]> git.proxmox.com Git - rustc.git/blob - src/llvm/lib/Transforms/Utils/IntegerDivision.cpp
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / lib / Transforms / Utils / IntegerDivision.cpp
1 //===-- IntegerDivision.cpp - Expand integer division ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains an implementation of 32bit and 64bit scalar integer
11 // division for targets that don't have native support. It's largely derived
12 // from compiler-rt's implementations of __udivsi3 and __udivmoddi4,
13 // but hand-tuned for targets that prefer less control flow.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "llvm/Transforms/Utils/IntegerDivision.h"
18 #include "llvm/IR/Function.h"
19 #include "llvm/IR/IRBuilder.h"
20 #include "llvm/IR/Instructions.h"
21 #include "llvm/IR/Intrinsics.h"
22 #include <utility>
23
24 using namespace llvm;
25
26 #define DEBUG_TYPE "integer-division"
27
28 /// Generate code to compute the remainder of two signed integers. Returns the
29 /// remainder, which will have the sign of the dividend. Builder's insert point
30 /// should be pointing where the caller wants code generated, e.g. at the srem
31 /// instruction. This will generate a urem in the process, and Builder's insert
32 /// point will be pointing at the uren (if present, i.e. not folded), ready to
33 /// be expanded if the user wishes
34 static Value *generateSignedRemainderCode(Value *Dividend, Value *Divisor,
35 IRBuilder<> &Builder) {
36 unsigned BitWidth = Dividend->getType()->getIntegerBitWidth();
37 ConstantInt *Shift;
38
39 if (BitWidth == 64) {
40 Shift = Builder.getInt64(63);
41 } else {
42 assert(BitWidth == 32 && "Unexpected bit width");
43 Shift = Builder.getInt32(31);
44 }
45
46 // Following instructions are generated for both i32 (shift 31) and
47 // i64 (shift 63).
48
49 // ; %dividend_sgn = ashr i32 %dividend, 31
50 // ; %divisor_sgn = ashr i32 %divisor, 31
51 // ; %dvd_xor = xor i32 %dividend, %dividend_sgn
52 // ; %dvs_xor = xor i32 %divisor, %divisor_sgn
53 // ; %u_dividend = sub i32 %dvd_xor, %dividend_sgn
54 // ; %u_divisor = sub i32 %dvs_xor, %divisor_sgn
55 // ; %urem = urem i32 %dividend, %divisor
56 // ; %xored = xor i32 %urem, %dividend_sgn
57 // ; %srem = sub i32 %xored, %dividend_sgn
58 Value *DividendSign = Builder.CreateAShr(Dividend, Shift);
59 Value *DivisorSign = Builder.CreateAShr(Divisor, Shift);
60 Value *DvdXor = Builder.CreateXor(Dividend, DividendSign);
61 Value *DvsXor = Builder.CreateXor(Divisor, DivisorSign);
62 Value *UDividend = Builder.CreateSub(DvdXor, DividendSign);
63 Value *UDivisor = Builder.CreateSub(DvsXor, DivisorSign);
64 Value *URem = Builder.CreateURem(UDividend, UDivisor);
65 Value *Xored = Builder.CreateXor(URem, DividendSign);
66 Value *SRem = Builder.CreateSub(Xored, DividendSign);
67
68 if (Instruction *URemInst = dyn_cast<Instruction>(URem))
69 Builder.SetInsertPoint(URemInst);
70
71 return SRem;
72 }
73
74
75 /// Generate code to compute the remainder of two unsigned integers. Returns the
76 /// remainder. Builder's insert point should be pointing where the caller wants
77 /// code generated, e.g. at the urem instruction. This will generate a udiv in
78 /// the process, and Builder's insert point will be pointing at the udiv (if
79 /// present, i.e. not folded), ready to be expanded if the user wishes
80 static Value *generatedUnsignedRemainderCode(Value *Dividend, Value *Divisor,
81 IRBuilder<> &Builder) {
82 // Remainder = Dividend - Quotient*Divisor
83
84 // Following instructions are generated for both i32 and i64
85
86 // ; %quotient = udiv i32 %dividend, %divisor
87 // ; %product = mul i32 %divisor, %quotient
88 // ; %remainder = sub i32 %dividend, %product
89 Value *Quotient = Builder.CreateUDiv(Dividend, Divisor);
90 Value *Product = Builder.CreateMul(Divisor, Quotient);
91 Value *Remainder = Builder.CreateSub(Dividend, Product);
92
93 if (Instruction *UDiv = dyn_cast<Instruction>(Quotient))
94 Builder.SetInsertPoint(UDiv);
95
96 return Remainder;
97 }
98
99 /// Generate code to divide two signed integers. Returns the quotient, rounded
100 /// towards 0. Builder's insert point should be pointing where the caller wants
101 /// code generated, e.g. at the sdiv instruction. This will generate a udiv in
102 /// the process, and Builder's insert point will be pointing at the udiv (if
103 /// present, i.e. not folded), ready to be expanded if the user wishes.
