. This is called at the leaves of the
3244 /// recursive emission to actually load values.
3245 void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
3246 assert(Ty->isSingleValueType());
3247 // Load the single value and insert it using the indices.
3248 Value *GEP = IRB.CreateInBoundsGEP(Ptr, GEPIndices, Name + ".gep");
3249 Value *Load = IRB.CreateLoad(GEP, Name + ".load");
3250 Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert");
3251 DEBUG(dbgs() << " to: " << *Load << "\n");
3252 }
3253 };
3254
3255 bool visitLoadInst(LoadInst &LI) {
3256 assert(LI.getPointerOperand() == *U);
3257 if (!LI.isSimple() || LI.getType()->isSingleValueType())
3258 return false;
3259
3260 // We have an aggregate being loaded, split it apart.
3261 DEBUG(dbgs() << " original: " << LI << "\n");
3262 LoadOpSplitter Splitter(&LI, *U);
3263 Value *V = UndefValue::get(LI.getType());
3264 Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca");
3265 LI.replaceAllUsesWith(V);
3266 LI.eraseFromParent();
3267 return true;
3268 }
3269
3270 struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> {
3271 StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr)
3272 : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr) {}
3273
3274 /// Emit a leaf store of a single value. This is called at the leaves of the
3275 /// recursive emission to actually produce stores.
3276 void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
3277 assert(Ty->isSingleValueType());
3278 // Extract the single value and store it using the indices.
3279 Value *Store = IRB.CreateStore(
3280 IRB.CreateExtractValue(Agg, Indices, Name + ".extract"),
3281 IRB.CreateInBoundsGEP(Ptr, GEPIndices, Name + ".gep"));
3282 (void)Store;
3283 DEBUG(dbgs() << " to: " << *Store << "\n");
3284 }
3285 };
3286
3287 bool visitStoreInst(StoreInst &SI) {
3288 if (!SI.isSimple() || SI.getPointerOperand() != *U)
3289 return false;
3290 Value *V = SI.getValueOperand();
3291 if (V->getType()->isSingleValueType())
3292 return false;
3293
3294 // We have an aggregate being stored, split it apart.
3295 DEBUG(dbgs() << " original: " << SI << "\n");
3296 StoreOpSplitter Splitter(&SI, *U);
3297 Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca");
3298 SI.eraseFromParent();
3299 return true;
3300 }
3301
3302 bool visitBitCastInst(BitCastInst &BC) {
3303 enqueueUsers(BC);
3304 return false;
3305 }
3306
3307 bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
3308 enqueueUsers(GEPI);
3309 return false;
3310 }
3311
3312 bool visitPHINode(PHINode &PN) {
3313 enqueueUsers(PN);
3314 return false;
3315 }
3316
3317 bool visitSelectInst(SelectInst &SI) {
3318 enqueueUsers(SI);
3319 return false;
3320 }
3321 };
3322 }
3323
3324 /// \brief Strip aggregate type wrapping.
3325 ///
3326 /// This removes no-op aggregate types wrapping an underlying type. It will
3327 /// strip as many layers of types as it can without changing either the type
3328 /// size or the allocated size.
3329 static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) {
3330 if (Ty->isSingleValueType())
3331 return Ty;
3332
3333 uint64_t AllocSize = DL.getTypeAllocSize(Ty);
3334 uint64_t TypeSize = DL.getTypeSizeInBits(Ty);
3335
3336 Type *InnerTy;
3337 if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
3338 InnerTy = ArrTy->getElementType();
3339 } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
3340 const StructLayout *SL = DL.getStructLayout(STy);
3341 unsigned Index = SL->getElementContainingOffset(0);
3342 InnerTy = STy->getElementType(Index);
3343 } else {
3344 return Ty;
3345 }
3346
3347 if (AllocSize > DL.getTypeAllocSize(InnerTy) ||
3348 TypeSize > DL.getTypeSizeInBits(InnerTy))
3349 return Ty;
3350
3351 return stripAggregateTypeWrapping(DL, InnerTy);
3352 }
3353
3354 /// \brief Try to find a partition of the aggregate type passed in for a given
3355 /// offset and size.
3356 ///
3357 /// This recurses through the aggregate type and tries to compute a subtype
3358 /// based on the offset and size. When the offset and size span a sub-section
3359 /// of an array, it will even compute a new array type for that sub-section,
3360 /// and the same for structs.
3361 ///
3362 /// Note that this routine is very strict and tries to find a partition of the
3363 /// type which produces the *exact* right offset and size. It is not forgiving
3364 /// when the size or offset cause either end of type-based partition to be off.
3365 /// Also, this is a best-effort routine. It is reasonable to give up and not
3366 /// return a type if necessary.
3367 static Type *getTypePartition(const DataLayout &DL, Type *Ty, uint64_t Offset,
3368 uint64_t Size) {
3369 if (Offset == 0 && DL.getTypeAllocSize(Ty) == Size)
3370 return stripAggregateTypeWrapping(DL, Ty);
3371 if (Offset > DL.getTypeAllocSize(Ty) ||
3372 (DL.getTypeAllocSize(Ty) - Offset) < Size)
3373 return nullptr;
3374
3375 if (SequentialType *SeqTy = dyn_cast<SequentialType>(Ty)) {
3376 // We can't partition pointers...
3377 if (SeqTy->isPointerTy())
3378 return nullptr;
3379
3380 Type *ElementTy = SeqTy->getElementType();
3381 uint64_t ElementSize = DL.getTypeAllocSize(ElementTy);
3382 uint64_t NumSkippedElements = Offset / ElementSize;
3383 if (ArrayType *ArrTy = dyn_cast<ArrayType>(SeqTy)) {
3384 if (NumSkippedElements >= ArrTy->getNumElements())
3385 return nullptr;
3386 } else if (VectorType *VecTy = dyn_cast<VectorType>(SeqTy)) {
3387 if (NumSkippedElements >= VecTy->getNumElements())
3388 return nullptr;
3389 }
3390 Offset -= NumSkippedElements * ElementSize;
3391
3392 // First check if we need to recurse.
3393 if (Offset > 0 || Size < ElementSize) {
3394 // Bail if the partition ends in a different array element.
3395 if ((Offset + Size) > ElementSize)
3396 return nullptr;
3397 // Recurse through the element type trying to peel off offset bytes.
