]> git.proxmox.com Git - rustc.git/blob - src/llvm/lib/Transforms/Utils/SimplifyCFG.cpp
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / lib / Transforms / Utils / SimplifyCFG.cpp
1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Peephole optimize the CFG.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Transforms/Utils/Local.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/ConstantFolding.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/TargetTransformInfo.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/IR/CFG.h"
26 #include "llvm/IR/ConstantRange.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/GlobalVariable.h"
31 #include "llvm/IR/IRBuilder.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/MDBuilder.h"
36 #include "llvm/IR/Metadata.h"
37 #include "llvm/IR/Module.h"
38 #include "llvm/IR/NoFolder.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/IR/PatternMatch.h"
41 #include "llvm/IR/Type.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
46 #include "llvm/Transforms/Utils/Local.h"
47 #include "llvm/Transforms/Utils/ValueMapper.h"
48 #include <algorithm>
49 #include <map>
50 #include <set>
51 using namespace llvm;
52 using namespace PatternMatch;
53
54 #define DEBUG_TYPE "simplifycfg"
55
56 static cl::opt<unsigned>
57 PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(1),
58 cl::desc("Control the amount of phi node folding to perform (default = 1)"));
59
60 static cl::opt<bool>
61 DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false),
62 cl::desc("Duplicate return instructions into unconditional branches"));
63
64 static cl::opt<bool>
65 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
66 cl::desc("Sink common instructions down to the end block"));
67
68 static cl::opt<bool> HoistCondStores(
69 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
70 cl::desc("Hoist conditional stores if an unconditional store precedes"));
71
72 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
73 STATISTIC(NumLinearMaps, "Number of switch instructions turned into linear mapping");
74 STATISTIC(NumLookupTables, "Number of switch instructions turned into lookup tables");
75 STATISTIC(NumLookupTablesHoles, "Number of switch instructions turned into lookup tables (holes checked)");
76 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
77 STATISTIC(NumSinkCommons, "Number of common instructions sunk down to the end block");
78 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
79
80 namespace {
81 // The first field contains the value that the switch produces when a certain
82 // case group is selected, and the second field is a vector containing the cases
83 // composing the case group.
84 typedef SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>
85 SwitchCaseResultVectorTy;
86 // The first field contains the phi node that generates a result of the switch
87 // and the second field contains the value generated for a certain case in the switch
88 // for that PHI.
89 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> SwitchCaseResultsTy;
90
91 /// ValueEqualityComparisonCase - Represents a case of a switch.
92 struct ValueEqualityComparisonCase {
93 ConstantInt *Value;
94 BasicBlock *Dest;
95
96 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
97 : Value(Value), Dest(Dest) {}
98
99 bool operator<(ValueEqualityComparisonCase RHS) const {
100 // Comparing pointers is ok as we only rely on the order for uniquing.
101 return Value < RHS.Value;
102 }
103
104 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
105 };
106
107 class SimplifyCFGOpt {
108 const TargetTransformInfo &TTI;
109 unsigned BonusInstThreshold;
110 const DataLayout *const DL;
111 AssumptionCache *AC;
112 Value *isValueEqualityComparison(TerminatorInst *TI);
113 BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI,
114 std::vector<ValueEqualityComparisonCase> &Cases);
115 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
116 BasicBlock *Pred,
117 IRBuilder<> &Builder);
118 bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
119 IRBuilder<> &Builder);
120
121 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
122 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
123 bool SimplifyUnreachable(UnreachableInst *UI);
124 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
125 bool SimplifyIndirectBr(IndirectBrInst *IBI);
126 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder);
127 bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder);
128
129 public:
130 SimplifyCFGOpt(const TargetTransformInfo &TTI, unsigned BonusInstThreshold,
131 const DataLayout *DL, AssumptionCache *AC)
132 : TTI(TTI), BonusInstThreshold(BonusInstThreshold), DL(DL), AC(AC) {}
133 bool run(BasicBlock *BB);
134 };
135 }
136
137 /// SafeToMergeTerminators - Return true if it is safe to merge these two
138 /// terminator instructions together.
139 ///
140 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
141 if (SI1 == SI2) return false; // Can't merge with self!
142
143 // It is not safe to merge these two switch instructions if they have a common
144 // successor, and if that successor has a PHI node, and if *that* PHI node has
145 // conflicting incoming values from the two switch blocks.
146 BasicBlock *SI1BB = SI1->getParent();
147 BasicBlock *SI2BB = SI2->getParent();
148 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
149
150 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
151 if (SI1Succs.count(*I))
152 for (BasicBlock::iterator BBI = (*I)->begin();
153 isa<PHINode>(BBI); ++BBI) {
154 PHINode *PN = cast<PHINode>(BBI);
155 if (PN->getIncomingValueForBlock(SI1BB) !=
156 PN->getIncomingValueForBlock(SI2BB))
157 return false;
158 }
159
160 return true;
161 }
162
163 /// isProfitableToFoldUnconditional - Return true if it is safe and profitable
164 /// to merge these two terminator instructions together, where SI1 is an
165 /// unconditional branch. PhiNodes will store all PHI nodes in common
166 /// successors.
167 ///
168 static bool isProfitableToFoldUnconditional(BranchInst *SI1,
169 BranchInst *SI2,
170 Instruction *Cond,
171 SmallVectorImpl<PHINode*> &PhiNodes) {
172 if (SI1 == SI2) return false; // Can't merge with self!
173 assert(SI1->isUnconditional() && SI2->isConditional());
174
175 // We fold the unconditional branch if we can easily update all PHI nodes in
176 // common successors:
177 // 1> We have a constant incoming value for the conditional branch;
178 // 2> We have "Cond" as the incoming value for the unconditional branch;
179 // 3> SI2->getCondition() and Cond have same operands.
180 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
181 if (!Ci2) return false;
182 if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
183 Cond->getOperand(1) == Ci2->getOperand(1)) &&
184 !(Cond->getOperand(0) == Ci2->getOperand(1) &&
185 Cond->getOperand(1) == Ci2->getOperand(0)))
186 return false;
187
188 BasicBlock *SI1BB = SI1->getParent();
189 BasicBlock *SI2BB = SI2->getParent();
190 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
191 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
192 if (SI1Succs.count(*I))
193 for (BasicBlock::iterator BBI = (*I)->begin();
194 isa<PHINode>(BBI); ++BBI) {
195 PHINode *PN = cast<PHINode>(BBI);
196 if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
197 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
198 return false;
199 PhiNodes.push_back(PN);
200 }
201 return true;
202 }
203
204 /// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
205 /// now be entries in it from the 'NewPred' block. The values that will be
206 /// flowing into the PHI nodes will be the same as those coming in from
207 /// ExistPred, an existing predecessor of Succ.
208 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
209 BasicBlock *ExistPred) {
210 if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
211
212 PHINode *PN;
213 for (BasicBlock::iterator I = Succ->begin();
214 (PN = dyn_cast<PHINode>(I)); ++I)
215 PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
216 }
217
218 /// ComputeSpeculationCost - Compute an abstract "cost" of speculating the
219 /// given instruction, which is assumed to be safe to speculate. 1 means
220 /// cheap, 2 means less cheap, and UINT_MAX means prohibitively expensive.
221 static unsigned ComputeSpeculationCost(const User *I, const DataLayout *DL) {
222 assert(isSafeToSpeculativelyExecute(I, DL) &&
223 "Instruction is not safe to speculatively execute!");
224 switch (Operator::getOpcode(I)) {
225 default:
226 // In doubt, be conservative.
227 return UINT_MAX;
228 case Instruction::GetElementPtr:
229 // GEPs are cheap if all indices are constant.
230 if (!cast<GEPOperator>(I)->hasAllConstantIndices())
231 return UINT_MAX;
232 return 1;
233 case Instruction::ExtractValue:
234 case Instruction::Load:
235 case Instruction::Add:
236 case Instruction::Sub:
237 case Instruction::And:
238 case Instruction::Or:
239 case Instruction::Xor:
240 case Instruction::Shl:
241 case Instruction::LShr:
242 case Instruction::AShr:
243 case Instruction::ICmp:
244 case Instruction::Trunc:
245 case Instruction::ZExt:
246 case Instruction::SExt:
247 case Instruction::BitCast:
248 case Instruction::ExtractElement:
249 case Instruction::InsertElement:
250 return 1; // These are all cheap.
251
252 case Instruction::Call:
253 case Instruction::Select:
254 return 2;
255 }
256 }
257
258 /// DominatesMergePoint - If we have a merge point of an "if condition" as
259 /// accepted above, return true if the specified value dominates the block. We
260 /// don't handle the true generality of domination here, just a special case
261 /// which works well enough for us.
262 ///
263 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
264 /// see if V (which must be an instruction) and its recursive operands
265 /// that do not dominate BB have a combined cost lower than CostRemaining and
266 /// are non-trapping. If both are true, the instruction is inserted into the
267 /// set and true is returned.
268 ///
269 /// The cost for most non-trapping instructions is defined as 1 except for
270 /// Select whose cost is 2.
271 ///
272 /// After this function returns, CostRemaining is decreased by the cost of
273 /// V plus its non-dominating operands. If that cost is greater than
274 /// CostRemaining, false is returned and CostRemaining is undefined.
275 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
276 SmallPtrSetImpl<Instruction*> *AggressiveInsts,
277 unsigned &CostRemaining,
278 const DataLayout *DL) {
279 Instruction *I = dyn_cast<Instruction>(V);
280 if (!I) {
281 // Non-instructions all dominate instructions, but not all constantexprs
282 // can be executed unconditionally.
283 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
284 if (C->canTrap())
285 return false;
286 return true;
287 }
288 BasicBlock *PBB = I->getParent();
289
290 // We don't want to allow weird loops that might have the "if condition" in
291 // the bottom of this block.
292 if (PBB == BB) return false;
293
294 // If this instruction is defined in a block that contains an unconditional
295 // branch to BB, then it must be in the 'conditional' part of the "if
296 // statement". If not, it definitely dominates the region.
297 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
298 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
299 return true;
300
301 // If we aren't allowing aggressive promotion anymore, then don't consider
302 // instructions in the 'if region'.
303 if (!AggressiveInsts) return false;
304
305 // If we have seen this instruction before, don't count it again.
306 if (AggressiveInsts->count(I)) return true;
307
308 // Okay, it looks like the instruction IS in the "condition". Check to
309 // see if it's a cheap instruction to unconditionally compute, and if it
310 // only uses stuff defined outside of the condition. If so, hoist it out.
311 if (!isSafeToSpeculativelyExecute(I, DL))
312 return false;
313
314 unsigned Cost = ComputeSpeculationCost(I, DL);
315
316 if (Cost > CostRemaining)
317 return false;
318
319 CostRemaining -= Cost;
320
321 // Okay, we can only really hoist these out if their operands do
322 // not take us over the cost threshold.
323 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
324 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, DL))
325 return false;
326 // Okay, it's safe to do this! Remember this instruction.
327 AggressiveInsts->insert(I);
328 return true;
329 }
330
331 /// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr
332 /// and PointerNullValue. Return NULL if value is not a constant int.
333 static ConstantInt *GetConstantInt(Value *V, const DataLayout *DL) {
334 // Normal constant int.
335 ConstantInt *CI = dyn_cast<ConstantInt>(V);
336 if (CI || !DL || !isa<Constant>(V) || !V->getType()->isPointerTy())
337 return CI;
338
339 // This is some kind of pointer constant. Turn it into a pointer-sized
340 // ConstantInt if possible.
341 IntegerType *PtrTy = cast<IntegerType>(DL->getIntPtrType(V->getType()));
342
343 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
344 if (isa<ConstantPointerNull>(V))
345 return ConstantInt::get(PtrTy, 0);
346
347 // IntToPtr const int.
348 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
349 if (CE->getOpcode() == Instruction::IntToPtr)
350 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
351 // The constant is very likely to have the right type already.
352 if (CI->getType() == PtrTy)
353 return CI;
354 else
355 return cast<ConstantInt>
356 (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
357 }
358 return nullptr;
359 }
360
361 namespace {
362
363 /// Given a chain of or (||) or and (&&) comparison of a value against a
364 /// constant, this will try to recover the information required for a switch
365 /// structure.
366 /// It will depth-first traverse the chain of comparison, seeking for patterns
367 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
368 /// representing the different cases for the switch.
369 /// Note that if the chain is composed of '||' it will build the set of elements
370 /// that matches the comparisons (i.e. any of this value validate the chain)
371 /// while for a chain of '&&' it will build the set elements that make the test
372 /// fail.
373 struct ConstantComparesGatherer {
374
375 Value *CompValue; /// Value found for the switch comparison
376 Value *Extra; /// Extra clause to be checked before the switch
377 SmallVector<ConstantInt *, 8> Vals; /// Set of integers to match in switch
378 unsigned UsedICmps; /// Number of comparisons matched in the and/or chain
379
380 /// Construct and compute the result for the comparison instruction Cond
381 ConstantComparesGatherer(Instruction *Cond, const DataLayout *DL)
382 : CompValue(nullptr), Extra(nullptr), UsedICmps(0) {
383 gather(Cond, DL);
384 }
385
386 /// Prevent copy
387 ConstantComparesGatherer(const ConstantComparesGatherer &)
388 LLVM_DELETED_FUNCTION;
389 ConstantComparesGatherer &
390 operator=(const ConstantComparesGatherer &) LLVM_DELETED_FUNCTION;
391
392 private:
393
394 /// Try to set the current value used for the comparison, it succeeds only if
395 /// it wasn't set before or if the new value is the same as the old one
396 bool setValueOnce(Value *NewVal) {
397 if(CompValue && CompValue != NewVal) return false;
398 CompValue = NewVal;
399 return (CompValue != nullptr);
400 }
401
402 /// Try to match Instruction "I" as a comparison against a constant and
403 /// populates the array Vals with the set of values that match (or do not
404 /// match depending on isEQ).
405 /// Return false on failure. On success, the Value the comparison matched
406 /// against is placed in CompValue.
407 /// If CompValue is already set, the function is expected to fail if a match
408 /// is found but the value compared to is different.
409 bool matchInstruction(Instruction *I, const DataLayout *DL, bool isEQ) {
410 // If this is an icmp against a constant, handle this as one of the cases.
411 ICmpInst *ICI;
412 ConstantInt *C;
413 if (!((ICI = dyn_cast<ICmpInst>(I)) &&
414 (C = GetConstantInt(I->getOperand(1), DL)))) {
415 return false;
416 }
417
418 Value *RHSVal;
419 ConstantInt *RHSC;
420
421 // Pattern match a special case
422 // (x & ~2^x) == y --> x == y || x == y|2^x
423 // This undoes a transformation done by instcombine to fuse 2 compares.
424 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) {
425 if (match(ICI->getOperand(0),
426 m_And(m_Value(RHSVal), m_ConstantInt(RHSC)))) {
427 APInt Not = ~RHSC->getValue();
428 if (Not.isPowerOf2()) {
429 // If we already have a value for the switch, it has to match!
430 if(!setValueOnce(RHSVal))
431 return false;
432
433 Vals.push_back(C);
434 Vals.push_back(ConstantInt::get(C->getContext(),
435 C->getValue() | Not));
436 UsedICmps++;
437 return true;
438 }
439 }
440
441 // If we already have a value for the switch, it has to match!
442 if(!setValueOnce(ICI->getOperand(0)))
443 return false;
444
445 UsedICmps++;
446 Vals.push_back(C);
447 return ICI->getOperand(0);
448 }
449
450 // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
451 ConstantRange Span = ConstantRange::makeICmpRegion(ICI->getPredicate(),
452 C->getValue());
453
454 // Shift the range if the compare is fed by an add. This is the range
455 // compare idiom as emitted by instcombine.
456 Value *CandidateVal = I->getOperand(0);
457 if(match(I->getOperand(0), m_Add(m_Value(RHSVal), m_ConstantInt(RHSC)))) {
458 Span = Span.subtract(RHSC->getValue());
459 CandidateVal = RHSVal;
460 }
461
462 // If this is an and/!= check, then we are looking to build the set of
463 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
464 // x != 0 && x != 1.
465 if (!isEQ)
466 Span = Span.inverse();
467
468 // If there are a ton of values, we don't want to make a ginormous switch.
469 if (Span.getSetSize().ugt(8) || Span.isEmptySet()) {
470 return false;
471 }
472
473 // If we already have a value for the switch, it has to match!
474 if(!setValueOnce(CandidateVal))
475 return false;
476
477 // Add all values from the range to the set
478 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
479 Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
480
481 UsedICmps++;
482 return true;
483
484 }
485
486 /// gather - Given a potentially 'or'd or 'and'd together collection of icmp
487 /// eq/ne/lt/gt instructions that compare a value against a constant, extract
488 /// the value being compared, and stick the list constants into the Vals
489 /// vector.
490 /// One "Extra" case is allowed to differ from the other.
491 void gather(Value *V, const DataLayout *DL) {
492 Instruction *I = dyn_cast<Instruction>(V);
493 bool isEQ = (I->getOpcode() == Instruction::Or);
494
495 // Keep a stack (SmallVector for efficiency) for depth-first traversal
496 SmallVector<Value *, 8> DFT;
497
498 // Initialize
499 DFT.push_back(V);
500
501 while(!DFT.empty()) {
502 V = DFT.pop_back_val();
503
504 if (Instruction *I = dyn_cast<Instruction>(V)) {
505 // If it is a || (or && depending on isEQ), process the operands.
506 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
507 DFT.push_back(I->getOperand(1));
508 DFT.push_back(I->getOperand(0));
509 continue;
510 }
511
512 // Try to match the current instruction
513 if (matchInstruction(I, DL, isEQ))
514 // Match succeed, continue the loop
515 continue;
516 }
517
518 // One element of the sequence of || (or &&) could not be match as a
519 // comparison against the same value as the others.
520 // We allow only one "Extra" case to be checked before the switch
521 if (!Extra) {
522 Extra = V;
523 continue;
524 }
525 // Failed to parse a proper sequence, abort now
526 CompValue = nullptr;
527 break;
528 }
529 }
530 };
531
532 }
533
534 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
535 Instruction *Cond = nullptr;
536 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
537 Cond = dyn_cast<Instruction>(SI->getCondition());
538 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
539 if (BI->isConditional())
540 Cond = dyn_cast<Instruction>(BI->getCondition());
541 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
542 Cond = dyn_cast<Instruction>(IBI->getAddress());
543 }
544
545 TI->eraseFromParent();
546 if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond);
547 }
548
549 /// isValueEqualityComparison - Return true if the specified terminator checks
550 /// to see if a value is equal to constant integer value.
551 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
552 Value *CV = nullptr;
553 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
554 // Do not permit merging of large switch instructions into their
555 // predecessors unless there is only one predecessor.
556 if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()),
557 pred_end(SI->getParent())) <= 128)
558 CV = SI->getCondition();
559 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
560 if (BI->isConditional() && BI->getCondition()->hasOneUse())
561 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
562 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
563 CV = ICI->getOperand(0);
564
565 // Unwrap any lossless ptrtoint cast.
566 if (DL && CV) {
567 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
568 Value *Ptr = PTII->getPointerOperand();
569 if (PTII->getType() == DL->getIntPtrType(Ptr->getType()))
570 CV = Ptr;
571 }
572 }
573 return CV;
574 }
575
576 /// GetValueEqualityComparisonCases - Given a value comparison instruction,
577 /// decode all of the 'cases' that it represents and return the 'default' block.