104 static Value *generateSignedDivisionCode(Value *Dividend, Value *Divisor,
105 IRBuilder<> &Builder) {
106 // Implementation taken from compiler-rt's __divsi3 and __divdi3
107
108 unsigned BitWidth = Dividend->getType()->getIntegerBitWidth();
109 ConstantInt *Shift;
110
111 if (BitWidth == 64) {
112 Shift = Builder.getInt64(63);
113 } else {
114 assert(BitWidth == 32 && "Unexpected bit width");
115 Shift = Builder.getInt32(31);
116 }
117
118 // Following instructions are generated for both i32 (shift 31) and
119 // i64 (shift 63).
120
121 // ; %tmp = ashr i32 %dividend, 31
122 // ; %tmp1 = ashr i32 %divisor, 31
123 // ; %tmp2 = xor i32 %tmp, %dividend
124 // ; %u_dvnd = sub nsw i32 %tmp2, %tmp
125 // ; %tmp3 = xor i32 %tmp1, %divisor
126 // ; %u_dvsr = sub nsw i32 %tmp3, %tmp1
127 // ; %q_sgn = xor i32 %tmp1, %tmp
128 // ; %q_mag = udiv i32 %u_dvnd, %u_dvsr
129 // ; %tmp4 = xor i32 %q_mag, %q_sgn
130 // ; %q = sub i32 %tmp4, %q_sgn
131 Value *Tmp = Builder.CreateAShr(Dividend, Shift);
132 Value *Tmp1 = Builder.CreateAShr(Divisor, Shift);
133 Value *Tmp2 = Builder.CreateXor(Tmp, Dividend);
134 Value *U_Dvnd = Builder.CreateSub(Tmp2, Tmp);
135 Value *Tmp3 = Builder.CreateXor(Tmp1, Divisor);
136 Value *U_Dvsr = Builder.CreateSub(Tmp3, Tmp1);
137 Value *Q_Sgn = Builder.CreateXor(Tmp1, Tmp);
138 Value *Q_Mag = Builder.CreateUDiv(U_Dvnd, U_Dvsr);
139 Value *Tmp4 = Builder.CreateXor(Q_Mag, Q_Sgn);
140 Value *Q = Builder.CreateSub(Tmp4, Q_Sgn);
141
142 if (Instruction *UDiv = dyn_cast<Instruction>(Q_Mag))
143 Builder.SetInsertPoint(UDiv);
144
145 return Q;
146 }
147
148 /// Generates code to divide two unsigned scalar 32-bit or 64-bit integers.
149 /// Returns the quotient, rounded towards 0. Builder's insert point should
150 /// point where the caller wants code generated, e.g. at the udiv instruction.
151 static Value *generateUnsignedDivisionCode(Value *Dividend, Value *Divisor,
152 IRBuilder<> &Builder) {
153 // The basic algorithm can be found in the compiler-rt project's
154 // implementation of __udivsi3.c. Here, we do a lower-level IR based approach
155 // that's been hand-tuned to lessen the amount of control flow involved.