3398 return getTypePartition(DL, ElementTy, Offset, Size);
3399 }
3400 assert(Offset == 0);
3401
3402 if (Size == ElementSize)
3403 return stripAggregateTypeWrapping(DL, ElementTy);
3404 assert(Size > ElementSize);
3405 uint64_t NumElements = Size / ElementSize;
3406 if (NumElements * ElementSize != Size)
3407 return nullptr;
3408 return ArrayType::get(ElementTy, NumElements);
3409 }
3410
3411 StructType *STy = dyn_cast<StructType>(Ty);
3412 if (!STy)
3413 return nullptr;
3414
3415 const StructLayout *SL = DL.getStructLayout(STy);
3416 if (Offset >= SL->getSizeInBytes())
3417 return nullptr;
3418 uint64_t EndOffset = Offset + Size;
3419 if (EndOffset > SL->getSizeInBytes())
3420 return nullptr;
3421
3422 unsigned Index = SL->getElementContainingOffset(Offset);
3423 Offset -= SL->getElementOffset(Index);
3424
3425 Type *ElementTy = STy->getElementType(Index);
3426 uint64_t ElementSize = DL.getTypeAllocSize(ElementTy);
3427 if (Offset >= ElementSize)
3428 return nullptr; // The offset points into alignment padding.
3429
3430 // See if any partition must be contained by the element.
3431 if (Offset > 0 || Size < ElementSize) {
3432 if ((Offset + Size) > ElementSize)
3433 return nullptr;
3434 return getTypePartition(DL, ElementTy, Offset, Size);
3435 }
3436 assert(Offset == 0);
3437
3438 if (Size == ElementSize)
3439 return stripAggregateTypeWrapping(DL, ElementTy);
3440
3441 StructType::element_iterator EI = STy->element_begin() + Index,
3442 EE = STy->element_end();
3443 if (EndOffset < SL->getSizeInBytes()) {
3444 unsigned EndIndex = SL->getElementContainingOffset(EndOffset);
3445 if (Index == EndIndex)
3446 return nullptr; // Within a single element and its padding.
3447
3448 // Don't try to form "natural" types if the elements don't line up with the
3449 // expected size.
3450 // FIXME: We could potentially recurse down through the last element in the
3451 // sub-struct to find a natural end point.
3452 if (SL->getElementOffset(EndIndex) != EndOffset)
3453 return nullptr;
3454
3455 assert(Index < EndIndex);
3456 EE = STy->element_begin() + EndIndex;
3457 }
3458
3459 // Try to build up a sub-structure.
3460 StructType *SubTy =
3461 StructType::get(STy->getContext(), makeArrayRef(EI, EE), STy->isPacked());
3462 const StructLayout *SubSL = DL.getStructLayout(SubTy);
3463 if (Size != SubSL->getSizeInBytes())
3464 return nullptr; // The sub-struct doesn't have quite the size needed.
3465
3466 return SubTy;
3467 }
3468
3469 /// \brief Pre-split loads and stores to simplify rewriting.
3470 ///
3471 /// We want to break up the splittable load+store pairs as much as
3472 /// possible. This is important to do as a preprocessing step, as once we
3473 /// start rewriting the accesses to partitions of the alloca we lose the
3474 /// necessary information to correctly split apart paired loads and stores
3475 /// which both point into this alloca. The case to consider is something like
3476 /// the following:
3477 ///
3478 /// %a = alloca [12 x i8]
3479 /// %gep1 = getelementptr [12 x i8]* %a, i32 0, i32 0
3480 /// %gep2 = getelementptr [12 x i8]* %a, i32 0, i32 4
3481 /// %gep3 = getelementptr [12 x i8]* %a, i32 0, i32 8
3482 /// %iptr1 = bitcast i8* %gep1 to i64*
3483 /// %iptr2 = bitcast i8* %gep2 to i64*
3484 /// %fptr1 = bitcast i8* %gep1 to float*
3485 /// %fptr2 = bitcast i8* %gep2 to float*
3486 /// %fptr3 = bitcast i8* %gep3 to float*
3487 /// store float 0.0, float* %fptr1
3488 /// store float 1.0, float* %fptr2
3489 /// %v = load i64* %iptr1
3490 /// store i64 %v, i64* %iptr2
3491 /// %f1 = load float* %fptr2
3492 /// %f2 = load float* %fptr3
3493 ///
3494 /// Here we want to form 3 partitions of the alloca, each 4 bytes large, and
3495 /// promote everything so we recover the 2 SSA values that should have been
3496 /// there all along.
3497 ///
3498 /// \returns true if any changes are made.
3499 bool SROA::presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS) {
3500 DEBUG(dbgs() << "Pre-splitting loads and stores\n");
3501
3502 // Track the loads and stores which are candidates for pre-splitting here, in
3503 // the order they first appear during the partition scan. These give stable
3504 // iteration order and a basis for tracking which loads and stores we
3505 // actually split.
3506 SmallVector<LoadInst *, 4> Loads;
3507 SmallVector<StoreInst *, 4> Stores;
3508
3509 // We need to accumulate the splits required of each load or store where we
3510 // can find them via a direct lookup. This is important to cross-check loads
3511 // and stores against each other. We also track the slice so that we can kill
3512 // all the slices that end up split.
3513 struct SplitOffsets {
3514 Slice *S;
3515 std::vector<uint64_t> Splits;
3516 };
3517 SmallDenseMap<Instruction *, SplitOffsets, 8> SplitOffsetsMap;
3518
3519 // Track loads out of this alloca which cannot, for any reason, be pre-split.
3520 // This is important as we also cannot pre-split stores of those loads!
3521 // FIXME: This is all pretty gross. It means that we can be more aggressive
3522 // in pre-splitting when the load feeding the store happens to come from
3523 // a separate alloca. Put another way, the effectiveness of SROA would be
3524 // decreased by a frontend which just concatenated all of its local allocas
3525 // into one big flat alloca. But defeating such patterns is exactly the job
3526 // SROA is tasked with! Sadly, to not have this discrepancy we would have
3527 // change store pre-splitting to actually force pre-splitting of the load
3528 // that feeds it *and all stores*. That makes pre-splitting much harder, but
3529 // maybe it would make it more principled?
3530 SmallPtrSet<LoadInst *, 8> UnsplittableLoads;
3531
3532 DEBUG(dbgs() << " Searching for candidate loads and stores\n");
3533 for (auto &P : AS.partitions()) {
3534 for (Slice &S : P) {
3535 Instruction *I = cast<Instruction>(S.getUse()->getUser());
3536 if (!S.isSplittable() ||S.endOffset() <= P.endOffset()) {
3537 // If this was a load we have to track that it can't participate in any
3538 // pre-splitting!
3539 if (auto *LI = dyn_cast<LoadInst>(I))
3540 UnsplittableLoads.insert(LI);
3541 continue;
3542 }
3543 assert(P.endOffset() > S.beginOffset() &&
3544 "Empty or backwards partition!");
3545
3546 // Determine if this is a pre-splittable slice.