578 BasicBlock *SimplifyCFGOpt::
579 GetValueEqualityComparisonCases(TerminatorInst *TI,
580 std::vector<ValueEqualityComparisonCase>
581 &Cases) {
582 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
583 Cases.reserve(SI->getNumCases());
584 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i)
585 Cases.push_back(ValueEqualityComparisonCase(i.getCaseValue(),
586 i.getCaseSuccessor()));
587 return SI->getDefaultDest();
588 }
589
590 BranchInst *BI = cast<BranchInst>(TI);
591 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
592 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
593 Cases.push_back(ValueEqualityComparisonCase(GetConstantInt(ICI->getOperand(1),
594 DL),
595 Succ));
596 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
597 }
598
599
600 /// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
601 /// in the list that match the specified block.
602 static void EliminateBlockCases(BasicBlock *BB,
603 std::vector<ValueEqualityComparisonCase> &Cases) {
604 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
605 }
606
607 /// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
608 /// well.
609 static bool
610 ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
611 std::vector<ValueEqualityComparisonCase > &C2) {
612 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
613
614 // Make V1 be smaller than V2.
615 if (V1->size() > V2->size())
616 std::swap(V1, V2);
617
618 if (V1->size() == 0) return false;
619 if (V1->size() == 1) {
620 // Just scan V2.
621 ConstantInt *TheVal = (*V1)[0].Value;
622 for (unsigned i = 0, e = V2->size(); i != e; ++i)
623 if (TheVal == (*V2)[i].Value)
624 return true;
625 }
626
627 // Otherwise, just sort both lists and compare element by element.
628 array_pod_sort(V1->begin(), V1->end());
629 array_pod_sort(V2->begin(), V2->end());
630 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
631 while (i1 != e1 && i2 != e2) {
632 if ((*V1)[i1].Value == (*V2)[i2].Value)
633 return true;
634 if ((*V1)[i1].Value < (*V2)[i2].Value)
635 ++i1;
636 else
637 ++i2;
638 }
639 return false;
640 }
641
642 /// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
643 /// terminator instruction and its block is known to only have a single
644 /// predecessor block, check to see if that predecessor is also a value
645 /// comparison with the same value, and if that comparison determines the
646 /// outcome of this comparison. If so, simplify TI. This does a very limited
647 /// form of jump threading.
648 bool SimplifyCFGOpt::
649 SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
650 BasicBlock *Pred,
651 IRBuilder<> &Builder) {
652 Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
653 if (!PredVal) return false; // Not a value comparison in predecessor.
654
655 Value *ThisVal = isValueEqualityComparison(TI);
656 assert(ThisVal && "This isn't a value comparison!!");
657 if (ThisVal != PredVal) return false; // Different predicates.
658
659 // TODO: Preserve branch weight metadata, similarly to how
660 // FoldValueComparisonIntoPredecessors preserves it.
661
662 // Find out information about when control will move from Pred to TI's block.
663 std::vector<ValueEqualityComparisonCase> PredCases;
664 BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
665 PredCases);
666 EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
667
668 // Find information about how control leaves this block.
669 std::vector<ValueEqualityComparisonCase> ThisCases;
670 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
671 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
672
673 // If TI's block is the default block from Pred's comparison, potentially
674 // simplify TI based on this knowledge.
675 if (PredDef == TI->getParent()) {
676 // If we are here, we know that the value is none of those cases listed in
677 // PredCases. If there are any cases in ThisCases that are in PredCases, we
678 // can simplify TI.
679 if (!ValuesOverlap(PredCases, ThisCases))
680 return false;
681
682 if (isa<BranchInst>(TI)) {
683 // Okay, one of the successors of this condbr is dead. Convert it to a
684 // uncond br.
685 assert(ThisCases.size() == 1 && "Branch can only have one case!");
686 // Insert the new branch.
687 Instruction *NI = Builder.CreateBr(ThisDef);
688 (void) NI;
689
690 // Remove PHI node entries for the dead edge.
691 ThisCases[0].Dest->removePredecessor(TI->getParent());
692
693 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
694 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
695
696 EraseTerminatorInstAndDCECond(TI);
697 return true;
698 }
699
700 SwitchInst *SI = cast<SwitchInst>(TI);
701 // Okay, TI has cases that are statically dead, prune them away.
702 SmallPtrSet<Constant*, 16> DeadCases;
703 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
704 DeadCases.insert(PredCases[i].Value);
705
706 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
707 << "Through successor TI: " << *TI);
708
709 // Collect branch weights into a vector.
710 SmallVector<uint32_t, 8> Weights;
711 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
712 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
713 if (HasWeight)
714 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
715 ++MD_i) {
716 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
717 Weights.push_back(CI->getValue().getZExtValue());
718 }
719 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
720 --i;
721 if (DeadCases.count(i.getCaseValue())) {
722 if (HasWeight) {
723 std::swap(Weights[i.getCaseIndex()+1], Weights.back());
724 Weights.pop_back();
725 }
726 i.getCaseSuccessor()->removePredecessor(TI->getParent());
727 SI->removeCase(i);
728 }
729 }
730 if (HasWeight && Weights.size() >= 2)
731 SI->setMetadata(LLVMContext::MD_prof,
732 MDBuilder(SI->getParent()->getContext()).
733 createBranchWeights(Weights));
734
735 DEBUG(dbgs() << "Leaving: " << *TI << "\n");
736 return true;
737 }
738
739 // Otherwise, TI's block must correspond to some matched value. Find out
740 // which value (or set of values) this is.
741 ConstantInt *TIV = nullptr;
742 BasicBlock *TIBB = TI->getParent();
743 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
744 if (PredCases[i].Dest == TIBB) {
745 if (TIV)
746 return false; // Cannot handle multiple values coming to this block.
747 TIV = PredCases[i].Value;
748 }
749 assert(TIV && "No edge from pred to succ?");
750
751 // Okay, we found the one constant that our value can be if we get into TI's
752 // BB. Find out which successor will unconditionally be branched to.
753 BasicBlock *TheRealDest = nullptr;
754 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
755 if (ThisCases[i].Value == TIV) {
756 TheRealDest = ThisCases[i].Dest;
757 break;
758 }
759
760 // If not handled by any explicit cases, it is handled by the default case.
761 if (!TheRealDest) TheRealDest = ThisDef;
762
763 // Remove PHI node entries for dead edges.
764 BasicBlock *CheckEdge = TheRealDest;
765 for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
766 if (*SI != CheckEdge)
767 (*SI)->removePredecessor(TIBB);
768 else
769 CheckEdge = nullptr;
770
771 // Insert the new branch.
772 Instruction *NI = Builder.CreateBr(TheRealDest);
773 (void) NI;
774
775 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
776 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
777
778 EraseTerminatorInstAndDCECond(TI);
779 return true;
780 }
781
782 namespace {
783 /// ConstantIntOrdering - This class implements a stable ordering of constant
784 /// integers that does not depend on their address. This is important for
785 /// applications that sort ConstantInt's to ensure uniqueness.
786 struct ConstantIntOrdering {
787 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
788 return LHS->getValue().ult(RHS->getValue());
789 }
790 };
791 }
792
793 static int ConstantIntSortPredicate(ConstantInt *const *P1,
794 ConstantInt *const *P2) {
795 const ConstantInt *LHS = *P1;
796 const ConstantInt *RHS = *P2;
797 if (LHS->getValue().ult(RHS->getValue()))
798 return 1;
799 if (LHS->getValue() == RHS->getValue())
800 return 0;
801 return -1;
802 }
803
804 static inline bool HasBranchWeights(const Instruction* I) {
805 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
806 if (ProfMD && ProfMD->getOperand(0))
807 if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
808 return MDS->getString().equals("branch_weights");
809
810 return false;
811 }
812
813 /// Get Weights of a given TerminatorInst, the default weight is at the front
814 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
815 /// metadata.
816 static void GetBranchWeights(TerminatorInst *TI,
817 SmallVectorImpl<uint64_t> &Weights) {
818 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
819 assert(MD);
820 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
821 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
822 Weights.push_back(CI->getValue().getZExtValue());
823 }
824
825 // If TI is a conditional eq, the default case is the false case,
826 // and the corresponding branch-weight data is at index 2. We swap the
827 // default weight to be the first entry.
828 if (BranchInst* BI = dyn_cast<BranchInst>(TI)) {
829 assert(Weights.size() == 2);
830 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
831 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
832 std::swap(Weights.front(), Weights.back());
833 }
834 }
835
836 /// Keep halving the weights until all can fit in uint32_t.
837 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
838 uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
839 if (Max > UINT_MAX) {
840 unsigned Offset = 32 - countLeadingZeros(Max);
841 for (uint64_t &I : Weights)
842 I >>= Offset;
843 }
844 }
845
846 /// FoldValueComparisonIntoPredecessors - The specified terminator is a value
847 /// equality comparison instruction (either a switch or a branch on "X == c").
848 /// See if any of the predecessors of the terminator block are value comparisons
849 /// on the same value. If so, and if safe to do so, fold them together.
850 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
851 IRBuilder<> &Builder) {
852 BasicBlock *BB = TI->getParent();
853 Value *CV = isValueEqualityComparison(TI); // CondVal
854 assert(CV && "Not a comparison?");
855 bool Changed = false;
856
857 SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
858 while (!Preds.empty()) {
859 BasicBlock *Pred = Preds.pop_back_val();
860
861 // See if the predecessor is a comparison with the same value.
862 TerminatorInst *PTI = Pred->getTerminator();
863 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
864
865 if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
866 // Figure out which 'cases' to copy from SI to PSI.
867 std::vector<ValueEqualityComparisonCase> BBCases;
868 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
869
870 std::vector<ValueEqualityComparisonCase> PredCases;
871 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
872
873 // Based on whether the default edge from PTI goes to BB or not, fill in
874 // PredCases and PredDefault with the new switch cases we would like to
875 // build.
876 SmallVector<BasicBlock*, 8> NewSuccessors;
877
878 // Update the branch weight metadata along the way
879 SmallVector<uint64_t, 8> Weights;
880 bool PredHasWeights = HasBranchWeights(PTI);
881 bool SuccHasWeights = HasBranchWeights(TI);
882
883 if (PredHasWeights) {
884 GetBranchWeights(PTI, Weights);
885 // branch-weight metadata is inconsistent here.
886 if (Weights.size() != 1 + PredCases.size())
887 PredHasWeights = SuccHasWeights = false;
888 } else if (SuccHasWeights)
889 // If there are no predecessor weights but there are successor weights,
890 // populate Weights with 1, which will later be scaled to the sum of
891 // successor's weights
892 Weights.assign(1 + PredCases.size(), 1);
893
894 SmallVector<uint64_t, 8> SuccWeights;
895 if (SuccHasWeights) {
896 GetBranchWeights(TI, SuccWeights);
897 // branch-weight metadata is inconsistent here.
898 if (SuccWeights.size() != 1 + BBCases.size())
899 PredHasWeights = SuccHasWeights = false;
900 } else if (PredHasWeights)
901 SuccWeights.assign(1 + BBCases.size(), 1);
902
903 if (PredDefault == BB) {
904 // If this is the default destination from PTI, only the edges in TI
905 // that don't occur in PTI, or that branch to BB will be activated.
906 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
907 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
908 if (PredCases[i].Dest != BB)
909 PTIHandled.insert(PredCases[i].Value);
910 else {
911 // The default destination is BB, we don't need explicit targets.
912 std::swap(PredCases[i], PredCases.back());
913
914 if (PredHasWeights || SuccHasWeights) {
915 // Increase weight for the default case.
916 Weights[0] += Weights[i+1];
917 std::swap(Weights[i+1], Weights.back());
918 Weights.pop_back();
919 }
920
921 PredCases.pop_back();
922 --i; --e;
923 }
924
925 // Reconstruct the new switch statement we will be building.
926 if (PredDefault != BBDefault) {
927 PredDefault->removePredecessor(Pred);
928 PredDefault = BBDefault;
929 NewSuccessors.push_back(BBDefault);
930 }
931
932 unsigned CasesFromPred = Weights.size();
933 uint64_t ValidTotalSuccWeight = 0;
934 for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
935 if (!PTIHandled.count(BBCases[i].Value) &&
936 BBCases[i].Dest != BBDefault) {
937 PredCases.push_back(BBCases[i]);
938 NewSuccessors.push_back(BBCases[i].Dest);
939 if (SuccHasWeights || PredHasWeights) {
940 // The default weight is at index 0, so weight for the ith case
941 // should be at index i+1. Scale the cases from successor by
942 // PredDefaultWeight (Weights[0]).
943 Weights.push_back(Weights[0] * SuccWeights[i+1]);
944 ValidTotalSuccWeight += SuccWeights[i+1];
945 }
946 }
947
948 if (SuccHasWeights || PredHasWeights) {
949 ValidTotalSuccWeight += SuccWeights[0];
950 // Scale the cases from predecessor by ValidTotalSuccWeight.
951 for (unsigned i = 1; i < CasesFromPred; ++i)
952 Weights[i] *= ValidTotalSuccWeight;
953 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
954 Weights[0] *= SuccWeights[0];
955 }
956 } else {
957 // If this is not the default destination from PSI, only the edges
958 // in SI that occur in PSI with a destination of BB will be
959 // activated.
960 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
961 std::map<ConstantInt*, uint64_t> WeightsForHandled;
962 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
963 if (PredCases[i].Dest == BB) {
964 PTIHandled.insert(PredCases[i].Value);
965
966 if (PredHasWeights || SuccHasWeights) {
967 WeightsForHandled[PredCases[i].Value] = Weights[i+1];
968 std::swap(Weights[i+1], Weights.back());
969 Weights.pop_back();
970 }
971
972 std::swap(PredCases[i], PredCases.back());
973 PredCases.pop_back();
974 --i; --e;
975 }
976
977 // Okay, now we know which constants were sent to BB from the
978 // predecessor. Figure out where they will all go now.
979 for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
980 if (PTIHandled.count(BBCases[i].Value)) {
981 // If this is one we are capable of getting...
982 if (PredHasWeights || SuccHasWeights)
983 Weights.push_back(WeightsForHandled[BBCases[i].Value]);
984 PredCases.push_back(BBCases[i]);
985 NewSuccessors.push_back(BBCases[i].Dest);
986 PTIHandled.erase(BBCases[i].Value);// This constant is taken care of
987 }
988
989 // If there are any constants vectored to BB that TI doesn't handle,
990 // they must go to the default destination of TI.
991 for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I =
992 PTIHandled.begin(),
993 E = PTIHandled.end(); I != E; ++I) {
994 if (PredHasWeights || SuccHasWeights)
995 Weights.push_back(WeightsForHandled[*I]);
996 PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault));
997 NewSuccessors.push_back(BBDefault);
998 }
999 }
1000
1001 // Okay, at this point, we know which new successor Pred will get. Make
1002 // sure we update the number of entries in the PHI nodes for these
1003 // successors.
1004 for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
1005 AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
1006
1007 Builder.SetInsertPoint(PTI);
1008 // Convert pointer to int before we switch.
1009 if (CV->getType()->isPointerTy()) {
1010 assert(DL && "Cannot switch on pointer without DataLayout");
1011 CV = Builder.CreatePtrToInt(CV, DL->getIntPtrType(CV->getType()),
1012 "magicptr");
1013 }
1014
1015 // Now that the successors are updated, create the new Switch instruction.
1016 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault,
1017 PredCases.size());
1018 NewSI->setDebugLoc(PTI->getDebugLoc());
1019 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1020 NewSI->addCase(PredCases[i].Value, PredCases[i].Dest);
1021
1022 if (PredHasWeights || SuccHasWeights) {
1023 // Halve the weights if any of them cannot fit in an uint32_t
1024 FitWeights(Weights);
1025
1026 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1027
1028 NewSI->setMetadata(LLVMContext::MD_prof,
1029 MDBuilder(BB->getContext()).
1030 createBranchWeights(MDWeights));
1031 }
1032
1033 EraseTerminatorInstAndDCECond(PTI);
1034
1035 // Okay, last check. If BB is still a successor of PSI, then we must
1036 // have an infinite loop case. If so, add an infinitely looping block
1037 // to handle the case to preserve the behavior of the code.
1038 BasicBlock *InfLoopBlock = nullptr;
1039 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1040 if (NewSI->getSuccessor(i) == BB) {
1041 if (!InfLoopBlock) {
1042 // Insert it at the end of the function, because it's either code,
1043 // or it won't matter if it's hot. :)
1044 InfLoopBlock = BasicBlock::Create(BB->getContext(),
1045 "infloop", BB->getParent());
1046 BranchInst::Create(InfLoopBlock, InfLoopBlock);
1047 }
1048 NewSI->setSuccessor(i, InfLoopBlock);
1049 }
1050
1051 Changed = true;
1052 }
1053 }
1054 return Changed;
1055 }
1056
1057 // isSafeToHoistInvoke - If we would need to insert a select that uses the
1058 // value of this invoke (comments in HoistThenElseCodeToIf explain why we
1059 // would need to do this), we can't hoist the invoke, as there is nowhere
1060 // to put the select in this case.
1061 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1062 Instruction *I1, Instruction *I2) {
1063 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
1064 PHINode *PN;
1065 for (BasicBlock::iterator BBI = SI->begin();
1066 (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1067 Value *BB1V = PN->getIncomingValueForBlock(BB1);
1068 Value *BB2V = PN->getIncomingValueForBlock(BB2);
1069 if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) {
1070 return false;
1071 }
1072 }
1073 }
1074 return true;
1075 }
1076
1077 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
1078
1079 /// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
1080 /// BB2, hoist any common code in the two blocks up into the branch block. The
1081 /// caller of this function guarantees that BI's block dominates BB1 and BB2.
1082 static bool HoistThenElseCodeToIf(BranchInst *BI, const DataLayout *DL) {
1083 // This does very trivial matching, with limited scanning, to find identical
1084 // instructions in the two blocks. In particular, we don't want to get into
1085 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As
1086 // such, we currently just scan for obviously identical instructions in an
1087 // identical order.
1088 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1089 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1090
1091 BasicBlock::iterator BB1_Itr = BB1->begin();
1092 BasicBlock::iterator BB2_Itr = BB2->begin();
1093
1094 Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++;
1095 // Skip debug info if it is not identical.
1096 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1097 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1098 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1099 while (isa<DbgInfoIntrinsic>(I1))
1100 I1 = BB1_Itr++;
1101 while (isa<DbgInfoIntrinsic>(I2))
1102 I2 = BB2_Itr++;
1103 }
1104 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1105 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
1106 return false;
1107
1108 BasicBlock *BIParent = BI->getParent();
1109
1110 bool Changed = false;
1111 do {
1112 // If we are hoisting the terminator instruction, don't move one (making a
1113 // broken BB), instead clone it, and remove BI.
1114 if (isa<TerminatorInst>(I1))
1115 goto HoistTerminator;
1116
1117 // For a normal instruction, we just move one to right before the branch,
1118 // then replace all uses of the other with the first. Finally, we remove
1119 // the now redundant second instruction.
1120 BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
1121 if (!I2->use_empty())
1122 I2->replaceAllUsesWith(I1);
1123 I1->intersectOptionalDataWith(I2);
1124 unsigned KnownIDs[] = {
1125 LLVMContext::MD_tbaa,
1126 LLVMContext::MD_range,
1127 LLVMContext::MD_fpmath,
1128 LLVMContext::MD_invariant_load,
1129 LLVMContext::MD_nonnull
1130 };
1131 combineMetadata(I1, I2, KnownIDs);
1132 I2->eraseFromParent();
1133 Changed = true;
1134
1135 I1 = BB1_Itr++;
1136 I2 = BB2_Itr++;
1137 // Skip debug info if it is not identical.