156
157 // Some helper values
158 IntegerType *DivTy = cast<IntegerType>(Dividend->getType());
159 unsigned BitWidth = DivTy->getBitWidth();
160
161 ConstantInt *Zero;
162 ConstantInt *One;
163 ConstantInt *NegOne;
164 ConstantInt *MSB;
165
166 if (BitWidth == 64) {
167 Zero = Builder.getInt64(0);
168 One = Builder.getInt64(1);
169 NegOne = ConstantInt::getSigned(DivTy, -1);
170 MSB = Builder.getInt64(63);
171 } else {
172 assert(BitWidth == 32 && "Unexpected bit width");
173 Zero = Builder.getInt32(0);
174 One = Builder.getInt32(1);
175 NegOne = ConstantInt::getSigned(DivTy, -1);
176 MSB = Builder.getInt32(31);
177 }
178
179 ConstantInt *True = Builder.getTrue();
180
181 BasicBlock *IBB = Builder.GetInsertBlock();
182 Function *F = IBB->getParent();
183 Function *CTLZ = Intrinsic::getDeclaration(F->getParent(), Intrinsic::ctlz,
184 DivTy);
185
186 // Our CFG is going to look like:
187 // +---------------------+
188 // | special-cases |
189 // | ... |
190 // +---------------------+
191 // | |
192 // | +----------+
193 // | | bb1 |
194 // | | ... |
195 // | +----------+
196 // | | |
197 // | | +------------+
198 // | | | preheader |
199 // | | | ... |
200 // | | +------------+
201 // | | |
202 // | | | +---+
203 // | | | | |
204 // | | +------------+ |
205 // | | | do-while | |
206 // | | | ... | |
207 // | | +------------+ |
208 // | | | | |
209 // | +-----------+ +---+
210 // | | loop-exit |
211 // | | ... |
212 // | +-----------+
213 // | |
214 // +-------+
215 // | ... |
216 // | end |
217 // +-------+
218 BasicBlock *SpecialCases = Builder.GetInsertBlock();
219 SpecialCases->setName(Twine(SpecialCases->getName(), "_udiv-special-cases"));
220 BasicBlock *End = SpecialCases->splitBasicBlock(Builder.GetInsertPoint(),
221 "udiv-end");
222 BasicBlock *LoopExit = BasicBlock::Create(Builder.getContext(),
223 "udiv-loop-exit", F, End);
224 BasicBlock *DoWhile = BasicBlock::Create(Builder.getContext(),
225 "udiv-do-while", F, End);
226 BasicBlock *Preheader = BasicBlock::Create(Builder.getContext(),
227 "udiv-preheader", F, End);
228 BasicBlock *BB1 = BasicBlock::Create(Builder.getContext(),
229 "udiv-bb1", F, End);
230
231 // We'll be overwriting the terminator to insert our extra blocks
232 SpecialCases->getTerminator()->eraseFromParent();
233
234 // Same instructions are generated for both i32 (msb 31) and i64 (msb 63).
235
236 // First off, check for special cases: dividend or divisor is zero, divisor
237 // is greater than dividend, and divisor is 1.
238 // ; special-cases:
239 // ; %ret0_1 = icmp eq i32 %divisor, 0
240 // ; %ret0_2 = icmp eq i32 %dividend, 0
241 // ; %ret0_3 = or i1 %ret0_1, %ret0_2
242 // ; %tmp0 = tail call i32 @llvm.ctlz.i32(i32 %divisor, i1 true)
243 // ; %tmp1 = tail call i32 @llvm.ctlz.i32(i32 %dividend, i1 true)
244 // ; %sr = sub nsw i32 %tmp0, %tmp1
245 // ; %ret0_4 = icmp ugt i32 %sr, 31
246 // ; %ret0 = or i1 %ret0_3, %ret0_4