3547 if (auto *LI = dyn_cast<LoadInst>(I)) {
3548 assert(!LI->isVolatile() && "Cannot split volatile loads!");
3549
3550 // The load must be used exclusively to store into other pointers for
3551 // us to be able to arbitrarily pre-split it. The stores must also be
3552 // simple to avoid changing semantics.
3553 auto IsLoadSimplyStored = [](LoadInst *LI) {
3554 for (User *LU : LI->users()) {
3555 auto *SI = dyn_cast<StoreInst>(LU);
3556 if (!SI || !SI->isSimple())
3557 return false;
3558 }
3559 return true;
3560 };
3561 if (!IsLoadSimplyStored(LI)) {
3562 UnsplittableLoads.insert(LI);
3563 continue;
3564 }
3565
3566 Loads.push_back(LI);
3567 } else if (auto *SI = dyn_cast<StoreInst>(S.getUse()->getUser())) {
3568 if (!SI ||
3569 S.getUse() != &SI->getOperandUse(SI->getPointerOperandIndex()))
3570 continue;
3571 auto *StoredLoad = dyn_cast<LoadInst>(SI->getValueOperand());
3572 if (!StoredLoad || !StoredLoad->isSimple())
3573 continue;
3574 assert(!SI->isVolatile() && "Cannot split volatile stores!");
3575
3576 Stores.push_back(SI);
3577 } else {
3578 // Other uses cannot be pre-split.
3579 continue;
3580 }
3581
3582 // Record the initial split.
3583 DEBUG(dbgs() << " Candidate: " << *I << "\n");
3584 auto &Offsets = SplitOffsetsMap[I];
3585 assert(Offsets.Splits.empty() &&
3586 "Should not have splits the first time we see an instruction!");
3587 Offsets.S = &S;
3588 Offsets.Splits.push_back(P.endOffset() - S.beginOffset());
3589 }
3590
3591 // Now scan the already split slices, and add a split for any of them which
3592 // we're going to pre-split.
3593 for (Slice *S : P.splitSliceTails()) {
3594 auto SplitOffsetsMapI =
3595 SplitOffsetsMap.find(cast<Instruction>(S->getUse()->getUser()));
3596 if (SplitOffsetsMapI == SplitOffsetsMap.end())
3597 continue;
3598 auto &Offsets = SplitOffsetsMapI->second;
3599
3600 assert(Offsets.S == S && "Found a mismatched slice!");
3601 assert(!Offsets.Splits.empty() &&
3602 "Cannot have an empty set of splits on the second partition!");
3603 assert(Offsets.Splits.back() ==
3604 P.beginOffset() - Offsets.S->beginOffset() &&
3605 "Previous split does not end where this one begins!");
3606
3607 // Record each split. The last partition's end isn't needed as the size
3608 // of the slice dictates that.
3609 if (S->endOffset() > P.endOffset())
3610 Offsets.Splits.push_back(P.endOffset() - Offsets.S->beginOffset());
3611 }
3612 }
3613
3614 // We may have split loads where some of their stores are split stores. For
3615 // such loads and stores, we can only pre-split them if their splits exactly
3616 // match relative to their starting offset. We have to verify this prior to
3617 // any rewriting.
3618 Stores.erase(
3619 std::remove_if(Stores.begin(), Stores.end(),
3620 [&UnsplittableLoads, &SplitOffsetsMap](StoreInst *SI) {
3621 // Lookup the load we are storing in our map of split
3622 // offsets.
3623 auto *LI = cast<LoadInst>(SI->getValueOperand());
3624 // If it was completely unsplittable, then we're done,
3625 // and this store can't be pre-split.
3626 if (UnsplittableLoads.count(LI))
3627 return true;
3628
3629 auto LoadOffsetsI = SplitOffsetsMap.find(LI);
3630 if (LoadOffsetsI == SplitOffsetsMap.end())
3631 return false; // Unrelated loads are definitely safe.
3632 auto &LoadOffsets = LoadOffsetsI->second;
3633
3634 // Now lookup the store's offsets.
3635 auto &StoreOffsets = SplitOffsetsMap[SI];
3636
3637 // If the relative offsets of each split in the load and
3638 // store match exactly, then we can split them and we
3639 // don't need to remove them here.
3640 if (LoadOffsets.Splits == StoreOffsets.Splits)
3641 return false;
3642
3643 DEBUG(dbgs()
3644 << " Mismatched splits for load and store:\n"
3645 << " " << *LI << "\n"
3646 << " " << *SI << "\n");
3647
3648 // We've found a store and load that we need to split
3649 // with mismatched relative splits. Just give up on them
3650 // and remove both instructions from our list of
3651 // candidates.
3652 UnsplittableLoads.insert(LI);
3653 return true;
3654 }),
3655 Stores.end());
3656 // Now we have to go *back* through all te stores, because a later store may
3657 // have caused an earlier store's load to become unsplittable and if it is
3658 // unsplittable for the later store, then we can't rely on it being split in
3659 // the earlier store either.
3660 Stores.erase(std::remove_if(Stores.begin(), Stores.end(),
3661 [&UnsplittableLoads](StoreInst *SI) {
3662 auto *LI =
3663 cast<LoadInst>(SI->getValueOperand());
3664 return UnsplittableLoads.count(LI);
3665 }),
3666 Stores.end());
3667 // Once we've established all the loads that can't be split for some reason,
3668 // filter any that made it into our list out.
3669 Loads.erase(std::remove_if(Loads.begin(), Loads.end(),
3670 [&UnsplittableLoads](LoadInst *LI) {
3671 return UnsplittableLoads.count(LI);
3672 }),
3673 Loads.end());
3674
3675
3676 // If no loads or stores are left, there is no pre-splitting to be done for
3677 // this alloca.
3678 if (Loads.empty() && Stores.empty())
3679 return false;
3680
3681 // From here on, we can't fail and will be building new accesses, so rig up
3682 // an IR builder.
3683 IRBuilderTy IRB(&AI);
3684
3685 // Collect the new slices which we will merge into the alloca slices.
3686 SmallVector<Slice, 4> NewSlices;
3687
3688 // Track any allocas we end up splitting loads and stores for so we iterate
3689 // on them.
3690 SmallPtrSet<AllocaInst *, 4> ResplitPromotableAllocas;
3691
3692 // At this point, we have collected all of the loads and stores we can
3693 // pre-split, and the specific splits needed for them. We actually do the
3694 // splitting in a specific order in order to handle when one of the loads in
3695 // the value operand to one of the stores.