1138 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1139 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1140 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1141 while (isa<DbgInfoIntrinsic>(I1))
1142 I1 = BB1_Itr++;
1143 while (isa<DbgInfoIntrinsic>(I2))
1144 I2 = BB2_Itr++;
1145 }
1146 } while (I1->isIdenticalToWhenDefined(I2));
1147
1148 return true;
1149
1150 HoistTerminator:
1151 // It may not be possible to hoist an invoke.
1152 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1153 return Changed;
1154
1155 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
1156 PHINode *PN;
1157 for (BasicBlock::iterator BBI = SI->begin();
1158 (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1159 Value *BB1V = PN->getIncomingValueForBlock(BB1);
1160 Value *BB2V = PN->getIncomingValueForBlock(BB2);
1161 if (BB1V == BB2V)
1162 continue;
1163
1164 // Check for passingValueIsAlwaysUndefined here because we would rather
1165 // eliminate undefined control flow then converting it to a select.
1166 if (passingValueIsAlwaysUndefined(BB1V, PN) ||
1167 passingValueIsAlwaysUndefined(BB2V, PN))
1168 return Changed;
1169
1170 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V, DL))
1171 return Changed;
1172 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V, DL))
1173 return Changed;
1174 }
1175 }
1176
1177 // Okay, it is safe to hoist the terminator.
1178 Instruction *NT = I1->clone();
1179 BIParent->getInstList().insert(BI, NT);
1180 if (!NT->getType()->isVoidTy()) {
1181 I1->replaceAllUsesWith(NT);
1182 I2->replaceAllUsesWith(NT);
1183 NT->takeName(I1);
1184 }
1185
1186 IRBuilder<true, NoFolder> Builder(NT);
1187 // Hoisting one of the terminators from our successor is a great thing.
1188 // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1189 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI
1190 // nodes, so we insert select instruction to compute the final result.
1191 std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
1192 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
1193 PHINode *PN;
1194 for (BasicBlock::iterator BBI = SI->begin();
1195 (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1196 Value *BB1V = PN->getIncomingValueForBlock(BB1);
1197 Value *BB2V = PN->getIncomingValueForBlock(BB2);
1198 if (BB1V == BB2V) continue;
1199
1200 // These values do not agree. Insert a select instruction before NT
1201 // that determines the right value.
1202 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1203 if (!SI)
1204 SI = cast<SelectInst>
1205 (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1206 BB1V->getName()+"."+BB2V->getName()));
1207
1208 // Make the PHI node use the select for all incoming values for BB1/BB2
1209 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1210 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
1211 PN->setIncomingValue(i, SI);
1212 }
1213 }
1214
1215 // Update any PHI nodes in our new successors.
1216 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
1217 AddPredecessorToBlock(*SI, BIParent, BB1);
1218
1219 EraseTerminatorInstAndDCECond(BI);
1220 return true;
1221 }
1222
1223 /// SinkThenElseCodeToEnd - Given an unconditional branch that goes to BBEnd,
1224 /// check whether BBEnd has only two predecessors and the other predecessor
1225 /// ends with an unconditional branch. If it is true, sink any common code
1226 /// in the two predecessors to BBEnd.
1227 static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
1228 assert(BI1->isUnconditional());
1229 BasicBlock *BB1 = BI1->getParent();
1230 BasicBlock *BBEnd = BI1->getSuccessor(0);
1231
1232 // Check that BBEnd has two predecessors and the other predecessor ends with
1233 // an unconditional branch.
1234 pred_iterator PI = pred_begin(BBEnd), PE = pred_end(BBEnd);
1235 BasicBlock *Pred0 = *PI++;
1236 if (PI == PE) // Only one predecessor.
1237 return false;
1238 BasicBlock *Pred1 = *PI++;
1239 if (PI != PE) // More than two predecessors.
1240 return false;
1241 BasicBlock *BB2 = (Pred0 == BB1) ? Pred1 : Pred0;
1242 BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator());
1243 if (!BI2 || !BI2->isUnconditional())
1244 return false;
1245
1246 // Gather the PHI nodes in BBEnd.
1247 SmallDenseMap<std::pair<Value *, Value *>, PHINode *> JointValueMap;
1248 Instruction *FirstNonPhiInBBEnd = nullptr;
1249 for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end(); I != E; ++I) {
1250 if (PHINode *PN = dyn_cast<PHINode>(I)) {
1251 Value *BB1V = PN->getIncomingValueForBlock(BB1);
1252 Value *BB2V = PN->getIncomingValueForBlock(BB2);
1253 JointValueMap[std::make_pair(BB1V, BB2V)] = PN;
1254 } else {
1255 FirstNonPhiInBBEnd = &*I;
1256 break;
1257 }
1258 }
1259 if (!FirstNonPhiInBBEnd)
1260 return false;
1261
1262 // This does very trivial matching, with limited scanning, to find identical
1263 // instructions in the two blocks. We scan backward for obviously identical
1264 // instructions in an identical order.
1265 BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(),
1266 RE1 = BB1->getInstList().rend(),
1267 RI2 = BB2->getInstList().rbegin(),
1268 RE2 = BB2->getInstList().rend();
1269 // Skip debug info.
1270 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1;
1271 if (RI1 == RE1)
1272 return false;
1273 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2;
1274 if (RI2 == RE2)
1275 return false;
1276 // Skip the unconditional branches.
1277 ++RI1;
1278 ++RI2;
1279
1280 bool Changed = false;
1281 while (RI1 != RE1 && RI2 != RE2) {
1282 // Skip debug info.
1283 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1;
1284 if (RI1 == RE1)
1285 return Changed;
1286 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2;
1287 if (RI2 == RE2)
1288 return Changed;
1289
1290 Instruction *I1 = &*RI1, *I2 = &*RI2;
1291 auto InstPair = std::make_pair(I1, I2);
1292 // I1 and I2 should have a single use in the same PHI node, and they
1293 // perform the same operation.
1294 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
1295 if (isa<PHINode>(I1) || isa<PHINode>(I2) ||
1296 isa<TerminatorInst>(I1) || isa<TerminatorInst>(I2) ||
1297 isa<LandingPadInst>(I1) || isa<LandingPadInst>(I2) ||
1298 isa<AllocaInst>(I1) || isa<AllocaInst>(I2) ||
1299 I1->mayHaveSideEffects() || I2->mayHaveSideEffects() ||
1300 I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() ||
1301 !I1->hasOneUse() || !I2->hasOneUse() ||
1302 !JointValueMap.count(InstPair))
1303 return Changed;
1304
1305 // Check whether we should swap the operands of ICmpInst.
1306 // TODO: Add support of communativity.
1307 ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2);
1308 bool SwapOpnds = false;
1309 if (ICmp1 && ICmp2 &&
1310 ICmp1->getOperand(0) != ICmp2->getOperand(0) &&
1311 ICmp1->getOperand(1) != ICmp2->getOperand(1) &&
1312 (ICmp1->getOperand(0) == ICmp2->getOperand(1) ||
1313 ICmp1->getOperand(1) == ICmp2->getOperand(0))) {
1314 ICmp2->swapOperands();
1315 SwapOpnds = true;
1316 }
1317 if (!I1->isSameOperationAs(I2)) {
1318 if (SwapOpnds)
1319 ICmp2->swapOperands();
1320 return Changed;
1321 }
1322
1323 // The operands should be either the same or they need to be generated
1324 // with a PHI node after sinking. We only handle the case where there is
1325 // a single pair of different operands.
1326 Value *DifferentOp1 = nullptr, *DifferentOp2 = nullptr;
1327 unsigned Op1Idx = ~0U;
1328 for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) {
1329 if (I1->getOperand(I) == I2->getOperand(I))
1330 continue;
1331 // Early exit if we have more-than one pair of different operands or if
1332 // we need a PHI node to replace a constant.
1333 if (Op1Idx != ~0U ||
1334 isa<Constant>(I1->getOperand(I)) ||
1335 isa<Constant>(I2->getOperand(I))) {
1336 // If we can't sink the instructions, undo the swapping.
1337 if (SwapOpnds)
1338 ICmp2->swapOperands();
1339 return Changed;
1340 }
1341 DifferentOp1 = I1->getOperand(I);
1342 Op1Idx = I;
1343 DifferentOp2 = I2->getOperand(I);
1344 }
1345
1346 DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n");
1347 DEBUG(dbgs() << " " << *I2 << "\n");
1348
1349 // We insert the pair of different operands to JointValueMap and
1350 // remove (I1, I2) from JointValueMap.
1351 if (Op1Idx != ~0U) {
1352 auto &NewPN = JointValueMap[std::make_pair(DifferentOp1, DifferentOp2)];
1353 if (!NewPN) {
1354 NewPN =
1355 PHINode::Create(DifferentOp1->getType(), 2,
1356 DifferentOp1->getName() + ".sink", BBEnd->begin());
1357 NewPN->addIncoming(DifferentOp1, BB1);
1358 NewPN->addIncoming(DifferentOp2, BB2);
1359 DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";);
1360 }
1361 // I1 should use NewPN instead of DifferentOp1.
1362 I1->setOperand(Op1Idx, NewPN);
1363 }
1364 PHINode *OldPN = JointValueMap[InstPair];
1365 JointValueMap.erase(InstPair);
1366
1367 // We need to update RE1 and RE2 if we are going to sink the first
1368 // instruction in the basic block down.
1369 bool UpdateRE1 = (I1 == BB1->begin()), UpdateRE2 = (I2 == BB2->begin());
1370 // Sink the instruction.
1371 BBEnd->getInstList().splice(FirstNonPhiInBBEnd, BB1->getInstList(), I1);
1372 if (!OldPN->use_empty())
1373 OldPN->replaceAllUsesWith(I1);
1374 OldPN->eraseFromParent();
1375
1376 if (!I2->use_empty())
1377 I2->replaceAllUsesWith(I1);
1378 I1->intersectOptionalDataWith(I2);
1379 // TODO: Use combineMetadata here to preserve what metadata we can
1380 // (analogous to the hoisting case above).
1381 I2->eraseFromParent();
1382
1383 if (UpdateRE1)
1384 RE1 = BB1->getInstList().rend();
1385 if (UpdateRE2)
1386 RE2 = BB2->getInstList().rend();
1387 FirstNonPhiInBBEnd = I1;
1388 NumSinkCommons++;
1389 Changed = true;
1390 }
1391 return Changed;
1392 }
1393
1394 /// \brief Determine if we can hoist sink a sole store instruction out of a
1395 /// conditional block.
1396 ///
1397 /// We are looking for code like the following:
1398 /// BrBB:
1399 /// store i32 %add, i32* %arrayidx2
1400 /// ... // No other stores or function calls (we could be calling a memory
1401 /// ... // function).
1402 /// %cmp = icmp ult %x, %y
1403 /// br i1 %cmp, label %EndBB, label %ThenBB
1404 /// ThenBB:
1405 /// store i32 %add5, i32* %arrayidx2
1406 /// br label EndBB
1407 /// EndBB:
1408 /// ...
1409 /// We are going to transform this into:
1410 /// BrBB:
1411 /// store i32 %add, i32* %arrayidx2
1412 /// ... //
1413 /// %cmp = icmp ult %x, %y
1414 /// %add.add5 = select i1 %cmp, i32 %add, %add5
1415 /// store i32 %add.add5, i32* %arrayidx2
1416 /// ...
1417 ///
1418 /// \return The pointer to the value of the previous store if the store can be
1419 /// hoisted into the predecessor block. 0 otherwise.
1420 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1421 BasicBlock *StoreBB, BasicBlock *EndBB) {
1422 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1423 if (!StoreToHoist)
1424 return nullptr;
1425
1426 // Volatile or atomic.
1427 if (!StoreToHoist->isSimple())
1428 return nullptr;
1429
1430 Value *StorePtr = StoreToHoist->getPointerOperand();
1431
1432 // Look for a store to the same pointer in BrBB.
1433 unsigned MaxNumInstToLookAt = 10;
1434 for (BasicBlock::reverse_iterator RI = BrBB->rbegin(),
1435 RE = BrBB->rend(); RI != RE && (--MaxNumInstToLookAt); ++RI) {
1436 Instruction *CurI = &*RI;
1437
1438 // Could be calling an instruction that effects memory like free().
1439 if (CurI->mayHaveSideEffects() && !isa<StoreInst>(CurI))
1440 return nullptr;
1441
1442 StoreInst *SI = dyn_cast<StoreInst>(CurI);
1443 // Found the previous store make sure it stores to the same location.
1444 if (SI && SI->getPointerOperand() == StorePtr)
1445 // Found the previous store, return its value operand.
1446 return SI->getValueOperand();
1447 else if (SI)
1448 return nullptr; // Unknown store.
1449 }
1450
1451 return nullptr;
1452 }
1453
1454 /// \brief Speculate a conditional basic block flattening the CFG.
1455 ///
1456 /// Note that this is a very risky transform currently. Speculating
1457 /// instructions like this is most often not desirable. Instead, there is an MI
1458 /// pass which can do it with full awareness of the resource constraints.
1459 /// However, some cases are "obvious" and we should do directly. An example of
1460 /// this is speculating a single, reasonably cheap instruction.
1461 ///
1462 /// There is only one distinct advantage to flattening the CFG at the IR level:
1463 /// it makes very common but simplistic optimizations such as are common in
1464 /// instcombine and the DAG combiner more powerful by removing CFG edges and
1465 /// modeling their effects with easier to reason about SSA value graphs.
1466 ///
1467 ///
1468 /// An illustration of this transform is turning this IR:
1469 /// \code
1470 /// BB:
1471 /// %cmp = icmp ult %x, %y
1472 /// br i1 %cmp, label %EndBB, label %ThenBB
1473 /// ThenBB:
1474 /// %sub = sub %x, %y
1475 /// br label BB2
1476 /// EndBB:
1477 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1478 /// ...
1479 /// \endcode
1480 ///
1481 /// Into this IR:
1482 /// \code
1483 /// BB:
1484 /// %cmp = icmp ult %x, %y
1485 /// %sub = sub %x, %y
1486 /// %cond = select i1 %cmp, 0, %sub
1487 /// ...
1488 /// \endcode
1489 ///
1490 /// \returns true if the conditional block is removed.
1491 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
1492 const DataLayout *DL) {
1493 // Be conservative for now. FP select instruction can often be expensive.
1494 Value *BrCond = BI->getCondition();
1495 if (isa<FCmpInst>(BrCond))
1496 return false;
1497
1498 BasicBlock *BB = BI->getParent();
1499 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
1500
1501 // If ThenBB is actually on the false edge of the conditional branch, remember
1502 // to swap the select operands later.
1503 bool Invert = false;
1504 if (ThenBB != BI->getSuccessor(0)) {
1505 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
1506 Invert = true;
1507 }
1508 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
1509
1510 // Keep a count of how many times instructions are used within CondBB when
1511 // they are candidates for sinking into CondBB. Specifically:
1512 // - They are defined in BB, and
1513 // - They have no side effects, and
1514 // - All of their uses are in CondBB.
1515 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
1516
1517 unsigned SpeculationCost = 0;
1518 Value *SpeculatedStoreValue = nullptr;
1519 StoreInst *SpeculatedStore = nullptr;
1520 for (BasicBlock::iterator BBI = ThenBB->begin(),
1521 BBE = std::prev(ThenBB->end());
1522 BBI != BBE; ++BBI) {
1523 Instruction *I = BBI;
1524 // Skip debug info.
1525 if (isa<DbgInfoIntrinsic>(I))
1526 continue;
1527
1528 // Only speculatively execution a single instruction (not counting the
1529 // terminator) for now.
1530 ++SpeculationCost;
1531 if (SpeculationCost > 1)
1532 return false;
1533
1534 // Don't hoist the instruction if it's unsafe or expensive.
1535 if (!isSafeToSpeculativelyExecute(I, DL) &&
1536 !(HoistCondStores &&
1537 (SpeculatedStoreValue = isSafeToSpeculateStore(I, BB, ThenBB,
1538 EndBB))))
1539 return false;
1540 if (!SpeculatedStoreValue &&
1541 ComputeSpeculationCost(I, DL) > PHINodeFoldingThreshold)
1542 return false;
1543
1544 // Store the store speculation candidate.
1545 if (SpeculatedStoreValue)
1546 SpeculatedStore = cast<StoreInst>(I);
1547
1548 // Do not hoist the instruction if any of its operands are defined but not
1549 // used in BB. The transformation will prevent the operand from
1550 // being sunk into the use block.
1551 for (User::op_iterator i = I->op_begin(), e = I->op_end();
1552 i != e; ++i) {
1553 Instruction *OpI = dyn_cast<Instruction>(*i);
1554 if (!OpI || OpI->getParent() != BB ||
1555 OpI->mayHaveSideEffects())
1556 continue; // Not a candidate for sinking.
1557
1558 ++SinkCandidateUseCounts[OpI];
1559 }
1560 }
1561
1562 // Consider any sink candidates which are only used in CondBB as costs for
1563 // speculation. Note, while we iterate over a DenseMap here, we are summing
1564 // and so iteration order isn't significant.
1565 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator I =
1566 SinkCandidateUseCounts.begin(), E = SinkCandidateUseCounts.end();
1567 I != E; ++I)
1568 if (I->first->getNumUses() == I->second) {
1569 ++SpeculationCost;
1570 if (SpeculationCost > 1)
1571 return false;
1572 }
1573
1574 // Check that the PHI nodes can be converted to selects.
1575 bool HaveRewritablePHIs = false;
1576 for (BasicBlock::iterator I = EndBB->begin();
1577 PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1578 Value *OrigV = PN->getIncomingValueForBlock(BB);
1579 Value *ThenV = PN->getIncomingValueForBlock(ThenBB);
1580
1581 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
1582 // Skip PHIs which are trivial.
1583 if (ThenV == OrigV)
1584 continue;
1585
1586 // Don't convert to selects if we could remove undefined behavior instead.
1587 if (passingValueIsAlwaysUndefined(OrigV, PN) ||
1588 passingValueIsAlwaysUndefined(ThenV, PN))
1589 return false;
1590
1591 HaveRewritablePHIs = true;
1592 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
1593 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
1594 if (!OrigCE && !ThenCE)
1595 continue; // Known safe and cheap.
1596
1597 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE, DL)) ||
1598 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE, DL)))
1599 return false;
1600 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, DL) : 0;
1601 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, DL) : 0;
1602 if (OrigCost + ThenCost > 2 * PHINodeFoldingThreshold)
1603 return false;
1604
1605 // Account for the cost of an unfolded ConstantExpr which could end up
1606 // getting expanded into Instructions.
1607 // FIXME: This doesn't account for how many operations are combined in the
1608 // constant expression.
1609 ++SpeculationCost;
1610 if (SpeculationCost > 1)
1611 return false;
1612 }
1613
1614 // If there are no PHIs to process, bail early. This helps ensure idempotence
1615 // as well.
1616 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
1617 return false;
1618
1619 // If we get here, we can hoist the instruction and if-convert.
1620 DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
1621
1622 // Insert a select of the value of the speculated store.
1623 if (SpeculatedStoreValue) {
1624 IRBuilder<true, NoFolder> Builder(BI);
1625 Value *TrueV = SpeculatedStore->getValueOperand();
1626 Value *FalseV = SpeculatedStoreValue;
1627 if (Invert)
1628 std::swap(TrueV, FalseV);
1629 Value *S = Builder.CreateSelect(BrCond, TrueV, FalseV, TrueV->getName() +
1630 "." + FalseV->getName());
1631 SpeculatedStore->setOperand(0, S);
1632 }
1633
1634 // Hoist the instructions.