247 // ; %retDividend = icmp eq i32 %sr, 31
248 // ; %retVal = select i1 %ret0, i32 0, i32 %dividend
249 // ; %earlyRet = or i1 %ret0, %retDividend
250 // ; br i1 %earlyRet, label %end, label %bb1
251 Builder.SetInsertPoint(SpecialCases);
252 Value *Ret0_1 = Builder.CreateICmpEQ(Divisor, Zero);
253 Value *Ret0_2 = Builder.CreateICmpEQ(Dividend, Zero);
254 Value *Ret0_3 = Builder.CreateOr(Ret0_1, Ret0_2);
255 Value *Tmp0 = Builder.CreateCall2(CTLZ, Divisor, True);
256 Value *Tmp1 = Builder.CreateCall2(CTLZ, Dividend, True);
257 Value *SR = Builder.CreateSub(Tmp0, Tmp1);
258 Value *Ret0_4 = Builder.CreateICmpUGT(SR, MSB);
259 Value *Ret0 = Builder.CreateOr(Ret0_3, Ret0_4);
260 Value *RetDividend = Builder.CreateICmpEQ(SR, MSB);
261 Value *RetVal = Builder.CreateSelect(Ret0, Zero, Dividend);
262 Value *EarlyRet = Builder.CreateOr(Ret0, RetDividend);
263 Builder.CreateCondBr(EarlyRet, End, BB1);
264
265 // ; bb1: ; preds = %special-cases
266 // ; %sr_1 = add i32 %sr, 1
267 // ; %tmp2 = sub i32 31, %sr
268 // ; %q = shl i32 %dividend, %tmp2
269 // ; %skipLoop = icmp eq i32 %sr_1, 0
270 // ; br i1 %skipLoop, label %loop-exit, label %preheader
271 Builder.SetInsertPoint(BB1);
272 Value *SR_1 = Builder.CreateAdd(SR, One);
273 Value *Tmp2 = Builder.CreateSub(MSB, SR);
274 Value *Q = Builder.CreateShl(Dividend, Tmp2);
275 Value *SkipLoop = Builder.CreateICmpEQ(SR_1, Zero);
276 Builder.CreateCondBr(SkipLoop, LoopExit, Preheader);
277
278 // ; preheader: ; preds = %bb1
279 // ; %tmp3 = lshr i32 %dividend, %sr_1
280 // ; %tmp4 = add i32 %divisor, -1
281 // ; br label %do-while
282 Builder.SetInsertPoint(Preheader);
283 Value *Tmp3 = Builder.CreateLShr(Dividend, SR_1);
284 Value *Tmp4 = Builder.CreateAdd(Divisor, NegOne);
285 Builder.CreateBr(DoWhile);
286
287 // ; do-while: ; preds = %do-while, %preheader
288 // ; %carry_1 = phi i32 [ 0, %preheader ], [ %carry, %do-while ]
289 // ; %sr_3 = phi i32 [ %sr_1, %preheader ], [ %sr_2, %do-while ]
290 // ; %r_1 = phi i32 [ %tmp3, %preheader ], [ %r, %do-while ]
291 // ; %q_2 = phi i32 [ %q, %preheader ], [ %q_1, %do-while ]
292 // ; %tmp5 = shl i32 %r_1, 1
293 // ; %tmp6 = lshr i32 %q_2, 31
294 // ; %tmp7 = or i32 %tmp5, %tmp6
295 // ; %tmp8 = shl i32 %q_2, 1
296 // ; %q_1 = or i32 %carry_1, %tmp8
297 // ; %tmp9 = sub i32 %tmp4, %tmp7
298 // ; %tmp10 = ashr i32 %tmp9, 31
299 // ; %carry = and i32 %tmp10, 1
300 // ; %tmp11 = and i32 %tmp10, %divisor
301 // ; %r = sub i32 %tmp7, %tmp11
302 // ; %sr_2 = add i32 %sr_3, -1
303 // ; %tmp12 = icmp eq i32 %sr_2, 0
304 // ; br i1 %tmp12, label %loop-exit, label %do-while
305 Builder.SetInsertPoint(DoWhile);
306 PHINode *Carry_1 = Builder.CreatePHI(DivTy, 2);
307 PHINode *SR_3 = Builder.CreatePHI(DivTy, 2);
308 PHINode *R_1 = Builder.CreatePHI(DivTy, 2);
309 PHINode *Q_2 = Builder.CreatePHI(DivTy, 2);
310 Value *Tmp5 = Builder.CreateShl(R_1, One);