3696 //
3697 // First, we rewrite all of the split loads, and just accumulate each split
3698 // load in a parallel structure. We also build the slices for them and append
3699 // them to the alloca slices.
3700 SmallDenseMap<LoadInst *, std::vector<LoadInst *>, 1> SplitLoadsMap;
3701 std::vector<LoadInst *> SplitLoads;
3702 for (LoadInst *LI : Loads) {
3703 SplitLoads.clear();
3704
3705 IntegerType *Ty = cast<IntegerType>(LI->getType());
3706 uint64_t LoadSize = Ty->getBitWidth() / 8;
3707 assert(LoadSize > 0 && "Cannot have a zero-sized integer load!");
3708
3709 auto &Offsets = SplitOffsetsMap[LI];
3710 assert(LoadSize == Offsets.S->endOffset() - Offsets.S->beginOffset() &&
3711 "Slice size should always match load size exactly!");
3712 uint64_t BaseOffset = Offsets.S->beginOffset();
3713 assert(BaseOffset + LoadSize > BaseOffset &&
3714 "Cannot represent alloca access size using 64-bit integers!");
3715
3716 Instruction *BasePtr = cast<Instruction>(LI->getPointerOperand());
3717 IRB.SetInsertPoint(BasicBlock::iterator(LI));
3718
3719 DEBUG(dbgs() << " Splitting load: " << *LI << "\n");
3720
3721 uint64_t PartOffset = 0, PartSize = Offsets.Splits.front();
3722 int Idx = 0, Size = Offsets.Splits.size();
3723 for (;;) {
3724 auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8);
3725 auto *PartPtrTy = PartTy->getPointerTo(LI->getPointerAddressSpace());
3726 LoadInst *PLoad = IRB.CreateAlignedLoad(
3727 getAdjustedPtr(IRB, *DL, BasePtr,
3728 APInt(DL->getPointerSizeInBits(), PartOffset),
3729 PartPtrTy, BasePtr->getName() + "."),
3730 getAdjustedAlignment(LI, PartOffset, *DL), /*IsVolatile*/ false,
3731 LI->getName());
3732
3733 // Append this load onto the list of split loads so we can find it later
3734 // to rewrite the stores.
3735 SplitLoads.push_back(PLoad);
3736
3737 // Now build a new slice for the alloca.
3738 NewSlices.push_back(
3739 Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize,
3740 &PLoad->getOperandUse(PLoad->getPointerOperandIndex()),
3741 /*IsSplittable*/ false));
3742 DEBUG(dbgs() << " new slice [" << NewSlices.back().beginOffset()
3743 << ", " << NewSlices.back().endOffset() << "): " << *PLoad
3744 << "\n");
3745
3746 // See if we've handled all the splits.
3747 if (Idx >= Size)
3748 break;
3749
3750 // Setup the next partition.
3751 PartOffset = Offsets.Splits[Idx];
3752 ++Idx;
3753 PartSize = (Idx < Size ? Offsets.Splits[Idx] : LoadSize) - PartOffset;
3754 }
3755
3756 // Now that we have the split loads, do the slow walk over all uses of the
3757 // load and rewrite them as split stores, or save the split loads to use
3758 // below if the store is going to be split there anyways.
3759 bool DeferredStores = false;
3760 for (User *LU : LI->users()) {
3761 StoreInst *SI = cast<StoreInst>(LU);
3762 if (!Stores.empty() && SplitOffsetsMap.count(SI)) {
3763 DeferredStores = true;
3764 DEBUG(dbgs() << " Deferred splitting of store: " << *SI << "\n");
3765 continue;
3766 }
3767
3768 Value *StoreBasePtr = SI->getPointerOperand();
3769 IRB.SetInsertPoint(BasicBlock::iterator(SI));
3770
3771 DEBUG(dbgs() << " Splitting store of load: " << *SI << "\n");
3772
3773 for (int Idx = 0, Size = SplitLoads.size(); Idx < Size; ++Idx) {
3774 LoadInst *PLoad = SplitLoads[Idx];
3775 uint64_t PartOffset = Idx == 0 ? 0 : Offsets.Splits[Idx - 1];
3776 auto *PartPtrTy =
3777 PLoad->getType()->getPointerTo(SI->getPointerAddressSpace());
3778
3779 StoreInst *PStore = IRB.CreateAlignedStore(
3780 PLoad, getAdjustedPtr(IRB, *DL, StoreBasePtr,
3781 APInt(DL->getPointerSizeInBits(), PartOffset),
3782 PartPtrTy, StoreBasePtr->getName() + "."),
3783 getAdjustedAlignment(SI, PartOffset, *DL), /*IsVolatile*/ false);
3784 (void)PStore;
3785 DEBUG(dbgs() << " +" << PartOffset << ":" << *PStore << "\n");
3786 }
3787
3788 // We want to immediately iterate on any allocas impacted by splitting
3789 // this store, and we have to track any promotable alloca (indicated by
3790 // a direct store) as needing to be resplit because it is no longer
3791 // promotable.
3792 if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(StoreBasePtr)) {
3793 ResplitPromotableAllocas.insert(OtherAI);
3794 Worklist.insert(OtherAI);
3795 } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(
3796 StoreBasePtr->stripInBoundsOffsets())) {
3797 Worklist.insert(OtherAI);
3798 }
3799
3800 // Mark the original store as dead.
3801 DeadInsts.insert(SI);
3802 }
3803
3804 // Save the split loads if there are deferred stores among the users.
3805 if (DeferredStores)
3806 SplitLoadsMap.insert(std::make_pair(LI, std::move(SplitLoads)));
3807
3808 // Mark the original load as dead and kill the original slice.
3809 DeadInsts.insert(LI);
3810 Offsets.S->kill();
3811 }
3812
3813 // Second, we rewrite all of the split stores. At this point, we know that
3814 // all loads from this alloca have been split already. For stores of such
3815 // loads, we can simply look up the pre-existing split loads. For stores of
3816 // other loads, we split those loads first and then write split stores of
3817 // them.
3818 for (StoreInst *SI : Stores) {
3819 auto *LI = cast<LoadInst>(SI->getValueOperand());
3820 IntegerType *Ty = cast<IntegerType>(LI->getType());
3821 uint64_t StoreSize = Ty->getBitWidth() / 8;
3822 assert(StoreSize > 0 && "Cannot have a zero-sized integer store!");
3823
3824 auto &Offsets = SplitOffsetsMap[SI];
3825 assert(StoreSize == Offsets.S->endOffset() - Offsets.S->beginOffset() &&
3826 "Slice size should always match load size exactly!");
3827 uint64_t BaseOffset = Offsets.S->beginOffset();
3828 assert(BaseOffset + StoreSize > BaseOffset &&
3829 "Cannot represent alloca access size using 64-bit integers!");
3830
3831 Value *LoadBasePtr = LI->getPointerOperand();
3832 Instruction *StoreBasePtr = cast<Instruction>(SI->getPointerOperand());
3833
3834 DEBUG(dbgs() << " Splitting store: " << *SI << "\n");
3835
3836 // Check whether we have an already split load.