1635 BB->getInstList().splice(BI, ThenBB->getInstList(), ThenBB->begin(),
1636 std::prev(ThenBB->end()));
1637
1638 // Insert selects and rewrite the PHI operands.
1639 IRBuilder<true, NoFolder> Builder(BI);
1640 for (BasicBlock::iterator I = EndBB->begin();
1641 PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1642 unsigned OrigI = PN->getBasicBlockIndex(BB);
1643 unsigned ThenI = PN->getBasicBlockIndex(ThenBB);
1644 Value *OrigV = PN->getIncomingValue(OrigI);
1645 Value *ThenV = PN->getIncomingValue(ThenI);
1646
1647 // Skip PHIs which are trivial.
1648 if (OrigV == ThenV)
1649 continue;
1650
1651 // Create a select whose true value is the speculatively executed value and
1652 // false value is the preexisting value. Swap them if the branch
1653 // destinations were inverted.
1654 Value *TrueV = ThenV, *FalseV = OrigV;
1655 if (Invert)
1656 std::swap(TrueV, FalseV);
1657 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV,
1658 TrueV->getName() + "." + FalseV->getName());
1659 PN->setIncomingValue(OrigI, V);
1660 PN->setIncomingValue(ThenI, V);
1661 }
1662
1663 ++NumSpeculations;
1664 return true;
1665 }
1666
1667 /// \returns True if this block contains a CallInst with the NoDuplicate
1668 /// attribute.
1669 static bool HasNoDuplicateCall(const BasicBlock *BB) {
1670 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1671 const CallInst *CI = dyn_cast<CallInst>(I);
1672 if (!CI)
1673 continue;
1674 if (CI->cannotDuplicate())
1675 return true;
1676 }
1677 return false;
1678 }
1679
1680 /// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
1681 /// across this block.
1682 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
1683 BranchInst *BI = cast<BranchInst>(BB->getTerminator());
1684 unsigned Size = 0;
1685
1686 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1687 if (isa<DbgInfoIntrinsic>(BBI))
1688 continue;
1689 if (Size > 10) return false; // Don't clone large BB's.
1690 ++Size;
1691
1692 // We can only support instructions that do not define values that are
1693 // live outside of the current basic block.
1694 for (User *U : BBI->users()) {
1695 Instruction *UI = cast<Instruction>(U);
1696 if (UI->getParent() != BB || isa<PHINode>(UI)) return false;
1697 }
1698
1699 // Looks ok, continue checking.
1700 }
1701
1702 return true;
1703 }
1704
1705 /// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
1706 /// that is defined in the same block as the branch and if any PHI entries are
1707 /// constants, thread edges corresponding to that entry to be branches to their
1708 /// ultimate destination.
1709 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout *DL) {
1710 BasicBlock *BB = BI->getParent();
1711 PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
1712 // NOTE: we currently cannot transform this case if the PHI node is used
1713 // outside of the block.
1714 if (!PN || PN->getParent() != BB || !PN->hasOneUse())
1715 return false;
1716
1717 // Degenerate case of a single entry PHI.
1718 if (PN->getNumIncomingValues() == 1) {
1719 FoldSingleEntryPHINodes(PN->getParent());
1720 return true;
1721 }
1722
1723 // Now we know that this block has multiple preds and two succs.
1724 if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
1725
1726 if (HasNoDuplicateCall(BB)) return false;
1727
1728 // Okay, this is a simple enough basic block. See if any phi values are
1729 // constants.
1730 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1731 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
1732 if (!CB || !CB->getType()->isIntegerTy(1)) continue;
1733
1734 // Okay, we now know that all edges from PredBB should be revectored to
1735 // branch to RealDest.
1736 BasicBlock *PredBB = PN->getIncomingBlock(i);
1737 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
1738
1739 if (RealDest == BB) continue; // Skip self loops.
1740 // Skip if the predecessor's terminator is an indirect branch.
1741 if (isa<IndirectBrInst>(PredBB->getTerminator())) continue;
1742
1743 // The dest block might have PHI nodes, other predecessors and other
1744 // difficult cases. Instead of being smart about this, just insert a new
1745 // block that jumps to the destination block, effectively splitting
1746 // the edge we are about to create.
1747 BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(),
1748 RealDest->getName()+".critedge",
1749 RealDest->getParent(), RealDest);
1750 BranchInst::Create(RealDest, EdgeBB);
1751
1752 // Update PHI nodes.
1753 AddPredecessorToBlock(RealDest, EdgeBB, BB);
1754
1755 // BB may have instructions that are being threaded over. Clone these
1756 // instructions into EdgeBB. We know that there will be no uses of the
1757 // cloned instructions outside of EdgeBB.
1758 BasicBlock::iterator InsertPt = EdgeBB->begin();
1759 DenseMap<Value*, Value*> TranslateMap; // Track translated values.
1760 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1761 if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
1762 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
1763 continue;
1764 }
1765 // Clone the instruction.
1766 Instruction *N = BBI->clone();
1767 if (BBI->hasName()) N->setName(BBI->getName()+".c");
1768
1769 // Update operands due to translation.
1770 for (User::op_iterator i = N->op_begin(), e = N->op_end();
1771 i != e; ++i) {
1772 DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i);
1773 if (PI != TranslateMap.end())
1774 *i = PI->second;
1775 }
1776
1777 // Check for trivial simplification.
1778 if (Value *V = SimplifyInstruction(N, DL)) {
1779 TranslateMap[BBI] = V;
1780 delete N; // Instruction folded away, don't need actual inst
1781 } else {
1782 // Insert the new instruction into its new home.
1783 EdgeBB->getInstList().insert(InsertPt, N);
1784 if (!BBI->use_empty())
1785 TranslateMap[BBI] = N;
1786 }
1787 }
1788
1789 // Loop over all of the edges from PredBB to BB, changing them to branch
1790 // to EdgeBB instead.
1791 TerminatorInst *PredBBTI = PredBB->getTerminator();
1792 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
1793 if (PredBBTI->getSuccessor(i) == BB) {
1794 BB->removePredecessor(PredBB);
1795 PredBBTI->setSuccessor(i, EdgeBB);
1796 }
1797
1798 // Recurse, simplifying any other constants.
1799 return FoldCondBranchOnPHI(BI, DL) | true;
1800 }
1801
1802 return false;
1803 }
1804
1805 /// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
1806 /// PHI node, see if we can eliminate it.
1807 static bool FoldTwoEntryPHINode(PHINode *PN, const DataLayout *DL) {
1808 // Ok, this is a two entry PHI node. Check to see if this is a simple "if
1809 // statement", which has a very simple dominance structure. Basically, we
1810 // are trying to find the condition that is being branched on, which
1811 // subsequently causes this merge to happen. We really want control
1812 // dependence information for this check, but simplifycfg can't keep it up
1813 // to date, and this catches most of the cases we care about anyway.
1814 BasicBlock *BB = PN->getParent();
1815 BasicBlock *IfTrue, *IfFalse;
1816 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
1817 if (!IfCond ||
1818 // Don't bother if the branch will be constant folded trivially.
1819 isa<ConstantInt>(IfCond))
1820 return false;
1821
1822 // Okay, we found that we can merge this two-entry phi node into a select.
1823 // Doing so would require us to fold *all* two entry phi nodes in this block.
1824 // At some point this becomes non-profitable (particularly if the target
1825 // doesn't support cmov's). Only do this transformation if there are two or
1826 // fewer PHI nodes in this block.
1827 unsigned NumPhis = 0;
1828 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
1829 if (NumPhis > 2)
1830 return false;
1831
1832 // Loop over the PHI's seeing if we can promote them all to select
1833 // instructions. While we are at it, keep track of the instructions
1834 // that need to be moved to the dominating block.
1835 SmallPtrSet<Instruction*, 4> AggressiveInsts;
1836 unsigned MaxCostVal0 = PHINodeFoldingThreshold,
1837 MaxCostVal1 = PHINodeFoldingThreshold;
1838
1839 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
1840 PHINode *PN = cast<PHINode>(II++);
1841 if (Value *V = SimplifyInstruction(PN, DL)) {
1842 PN->replaceAllUsesWith(V);
1843 PN->eraseFromParent();
1844 continue;
1845 }
1846
1847 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
1848 MaxCostVal0, DL) ||
1849 !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
1850 MaxCostVal1, DL))
1851 return false;
1852 }
1853
1854 // If we folded the first phi, PN dangles at this point. Refresh it. If
1855 // we ran out of PHIs then we simplified them all.
1856 PN = dyn_cast<PHINode>(BB->begin());
1857 if (!PN) return true;
1858
1859 // Don't fold i1 branches on PHIs which contain binary operators. These can
1860 // often be turned into switches and other things.
1861 if (PN->getType()->isIntegerTy(1) &&
1862 (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
1863 isa<BinaryOperator>(PN->getIncomingValue(1)) ||
1864 isa<BinaryOperator>(IfCond)))
1865 return false;
1866
1867 // If we all PHI nodes are promotable, check to make sure that all
1868 // instructions in the predecessor blocks can be promoted as well. If
1869 // not, we won't be able to get rid of the control flow, so it's not
1870 // worth promoting to select instructions.
1871 BasicBlock *DomBlock = nullptr;
1872 BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
1873 BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
1874 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
1875 IfBlock1 = nullptr;
1876 } else {
1877 DomBlock = *pred_begin(IfBlock1);
1878 for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I)
1879 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1880 // This is not an aggressive instruction that we can promote.
1881 // Because of this, we won't be able to get rid of the control
1882 // flow, so the xform is not worth it.
1883 return false;
1884 }
1885 }
1886
1887 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
1888 IfBlock2 = nullptr;
1889 } else {
1890 DomBlock = *pred_begin(IfBlock2);
1891 for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I)
1892 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1893 // This is not an aggressive instruction that we can promote.
1894 // Because of this, we won't be able to get rid of the control
1895 // flow, so the xform is not worth it.
1896 return false;
1897 }
1898 }
1899
1900 DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: "
1901 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n");
1902
1903 // If we can still promote the PHI nodes after this gauntlet of tests,
1904 // do all of the PHI's now.
1905 Instruction *InsertPt = DomBlock->getTerminator();
1906 IRBuilder<true, NoFolder> Builder(InsertPt);
1907
1908 // Move all 'aggressive' instructions, which are defined in the
1909 // conditional parts of the if's up to the dominating block.
1910 if (IfBlock1)
1911 DomBlock->getInstList().splice(InsertPt,
1912 IfBlock1->getInstList(), IfBlock1->begin(),
1913 IfBlock1->getTerminator());
1914 if (IfBlock2)
1915 DomBlock->getInstList().splice(InsertPt,
1916 IfBlock2->getInstList(), IfBlock2->begin(),
1917 IfBlock2->getTerminator());
1918
1919 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
1920 // Change the PHI node into a select instruction.
1921 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
1922 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
1923
1924 SelectInst *NV =
1925 cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, ""));
1926 PN->replaceAllUsesWith(NV);
1927 NV->takeName(PN);
1928 PN->eraseFromParent();
1929 }
1930
1931 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
1932 // has been flattened. Change DomBlock to jump directly to our new block to
1933 // avoid other simplifycfg's kicking in on the diamond.
1934 TerminatorInst *OldTI = DomBlock->getTerminator();
1935 Builder.SetInsertPoint(OldTI);
1936 Builder.CreateBr(BB);
1937 OldTI->eraseFromParent();
1938 return true;
1939 }
1940
1941 /// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
1942 /// to two returning blocks, try to merge them together into one return,
1943 /// introducing a select if the return values disagree.
1944 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
1945 IRBuilder<> &Builder) {
1946 assert(BI->isConditional() && "Must be a conditional branch");
1947 BasicBlock *TrueSucc = BI->getSuccessor(0);
1948 BasicBlock *FalseSucc = BI->getSuccessor(1);
1949 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
1950 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
1951
1952 // Check to ensure both blocks are empty (just a return) or optionally empty
1953 // with PHI nodes. If there are other instructions, merging would cause extra
1954 // computation on one path or the other.
1955 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
1956 return false;
1957 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
1958 return false;
1959
1960 Builder.SetInsertPoint(BI);
1961 // Okay, we found a branch that is going to two return nodes. If
1962 // there is no return value for this function, just change the
1963 // branch into a return.
1964 if (FalseRet->getNumOperands() == 0) {
1965 TrueSucc->removePredecessor(BI->getParent());
1966 FalseSucc->removePredecessor(BI->getParent());
1967 Builder.CreateRetVoid();
1968 EraseTerminatorInstAndDCECond(BI);
1969 return true;
1970 }
1971
1972 // Otherwise, figure out what the true and false return values are
1973 // so we can insert a new select instruction.
1974 Value *TrueValue = TrueRet->getReturnValue();
1975 Value *FalseValue = FalseRet->getReturnValue();
1976
1977 // Unwrap any PHI nodes in the return blocks.
1978 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
1979 if (TVPN->getParent() == TrueSucc)
1980 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
1981 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
1982 if (FVPN->getParent() == FalseSucc)
1983 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
1984
1985 // In order for this transformation to be safe, we must be able to
1986 // unconditionally execute both operands to the return. This is
1987 // normally the case, but we could have a potentially-trapping
1988 // constant expression that prevents this transformation from being
1989 // safe.
1990 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
1991 if (TCV->canTrap())
1992 return false;
1993 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
1994 if (FCV->canTrap())
1995 return false;
1996
1997 // Okay, we collected all the mapped values and checked them for sanity, and
1998 // defined to really do this transformation. First, update the CFG.
1999 TrueSucc->removePredecessor(BI->getParent());
2000 FalseSucc->removePredecessor(BI->getParent());
2001
2002 // Insert select instructions where needed.
2003 Value *BrCond = BI->getCondition();
2004 if (TrueValue) {
2005 // Insert a select if the results differ.
2006 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2007 } else if (isa<UndefValue>(TrueValue)) {
2008 TrueValue = FalseValue;
2009 } else {
2010 TrueValue = Builder.CreateSelect(BrCond, TrueValue,
2011 FalseValue, "retval");
2012 }
2013 }
2014
2015 Value *RI = !TrueValue ?
2016 Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2017
2018 (void) RI;
2019
2020 DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2021 << "\n " << *BI << "NewRet = " << *RI
2022 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc);
2023
2024 EraseTerminatorInstAndDCECond(BI);
2025
2026 return true;
2027 }
2028
2029 /// ExtractBranchMetadata - Given a conditional BranchInstruction, retrieve the
2030 /// probabilities of the branch taking each edge. Fills in the two APInt
2031 /// parameters and return true, or returns false if no or invalid metadata was
2032 /// found.
2033 static bool ExtractBranchMetadata(BranchInst *BI,
2034 uint64_t &ProbTrue, uint64_t &ProbFalse) {
2035 assert(BI->isConditional() &&
2036 "Looking for probabilities on unconditional branch?");
2037 MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof);
2038 if (!ProfileData || ProfileData->getNumOperands() != 3) return false;
2039 ConstantInt *CITrue =
2040 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1));
2041 ConstantInt *CIFalse =
2042 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2));
2043 if (!CITrue || !CIFalse) return false;
2044 ProbTrue = CITrue->getValue().getZExtValue();
2045 ProbFalse = CIFalse->getValue().getZExtValue();
2046 return true;
2047 }
2048
2049 /// checkCSEInPredecessor - Return true if the given instruction is available
2050 /// in its predecessor block. If yes, the instruction will be removed.
2051 ///
2052 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
2053 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
2054 return false;
2055 for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) {
2056 Instruction *PBI = &*I;
2057 // Check whether Inst and PBI generate the same value.
2058 if (Inst->isIdenticalTo(PBI)) {
2059 Inst->replaceAllUsesWith(PBI);
2060 Inst->eraseFromParent();
2061 return true;
2062 }
2063 }
2064 return false;
2065 }
2066
2067 /// FoldBranchToCommonDest - If this basic block is simple enough, and if a
2068 /// predecessor branches to us and one of our successors, fold the block into
2069 /// the predecessor and use logical operations to pick the right destination.
2070 bool llvm::FoldBranchToCommonDest(BranchInst *BI, const DataLayout *DL,
2071 unsigned BonusInstThreshold) {
2072 BasicBlock *BB = BI->getParent();
2073
2074 Instruction *Cond = nullptr;
2075 if (BI->isConditional())
2076 Cond = dyn_cast<Instruction>(BI->getCondition());
2077 else {
2078 // For unconditional branch, check for a simple CFG pattern, where
2079 // BB has a single predecessor and BB's successor is also its predecessor's
2080 // successor. If such pattern exisits, check for CSE between BB and its
2081 // predecessor.
2082 if (BasicBlock *PB = BB->getSinglePredecessor())
2083 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2084 if (PBI->isConditional() &&
2085 (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2086 BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2087 for (BasicBlock::iterator I = BB->begin(), E = BB->end();
2088 I != E; ) {
2089 Instruction *Curr = I++;
2090 if (isa<CmpInst>(Curr)) {
2091 Cond = Curr;
2092 break;
2093 }
2094 // Quit if we can't remove this instruction.
2095 if (!checkCSEInPredecessor(Curr, PB))
2096 return false;
2097 }
2098 }
2099
2100 if (!Cond)
2101 return false;
2102 }
2103
2104 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2105 Cond->getParent() != BB || !Cond->hasOneUse())
2106 return false;
2107
2108 // Make sure the instruction after the condition is the cond branch.
2109 BasicBlock::iterator CondIt = Cond; ++CondIt;
2110
2111 // Ignore dbg intrinsics.
2112 while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt;
2113
2114 if (&*CondIt != BI)
2115 return false;
2116
2117 // Only allow this transformation if computing the condition doesn't involve
2118 // too many instructions and these involved instructions can be executed
2119 // unconditionally. We denote all involved instructions except the condition
2120 // as "bonus instructions", and only allow this transformation when the
2121 // number of the bonus instructions does not exceed a certain threshold.
2122 unsigned NumBonusInsts = 0;
2123 for (auto I = BB->begin(); Cond != I; ++I) {
2124 // Ignore dbg intrinsics.
2125 if (isa<DbgInfoIntrinsic>(I))
2126 continue;
2127 if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(I, DL))
2128 return false;
2129 // I has only one use and can be executed unconditionally.
2130 Instruction *User = dyn_cast<Instruction>(I->user_back());
2131 if (User == nullptr || User->getParent() != BB)
2132 return false;
2133 // I is used in the same BB. Since BI uses Cond and doesn't have more slots
2134 // to use any other instruction, User must be an instruction between next(I)
2135 // and Cond.
2136 ++NumBonusInsts;
2137 // Early exits once we reach the limit.
2138 if (NumBonusInsts > BonusInstThreshold)
2139 return false;
2140 }
2141
2142 // Cond is known to be a compare or binary operator. Check to make sure that
2143 // neither operand is a potentially-trapping constant expression.
2144 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2145 if (CE->canTrap())
2146 return false;
2147 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2148 if (CE->canTrap())
2149 return false;
2150
2151 // Finally, don't infinitely unroll conditional loops.
2152 BasicBlock *TrueDest = BI->getSuccessor(0);
2153 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2154 if (TrueDest == BB || FalseDest == BB)
2155 return false;
2156
2157 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2158 BasicBlock *PredBlock = *PI;
2159 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2160
2161 // Check that we have two conditional branches. If there is a PHI node in
2162 // the common successor, verify that the same value flows in from both
2163 // blocks.
2164 SmallVector<PHINode*, 4> PHIs;
2165 if (!PBI || PBI->isUnconditional() ||
2166 (BI->isConditional() &&
2167 !SafeToMergeTerminators(BI, PBI)) ||
2168 (!BI->isConditional() &&
2169 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2170 continue;
2171
2172 // Determine if the two branches share a common destination.