311 Value *Tmp6 = Builder.CreateLShr(Q_2, MSB);
312 Value *Tmp7 = Builder.CreateOr(Tmp5, Tmp6);
313 Value *Tmp8 = Builder.CreateShl(Q_2, One);
314 Value *Q_1 = Builder.CreateOr(Carry_1, Tmp8);
315 Value *Tmp9 = Builder.CreateSub(Tmp4, Tmp7);
316 Value *Tmp10 = Builder.CreateAShr(Tmp9, MSB);
317 Value *Carry = Builder.CreateAnd(Tmp10, One);
318 Value *Tmp11 = Builder.CreateAnd(Tmp10, Divisor);
319 Value *R = Builder.CreateSub(Tmp7, Tmp11);
320 Value *SR_2 = Builder.CreateAdd(SR_3, NegOne);
321 Value *Tmp12 = Builder.CreateICmpEQ(SR_2, Zero);
322 Builder.CreateCondBr(Tmp12, LoopExit, DoWhile);
323
324 // ; loop-exit: ; preds = %do-while, %bb1
325 // ; %carry_2 = phi i32 [ 0, %bb1 ], [ %carry, %do-while ]
326 // ; %q_3 = phi i32 [ %q, %bb1 ], [ %q_1, %do-while ]
327 // ; %tmp13 = shl i32 %q_3, 1
328 // ; %q_4 = or i32 %carry_2, %tmp13
329 // ; br label %end
330 Builder.SetInsertPoint(LoopExit);
331 PHINode *Carry_2 = Builder.CreatePHI(DivTy, 2);
332 PHINode *Q_3 = Builder.CreatePHI(DivTy, 2);
333 Value *Tmp13 = Builder.CreateShl(Q_3, One);
334 Value *Q_4 = Builder.CreateOr(Carry_2, Tmp13);
335 Builder.CreateBr(End);
336
337 // ; end: ; preds = %loop-exit, %special-cases
338 // ; %q_5 = phi i32 [ %q_4, %loop-exit ], [ %retVal, %special-cases ]
339 // ; ret i32 %q_5
340 Builder.SetInsertPoint(End, End->begin());
341 PHINode *Q_5 = Builder.CreatePHI(DivTy, 2);
342
343 // Populate the Phis, since all values have now been created. Our Phis were:
344 // ; %carry_1 = phi i32 [ 0, %preheader ], [ %carry, %do-while ]
345 Carry_1->addIncoming(Zero, Preheader);
346 Carry_1->addIncoming(Carry, DoWhile);
347 // ; %sr_3 = phi i32 [ %sr_1, %preheader ], [ %sr_2, %do-while ]
348 SR_3->addIncoming(SR_1, Preheader);
349 SR_3->addIncoming(SR_2, DoWhile);
350 // ; %r_1 = phi i32 [ %tmp3, %preheader ], [ %r, %do-while ]
351 R_1->addIncoming(Tmp3, Preheader);
352 R_1->addIncoming(R, DoWhile);
353 // ; %q_2 = phi i32 [ %q, %preheader ], [ %q_1, %do-while ]
354 Q_2->addIncoming(Q, Preheader);
355 Q_2->addIncoming(Q_1, DoWhile);
356 // ; %carry_2 = phi i32 [ 0, %bb1 ], [ %carry, %do-while ]
357 Carry_2->addIncoming(Zero, BB1);
358 Carry_2->addIncoming(Carry, DoWhile);
359 // ; %q_3 = phi i32 [ %q, %bb1 ], [ %q_1, %do-while ]
360 Q_3->addIncoming(Q, BB1);
361 Q_3->addIncoming(Q_1, DoWhile);
362 // ; %q_5 = phi i32 [ %q_4, %loop-exit ], [ %retVal, %special-cases ]
363 Q_5->addIncoming(Q_4, LoopExit);
364 Q_5->addIncoming(RetVal, SpecialCases);
365
366 return Q_5;
367 }
368
369 /// Generate code to calculate the remainder of two integers, replacing Rem with
370 /// the generated code. This currently generates code using the udiv expansion,
371 /// but future work includes generating more specialized code, e.g. when more
372 /// information about the operands are known. Implements both 32bit and 64bit
373 /// scalar division.
374 ///
375 /// @brief Replace Rem with generated code.