3837 auto SplitLoadsMapI = SplitLoadsMap.find(LI);
3838 std::vector<LoadInst *> *SplitLoads = nullptr;
3839 if (SplitLoadsMapI != SplitLoadsMap.end()) {
3840 SplitLoads = &SplitLoadsMapI->second;
3841 assert(SplitLoads->size() == Offsets.Splits.size() + 1 &&
3842 "Too few split loads for the number of splits in the store!");
3843 } else {
3844 DEBUG(dbgs() << " of load: " << *LI << "\n");
3845 }
3846
3847 uint64_t PartOffset = 0, PartSize = Offsets.Splits.front();
3848 int Idx = 0, Size = Offsets.Splits.size();
3849 for (;;) {
3850 auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8);
3851 auto *PartPtrTy = PartTy->getPointerTo(SI->getPointerAddressSpace());
3852
3853 // Either lookup a split load or create one.
3854 LoadInst *PLoad;
3855 if (SplitLoads) {
3856 PLoad = (*SplitLoads)[Idx];
3857 } else {
3858 IRB.SetInsertPoint(BasicBlock::iterator(LI));
3859 PLoad = IRB.CreateAlignedLoad(
3860 getAdjustedPtr(IRB, *DL, LoadBasePtr,
3861 APInt(DL->getPointerSizeInBits(), PartOffset),
3862 PartPtrTy, LoadBasePtr->getName() + "."),
3863 getAdjustedAlignment(LI, PartOffset, *DL), /*IsVolatile*/ false,
3864 LI->getName());
3865 }
3866
3867 // And store this partition.
3868 IRB.SetInsertPoint(BasicBlock::iterator(SI));
3869 StoreInst *PStore = IRB.CreateAlignedStore(
3870 PLoad, getAdjustedPtr(IRB, *DL, StoreBasePtr,
3871 APInt(DL->getPointerSizeInBits(), PartOffset),
3872 PartPtrTy, StoreBasePtr->getName() + "."),
3873 getAdjustedAlignment(SI, PartOffset, *DL), /*IsVolatile*/ false);
3874
3875 // Now build a new slice for the alloca.
3876 NewSlices.push_back(
3877 Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize,
3878 &PStore->getOperandUse(PStore->getPointerOperandIndex()),
3879 /*IsSplittable*/ false));
3880 DEBUG(dbgs() << " new slice [" << NewSlices.back().beginOffset()
3881 << ", " << NewSlices.back().endOffset() << "): " << *PStore
3882 << "\n");
3883 if (!SplitLoads) {
3884 DEBUG(dbgs() << " of split load: " << *PLoad << "\n");
3885 }
3886
3887 // See if we've finished all the splits.
3888 if (Idx >= Size)
3889 break;
3890
3891 // Setup the next partition.
3892 PartOffset = Offsets.Splits[Idx];
3893 ++Idx;
3894 PartSize = (Idx < Size ? Offsets.Splits[Idx] : StoreSize) - PartOffset;
3895 }
3896
3897 // We want to immediately iterate on any allocas impacted by splitting
3898 // this load, which is only relevant if it isn't a load of this alloca and
3899 // thus we didn't already split the loads above. We also have to keep track
3900 // of any promotable allocas we split loads on as they can no longer be
3901 // promoted.
3902 if (!SplitLoads) {
3903 if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(LoadBasePtr)) {
3904 assert(OtherAI != &AI && "We can't re-split our own alloca!");
3905 ResplitPromotableAllocas.insert(OtherAI);
3906 Worklist.insert(OtherAI);
3907 } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(
3908 LoadBasePtr->stripInBoundsOffsets())) {
3909 assert(OtherAI != &AI && "We can't re-split our own alloca!");
3910 Worklist.insert(OtherAI);
3911 }
3912 }
3913
3914 // Mark the original store as dead now that we've split it up and kill its
3915 // slice. Note that we leave the original load in place unless this store
3916 // was its ownly use. It may in turn be split up if it is an alloca load
3917 // for some other alloca, but it may be a normal load. This may introduce
3918 // redundant loads, but where those can be merged the rest of the optimizer
3919 // should handle the merging, and this uncovers SSA splits which is more
3920 // important. In practice, the original loads will almost always be fully
3921 // split and removed eventually, and the splits will be merged by any
3922 // trivial CSE, including instcombine.
3923 if (LI->hasOneUse()) {
3924 assert(*LI->user_begin() == SI && "Single use isn't this store!");
3925 DeadInsts.insert(LI);
3926 }
3927 DeadInsts.insert(SI);
3928 Offsets.S->kill();
3929 }
3930
3931 // Remove the killed slices that have ben pre-split.
3932 AS.erase(std::remove_if(AS.begin(), AS.end(), [](const Slice &S) {
3933 return S.isDead();
3934 }), AS.end());
3935
3936 // Insert our new slices. This will sort and merge them into the sorted
3937 // sequence.
3938 AS.insert(NewSlices);
3939
3940 DEBUG(dbgs() << " Pre-split slices:\n");
3941 #ifndef NDEBUG
3942 for (auto I = AS.begin(), E = AS.end(); I != E; ++I)
3943 DEBUG(AS.print(dbgs(), I, " "));
3944 #endif
3945
3946 // Finally, don't try to promote any allocas that new require re-splitting.
3947 // They have already been added to the worklist above.
3948 PromotableAllocas.erase(
3949 std::remove_if(
3950 PromotableAllocas.begin(), PromotableAllocas.end(),
3951 [&](AllocaInst *AI) { return ResplitPromotableAllocas.count(AI); }),
3952 PromotableAllocas.end());
3953
3954 return true;
3955 }
3956
3957 /// \brief Rewrite an alloca partition's users.
3958 ///
3959 /// This routine drives both of the rewriting goals of the SROA pass. It tries
3960 /// to rewrite uses of an alloca partition to be conducive for SSA value
3961 /// promotion. If the partition needs a new, more refined alloca, this will
3962 /// build that new alloca, preserving as much type information as possible, and
3963 /// rewrite the uses of the old alloca to point at the new one and have the
3964 /// appropriate new offsets. It also evaluates how successful the rewrite was
3965 /// at enabling promotion and if it was successful queues the alloca to be
3966 /// promoted.