2173 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2174 bool InvertPredCond = false;
2175
2176 if (BI->isConditional()) {
2177 if (PBI->getSuccessor(0) == TrueDest)
2178 Opc = Instruction::Or;
2179 else if (PBI->getSuccessor(1) == FalseDest)
2180 Opc = Instruction::And;
2181 else if (PBI->getSuccessor(0) == FalseDest)
2182 Opc = Instruction::And, InvertPredCond = true;
2183 else if (PBI->getSuccessor(1) == TrueDest)
2184 Opc = Instruction::Or, InvertPredCond = true;
2185 else
2186 continue;
2187 } else {
2188 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2189 continue;
2190 }
2191
2192 DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2193 IRBuilder<> Builder(PBI);
2194
2195 // If we need to invert the condition in the pred block to match, do so now.
2196 if (InvertPredCond) {
2197 Value *NewCond = PBI->getCondition();
2198
2199 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2200 CmpInst *CI = cast<CmpInst>(NewCond);
2201 CI->setPredicate(CI->getInversePredicate());
2202 } else {
2203 NewCond = Builder.CreateNot(NewCond,
2204 PBI->getCondition()->getName()+".not");
2205 }
2206
2207 PBI->setCondition(NewCond);
2208 PBI->swapSuccessors();
2209 }
2210
2211 // If we have bonus instructions, clone them into the predecessor block.
2212 // Note that there may be mutliple predecessor blocks, so we cannot move
2213 // bonus instructions to a predecessor block.
2214 ValueToValueMapTy VMap; // maps original values to cloned values
2215 // We already make sure Cond is the last instruction before BI. Therefore,
2216 // every instructions before Cond other than DbgInfoIntrinsic are bonus
2217 // instructions.
2218 for (auto BonusInst = BB->begin(); Cond != BonusInst; ++BonusInst) {
2219 if (isa<DbgInfoIntrinsic>(BonusInst))
2220 continue;
2221 Instruction *NewBonusInst = BonusInst->clone();
2222 RemapInstruction(NewBonusInst, VMap,
2223 RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
2224 VMap[BonusInst] = NewBonusInst;
2225
2226 // If we moved a load, we cannot any longer claim any knowledge about
2227 // its potential value. The previous information might have been valid
2228 // only given the branch precondition.
2229 // For an analogous reason, we must also drop all the metadata whose
2230 // semantics we don't understand.
2231 NewBonusInst->dropUnknownMetadata(LLVMContext::MD_dbg);
2232
2233 PredBlock->getInstList().insert(PBI, NewBonusInst);
2234 NewBonusInst->takeName(BonusInst);
2235 BonusInst->setName(BonusInst->getName() + ".old");
2236 }
2237
2238 // Clone Cond into the predecessor basic block, and or/and the
2239 // two conditions together.
2240 Instruction *New = Cond->clone();
2241 RemapInstruction(New, VMap,
2242 RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
2243 PredBlock->getInstList().insert(PBI, New);
2244 New->takeName(Cond);
2245 Cond->setName(New->getName() + ".old");
2246
2247 if (BI->isConditional()) {
2248 Instruction *NewCond =
2249 cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(),
2250 New, "or.cond"));
2251 PBI->setCondition(NewCond);
2252
2253 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2254 bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight,
2255 PredFalseWeight);
2256 bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight,
2257 SuccFalseWeight);
2258 SmallVector<uint64_t, 8> NewWeights;
2259
2260 if (PBI->getSuccessor(0) == BB) {
2261 if (PredHasWeights && SuccHasWeights) {
2262 // PBI: br i1 %x, BB, FalseDest
2263 // BI: br i1 %y, TrueDest, FalseDest
2264 //TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2265 NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2266 //FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2267 // TrueWeight for PBI * FalseWeight for BI.
2268 // We assume that total weights of a BranchInst can fit into 32 bits.
2269 // Therefore, we will not have overflow using 64-bit arithmetic.
2270 NewWeights.push_back(PredFalseWeight * (SuccFalseWeight +
2271 SuccTrueWeight) + PredTrueWeight * SuccFalseWeight);
2272 }
2273 AddPredecessorToBlock(TrueDest, PredBlock, BB);
2274 PBI->setSuccessor(0, TrueDest);
2275 }
2276 if (PBI->getSuccessor(1) == BB) {
2277 if (PredHasWeights && SuccHasWeights) {
2278 // PBI: br i1 %x, TrueDest, BB
2279 // BI: br i1 %y, TrueDest, FalseDest
2280 //TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2281 // FalseWeight for PBI * TrueWeight for BI.
2282 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight +
2283 SuccTrueWeight) + PredFalseWeight * SuccTrueWeight);
2284 //FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2285 NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2286 }
2287 AddPredecessorToBlock(FalseDest, PredBlock, BB);
2288 PBI->setSuccessor(1, FalseDest);
2289 }
2290 if (NewWeights.size() == 2) {
2291 // Halve the weights if any of them cannot fit in an uint32_t
2292 FitWeights(NewWeights);
2293
2294 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),NewWeights.end());
2295 PBI->setMetadata(LLVMContext::MD_prof,
2296 MDBuilder(BI->getContext()).
2297 createBranchWeights(MDWeights));
2298 } else
2299 PBI->setMetadata(LLVMContext::MD_prof, nullptr);
2300 } else {
2301 // Update PHI nodes in the common successors.
2302 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2303 ConstantInt *PBI_C = cast<ConstantInt>(
2304 PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2305 assert(PBI_C->getType()->isIntegerTy(1));
2306 Instruction *MergedCond = nullptr;
2307 if (PBI->getSuccessor(0) == TrueDest) {
2308 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2309 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2310 // is false: !PBI_Cond and BI_Value
2311 Instruction *NotCond =
2312 cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
2313 "not.cond"));
2314 MergedCond =
2315 cast<Instruction>(Builder.CreateBinOp(Instruction::And,
2316 NotCond, New,
2317 "and.cond"));
2318 if (PBI_C->isOne())
2319 MergedCond =
2320 cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
2321 PBI->getCondition(), MergedCond,
2322 "or.cond"));
2323 } else {
2324 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2325 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2326 // is false: PBI_Cond and BI_Value
2327 MergedCond =
2328 cast<Instruction>(Builder.CreateBinOp(Instruction::And,
2329 PBI->getCondition(), New,
2330 "and.cond"));
2331 if (PBI_C->isOne()) {
2332 Instruction *NotCond =
2333 cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
2334 "not.cond"));
2335 MergedCond =
2336 cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
2337 NotCond, MergedCond,
2338 "or.cond"));
2339 }
2340 }
2341 // Update PHI Node.
2342 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
2343 MergedCond);
2344 }
2345 // Change PBI from Conditional to Unconditional.
2346 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2347 EraseTerminatorInstAndDCECond(PBI);
2348 PBI = New_PBI;
2349 }
2350
2351 // TODO: If BB is reachable from all paths through PredBlock, then we
2352 // could replace PBI's branch probabilities with BI's.
2353
2354 // Copy any debug value intrinsics into the end of PredBlock.
2355 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
2356 if (isa<DbgInfoIntrinsic>(*I))
2357 I->clone()->insertBefore(PBI);
2358
2359 return true;
2360 }
2361 return false;
2362 }
2363
2364 /// SimplifyCondBranchToCondBranch - If we have a conditional branch as a
2365 /// predecessor of another block, this function tries to simplify it. We know
2366 /// that PBI and BI are both conditional branches, and BI is in one of the
2367 /// successor blocks of PBI - PBI branches to BI.
2368 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
2369 assert(PBI->isConditional() && BI->isConditional());
2370 BasicBlock *BB = BI->getParent();
2371
2372 // If this block ends with a branch instruction, and if there is a
2373 // predecessor that ends on a branch of the same condition, make
2374 // this conditional branch redundant.
2375 if (PBI->getCondition() == BI->getCondition() &&
2376 PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
2377 // Okay, the outcome of this conditional branch is statically
2378 // knowable. If this block had a single pred, handle specially.
2379 if (BB->getSinglePredecessor()) {
2380 // Turn this into a branch on constant.
2381 bool CondIsTrue = PBI->getSuccessor(0) == BB;
2382 BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
2383 CondIsTrue));
2384 return true; // Nuke the branch on constant.
2385 }
2386
2387 // Otherwise, if there are multiple predecessors, insert a PHI that merges
2388 // in the constant and simplify the block result. Subsequent passes of
2389 // simplifycfg will thread the block.
2390 if (BlockIsSimpleEnoughToThreadThrough(BB)) {
2391 pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
2392 PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()),
2393 std::distance(PB, PE),
2394 BI->getCondition()->getName() + ".pr",
2395 BB->begin());
2396 // Okay, we're going to insert the PHI node. Since PBI is not the only
2397 // predecessor, compute the PHI'd conditional value for all of the preds.
2398 // Any predecessor where the condition is not computable we keep symbolic.
2399 for (pred_iterator PI = PB; PI != PE; ++PI) {
2400 BasicBlock *P = *PI;
2401 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) &&
2402 PBI != BI && PBI->isConditional() &&
2403 PBI->getCondition() == BI->getCondition() &&
2404 PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
2405 bool CondIsTrue = PBI->getSuccessor(0) == BB;
2406 NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
2407 CondIsTrue), P);
2408 } else {
2409 NewPN->addIncoming(BI->getCondition(), P);
2410 }
2411 }
2412
2413 BI->setCondition(NewPN);
2414 return true;
2415 }
2416 }
2417
2418 // If this is a conditional branch in an empty block, and if any
2419 // predecessors are a conditional branch to one of our destinations,
2420 // fold the conditions into logical ops and one cond br.
2421 BasicBlock::iterator BBI = BB->begin();
2422 // Ignore dbg intrinsics.
2423 while (isa<DbgInfoIntrinsic>(BBI))
2424 ++BBI;
2425 if (&*BBI != BI)
2426 return false;
2427
2428
2429 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
2430 if (CE->canTrap())
2431 return false;
2432
2433 int PBIOp, BIOp;
2434 if (PBI->getSuccessor(0) == BI->getSuccessor(0))
2435 PBIOp = BIOp = 0;
2436 else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
2437 PBIOp = 0, BIOp = 1;
2438 else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
2439 PBIOp = 1, BIOp = 0;
2440 else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
2441 PBIOp = BIOp = 1;
2442 else
2443 return false;
2444
2445 // Check to make sure that the other destination of this branch
2446 // isn't BB itself. If so, this is an infinite loop that will
2447 // keep getting unwound.
2448 if (PBI->getSuccessor(PBIOp) == BB)
2449 return false;
2450
2451 // Do not perform this transformation if it would require
2452 // insertion of a large number of select instructions. For targets
2453 // without predication/cmovs, this is a big pessimization.
2454
2455 // Also do not perform this transformation if any phi node in the common
2456 // destination block can trap when reached by BB or PBB (PR17073). In that
2457 // case, it would be unsafe to hoist the operation into a select instruction.
2458
2459 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
2460 unsigned NumPhis = 0;
2461 for (BasicBlock::iterator II = CommonDest->begin();
2462 isa<PHINode>(II); ++II, ++NumPhis) {
2463 if (NumPhis > 2) // Disable this xform.
2464 return false;
2465
2466 PHINode *PN = cast<PHINode>(II);
2467 Value *BIV = PN->getIncomingValueForBlock(BB);
2468 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
2469 if (CE->canTrap())
2470 return false;
2471
2472 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
2473 Value *PBIV = PN->getIncomingValue(PBBIdx);
2474 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
2475 if (CE->canTrap())
2476 return false;
2477 }
2478
2479 // Finally, if everything is ok, fold the branches to logical ops.
2480 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
2481
2482 DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
2483 << "AND: " << *BI->getParent());
2484
2485
2486 // If OtherDest *is* BB, then BB is a basic block with a single conditional
2487 // branch in it, where one edge (OtherDest) goes back to itself but the other
2488 // exits. We don't *know* that the program avoids the infinite loop
2489 // (even though that seems likely). If we do this xform naively, we'll end up
2490 // recursively unpeeling the loop. Since we know that (after the xform is
2491 // done) that the block *is* infinite if reached, we just make it an obviously
2492 // infinite loop with no cond branch.
2493 if (OtherDest == BB) {
2494 // Insert it at the end of the function, because it's either code,
2495 // or it won't matter if it's hot. :)
2496 BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(),
2497 "infloop", BB->getParent());
2498 BranchInst::Create(InfLoopBlock, InfLoopBlock);
2499 OtherDest = InfLoopBlock;
2500 }
2501
2502 DEBUG(dbgs() << *PBI->getParent()->getParent());
2503
2504 // BI may have other predecessors. Because of this, we leave
2505 // it alone, but modify PBI.
2506
2507 // Make sure we get to CommonDest on True&True directions.
2508 Value *PBICond = PBI->getCondition();
2509 IRBuilder<true, NoFolder> Builder(PBI);
2510 if (PBIOp)
2511 PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not");
2512
2513 Value *BICond = BI->getCondition();
2514 if (BIOp)
2515 BICond = Builder.CreateNot(BICond, BICond->getName()+".not");
2516
2517 // Merge the conditions.
2518 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
2519
2520 // Modify PBI to branch on the new condition to the new dests.
2521 PBI->setCondition(Cond);
2522 PBI->setSuccessor(0, CommonDest);
2523 PBI->setSuccessor(1, OtherDest);
2524
2525 // Update branch weight for PBI.
2526 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2527 bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight,
2528 PredFalseWeight);
2529 bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight,
2530 SuccFalseWeight);
2531 if (PredHasWeights && SuccHasWeights) {
2532 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
2533 uint64_t PredOther = PBIOp ?PredTrueWeight : PredFalseWeight;
2534 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
2535 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
2536 // The weight to CommonDest should be PredCommon * SuccTotal +
2537 // PredOther * SuccCommon.
2538 // The weight to OtherDest should be PredOther * SuccOther.
2539 SmallVector<uint64_t, 2> NewWeights;
2540 NewWeights.push_back(PredCommon * (SuccCommon + SuccOther) +
2541 PredOther * SuccCommon);
2542 NewWeights.push_back(PredOther * SuccOther);
2543 // Halve the weights if any of them cannot fit in an uint32_t
2544 FitWeights(NewWeights);
2545
2546 SmallVector<uint32_t, 2> MDWeights(NewWeights.begin(),NewWeights.end());
2547 PBI->setMetadata(LLVMContext::MD_prof,
2548 MDBuilder(BI->getContext()).
2549 createBranchWeights(MDWeights));
2550 }
2551
2552 // OtherDest may have phi nodes. If so, add an entry from PBI's
2553 // block that are identical to the entries for BI's block.
2554 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
2555
2556 // We know that the CommonDest already had an edge from PBI to
2557 // it. If it has PHIs though, the PHIs may have different
2558 // entries for BB and PBI's BB. If so, insert a select to make
2559 // them agree.
2560 PHINode *PN;
2561 for (BasicBlock::iterator II = CommonDest->begin();
2562 (PN = dyn_cast<PHINode>(II)); ++II) {
2563 Value *BIV = PN->getIncomingValueForBlock(BB);
2564 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
2565 Value *PBIV = PN->getIncomingValue(PBBIdx);
2566 if (BIV != PBIV) {
2567 // Insert a select in PBI to pick the right value.
2568 Value *NV = cast<SelectInst>
2569 (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux"));
2570 PN->setIncomingValue(PBBIdx, NV);
2571 }
2572 }
2573
2574 DEBUG(dbgs() << "INTO: " << *PBI->getParent());
2575 DEBUG(dbgs() << *PBI->getParent()->getParent());
2576
2577 // This basic block is probably dead. We know it has at least
2578 // one fewer predecessor.
2579 return true;
2580 }
2581
2582 // SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a
2583 // branch to TrueBB if Cond is true or to FalseBB if Cond is false.
2584 // Takes care of updating the successors and removing the old terminator.
2585 // Also makes sure not to introduce new successors by assuming that edges to
2586 // non-successor TrueBBs and FalseBBs aren't reachable.
2587 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
2588 BasicBlock *TrueBB, BasicBlock *FalseBB,
2589 uint32_t TrueWeight,
2590 uint32_t FalseWeight){
2591 // Remove any superfluous successor edges from the CFG.
2592 // First, figure out which successors to preserve.
2593 // If TrueBB and FalseBB are equal, only try to preserve one copy of that
2594 // successor.
2595 BasicBlock *KeepEdge1 = TrueBB;
2596 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
2597
2598 // Then remove the rest.
2599 for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) {
2600 BasicBlock *Succ = OldTerm->getSuccessor(I);
2601 // Make sure only to keep exactly one copy of each edge.
2602 if (Succ == KeepEdge1)
2603 KeepEdge1 = nullptr;
2604 else if (Succ == KeepEdge2)
2605 KeepEdge2 = nullptr;
2606 else
2607 Succ->removePredecessor(OldTerm->getParent());
2608 }
2609
2610 IRBuilder<> Builder(OldTerm);
2611 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
2612
2613 // Insert an appropriate new terminator.
2614 if (!KeepEdge1 && !KeepEdge2) {
2615 if (TrueBB == FalseBB)
2616 // We were only looking for one successor, and it was present.
2617 // Create an unconditional branch to it.
2618 Builder.CreateBr(TrueBB);
2619 else {
2620 // We found both of the successors we were looking for.
2621 // Create a conditional branch sharing the condition of the select.
2622 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
2623 if (TrueWeight != FalseWeight)
2624 NewBI->setMetadata(LLVMContext::MD_prof,
2625 MDBuilder(OldTerm->getContext()).
2626 createBranchWeights(TrueWeight, FalseWeight));
2627 }
2628 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
2629 // Neither of the selected blocks were successors, so this
2630 // terminator must be unreachable.
2631 new UnreachableInst(OldTerm->getContext(), OldTerm);
2632 } else {
2633 // One of the selected values was a successor, but the other wasn't.
2634 // Insert an unconditional branch to the one that was found;
2635 // the edge to the one that wasn't must be unreachable.
2636 if (!KeepEdge1)
2637 // Only TrueBB was found.
2638 Builder.CreateBr(TrueBB);
2639 else
2640 // Only FalseBB was found.
2641 Builder.CreateBr(FalseBB);
2642 }
2643
2644 EraseTerminatorInstAndDCECond(OldTerm);
2645 return true;
2646 }
2647
2648 // SimplifySwitchOnSelect - Replaces
2649 // (switch (select cond, X, Y)) on constant X, Y
2650 // with a branch - conditional if X and Y lead to distinct BBs,
2651 // unconditional otherwise.
2652 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
2653 // Check for constant integer values in the select.
2654 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
2655 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
2656 if (!TrueVal || !FalseVal)
2657 return false;
2658
2659 // Find the relevant condition and destinations.
2660 Value *Condition = Select->getCondition();
2661 BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor();
2662 BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor();
2663
2664 // Get weight for TrueBB and FalseBB.
2665 uint32_t TrueWeight = 0, FalseWeight = 0;
2666 SmallVector<uint64_t, 8> Weights;
2667 bool HasWeights = HasBranchWeights(SI);
2668 if (HasWeights) {
2669 GetBranchWeights(SI, Weights);
2670 if (Weights.size() == 1 + SI->getNumCases()) {
2671 TrueWeight = (uint32_t)Weights[SI->findCaseValue(TrueVal).
2672 getSuccessorIndex()];
2673 FalseWeight = (uint32_t)Weights[SI->findCaseValue(FalseVal).
2674 getSuccessorIndex()];
2675 }
2676 }
2677
2678 // Perform the actual simplification.