376 bool llvm::expandRemainder(BinaryOperator *Rem) {
377 assert((Rem->getOpcode() == Instruction::SRem ||
378 Rem->getOpcode() == Instruction::URem) &&
379 "Trying to expand remainder from a non-remainder function");
380
381 IRBuilder<> Builder(Rem);
382
383 Type *RemTy = Rem->getType();
384 if (RemTy->isVectorTy())
385 llvm_unreachable("Div over vectors not supported");
386
387 unsigned RemTyBitWidth = RemTy->getIntegerBitWidth();
388
389 if (RemTyBitWidth != 32 && RemTyBitWidth != 64)
390 llvm_unreachable("Div of bitwidth other than 32 or 64 not supported");
391
392 // First prepare the sign if it's a signed remainder
393 if (Rem->getOpcode() == Instruction::SRem) {
394 Value *Remainder = generateSignedRemainderCode(Rem->getOperand(0),
395 Rem->getOperand(1), Builder);
396
397 Rem->replaceAllUsesWith(Remainder);
398 Rem->dropAllReferences();
399 Rem->eraseFromParent();
400
401 // If we didn't actually generate an urem instruction, we're done
402 // This happens for example if the input were constant. In this case the
403 // Builder insertion point was unchanged
404 if (Rem == Builder.GetInsertPoint())
405 return true;
406
407 BinaryOperator *BO = dyn_cast<BinaryOperator>(Builder.GetInsertPoint());
408 Rem = BO;
409 }
410
411 Value *Remainder = generatedUnsignedRemainderCode(Rem->getOperand(0),
412 Rem->getOperand(1),
413 Builder);
414
415 Rem->replaceAllUsesWith(Remainder);
416 Rem->dropAllReferences();
417 Rem->eraseFromParent();
418
419 // Expand the udiv
420 if (BinaryOperator *UDiv = dyn_cast<BinaryOperator>(Builder.GetInsertPoint())) {
421 assert(UDiv->getOpcode() == Instruction::UDiv && "Non-udiv in expansion?");
422 expandDivision(UDiv);
423 }
424
425 return true;
426 }
427
428
429 /// Generate code to divide two integers, replacing Div with the generated
430 /// code. This currently generates code similarly to compiler-rt's
431 /// implementations, but future work includes generating more specialized code
432 /// when more information about the operands are known. Implements both
433 /// 32bit and 64bit scalar division.
434 ///
435 /// @brief Replace Div with generated code.
436 bool llvm::expandDivision(BinaryOperator *Div) {
437 assert((Div->getOpcode() == Instruction::SDiv ||
438 Div->getOpcode() == Instruction::UDiv) &&
439 "Trying to expand division from a non-division function");
440
441 IRBuilder<> Builder(Div);
442
443 Type *DivTy = Div->getType();
444 if (DivTy->isVectorTy())
445 llvm_unreachable("Div over vectors not supported");
446
447 unsigned DivTyBitWidth = DivTy->getIntegerBitWidth();
448
449 if (DivTyBitWidth != 32 && DivTyBitWidth != 64)
450 llvm_unreachable("Div of bitwidth other than 32 or 64 not supported");
451
452 // First prepare the sign if it's a signed division
453 if (Div->getOpcode() == Instruction::SDiv) {
454 // Lower the code to unsigned division, and reset Div to point to the udiv.
455 Value *Quotient = generateSignedDivisionCode(Div->getOperand(0),
456 Div->getOperand(1), Builder);
457 Div->replaceAllUsesWith(Quotient);
458 Div->dropAllReferences();
459 Div->eraseFromParent();
460
461 // If we didn't actually generate an udiv instruction, we're done
462 // This happens for example if the input were constant. In this case the
463 // Builder insertion point was unchanged
464 if (Div == Builder.GetInsertPoint())
465 return true;
466
467 BinaryOperator *BO = dyn_cast<BinaryOperator>(Builder.GetInsertPoint());
468 Div = BO;
469 }
470
471 // Insert the unsigned division code
472 Value *Quotient = generateUnsignedDivisionCode(Div->getOperand(0),
473 Div->getOperand(1),
474 Builder);
475 Div->replaceAllUsesWith(Quotient);
476 Div->dropAllReferences();
477 Div->eraseFromParent();
478
479 return true;
480 }
481
482 /// Generate code to compute the remainder of two integers of bitwidth up to
483 /// 32 bits. Uses the above routines and extends the inputs/truncates the
484 /// outputs to operate in 32 bits; that is, these routines are good for targets
485 /// that have no or very little suppport for smaller than 32 bit integer
486 /// arithmetic.
487 ///
488 /// @brief Replace Rem with emulation code.
489 bool llvm::expandRemainderUpTo32Bits(BinaryOperator *Rem) {
490 assert((Rem->getOpcode() == Instruction::SRem ||
491 Rem->getOpcode() == Instruction::URem) &&
492 "Trying to expand remainder from a non-remainder function");
493
494 Type *RemTy = Rem->getType();
495 if (RemTy->isVectorTy())
496 llvm_unreachable("Div over vectors not supported");
497
498 unsigned RemTyBitWidth = RemTy->getIntegerBitWidth();
499
500 if (RemTyBitWidth > 32)
501 llvm_unreachable("Div of bitwidth greater than 32 not supported");
502
503 if (RemTyBitWidth == 32)
504 return expandRemainder(Rem);
505
506 // If bitwidth smaller than 32 extend inputs, extend output and proceed
507 // with 32 bit division.