3967 bool SROA::rewritePartition(AllocaInst &AI, AllocaSlices &AS,
3968 AllocaSlices::Partition &P) {
3969 // Try to compute a friendly type for this partition of the alloca. This
3970 // won't always succeed, in which case we fall back to a legal integer type
3971 // or an i8 array of an appropriate size.
3972 Type *SliceTy = nullptr;
3973 if (Type *CommonUseTy = findCommonType(P.begin(), P.end(), P.endOffset()))
3974 if (DL->getTypeAllocSize(CommonUseTy) >= P.size())
3975 SliceTy = CommonUseTy;
3976 if (!SliceTy)
3977 if (Type *TypePartitionTy = getTypePartition(*DL, AI.getAllocatedType(),
3978 P.beginOffset(), P.size()))
3979 SliceTy = TypePartitionTy;
3980 if ((!SliceTy || (SliceTy->isArrayTy() &&
3981 SliceTy->getArrayElementType()->isIntegerTy())) &&
3982 DL->isLegalInteger(P.size() * 8))
3983 SliceTy = Type::getIntNTy(*C, P.size() * 8);
3984 if (!SliceTy)
3985 SliceTy = ArrayType::get(Type::getInt8Ty(*C), P.size());
3986 assert(DL->getTypeAllocSize(SliceTy) >= P.size());
3987
3988 bool IsIntegerPromotable = isIntegerWideningViable(P, SliceTy, *DL);
3989
3990 VectorType *VecTy =
3991 IsIntegerPromotable ? nullptr : isVectorPromotionViable(P, *DL);
3992 if (VecTy)
3993 SliceTy = VecTy;
3994
3995 // Check for the case where we're going to rewrite to a new alloca of the
3996 // exact same type as the original, and with the same access offsets. In that
3997 // case, re-use the existing alloca, but still run through the rewriter to
3998 // perform phi and select speculation.
3999 AllocaInst *NewAI;
4000 if (SliceTy == AI.getAllocatedType()) {
4001 assert(P.beginOffset() == 0 &&
4002 "Non-zero begin offset but same alloca type");
4003 NewAI = &AI;
4004 // FIXME: We should be able to bail at this point with "nothing changed".
4005 // FIXME: We might want to defer PHI speculation until after here.
4006 } else {
4007 unsigned Alignment = AI.getAlignment();
4008 if (!Alignment) {
4009 // The minimum alignment which users can rely on when the explicit
4010 // alignment is omitted or zero is that required by the ABI for this
4011 // type.
4012 Alignment = DL->getABITypeAlignment(AI.getAllocatedType());
4013 }
4014 Alignment = MinAlign(Alignment, P.beginOffset());
4015 // If we will get at least this much alignment from the type alone, leave
4016 // the alloca's alignment unconstrained.
4017 if (Alignment <= DL->getABITypeAlignment(SliceTy))
4018 Alignment = 0;
4019 NewAI = new AllocaInst(
4020 SliceTy, nullptr, Alignment,
4021 AI.getName() + ".sroa." + Twine(P.begin() - AS.begin()), &AI);
4022 ++NumNewAllocas;
4023 }
4024
4025 DEBUG(dbgs() << "Rewriting alloca partition "
4026 << "[" << P.beginOffset() << "," << P.endOffset()
4027 << ") to: " << *NewAI << "\n");
4028
4029 // Track the high watermark on the worklist as it is only relevant for
4030 // promoted allocas. We will reset it to this point if the alloca is not in
4031 // fact scheduled for promotion.
4032 unsigned PPWOldSize = PostPromotionWorklist.size();
4033 unsigned NumUses = 0;
4034 SmallPtrSet<PHINode *, 8> PHIUsers;
4035 SmallPtrSet<SelectInst *, 8> SelectUsers;
4036
4037 AllocaSliceRewriter Rewriter(*DL, AS, *this, AI, *NewAI, P.beginOffset(),
4038 P.endOffset(), IsIntegerPromotable, VecTy,
4039 PHIUsers, SelectUsers);
4040 bool Promotable = true;
4041 for (Slice *S : P.splitSliceTails()) {
4042 Promotable &= Rewriter.visit(S);
4043 ++NumUses;
4044 }
4045 for (Slice &S : P) {
4046 Promotable &= Rewriter.visit(&S);
4047 ++NumUses;
4048 }
4049
4050 NumAllocaPartitionUses += NumUses;
4051 MaxUsesPerAllocaPartition =
4052 std::max<unsigned>(NumUses, MaxUsesPerAllocaPartition);
4053
4054 // Now that we've processed all the slices in the new partition, check if any
4055 // PHIs or Selects would block promotion.
4056 for (SmallPtrSetImpl<PHINode *>::iterator I = PHIUsers.begin(),
4057 E = PHIUsers.end();
4058 I != E; ++I)
4059 if (!isSafePHIToSpeculate(**I, DL)) {
4060 Promotable = false;
4061 PHIUsers.clear();
4062 SelectUsers.clear();
4063 break;
4064 }
4065 for (SmallPtrSetImpl<SelectInst *>::iterator I = SelectUsers.begin(),
4066 E = SelectUsers.end();
4067 I != E; ++I)
4068 if (!isSafeSelectToSpeculate(**I, DL)) {
4069 Promotable = false;
4070 PHIUsers.clear();
4071 SelectUsers.clear();
4072 break;
4073 }
4074
4075 if (Promotable) {
4076 if (PHIUsers.empty() && SelectUsers.empty()) {
4077 // Promote the alloca.
4078 PromotableAllocas.push_back(NewAI);
4079 } else {
4080 // If we have either PHIs or Selects to speculate, add them to those
4081 // worklists and re-queue the new alloca so that we promote in on the
4082 // next iteration.
4083 for (PHINode *PHIUser : PHIUsers)
4084 SpeculatablePHIs.insert(PHIUser);
4085 for (SelectInst *SelectUser : SelectUsers)
4086 SpeculatableSelects.insert(SelectUser);
4087 Worklist.insert(NewAI);
4088 }
4089 } else {
4090 // If we can't promote the alloca, iterate on it to check for new
4091 // refinements exposed by splitting the current alloca. Don't iterate on an
4092 // alloca which didn't actually change and didn't get promoted.
4093 if (NewAI != &AI)
4094 Worklist.insert(NewAI);
4095
4096 // Drop any post-promotion work items if promotion didn't happen.