2679 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB,
2680 TrueWeight, FalseWeight);
2681 }
2682
2683 // SimplifyIndirectBrOnSelect - Replaces
2684 // (indirectbr (select cond, blockaddress(@fn, BlockA),
2685 // blockaddress(@fn, BlockB)))
2686 // with
2687 // (br cond, BlockA, BlockB).
2688 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
2689 // Check that both operands of the select are block addresses.
2690 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
2691 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
2692 if (!TBA || !FBA)
2693 return false;
2694
2695 // Extract the actual blocks.
2696 BasicBlock *TrueBB = TBA->getBasicBlock();
2697 BasicBlock *FalseBB = FBA->getBasicBlock();
2698
2699 // Perform the actual simplification.
2700 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB,
2701 0, 0);
2702 }
2703
2704 /// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp
2705 /// instruction (a seteq/setne with a constant) as the only instruction in a
2706 /// block that ends with an uncond branch. We are looking for a very specific
2707 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In
2708 /// this case, we merge the first two "or's of icmp" into a switch, but then the
2709 /// default value goes to an uncond block with a seteq in it, we get something
2710 /// like:
2711 ///
2712 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ]
2713 /// DEFAULT:
2714 /// %tmp = icmp eq i8 %A, 92
2715 /// br label %end
2716 /// end:
2717 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
2718 ///
2719 /// We prefer to split the edge to 'end' so that there is a true/false entry to
2720 /// the PHI, merging the third icmp into the switch.
2721 static bool TryToSimplifyUncondBranchWithICmpInIt(
2722 ICmpInst *ICI, IRBuilder<> &Builder, const TargetTransformInfo &TTI,
2723 unsigned BonusInstThreshold, const DataLayout *DL, AssumptionCache *AC) {
2724 BasicBlock *BB = ICI->getParent();
2725
2726 // If the block has any PHIs in it or the icmp has multiple uses, it is too
2727 // complex.
2728 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false;
2729
2730 Value *V = ICI->getOperand(0);
2731 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
2732
2733 // The pattern we're looking for is where our only predecessor is a switch on
2734 // 'V' and this block is the default case for the switch. In this case we can
2735 // fold the compared value into the switch to simplify things.
2736 BasicBlock *Pred = BB->getSinglePredecessor();
2737 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) return false;
2738
2739 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
2740 if (SI->getCondition() != V)
2741 return false;
2742
2743 // If BB is reachable on a non-default case, then we simply know the value of
2744 // V in this block. Substitute it and constant fold the icmp instruction
2745 // away.
2746 if (SI->getDefaultDest() != BB) {
2747 ConstantInt *VVal = SI->findCaseDest(BB);
2748 assert(VVal && "Should have a unique destination value");
2749 ICI->setOperand(0, VVal);
2750
2751 if (Value *V = SimplifyInstruction(ICI, DL)) {
2752 ICI->replaceAllUsesWith(V);
2753 ICI->eraseFromParent();
2754 }
2755 // BB is now empty, so it is likely to simplify away.
2756 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
2757 }
2758
2759 // Ok, the block is reachable from the default dest. If the constant we're
2760 // comparing exists in one of the other edges, then we can constant fold ICI
2761 // and zap it.
2762 if (SI->findCaseValue(Cst) != SI->case_default()) {
2763 Value *V;
2764 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
2765 V = ConstantInt::getFalse(BB->getContext());
2766 else
2767 V = ConstantInt::getTrue(BB->getContext());
2768
2769 ICI->replaceAllUsesWith(V);
2770 ICI->eraseFromParent();
2771 // BB is now empty, so it is likely to simplify away.
2772 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
2773 }
2774
2775 // The use of the icmp has to be in the 'end' block, by the only PHI node in
2776 // the block.
2777 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
2778 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
2779 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
2780 isa<PHINode>(++BasicBlock::iterator(PHIUse)))
2781 return false;
2782
2783 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
2784 // true in the PHI.
2785 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
2786 Constant *NewCst = ConstantInt::getFalse(BB->getContext());
2787
2788 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
2789 std::swap(DefaultCst, NewCst);
2790
2791 // Replace ICI (which is used by the PHI for the default value) with true or
2792 // false depending on if it is EQ or NE.
2793 ICI->replaceAllUsesWith(DefaultCst);
2794 ICI->eraseFromParent();
2795
2796 // Okay, the switch goes to this block on a default value. Add an edge from
2797 // the switch to the merge point on the compared value.
2798 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge",
2799 BB->getParent(), BB);
2800 SmallVector<uint64_t, 8> Weights;
2801 bool HasWeights = HasBranchWeights(SI);
2802 if (HasWeights) {
2803 GetBranchWeights(SI, Weights);
2804 if (Weights.size() == 1 + SI->getNumCases()) {
2805 // Split weight for default case to case for "Cst".
2806 Weights[0] = (Weights[0]+1) >> 1;
2807 Weights.push_back(Weights[0]);
2808
2809 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
2810 SI->setMetadata(LLVMContext::MD_prof,
2811 MDBuilder(SI->getContext()).
2812 createBranchWeights(MDWeights));
2813 }
2814 }
2815 SI->addCase(Cst, NewBB);
2816
2817 // NewBB branches to the phi block, add the uncond branch and the phi entry.
2818 Builder.SetInsertPoint(NewBB);
2819 Builder.SetCurrentDebugLocation(SI->getDebugLoc());
2820 Builder.CreateBr(SuccBlock);
2821 PHIUse->addIncoming(NewCst, NewBB);
2822 return true;
2823 }
2824
2825 /// SimplifyBranchOnICmpChain - The specified branch is a conditional branch.
2826 /// Check to see if it is branching on an or/and chain of icmp instructions, and
2827 /// fold it into a switch instruction if so.
2828 static bool SimplifyBranchOnICmpChain(BranchInst *BI, const DataLayout *DL,
2829 IRBuilder<> &Builder) {
2830 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
2831 if (!Cond) return false;
2832
2833 // Change br (X == 0 | X == 1), T, F into a switch instruction.
2834 // If this is a bunch of seteq's or'd together, or if it's a bunch of
2835 // 'setne's and'ed together, collect them.
2836
2837 // Try to gather values from a chain of and/or to be turned into a switch
2838 ConstantComparesGatherer ConstantCompare(Cond, DL);
2839 // Unpack the result
2840 SmallVectorImpl<ConstantInt*> &Values = ConstantCompare.Vals;
2841 Value *CompVal = ConstantCompare.CompValue;
2842 unsigned UsedICmps = ConstantCompare.UsedICmps;
2843 Value *ExtraCase = ConstantCompare.Extra;
2844
2845 // If we didn't have a multiply compared value, fail.
2846 if (!CompVal) return false;
2847
2848 // Avoid turning single icmps into a switch.
2849 if (UsedICmps <= 1)
2850 return false;
2851
2852 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
2853
2854 // There might be duplicate constants in the list, which the switch
2855 // instruction can't handle, remove them now.
2856 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
2857 Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
2858
2859 // If Extra was used, we require at least two switch values to do the
2860 // transformation. A switch with one value is just an cond branch.
2861 if (ExtraCase && Values.size() < 2) return false;
2862
2863 // TODO: Preserve branch weight metadata, similarly to how
2864 // FoldValueComparisonIntoPredecessors preserves it.
2865
2866 // Figure out which block is which destination.
2867 BasicBlock *DefaultBB = BI->getSuccessor(1);
2868 BasicBlock *EdgeBB = BI->getSuccessor(0);
2869 if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
2870
2871 BasicBlock *BB = BI->getParent();
2872
2873 DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
2874 << " cases into SWITCH. BB is:\n" << *BB);
2875
2876 // If there are any extra values that couldn't be folded into the switch
2877 // then we evaluate them with an explicit branch first. Split the block
2878 // right before the condbr to handle it.
2879 if (ExtraCase) {
2880 BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test");
2881 // Remove the uncond branch added to the old block.
2882 TerminatorInst *OldTI = BB->getTerminator();
2883 Builder.SetInsertPoint(OldTI);
2884
2885 if (TrueWhenEqual)
2886 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
2887 else
2888 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
2889
2890 OldTI->eraseFromParent();
2891
2892 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
2893 // for the edge we just added.
2894 AddPredecessorToBlock(EdgeBB, BB, NewBB);
2895
2896 DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase
2897 << "\nEXTRABB = " << *BB);
2898 BB = NewBB;
2899 }
2900
2901 Builder.SetInsertPoint(BI);
2902 // Convert pointer to int before we switch.
2903 if (CompVal->getType()->isPointerTy()) {
2904 assert(DL && "Cannot switch on pointer without DataLayout");
2905 CompVal = Builder.CreatePtrToInt(CompVal,
2906 DL->getIntPtrType(CompVal->getType()),
2907 "magicptr");
2908 }
2909
2910 // Create the new switch instruction now.
2911 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
2912
2913 // Add all of the 'cases' to the switch instruction.
2914 for (unsigned i = 0, e = Values.size(); i != e; ++i)
2915 New->addCase(Values[i], EdgeBB);
2916
2917 // We added edges from PI to the EdgeBB. As such, if there were any
2918 // PHI nodes in EdgeBB, they need entries to be added corresponding to
2919 // the number of edges added.
2920 for (BasicBlock::iterator BBI = EdgeBB->begin();
2921 isa<PHINode>(BBI); ++BBI) {
2922 PHINode *PN = cast<PHINode>(BBI);
2923 Value *InVal = PN->getIncomingValueForBlock(BB);
2924 for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
2925 PN->addIncoming(InVal, BB);
2926 }
2927
2928 // Erase the old branch instruction.
2929 EraseTerminatorInstAndDCECond(BI);
2930
2931 DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n');
2932 return true;
2933 }
2934
2935 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
2936 // If this is a trivial landing pad that just continues unwinding the caught
2937 // exception then zap the landing pad, turning its invokes into calls.
2938 BasicBlock *BB = RI->getParent();
2939 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
2940 if (RI->getValue() != LPInst)
2941 // Not a landing pad, or the resume is not unwinding the exception that
2942 // caused control to branch here.
2943 return false;
2944
2945 // Check that there are no other instructions except for debug intrinsics.
2946 BasicBlock::iterator I = LPInst, E = RI;
2947 while (++I != E)
2948 if (!isa<DbgInfoIntrinsic>(I))
2949 return false;
2950
2951 // Turn all invokes that unwind here into calls and delete the basic block.
2952 bool InvokeRequiresTableEntry = false;
2953 bool Changed = false;
2954 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
2955 InvokeInst *II = cast<InvokeInst>((*PI++)->getTerminator());
2956
2957 if (II->hasFnAttr(Attribute::UWTable)) {
2958 // Don't remove an `invoke' instruction if the ABI requires an entry into
2959 // the table.
2960 InvokeRequiresTableEntry = true;
2961 continue;
2962 }
2963
2964 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3);
2965
2966 // Insert a call instruction before the invoke.
2967 CallInst *Call = CallInst::Create(II->getCalledValue(), Args, "", II);
2968 Call->takeName(II);
2969 Call->setCallingConv(II->getCallingConv());
2970 Call->setAttributes(II->getAttributes());
2971 Call->setDebugLoc(II->getDebugLoc());
2972
2973 // Anything that used the value produced by the invoke instruction now uses
2974 // the value produced by the call instruction. Note that we do this even
2975 // for void functions and calls with no uses so that the callgraph edge is
2976 // updated.
2977 II->replaceAllUsesWith(Call);
2978 BB->removePredecessor(II->getParent());
2979
2980 // Insert a branch to the normal destination right before the invoke.
2981 BranchInst::Create(II->getNormalDest(), II);
2982
2983 // Finally, delete the invoke instruction!
2984 II->eraseFromParent();
2985 Changed = true;
2986 }
2987
2988 if (!InvokeRequiresTableEntry)
2989 // The landingpad is now unreachable. Zap it.
2990 BB->eraseFromParent();
2991
2992 return Changed;
2993 }
2994
2995 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
2996 BasicBlock *BB = RI->getParent();
2997 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
2998
2999 // Find predecessors that end with branches.
3000 SmallVector<BasicBlock*, 8> UncondBranchPreds;
3001 SmallVector<BranchInst*, 8> CondBranchPreds;
3002 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
3003 BasicBlock *P = *PI;
3004 TerminatorInst *PTI = P->getTerminator();
3005 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
3006 if (BI->isUnconditional())
3007 UncondBranchPreds.push_back(P);
3008 else
3009 CondBranchPreds.push_back(BI);
3010 }
3011 }
3012
3013 // If we found some, do the transformation!
3014 if (!UncondBranchPreds.empty() && DupRet) {
3015 while (!UncondBranchPreds.empty()) {
3016 BasicBlock *Pred = UncondBranchPreds.pop_back_val();
3017 DEBUG(dbgs() << "FOLDING: " << *BB
3018 << "INTO UNCOND BRANCH PRED: " << *Pred);
3019 (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
3020 }
3021
3022 // If we eliminated all predecessors of the block, delete the block now.
3023 if (pred_empty(BB))
3024 // We know there are no successors, so just nuke the block.
3025 BB->eraseFromParent();
3026
3027 return true;
3028 }
3029
3030 // Check out all of the conditional branches going to this return
3031 // instruction. If any of them just select between returns, change the
3032 // branch itself into a select/return pair.
3033 while (!CondBranchPreds.empty()) {
3034 BranchInst *BI = CondBranchPreds.pop_back_val();
3035
3036 // Check to see if the non-BB successor is also a return block.
3037 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
3038 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
3039 SimplifyCondBranchToTwoReturns(BI, Builder))
3040 return true;
3041 }
3042 return false;
3043 }
3044
3045 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
3046 BasicBlock *BB = UI->getParent();
3047
3048 bool Changed = false;
3049
3050 // If there are any instructions immediately before the unreachable that can
3051 // be removed, do so.
3052 while (UI != BB->begin()) {
3053 BasicBlock::iterator BBI = UI;
3054 --BBI;
3055 // Do not delete instructions that can have side effects which might cause
3056 // the unreachable to not be reachable; specifically, calls and volatile
3057 // operations may have this effect.
3058 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break;
3059
3060 if (BBI->mayHaveSideEffects()) {
3061 if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
3062 if (SI->isVolatile())
3063 break;
3064 } else if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
3065 if (LI->isVolatile())
3066 break;
3067 } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
3068 if (RMWI->isVolatile())
3069 break;
3070 } else if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
3071 if (CXI->isVolatile())
3072 break;
3073 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
3074 !isa<LandingPadInst>(BBI)) {
3075 break;
3076 }
3077 // Note that deleting LandingPad's here is in fact okay, although it
3078 // involves a bit of subtle reasoning. If this inst is a LandingPad,
3079 // all the predecessors of this block will be the unwind edges of Invokes,
3080 // and we can therefore guarantee this block will be erased.
3081 }
3082
3083 // Delete this instruction (any uses are guaranteed to be dead)
3084 if (!BBI->use_empty())
3085 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
3086 BBI->eraseFromParent();
3087 Changed = true;
3088 }
3089
3090 // If the unreachable instruction is the first in the block, take a gander
3091 // at all of the predecessors of this instruction, and simplify them.
3092 if (&BB->front() != UI) return Changed;
3093
3094 SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
3095 for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
3096 TerminatorInst *TI = Preds[i]->getTerminator();
3097 IRBuilder<> Builder(TI);
3098 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
3099 if (BI->isUnconditional()) {
3100 if (BI->getSuccessor(0) == BB) {
3101 new UnreachableInst(TI->getContext(), TI);
3102 TI->eraseFromParent();
3103 Changed = true;
3104 }
3105 } else {
3106 if (BI->getSuccessor(0) == BB) {
3107 Builder.CreateBr(BI->getSuccessor(1));
3108 EraseTerminatorInstAndDCECond(BI);
3109 } else if (BI->getSuccessor(1) == BB) {
3110 Builder.CreateBr(BI->getSuccessor(0));
3111 EraseTerminatorInstAndDCECond(BI);
3112 Changed = true;
3113 }
3114 }
3115 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
3116 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
3117 i != e; ++i)
3118 if (i.getCaseSuccessor() == BB) {
3119 BB->removePredecessor(SI->getParent());
3120 SI->removeCase(i);
3121 --i; --e;
3122 Changed = true;
3123 }
3124 // If the default value is unreachable, figure out the most popular
3125 // destination and make it the default.
3126 if (SI->getDefaultDest() == BB) {
3127 std::map<BasicBlock*, std::pair<unsigned, unsigned> > Popularity;
3128 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
3129 i != e; ++i) {
3130 std::pair<unsigned, unsigned> &entry =
3131 Popularity[i.getCaseSuccessor()];
3132 if (entry.first == 0) {
3133 entry.first = 1;
3134 entry.second = i.getCaseIndex();
3135 } else {
3136 entry.first++;
3137 }
3138 }
3139
3140 // Find the most popular block.
3141 unsigned MaxPop = 0;
3142 unsigned MaxIndex = 0;
3143 BasicBlock *MaxBlock = nullptr;
3144 for (std::map<BasicBlock*, std::pair<unsigned, unsigned> >::iterator
3145 I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
3146 if (I->second.first > MaxPop ||
3147 (I->second.first == MaxPop && MaxIndex > I->second.second)) {
3148 MaxPop = I->second.first;
3149 MaxIndex = I->second.second;
3150 MaxBlock = I->first;
3151 }
3152 }
3153 if (MaxBlock) {
3154 // Make this the new default, allowing us to delete any explicit
3155 // edges to it.
3156 SI->setDefaultDest(MaxBlock);
3157 Changed = true;
3158
3159 // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
3160 // it.
3161 if (isa<PHINode>(MaxBlock->begin()))
3162 for (unsigned i = 0; i != MaxPop-1; ++i)
3163 MaxBlock->removePredecessor(SI->getParent());
3164
3165 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
3166 i != e; ++i)
3167 if (i.getCaseSuccessor() == MaxBlock) {
3168 SI->removeCase(i);
3169 --i; --e;
3170 }
3171 }
3172 }
3173 } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
3174 if (II->getUnwindDest() == BB) {
3175 // Convert the invoke to a call instruction. This would be a good
3176 // place to note that the call does not throw though.
3177 BranchInst *BI = Builder.CreateBr(II->getNormalDest());
3178 II->removeFromParent(); // Take out of symbol table
3179
3180 // Insert the call now...
3181 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3);
3182 Builder.SetInsertPoint(BI);
3183 CallInst *CI = Builder.CreateCall(II->getCalledValue(),
3184 Args, II->getName());
3185 CI->setCallingConv(II->getCallingConv());
3186 CI->setAttributes(II->getAttributes());
3187 // If the invoke produced a value, the call does now instead.
3188 II->replaceAllUsesWith(CI);
3189 delete II;
3190 Changed = true;
3191 }
3192 }
3193 }
3194
3195 // If this block is now dead, remove it.
3196 if (pred_empty(BB) &&
3197 BB != &BB->getParent()->getEntryBlock()) {
3198 // We know there are no successors, so just nuke the block.
3199 BB->eraseFromParent();
3200 return true;
3201 }
3202
3203 return Changed;
3204 }
3205
3206 /// TurnSwitchRangeIntoICmp - Turns a switch with that contains only a
3207 /// integer range comparison into a sub, an icmp and a branch.
3208 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
3209 assert(SI->getNumCases() > 1 && "Degenerate switch?");
3210
3211 // Make sure all cases point to the same destination and gather the values.