508 IRBuilder<> Builder(Rem);
509
510 Value *ExtDividend;
511 Value *ExtDivisor;
512 Value *ExtRem;
513 Value *Trunc;
514 Type *Int32Ty = Builder.getInt32Ty();
515
516 if (Rem->getOpcode() == Instruction::SRem) {
517 ExtDividend = Builder.CreateSExt(Rem->getOperand(0), Int32Ty);
518 ExtDivisor = Builder.CreateSExt(Rem->getOperand(1), Int32Ty);
519 ExtRem = Builder.CreateSRem(ExtDividend, ExtDivisor);
520 } else {
521 ExtDividend = Builder.CreateZExt(Rem->getOperand(0), Int32Ty);
522 ExtDivisor = Builder.CreateZExt(Rem->getOperand(1), Int32Ty);
523 ExtRem = Builder.CreateURem(ExtDividend, ExtDivisor);
524 }
525 Trunc = Builder.CreateTrunc(ExtRem, RemTy);
526
527 Rem->replaceAllUsesWith(Trunc);
528 Rem->dropAllReferences();
529 Rem->eraseFromParent();
530
531 return expandRemainder(cast<BinaryOperator>(ExtRem));
532 }
533
534 /// Generate code to compute the remainder of two integers of bitwidth up to
535 /// 64 bits. Uses the above routines and extends the inputs/truncates the
536 /// outputs to operate in 64 bits.
537 ///
538 /// @brief Replace Rem with emulation code.
539 bool llvm::expandRemainderUpTo64Bits(BinaryOperator *Rem) {
540 assert((Rem->getOpcode() == Instruction::SRem ||
541 Rem->getOpcode() == Instruction::URem) &&
542 "Trying to expand remainder from a non-remainder function");
543
544 Type *RemTy = Rem->getType();
545 if (RemTy->isVectorTy())
546 llvm_unreachable("Div over vectors not supported");
547
548 unsigned RemTyBitWidth = RemTy->getIntegerBitWidth();
549
550 if (RemTyBitWidth > 64)
551 llvm_unreachable("Div of bitwidth greater than 64 not supported");
552
553 if (RemTyBitWidth == 64)
554 return expandRemainder(Rem);
555
556 // If bitwidth smaller than 64 extend inputs, extend output and proceed
557 // with 64 bit division.
558 IRBuilder<> Builder(Rem);
559
560 Value *ExtDividend;
561 Value *ExtDivisor;
562 Value *ExtRem;
563 Value *Trunc;
564 Type *Int64Ty = Builder.getInt64Ty();
565
566 if (Rem->getOpcode() == Instruction::SRem) {
567 ExtDividend = Builder.CreateSExt(Rem->getOperand(0), Int64Ty);
568 ExtDivisor = Builder.CreateSExt(Rem->getOperand(1), Int64Ty);
569 ExtRem = Builder.CreateSRem(ExtDividend, ExtDivisor);
570 } else {
571 ExtDividend = Builder.CreateZExt(Rem->getOperand(0), Int64Ty);
572 ExtDivisor = Builder.CreateZExt(Rem->getOperand(1), Int64Ty);
573 ExtRem = Builder.CreateURem(ExtDividend, ExtDivisor);
574 }
575 Trunc = Builder.CreateTrunc(ExtRem, RemTy);
576
577 Rem->replaceAllUsesWith(Trunc);
578 Rem->dropAllReferences();
579 Rem->eraseFromParent();
580
581 return expandRemainder(cast<BinaryOperator>(ExtRem));
582 }
583
584 /// Generate code to divide two integers of bitwidth up to 32 bits. Uses the
585 /// above routines and extends the inputs/truncates the outputs to operate
586 /// in 32 bits; that is, these routines are good for targets that have no
587 /// or very little support for smaller than 32 bit integer arithmetic.
588 ///
589 /// @brief Replace Div with emulation code.