4097 while (PostPromotionWorklist.size() > PPWOldSize)
4098 PostPromotionWorklist.pop_back();
4099 }
4100
4101 return true;
4102 }
4103
4104 /// \brief Walks the slices of an alloca and form partitions based on them,
4105 /// rewriting each of their uses.
4106 bool SROA::splitAlloca(AllocaInst &AI, AllocaSlices &AS) {
4107 if (AS.begin() == AS.end())
4108 return false;
4109
4110 unsigned NumPartitions = 0;
4111 bool Changed = false;
4112
4113 // First try to pre-split loads and stores.
4114 Changed |= presplitLoadsAndStores(AI, AS);
4115
4116 // Now that we have identified any pre-splitting opportunities, mark any
4117 // splittable (non-whole-alloca) loads and stores as unsplittable. If we fail
4118 // to split these during pre-splitting, we want to force them to be
4119 // rewritten into a partition.
4120 bool IsSorted = true;
4121 for (Slice &S : AS) {
4122 if (!S.isSplittable())
4123 continue;
4124 // FIXME: We currently leave whole-alloca splittable loads and stores. This
4125 // used to be the only splittable loads and stores and we need to be
4126 // confident that the above handling of splittable loads and stores is
4127 // completely sufficient before we forcibly disable the remaining handling.
4128 if (S.beginOffset() == 0 &&
4129 S.endOffset() >= DL->getTypeAllocSize(AI.getAllocatedType()))
4130 continue;
4131 if (isa<LoadInst>(S.getUse()->getUser()) ||
4132 isa<StoreInst>(S.getUse()->getUser())) {
4133 S.makeUnsplittable();
4134 IsSorted = false;
4135 }
4136 }
4137 if (!IsSorted)
4138 std::sort(AS.begin(), AS.end());
4139
4140 // Rewrite each partition.
4141 for (auto &P : AS.partitions()) {
4142 Changed |= rewritePartition(AI, AS, P);
4143 ++NumPartitions;
4144 }
4145
4146 NumAllocaPartitions += NumPartitions;
4147 MaxPartitionsPerAlloca =
4148 std::max<unsigned>(NumPartitions, MaxPartitionsPerAlloca);
4149
4150 return Changed;
4151 }
4152
4153 /// \brief Clobber a use with undef, deleting the used value if it becomes dead.
4154 void SROA::clobberUse(Use &U) {
4155 Value *OldV = U;
4156 // Replace the use with an undef value.
4157 U = UndefValue::get(OldV->getType());
4158
4159 // Check for this making an instruction dead. We have to garbage collect
4160 // all the dead instructions to ensure the uses of any alloca end up being
4161 // minimal.
4162 if (Instruction *OldI = dyn_cast<Instruction>(OldV))
4163 if (isInstructionTriviallyDead(OldI)) {
4164 DeadInsts.insert(OldI);
4165 }
4166 }
4167
4168 /// \brief Analyze an alloca for SROA.
4169 ///
4170 /// This analyzes the alloca to ensure we can reason about it, builds
4171 /// the slices of the alloca, and then hands it off to be split and
4172 /// rewritten as needed.
4173 bool SROA::runOnAlloca(AllocaInst &AI) {
4174 DEBUG(dbgs() << "SROA alloca: " << AI << "\n");
4175 ++NumAllocasAnalyzed;
4176
4177 // Special case dead allocas, as they're trivial.
4178 if (AI.use_empty()) {
4179 AI.eraseFromParent();
4180 return true;
4181 }
4182
4183 // Skip alloca forms that this analysis can't handle.
4184 if (AI.isArrayAllocation() || !AI.getAllocatedType()->isSized() ||
4185 DL->getTypeAllocSize(AI.getAllocatedType()) == 0)
4186 return false;
4187
4188 bool Changed = false;
4189
4190 // First, split any FCA loads and stores touching this alloca to promote
4191 // better splitting and promotion opportunities.
4192 AggLoadStoreRewriter AggRewriter(*DL);
4193 Changed |= AggRewriter.rewrite(AI);
4194
4195 // Build the slices using a recursive instruction-visiting builder.
4196 AllocaSlices AS(*DL, AI);
4197 DEBUG(AS.print(dbgs()));
4198 if (AS.isEscaped())
4199 return Changed;
4200
4201 // Delete all the dead users of this alloca before splitting and rewriting it.
4202 for (Instruction *DeadUser : AS.getDeadUsers()) {
4203 // Free up everything used by this instruction.
4204 for (Use &DeadOp : DeadUser->operands())
4205 clobberUse(DeadOp);
4206
4207 // Now replace the uses of this instruction.
4208 DeadUser->replaceAllUsesWith(UndefValue::get(DeadUser->getType()));
4209
4210 // And mark it for deletion.
4211 DeadInsts.insert(DeadUser);
4212 Changed = true;
4213 }
4214 for (Use *DeadOp : AS.getDeadOperands()) {
4215 clobberUse(*DeadOp);
4216 Changed = true;
4217 }
4218
4219 // No slices to split. Leave the dead alloca for a later pass to clean up.
4220 if (AS.begin() == AS.end())
4221 return Changed;
4222
4223 Changed |= splitAlloca(AI, AS);
4224
4225 DEBUG(dbgs() << " Speculating PHIs\n");
4226 while (!SpeculatablePHIs.empty())
4227 speculatePHINodeLoads(*SpeculatablePHIs.pop_back_val());
4228
4229 DEBUG(dbgs() << " Speculating Selects\n");
4230 while (!SpeculatableSelects.empty())
4231 speculateSelectInstLoads(*SpeculatableSelects.pop_back_val());
4232
4233 return Changed;
4234 }
4235
4236 /// \brief Delete the dead instructions accumulated in this run.
4237 ///
4238 /// Recursively deletes the dead instructions we've accumulated. This is done
4239 /// at the very end to maximize locality of the recursive delete and to
4240 /// minimize the problems of invalidated instruction pointers as such pointers
4241 /// are used heavily in the intermediate stages of the algorithm.
4242 ///
4243 /// We also record the alloca instructions deleted here so that they aren't
4244 /// subsequently handed to mem2reg to promote.
4245 void SROA::deleteDeadInstructions(
4246 SmallPtrSetImpl<AllocaInst *> &DeletedAllocas) {
4247 while (!DeadInsts.empty()) {
4248 Instruction *I = DeadInsts.pop_back_val();
4249 DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n");
4250
4251 I->replaceAllUsesWith(UndefValue::get(I->getType()));
4252
4253 for (Use &Operand : I->operands())
4254 if (Instruction *U = dyn_cast<Instruction>(Operand)) {
4255 // Zero out the operand and see if it becomes trivially dead.