3212 SmallVector<ConstantInt *, 16> Cases;
3213 SwitchInst::CaseIt I = SI->case_begin();
3214 Cases.push_back(I.getCaseValue());
3215 SwitchInst::CaseIt PrevI = I++;
3216 for (SwitchInst::CaseIt E = SI->case_end(); I != E; PrevI = I++) {
3217 if (PrevI.getCaseSuccessor() != I.getCaseSuccessor())
3218 return false;
3219 Cases.push_back(I.getCaseValue());
3220 }
3221 assert(Cases.size() == SI->getNumCases() && "Not all cases gathered");
3222
3223 // Sort the case values, then check if they form a range we can transform.
3224 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
3225 for (unsigned I = 1, E = Cases.size(); I != E; ++I) {
3226 if (Cases[I-1]->getValue() != Cases[I]->getValue()+1)
3227 return false;
3228 }
3229
3230 Constant *Offset = ConstantExpr::getNeg(Cases.back());
3231 Constant *NumCases = ConstantInt::get(Offset->getType(), SI->getNumCases());
3232
3233 Value *Sub = SI->getCondition();
3234 if (!Offset->isNullValue())
3235 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName()+".off");
3236 Value *Cmp;
3237 // If NumCases overflowed, then all possible values jump to the successor.
3238 if (NumCases->isNullValue() && SI->getNumCases() != 0)
3239 Cmp = ConstantInt::getTrue(SI->getContext());
3240 else
3241 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
3242 BranchInst *NewBI = Builder.CreateCondBr(
3243 Cmp, SI->case_begin().getCaseSuccessor(), SI->getDefaultDest());
3244
3245 // Update weight for the newly-created conditional branch.
3246 SmallVector<uint64_t, 8> Weights;
3247 bool HasWeights = HasBranchWeights(SI);
3248 if (HasWeights) {
3249 GetBranchWeights(SI, Weights);
3250 if (Weights.size() == 1 + SI->getNumCases()) {
3251 // Combine all weights for the cases to be the true weight of NewBI.
3252 // We assume that the sum of all weights for a Terminator can fit into 32
3253 // bits.
3254 uint32_t NewTrueWeight = 0;
3255 for (unsigned I = 1, E = Weights.size(); I != E; ++I)
3256 NewTrueWeight += (uint32_t)Weights[I];
3257 NewBI->setMetadata(LLVMContext::MD_prof,
3258 MDBuilder(SI->getContext()).
3259 createBranchWeights(NewTrueWeight,
3260 (uint32_t)Weights[0]));
3261 }
3262 }
3263
3264 // Prune obsolete incoming values off the successor's PHI nodes.
3265 for (BasicBlock::iterator BBI = SI->case_begin().getCaseSuccessor()->begin();
3266 isa<PHINode>(BBI); ++BBI) {
3267 for (unsigned I = 0, E = SI->getNumCases()-1; I != E; ++I)
3268 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
3269 }
3270 SI->eraseFromParent();
3271
3272 return true;
3273 }
3274
3275 /// EliminateDeadSwitchCases - Compute masked bits for the condition of a switch
3276 /// and use it to remove dead cases.
3277 static bool EliminateDeadSwitchCases(SwitchInst *SI, const DataLayout *DL,
3278 AssumptionCache *AC) {
3279 Value *Cond = SI->getCondition();
3280 unsigned Bits = Cond->getType()->getIntegerBitWidth();
3281 APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
3282 computeKnownBits(Cond, KnownZero, KnownOne, DL, 0, AC, SI);
3283
3284 // Gather dead cases.
3285 SmallVector<ConstantInt*, 8> DeadCases;
3286 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
3287 if ((I.getCaseValue()->getValue() & KnownZero) != 0 ||
3288 (I.getCaseValue()->getValue() & KnownOne) != KnownOne) {
3289 DeadCases.push_back(I.getCaseValue());
3290 DEBUG(dbgs() << "SimplifyCFG: switch case '"
3291 << I.getCaseValue() << "' is dead.\n");
3292 }
3293 }
3294
3295 SmallVector<uint64_t, 8> Weights;
3296 bool HasWeight = HasBranchWeights(SI);
3297 if (HasWeight) {
3298 GetBranchWeights(SI, Weights);
3299 HasWeight = (Weights.size() == 1 + SI->getNumCases());
3300 }
3301
3302 // Remove dead cases from the switch.
3303 for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) {
3304 SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]);
3305 assert(Case != SI->case_default() &&
3306 "Case was not found. Probably mistake in DeadCases forming.");
3307 if (HasWeight) {
3308 std::swap(Weights[Case.getCaseIndex()+1], Weights.back());
3309 Weights.pop_back();
3310 }
3311
3312 // Prune unused values from PHI nodes.
3313 Case.getCaseSuccessor()->removePredecessor(SI->getParent());
3314 SI->removeCase(Case);
3315 }
3316 if (HasWeight && Weights.size() >= 2) {
3317 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
3318 SI->setMetadata(LLVMContext::MD_prof,
3319 MDBuilder(SI->getParent()->getContext()).
3320 createBranchWeights(MDWeights));
3321 }
3322
3323 return !DeadCases.empty();
3324 }
3325
3326 /// FindPHIForConditionForwarding - If BB would be eligible for simplification
3327 /// by TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
3328 /// by an unconditional branch), look at the phi node for BB in the successor
3329 /// block and see if the incoming value is equal to CaseValue. If so, return
3330 /// the phi node, and set PhiIndex to BB's index in the phi node.
3331 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
3332 BasicBlock *BB,
3333 int *PhiIndex) {
3334 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
3335 return nullptr; // BB must be empty to be a candidate for simplification.
3336 if (!BB->getSinglePredecessor())
3337 return nullptr; // BB must be dominated by the switch.
3338
3339 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
3340 if (!Branch || !Branch->isUnconditional())
3341 return nullptr; // Terminator must be unconditional branch.
3342
3343 BasicBlock *Succ = Branch->getSuccessor(0);
3344
3345 BasicBlock::iterator I = Succ->begin();
3346 while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
3347 int Idx = PHI->getBasicBlockIndex(BB);
3348 assert(Idx >= 0 && "PHI has no entry for predecessor?");
3349
3350 Value *InValue = PHI->getIncomingValue(Idx);
3351 if (InValue != CaseValue) continue;
3352
3353 *PhiIndex = Idx;
3354 return PHI;
3355 }
3356
3357 return nullptr;
3358 }
3359
3360 /// ForwardSwitchConditionToPHI - Try to forward the condition of a switch
3361 /// instruction to a phi node dominated by the switch, if that would mean that
3362 /// some of the destination blocks of the switch can be folded away.
3363 /// Returns true if a change is made.
3364 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
3365 typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap;
3366 ForwardingNodesMap ForwardingNodes;
3367
3368 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
3369 ConstantInt *CaseValue = I.getCaseValue();
3370 BasicBlock *CaseDest = I.getCaseSuccessor();
3371
3372 int PhiIndex;
3373 PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest,
3374 &PhiIndex);
3375 if (!PHI) continue;
3376
3377 ForwardingNodes[PHI].push_back(PhiIndex);
3378 }
3379
3380 bool Changed = false;
3381
3382 for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
3383 E = ForwardingNodes.end(); I != E; ++I) {
3384 PHINode *Phi = I->first;
3385 SmallVectorImpl<int> &Indexes = I->second;
3386
3387 if (Indexes.size() < 2) continue;
3388
3389 for (size_t I = 0, E = Indexes.size(); I != E; ++I)
3390 Phi->setIncomingValue(Indexes[I], SI->getCondition());
3391 Changed = true;
3392 }
3393
3394 return Changed;
3395 }
3396
3397 /// ValidLookupTableConstant - Return true if the backend will be able to handle
3398 /// initializing an array of constants like C.
3399 static bool ValidLookupTableConstant(Constant *C) {
3400 if (C->isThreadDependent())
3401 return false;
3402 if (C->isDLLImportDependent())
3403 return false;
3404
3405 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
3406 return CE->isGEPWithNoNotionalOverIndexing();
3407
3408 return isa<ConstantFP>(C) ||
3409 isa<ConstantInt>(C) ||
3410 isa<ConstantPointerNull>(C) ||
3411 isa<GlobalValue>(C) ||
3412 isa<UndefValue>(C);
3413 }
3414
3415 /// LookupConstant - If V is a Constant, return it. Otherwise, try to look up
3416 /// its constant value in ConstantPool, returning 0 if it's not there.
3417 static Constant *LookupConstant(Value *V,
3418 const SmallDenseMap<Value*, Constant*>& ConstantPool) {
3419 if (Constant *C = dyn_cast<Constant>(V))
3420 return C;
3421 return ConstantPool.lookup(V);
3422 }
3423
3424 /// ConstantFold - Try to fold instruction I into a constant. This works for
3425 /// simple instructions such as binary operations where both operands are
3426 /// constant or can be replaced by constants from the ConstantPool. Returns the
3427 /// resulting constant on success, 0 otherwise.
3428 static Constant *
3429 ConstantFold(Instruction *I,
3430 const SmallDenseMap<Value *, Constant *> &ConstantPool,
3431 const DataLayout *DL) {
3432 if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
3433 Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
3434 if (!A)
3435 return nullptr;
3436 if (A->isAllOnesValue())
3437 return LookupConstant(Select->getTrueValue(), ConstantPool);
3438 if (A->isNullValue())
3439 return LookupConstant(Select->getFalseValue(), ConstantPool);
3440 return nullptr;
3441 }
3442
3443 SmallVector<Constant *, 4> COps;
3444 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
3445 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
3446 COps.push_back(A);
3447 else
3448 return nullptr;
3449 }
3450
3451 if (CmpInst *Cmp = dyn_cast<CmpInst>(I))
3452 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
3453 COps[1], DL);
3454
3455 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), COps, DL);
3456 }
3457
3458 /// GetCaseResults - Try to determine the resulting constant values in phi nodes
3459 /// at the common destination basic block, *CommonDest, for one of the case
3460 /// destionations CaseDest corresponding to value CaseVal (0 for the default
3461 /// case), of a switch instruction SI.
3462 static bool
3463 GetCaseResults(SwitchInst *SI,
3464 ConstantInt *CaseVal,
3465 BasicBlock *CaseDest,
3466 BasicBlock **CommonDest,
3467 SmallVectorImpl<std::pair<PHINode *, Constant *> > &Res,
3468 const DataLayout *DL) {
3469 // The block from which we enter the common destination.
3470 BasicBlock *Pred = SI->getParent();
3471
3472 // If CaseDest is empty except for some side-effect free instructions through
3473 // which we can constant-propagate the CaseVal, continue to its successor.
3474 SmallDenseMap<Value*, Constant*> ConstantPool;
3475 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
3476 for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E;
3477 ++I) {
3478 if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) {
3479 // If the terminator is a simple branch, continue to the next block.
3480 if (T->getNumSuccessors() != 1)
3481 return false;
3482 Pred = CaseDest;
3483 CaseDest = T->getSuccessor(0);
3484 } else if (isa<DbgInfoIntrinsic>(I)) {
3485 // Skip debug intrinsic.
3486 continue;
3487 } else if (Constant *C = ConstantFold(I, ConstantPool, DL)) {
3488 // Instruction is side-effect free and constant.
3489
3490 // If the instruction has uses outside this block or a phi node slot for
3491 // the block, it is not safe to bypass the instruction since it would then
3492 // no longer dominate all its uses.
3493 for (auto &Use : I->uses()) {
3494 User *User = Use.getUser();
3495 if (Instruction *I = dyn_cast<Instruction>(User))
3496 if (I->getParent() == CaseDest)
3497 continue;
3498 if (PHINode *Phi = dyn_cast<PHINode>(User))
3499 if (Phi->getIncomingBlock(Use) == CaseDest)
3500 continue;
3501 return false;
3502 }
3503
3504 ConstantPool.insert(std::make_pair(I, C));
3505 } else {
3506 break;
3507 }
3508 }
3509
3510 // If we did not have a CommonDest before, use the current one.
3511 if (!*CommonDest)
3512 *CommonDest = CaseDest;
3513 // If the destination isn't the common one, abort.
3514 if (CaseDest != *CommonDest)
3515 return false;
3516
3517 // Get the values for this case from phi nodes in the destination block.
3518 BasicBlock::iterator I = (*CommonDest)->begin();
3519 while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
3520 int Idx = PHI->getBasicBlockIndex(Pred);
3521 if (Idx == -1)
3522 continue;
3523
3524 Constant *ConstVal = LookupConstant(PHI->getIncomingValue(Idx),
3525 ConstantPool);
3526 if (!ConstVal)
3527 return false;
3528
3529 // Be conservative about which kinds of constants we support.
3530 if (!ValidLookupTableConstant(ConstVal))
3531 return false;
3532
3533 Res.push_back(std::make_pair(PHI, ConstVal));
3534 }
3535
3536 return Res.size() > 0;
3537 }
3538
3539 // MapCaseToResult - Helper function used to
3540 // add CaseVal to the list of cases that generate Result.
3541 static void MapCaseToResult(ConstantInt *CaseVal,
3542 SwitchCaseResultVectorTy &UniqueResults,
3543 Constant *Result) {
3544 for (auto &I : UniqueResults) {
3545 if (I.first == Result) {
3546 I.second.push_back(CaseVal);
3547 return;
3548 }
3549 }
3550 UniqueResults.push_back(std::make_pair(Result,
3551 SmallVector<ConstantInt*, 4>(1, CaseVal)));
3552 }
3553
3554 // InitializeUniqueCases - Helper function that initializes a map containing
3555 // results for the PHI node of the common destination block for a switch
3556 // instruction. Returns false if multiple PHI nodes have been found or if
3557 // there is not a common destination block for the switch.
3558 static bool InitializeUniqueCases(
3559 SwitchInst *SI, const DataLayout *DL, PHINode *&PHI,
3560 BasicBlock *&CommonDest,
3561 SwitchCaseResultVectorTy &UniqueResults,
3562 Constant *&DefaultResult) {
3563 for (auto &I : SI->cases()) {
3564 ConstantInt *CaseVal = I.getCaseValue();
3565
3566 // Resulting value at phi nodes for this case value.
3567 SwitchCaseResultsTy Results;
3568 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
3569 DL))
3570 return false;
3571
3572 // Only one value per case is permitted
3573 if (Results.size() > 1)
3574 return false;
3575 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
3576
3577 // Check the PHI consistency.
3578 if (!PHI)
3579 PHI = Results[0].first;
3580 else if (PHI != Results[0].first)
3581 return false;
3582 }
3583 // Find the default result value.
3584 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
3585 BasicBlock *DefaultDest = SI->getDefaultDest();
3586 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
3587 DL);
3588 // If the default value is not found abort unless the default destination
3589 // is unreachable.
3590 DefaultResult =
3591 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
3592 if ((!DefaultResult &&
3593 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
3594 return false;
3595
3596 return true;
3597 }
3598
3599 // ConvertTwoCaseSwitch - Helper function that checks if it is possible to
3600 // transform a switch with only two cases (or two cases + default)
3601 // that produces a result into a value select.
3602 // Example:
3603 // switch (a) {
3604 // case 10: %0 = icmp eq i32 %a, 10
3605 // return 10; %1 = select i1 %0, i32 10, i32 4
3606 // case 20: ----> %2 = icmp eq i32 %a, 20
3607 // return 2; %3 = select i1 %2, i32 2, i32 %1
3608 // default:
3609 // return 4;
3610 // }
3611 static Value *
3612 ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
3613 Constant *DefaultResult, Value *Condition,
3614 IRBuilder<> &Builder) {
3615 assert(ResultVector.size() == 2 &&
3616 "We should have exactly two unique results at this point");
3617 // If we are selecting between only two cases transform into a simple
3618 // select or a two-way select if default is possible.
3619 if (ResultVector[0].second.size() == 1 &&
3620 ResultVector[1].second.size() == 1) {
3621 ConstantInt *const FirstCase = ResultVector[0].second[0];
3622 ConstantInt *const SecondCase = ResultVector[1].second[0];
3623
3624 bool DefaultCanTrigger = DefaultResult;
3625 Value *SelectValue = ResultVector[1].first;
3626 if (DefaultCanTrigger) {
3627 Value *const ValueCompare =
3628 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
3629 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
3630 DefaultResult, "switch.select");
3631 }
3632 Value *const ValueCompare =
3633 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
3634 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, SelectValue,
3635 "switch.select");
3636 }
3637
3638 return nullptr;
3639 }
3640
3641 // RemoveSwitchAfterSelectConversion - Helper function to cleanup a switch
3642 // instruction that has been converted into a select, fixing up PHI nodes and
3643 // basic blocks.
3644 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
3645 Value *SelectValue,
3646 IRBuilder<> &Builder) {
3647 BasicBlock *SelectBB = SI->getParent();
3648 while (PHI->getBasicBlockIndex(SelectBB) >= 0)
3649 PHI->removeIncomingValue(SelectBB);
3650 PHI->addIncoming(SelectValue, SelectBB);
3651
3652 Builder.CreateBr(PHI->getParent());
3653
3654 // Remove the switch.
3655 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
3656 BasicBlock *Succ = SI->getSuccessor(i);
3657
3658 if (Succ == PHI->getParent())
3659 continue;
3660 Succ->removePredecessor(SelectBB);
3661 }
3662 SI->eraseFromParent();
3663 }
3664
3665 /// SwitchToSelect - If the switch is only used to initialize one or more
3666 /// phi nodes in a common successor block with only two different
3667 /// constant values, replace the switch with select.
3668 static bool SwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
3669 const DataLayout *DL, AssumptionCache *AC) {
3670 Value *const Cond = SI->getCondition();
3671 PHINode *PHI = nullptr;
3672 BasicBlock *CommonDest = nullptr;
3673 Constant *DefaultResult;
3674 SwitchCaseResultVectorTy UniqueResults;
3675 // Collect all the cases that will deliver the same value from the switch.
3676 if (!InitializeUniqueCases(SI, DL, PHI, CommonDest, UniqueResults,
3677 DefaultResult))
3678 return false;
3679 // Selects choose between maximum two values.
3680 if (UniqueResults.size() != 2)
3681 return false;
3682 assert(PHI != nullptr && "PHI for value select not found");
3683
3684 Builder.SetInsertPoint(SI);
3685 Value *SelectValue = ConvertTwoCaseSwitch(
3686 UniqueResults,
3687 DefaultResult, Cond, Builder);
3688 if (SelectValue) {
3689 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
3690 return true;
3691 }
3692 // The switch couldn't be converted into a select.
3693 return false;
3694 }
3695
3696 namespace {
3697 /// SwitchLookupTable - This class represents a lookup table that can be used
3698 /// to replace a switch.
3699 class SwitchLookupTable {
3700 public:
3701 /// SwitchLookupTable - Create a lookup table to use as a switch replacement
3702 /// with the contents of Values, using DefaultValue to fill any holes in the
3703 /// table.
3704 SwitchLookupTable(Module &M,
3705 uint64_t TableSize,
3706 ConstantInt *Offset,
3707 const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values,
3708 Constant *DefaultValue,
3709 const DataLayout *DL);
3710
3711 /// BuildLookup - Build instructions with Builder to retrieve the value at
3712 /// the position given by Index in the lookup table.
3713 Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
3714
3715 /// WouldFitInRegister - Return true if a table with TableSize elements of
3716 /// type ElementType would fit in a target-legal register.
3717 static bool WouldFitInRegister(const DataLayout *DL,
3718 uint64_t TableSize,
3719 const Type *ElementType);
3720
3721 private:
3722 // Depending on the contents of the table, it can be represented in
3723 // different ways.
3724 enum {
3725 // For tables where each element contains the same value, we just have to
3726 // store that single value and return it for each lookup.