590 bool llvm::expandDivisionUpTo32Bits(BinaryOperator *Div) {
591 assert((Div->getOpcode() == Instruction::SDiv ||
592 Div->getOpcode() == Instruction::UDiv) &&
593 "Trying to expand division from a non-division function");
594
595 Type *DivTy = Div->getType();
596 if (DivTy->isVectorTy())
597 llvm_unreachable("Div over vectors not supported");
598
599 unsigned DivTyBitWidth = DivTy->getIntegerBitWidth();
600
601 if (DivTyBitWidth > 32)
602 llvm_unreachable("Div of bitwidth greater than 32 not supported");
603
604 if (DivTyBitWidth == 32)
605 return expandDivision(Div);
606
607 // If bitwidth smaller than 32 extend inputs, extend output and proceed
608 // with 32 bit division.
609 IRBuilder<> Builder(Div);
610
611 Value *ExtDividend;
612 Value *ExtDivisor;
613 Value *ExtDiv;
614 Value *Trunc;
615 Type *Int32Ty = Builder.getInt32Ty();
616
617 if (Div->getOpcode() == Instruction::SDiv) {
618 ExtDividend = Builder.CreateSExt(Div->getOperand(0), Int32Ty);
619 ExtDivisor = Builder.CreateSExt(Div->getOperand(1), Int32Ty);
620 ExtDiv = Builder.CreateSDiv(ExtDividend, ExtDivisor);
621 } else {
622 ExtDividend = Builder.CreateZExt(Div->getOperand(0), Int32Ty);
623 ExtDivisor = Builder.CreateZExt(Div->getOperand(1), Int32Ty);
624 ExtDiv = Builder.CreateUDiv(ExtDividend, ExtDivisor);
625 }
626 Trunc = Builder.CreateTrunc(ExtDiv, DivTy);
627
628 Div->replaceAllUsesWith(Trunc);
629 Div->dropAllReferences();
630 Div->eraseFromParent();
631
632 return expandDivision(cast<BinaryOperator>(ExtDiv));
633 }
634
635 /// Generate code to divide two integers of bitwidth up to 64 bits. Uses the
636 /// above routines and extends the inputs/truncates the outputs to operate
637 /// in 64 bits.
638 ///
639 /// @brief Replace Div with emulation code.
640 bool llvm::expandDivisionUpTo64Bits(BinaryOperator *Div) {
641 assert((Div->getOpcode() == Instruction::SDiv ||
642 Div->getOpcode() == Instruction::UDiv) &&
643 "Trying to expand division from a non-division function");
644
645 Type *DivTy = Div->getType();
646 if (DivTy->isVectorTy())
647 llvm_unreachable("Div over vectors not supported");
648
649 unsigned DivTyBitWidth = DivTy->getIntegerBitWidth();
650
651 if (DivTyBitWidth > 64)
652 llvm_unreachable("Div of bitwidth greater than 64 not supported");
653
654 if (DivTyBitWidth == 64)
655 return expandDivision(Div);
656
657 // If bitwidth smaller than 64 extend inputs, extend output and proceed
658 // with 64 bit division.
659 IRBuilder<> Builder(Div);
660
661 Value *ExtDividend;
662 Value *ExtDivisor;
663 Value *ExtDiv;
664 Value *Trunc;
665 Type *Int64Ty = Builder.getInt64Ty();
666
667 if (Div->getOpcode() == Instruction::SDiv) {
668 ExtDividend = Builder.CreateSExt(Div->getOperand(0), Int64Ty);
669 ExtDivisor = Builder.CreateSExt(Div->getOperand(1), Int64Ty);
670 ExtDiv = Builder.CreateSDiv(ExtDividend, ExtDivisor);
671 } else {
672 ExtDividend = Builder.CreateZExt(Div->getOperand(0), Int64Ty);
673 ExtDivisor = Builder.CreateZExt(Div->getOperand(1), Int64Ty);
674 ExtDiv = Builder.CreateUDiv(ExtDividend, ExtDivisor);
675 }
676 Trunc = Builder.CreateTrunc(ExtDiv, DivTy);
677
678 Div->replaceAllUsesWith(Trunc);
679 Div->dropAllReferences();
680 Div->eraseFromParent();
681
682 return expandDivision(cast<BinaryOperator>(ExtDiv));
683 }