4256 Operand = nullptr;
4257 if (isInstructionTriviallyDead(U))
4258 DeadInsts.insert(U);
4259 }
4260
4261 if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
4262 DeletedAllocas.insert(AI);
4263
4264 ++NumDeleted;
4265 I->eraseFromParent();
4266 }
4267 }
4268
4269 static void enqueueUsersInWorklist(Instruction &I,
4270 SmallVectorImpl<Instruction *> &Worklist,
4271 SmallPtrSetImpl<Instruction *> &Visited) {
4272 for (User *U : I.users())
4273 if (Visited.insert(cast<Instruction>(U)).second)
4274 Worklist.push_back(cast<Instruction>(U));
4275 }
4276
4277 /// \brief Promote the allocas, using the best available technique.
4278 ///
4279 /// This attempts to promote whatever allocas have been identified as viable in
4280 /// the PromotableAllocas list. If that list is empty, there is nothing to do.
4281 /// If there is a domtree available, we attempt to promote using the full power
4282 /// of mem2reg. Otherwise, we build and use the AllocaPromoter above which is
4283 /// based on the SSAUpdater utilities. This function returns whether any
4284 /// promotion occurred.
4285 bool SROA::promoteAllocas(Function &F) {
4286 if (PromotableAllocas.empty())
4287 return false;
4288
4289 NumPromoted += PromotableAllocas.size();
4290
4291 if (DT && !ForceSSAUpdater) {
4292 DEBUG(dbgs() << "Promoting allocas with mem2reg...\n");
4293 PromoteMemToReg(PromotableAllocas, *DT, nullptr, AC);
4294 PromotableAllocas.clear();
4295 return true;
4296 }
4297
4298 DEBUG(dbgs() << "Promoting allocas with SSAUpdater...\n");
4299 SSAUpdater SSA;
4300 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
4301 SmallVector<Instruction *, 64> Insts;
4302
4303 // We need a worklist to walk the uses of each alloca.
4304 SmallVector<Instruction *, 8> Worklist;
4305 SmallPtrSet<Instruction *, 8> Visited;
4306 SmallVector<Instruction *, 32> DeadInsts;
4307
4308 for (unsigned Idx = 0, Size = PromotableAllocas.size(); Idx != Size; ++Idx) {
4309 AllocaInst *AI = PromotableAllocas[Idx];
4310 Insts.clear();
4311 Worklist.clear();
4312 Visited.clear();
4313
4314 enqueueUsersInWorklist(*AI, Worklist, Visited);
4315
4316 while (!Worklist.empty()) {
4317 Instruction *I = Worklist.pop_back_val();
4318
4319 // FIXME: Currently the SSAUpdater infrastructure doesn't reason about
4320 // lifetime intrinsics and so we strip them (and the bitcasts+GEPs
4321 // leading to them) here. Eventually it should use them to optimize the
4322 // scalar values produced.
4323 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
4324 assert(II->getIntrinsicID() == Intrinsic::lifetime_start ||
4325 II->getIntrinsicID() == Intrinsic::lifetime_end);
4326 II->eraseFromParent();
4327 continue;
4328 }
4329
4330 // Push the loads and stores we find onto the list. SROA will already
4331 // have validated that all loads and stores are viable candidates for
4332 // promotion.
4333 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
4334 assert(LI->getType() == AI->getAllocatedType());
4335 Insts.push_back(LI);
4336 continue;
4337 }
4338 if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
4339 assert(SI->getValueOperand()->getType() == AI->getAllocatedType());
4340 Insts.push_back(SI);
4341 continue;
4342 }
4343
4344 // For everything else, we know that only no-op bitcasts and GEPs will
4345 // make it this far, just recurse through them and recall them for later
4346 // removal.
4347 DeadInsts.push_back(I);
4348 enqueueUsersInWorklist(*I, Worklist, Visited);
4349 }
4350 AllocaPromoter(Insts, SSA, *AI, DIB).run(Insts);
4351 while (!DeadInsts.empty())
4352 DeadInsts.pop_back_val()->eraseFromParent();
4353 AI->eraseFromParent();
4354 }
4355
4356 PromotableAllocas.clear();
4357 return true;
4358 }
4359
4360 bool SROA::runOnFunction(Function &F) {
4361 if (skipOptnoneFunction(F))
4362 return false;
4363
4364 DEBUG(dbgs() << "SROA function: " << F.getName() << "\n");
4365 C = &F.getContext();
4366 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
4367 if (!DLP) {
4368 DEBUG(dbgs() << " Skipping SROA -- no target data!\n");
4369 return false;
4370 }
4371 DL = &DLP->getDataLayout();
4372 DominatorTreeWrapperPass *DTWP =
4373 getAnalysisIfAvailable<DominatorTreeWrapperPass>();
4374 DT = DTWP ? &DTWP->getDomTree() : nullptr;
4375 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
4376
4377 BasicBlock &EntryBB = F.getEntryBlock();
4378 for (BasicBlock::iterator I = EntryBB.begin(), E = std::prev(EntryBB.end());
4379 I != E; ++I)
4380 if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
4381 Worklist.insert(AI);
4382
4383 bool Changed = false;
4384 // A set of deleted alloca instruction pointers which should be removed from
4385 // the list of promotable allocas.
4386 SmallPtrSet<AllocaInst *, 4> DeletedAllocas;
4387
4388 do {
4389 while (!Worklist.empty()) {
4390 Changed |= runOnAlloca(*Worklist.pop_back_val());
4391 deleteDeadInstructions(DeletedAllocas);
4392
4393 // Remove the deleted allocas from various lists so that we don't try to
4394 // continue processing them.
4395 if (!DeletedAllocas.empty()) {
4396 auto IsInSet = [&](AllocaInst *AI) { return DeletedAllocas.count(AI); };
4397 Worklist.remove_if(IsInSet);
4398 PostPromotionWorklist.remove_if(IsInSet);
4399 PromotableAllocas.erase(std::remove_if(PromotableAllocas.begin(),
4400 PromotableAllocas.end(),
4401 IsInSet),
4402 PromotableAllocas.end());
4403 DeletedAllocas.clear();
4404 }
4405 }
4406
4407 Changed |= promoteAllocas(F);
4408
4409 Worklist = PostPromotionWorklist;
4410 PostPromotionWorklist.clear();
4411 } while (!Worklist.empty());
4412
4413 return Changed;
4414 }
4415
4416 void SROA::getAnalysisUsage(AnalysisUsage &AU) const {
4417 AU.addRequired<AssumptionCacheTracker>();
4418 if (RequiresDomTree)
4419 AU.addRequired<DominatorTreeWrapperPass>();
4420 AU.setPreservesCFG();
4421 }