3727 SingleValueKind,
3728
3729 // For tables where there is a linear relationship between table index
3730 // and values. We calculate the result with a simple multiplication
3731 // and addition instead of a table lookup.
3732 LinearMapKind,
3733
3734 // For small tables with integer elements, we can pack them into a bitmap
3735 // that fits into a target-legal register. Values are retrieved by
3736 // shift and mask operations.
3737 BitMapKind,
3738
3739 // The table is stored as an array of values. Values are retrieved by load
3740 // instructions from the table.
3741 ArrayKind
3742 } Kind;
3743
3744 // For SingleValueKind, this is the single value.
3745 Constant *SingleValue;
3746
3747 // For BitMapKind, this is the bitmap.
3748 ConstantInt *BitMap;
3749 IntegerType *BitMapElementTy;
3750
3751 // For LinearMapKind, these are the constants used to derive the value.
3752 ConstantInt *LinearOffset;
3753 ConstantInt *LinearMultiplier;
3754
3755 // For ArrayKind, this is the array.
3756 GlobalVariable *Array;
3757 };
3758 }
3759
3760 SwitchLookupTable::SwitchLookupTable(Module &M,
3761 uint64_t TableSize,
3762 ConstantInt *Offset,
3763 const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values,
3764 Constant *DefaultValue,
3765 const DataLayout *DL)
3766 : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr),
3767 LinearOffset(nullptr), LinearMultiplier(nullptr), Array(nullptr) {
3768 assert(Values.size() && "Can't build lookup table without values!");
3769 assert(TableSize >= Values.size() && "Can't fit values in table!");
3770
3771 // If all values in the table are equal, this is that value.
3772 SingleValue = Values.begin()->second;
3773
3774 Type *ValueType = Values.begin()->second->getType();
3775
3776 // Build up the table contents.
3777 SmallVector<Constant*, 64> TableContents(TableSize);
3778 for (size_t I = 0, E = Values.size(); I != E; ++I) {
3779 ConstantInt *CaseVal = Values[I].first;
3780 Constant *CaseRes = Values[I].second;
3781 assert(CaseRes->getType() == ValueType);
3782
3783 uint64_t Idx = (CaseVal->getValue() - Offset->getValue())
3784 .getLimitedValue();
3785 TableContents[Idx] = CaseRes;
3786
3787 if (CaseRes != SingleValue)
3788 SingleValue = nullptr;
3789 }
3790
3791 // Fill in any holes in the table with the default result.
3792 if (Values.size() < TableSize) {
3793 assert(DefaultValue &&
3794 "Need a default value to fill the lookup table holes.");
3795 assert(DefaultValue->getType() == ValueType);
3796 for (uint64_t I = 0; I < TableSize; ++I) {
3797 if (!TableContents[I])
3798 TableContents[I] = DefaultValue;
3799 }
3800
3801 if (DefaultValue != SingleValue)
3802 SingleValue = nullptr;
3803 }
3804
3805 // If each element in the table contains the same value, we only need to store
3806 // that single value.
3807 if (SingleValue) {
3808 Kind = SingleValueKind;
3809 return;
3810 }
3811
3812 // Check if we can derive the value with a linear transformation from the
3813 // table index.
3814 if (isa<IntegerType>(ValueType)) {
3815 bool LinearMappingPossible = true;
3816 APInt PrevVal;
3817 APInt DistToPrev;
3818 assert(TableSize >= 2 && "Should be a SingleValue table.");
3819 // Check if there is the same distance between two consecutive values.
3820 for (uint64_t I = 0; I < TableSize; ++I) {
3821 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
3822 if (!ConstVal) {
3823 // This is an undef. We could deal with it, but undefs in lookup tables
3824 // are very seldom. It's probably not worth the additional complexity.
3825 LinearMappingPossible = false;
3826 break;
3827 }
3828 APInt Val = ConstVal->getValue();
3829 if (I != 0) {
3830 APInt Dist = Val - PrevVal;
3831 if (I == 1) {
3832 DistToPrev = Dist;
3833 } else if (Dist != DistToPrev) {
3834 LinearMappingPossible = false;
3835 break;
3836 }
3837 }
3838 PrevVal = Val;
3839 }
3840 if (LinearMappingPossible) {
3841 LinearOffset = cast<ConstantInt>(TableContents[0]);
3842 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
3843 Kind = LinearMapKind;
3844 ++NumLinearMaps;
3845 return;
3846 }
3847 }
3848
3849 // If the type is integer and the table fits in a register, build a bitmap.
3850 if (WouldFitInRegister(DL, TableSize, ValueType)) {
3851 IntegerType *IT = cast<IntegerType>(ValueType);
3852 APInt TableInt(TableSize * IT->getBitWidth(), 0);
3853 for (uint64_t I = TableSize; I > 0; --I) {
3854 TableInt <<= IT->getBitWidth();
3855 // Insert values into the bitmap. Undef values are set to zero.
3856 if (!isa<UndefValue>(TableContents[I - 1])) {
3857 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
3858 TableInt |= Val->getValue().zext(TableInt.getBitWidth());
3859 }
3860 }
3861 BitMap = ConstantInt::get(M.getContext(), TableInt);
3862 BitMapElementTy = IT;
3863 Kind = BitMapKind;
3864 ++NumBitMaps;
3865 return;
3866 }
3867
3868 // Store the table in an array.
3869 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
3870 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
3871
3872 Array = new GlobalVariable(M, ArrayTy, /*constant=*/ true,
3873 GlobalVariable::PrivateLinkage,
3874 Initializer,
3875 "switch.table");
3876 Array->setUnnamedAddr(true);
3877 Kind = ArrayKind;
3878 }
3879
3880 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
3881 switch (Kind) {
3882 case SingleValueKind:
3883 return SingleValue;
3884 case LinearMapKind: {
3885 // Derive the result value from the input value.
3886 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
3887 false, "switch.idx.cast");
3888 if (!LinearMultiplier->isOne())
3889 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
3890 if (!LinearOffset->isZero())
3891 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
3892 return Result;
3893 }
3894 case BitMapKind: {
3895 // Type of the bitmap (e.g. i59).
3896 IntegerType *MapTy = BitMap->getType();
3897
3898 // Cast Index to the same type as the bitmap.
3899 // Note: The Index is <= the number of elements in the table, so
3900 // truncating it to the width of the bitmask is safe.
3901 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
3902
3903 // Multiply the shift amount by the element width.
3904 ShiftAmt = Builder.CreateMul(ShiftAmt,
3905 ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
3906 "switch.shiftamt");
3907
3908 // Shift down.
3909 Value *DownShifted = Builder.CreateLShr(BitMap, ShiftAmt,
3910 "switch.downshift");
3911 // Mask off.
3912 return Builder.CreateTrunc(DownShifted, BitMapElementTy,
3913 "switch.masked");
3914 }
3915 case ArrayKind: {
3916 // Make sure the table index will not overflow when treated as signed.
3917 IntegerType *IT = cast<IntegerType>(Index->getType());
3918 uint64_t TableSize = Array->getInitializer()->getType()
3919 ->getArrayNumElements();
3920 if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
3921 Index = Builder.CreateZExt(Index,
3922 IntegerType::get(IT->getContext(),
3923 IT->getBitWidth() + 1),
3924 "switch.tableidx.zext");
3925
3926 Value *GEPIndices[] = { Builder.getInt32(0), Index };
3927 Value *GEP = Builder.CreateInBoundsGEP(Array, GEPIndices,
3928 "switch.gep");
3929 return Builder.CreateLoad(GEP, "switch.load");
3930 }
3931 }
3932 llvm_unreachable("Unknown lookup table kind!");
3933 }
3934
3935 bool SwitchLookupTable::WouldFitInRegister(const DataLayout *DL,
3936 uint64_t TableSize,
3937 const Type *ElementType) {
3938 if (!DL)
3939 return false;
3940 const IntegerType *IT = dyn_cast<IntegerType>(ElementType);
3941 if (!IT)
3942 return false;
3943 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
3944 // are <= 15, we could try to narrow the type.
3945
3946 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
3947 if (TableSize >= UINT_MAX/IT->getBitWidth())
3948 return false;
3949 return DL->fitsInLegalInteger(TableSize * IT->getBitWidth());
3950 }
3951
3952 /// ShouldBuildLookupTable - Determine whether a lookup table should be built
3953 /// for this switch, based on the number of cases, size of the table and the
3954 /// types of the results.
3955 static bool ShouldBuildLookupTable(SwitchInst *SI,
3956 uint64_t TableSize,
3957 const TargetTransformInfo &TTI,
3958 const DataLayout *DL,
3959 const SmallDenseMap<PHINode*, Type*>& ResultTypes) {
3960 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
3961 return false; // TableSize overflowed, or mul below might overflow.
3962
3963 bool AllTablesFitInRegister = true;
3964 bool HasIllegalType = false;
3965 for (const auto &I : ResultTypes) {
3966 Type *Ty = I.second;
3967
3968 // Saturate this flag to true.
3969 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
3970
3971 // Saturate this flag to false.
3972 AllTablesFitInRegister = AllTablesFitInRegister &&
3973 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
3974
3975 // If both flags saturate, we're done. NOTE: This *only* works with
3976 // saturating flags, and all flags have to saturate first due to the
3977 // non-deterministic behavior of iterating over a dense map.
3978 if (HasIllegalType && !AllTablesFitInRegister)
3979 break;
3980 }
3981
3982 // If each table would fit in a register, we should build it anyway.
3983 if (AllTablesFitInRegister)
3984 return true;
3985
3986 // Don't build a table that doesn't fit in-register if it has illegal types.
3987 if (HasIllegalType)
3988 return false;
3989
3990 // The table density should be at least 40%. This is the same criterion as for
3991 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
3992 // FIXME: Find the best cut-off.
3993 return SI->getNumCases() * 10 >= TableSize * 4;
3994 }
3995
3996 /// Try to reuse the switch table index compare. Following pattern:
3997 /// \code
3998 /// if (idx < tablesize)
3999 /// r = table[idx]; // table does not contain default_value
4000 /// else
4001 /// r = default_value;
4002 /// if (r != default_value)
4003 /// ...
4004 /// \endcode
4005 /// Is optimized to:
4006 /// \code
4007 /// cond = idx < tablesize;
4008 /// if (cond)
4009 /// r = table[idx];
4010 /// else
4011 /// r = default_value;
4012 /// if (cond)
4013 /// ...
4014 /// \endcode
4015 /// Jump threading will then eliminate the second if(cond).
4016 static void reuseTableCompare(User *PhiUser, BasicBlock *PhiBlock,
4017 BranchInst *RangeCheckBranch, Constant *DefaultValue,
4018 const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values) {
4019
4020 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
4021 if (!CmpInst)
4022 return;
4023
4024 // We require that the compare is in the same block as the phi so that jump
4025 // threading can do its work afterwards.
4026 if (CmpInst->getParent() != PhiBlock)
4027 return;
4028
4029 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
4030 if (!CmpOp1)
4031 return;
4032
4033 Value *RangeCmp = RangeCheckBranch->getCondition();
4034 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
4035 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
4036
4037 // Check if the compare with the default value is constant true or false.
4038 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
4039 DefaultValue, CmpOp1, true);
4040 if (DefaultConst != TrueConst && DefaultConst != FalseConst)
4041 return;
4042
4043 // Check if the compare with the case values is distinct from the default
4044 // compare result.
4045 for (auto ValuePair : Values) {
4046 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
4047 ValuePair.second, CmpOp1, true);
4048 if (!CaseConst || CaseConst == DefaultConst)
4049 return;
4050 assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
4051 "Expect true or false as compare result.");
4052 }
4053
4054 // Check if the branch instruction dominates the phi node. It's a simple
4055 // dominance check, but sufficient for our needs.
4056 // Although this check is invariant in the calling loops, it's better to do it
4057 // at this late stage. Practically we do it at most once for a switch.
4058 BasicBlock *BranchBlock = RangeCheckBranch->getParent();
4059 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
4060 BasicBlock *Pred = *PI;
4061 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
4062 return;
4063 }
4064
4065 if (DefaultConst == FalseConst) {
4066 // The compare yields the same result. We can replace it.
4067 CmpInst->replaceAllUsesWith(RangeCmp);
4068 ++NumTableCmpReuses;
4069 } else {
4070 // The compare yields the same result, just inverted. We can replace it.
4071 Value *InvertedTableCmp = BinaryOperator::CreateXor(RangeCmp,
4072 ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
4073 RangeCheckBranch);
4074 CmpInst->replaceAllUsesWith(InvertedTableCmp);
4075 ++NumTableCmpReuses;
4076 }
4077 }
4078
4079 /// SwitchToLookupTable - If the switch is only used to initialize one or more
4080 /// phi nodes in a common successor block with different constant values,
4081 /// replace the switch with lookup tables.
4082 static bool SwitchToLookupTable(SwitchInst *SI,
4083 IRBuilder<> &Builder,
4084 const TargetTransformInfo &TTI,
4085 const DataLayout* DL) {
4086 assert(SI->getNumCases() > 1 && "Degenerate switch?");
4087
4088 // Only build lookup table when we have a target that supports it.
4089 if (!TTI.shouldBuildLookupTables())
4090 return false;
4091
4092 // FIXME: If the switch is too sparse for a lookup table, perhaps we could
4093 // split off a dense part and build a lookup table for that.
4094
4095 // FIXME: This creates arrays of GEPs to constant strings, which means each
4096 // GEP needs a runtime relocation in PIC code. We should just build one big
4097 // string and lookup indices into that.
4098
4099 // Ignore switches with less than three cases. Lookup tables will not make them
4100 // faster, so we don't analyze them.
4101 if (SI->getNumCases() < 3)
4102 return false;
4103
4104 // Figure out the corresponding result for each case value and phi node in the
4105 // common destination, as well as the the min and max case values.
4106 assert(SI->case_begin() != SI->case_end());
4107 SwitchInst::CaseIt CI = SI->case_begin();
4108 ConstantInt *MinCaseVal = CI.getCaseValue();
4109 ConstantInt *MaxCaseVal = CI.getCaseValue();
4110
4111 BasicBlock *CommonDest = nullptr;
4112 typedef SmallVector<std::pair<ConstantInt*, Constant*>, 4> ResultListTy;
4113 SmallDenseMap<PHINode*, ResultListTy> ResultLists;
4114 SmallDenseMap<PHINode*, Constant*> DefaultResults;
4115 SmallDenseMap<PHINode*, Type*> ResultTypes;
4116 SmallVector<PHINode*, 4> PHIs;
4117
4118 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
4119 ConstantInt *CaseVal = CI.getCaseValue();
4120 if (CaseVal->getValue().slt(MinCaseVal->getValue()))
4121 MinCaseVal = CaseVal;
4122 if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
4123 MaxCaseVal = CaseVal;
4124
4125 // Resulting value at phi nodes for this case value.
4126 typedef SmallVector<std::pair<PHINode*, Constant*>, 4> ResultsTy;
4127 ResultsTy Results;
4128 if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest,
4129 Results, DL))
4130 return false;
4131
4132 // Append the result from this case to the list for each phi.
4133 for (const auto &I : Results) {
4134 PHINode *PHI = I.first;
4135 Constant *Value = I.second;
4136 if (!ResultLists.count(PHI))
4137 PHIs.push_back(PHI);
4138 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
4139 }
4140 }
4141
4142 // Keep track of the result types.
4143 for (PHINode *PHI : PHIs) {
4144 ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
4145 }
4146
4147 uint64_t NumResults = ResultLists[PHIs[0]].size();
4148 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
4149 uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
4150 bool TableHasHoles = (NumResults < TableSize);
4151
4152 // If the table has holes, we need a constant result for the default case
4153 // or a bitmask that fits in a register.
4154 SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList;
4155 bool HasDefaultResults = GetCaseResults(SI, nullptr, SI->getDefaultDest(),
4156 &CommonDest, DefaultResultsList, DL);
4157
4158 bool NeedMask = (TableHasHoles && !HasDefaultResults);
4159 if (NeedMask) {
4160 // As an extra penalty for the validity test we require more cases.
4161 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
4162 return false;
4163 if (!(DL && DL->fitsInLegalInteger(TableSize)))
4164 return false;
4165 }
4166
4167 for (const auto &I : DefaultResultsList) {
4168 PHINode *PHI = I.first;
4169 Constant *Result = I.second;
4170 DefaultResults[PHI] = Result;
4171 }
4172
4173 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
4174 return false;
4175
4176 // Create the BB that does the lookups.
4177 Module &Mod = *CommonDest->getParent()->getParent();
4178 BasicBlock *LookupBB = BasicBlock::Create(Mod.getContext(),
4179 "switch.lookup",
4180 CommonDest->getParent(),
4181 CommonDest);
4182
4183 // Compute the table index value.
4184 Builder.SetInsertPoint(SI);
4185 Value *TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
4186 "switch.tableidx");
4187
4188 // Compute the maximum table size representable by the integer type we are
4189 // switching upon.
4190 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
4191 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
4192 assert(MaxTableSize >= TableSize &&
4193 "It is impossible for a switch to have more entries than the max "
4194 "representable value of its input integer type's size.");
4195
4196 // If we have a fully covered lookup table, unconditionally branch to the
4197 // lookup table BB. Otherwise, check if the condition value is within the case
4198 // range. If it is so, branch to the new BB. Otherwise branch to SI's default
4199 // destination.
4200 BranchInst *RangeCheckBranch = nullptr;
4201
4202 const bool GeneratingCoveredLookupTable = MaxTableSize == TableSize;
4203 if (GeneratingCoveredLookupTable) {
4204 Builder.CreateBr(LookupBB);
4205 // We cached PHINodes in PHIs, to avoid accessing deleted PHINodes later,
4206 // do not delete PHINodes here.
4207 SI->getDefaultDest()->removePredecessor(SI->getParent(),
4208 true/*DontDeleteUselessPHIs*/);
4209 } else {
4210 Value *Cmp = Builder.CreateICmpULT(TableIndex, ConstantInt::get(
4211 MinCaseVal->getType(), TableSize));
4212 RangeCheckBranch = Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
4213 }
4214
4215 // Populate the BB that does the lookups.
4216 Builder.SetInsertPoint(LookupBB);
4217
4218 if (NeedMask) {
4219 // Before doing the lookup we do the hole check.
4220 // The LookupBB is therefore re-purposed to do the hole check
4221 // and we create a new LookupBB.
4222 BasicBlock *MaskBB = LookupBB;
4223 MaskBB->setName("switch.hole_check");
4224 LookupBB = BasicBlock::Create(Mod.getContext(),
4225 "switch.lookup",
4226 CommonDest->getParent(),
4227 CommonDest);
4228
4229 // Make the mask's bitwidth at least 8bit and a power-of-2 to avoid
4230 // unnecessary illegal types.
4231 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
4232 APInt MaskInt(TableSizePowOf2, 0);
4233 APInt One(TableSizePowOf2, 1);
4234 // Build bitmask; fill in a 1 bit for every case.
4235 const ResultListTy &ResultList = ResultLists[PHIs[0]];
4236 for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
4237 uint64_t Idx = (ResultList[I].first->getValue() -
4238 MinCaseVal->getValue()).getLimitedValue();
4239 MaskInt |= One << Idx;
4240 }
4241 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
4242
4243 // Get the TableIndex'th bit of the bitmask.
4244 // If this bit is 0 (meaning hole) jump to the default destination,
4245 // else continue with table lookup.
4246 IntegerType *MapTy = TableMask->getType();
4247 Value *MaskIndex = Builder.CreateZExtOrTrunc(TableIndex, MapTy,
4248 "switch.maskindex");
4249 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex,
4250 "switch.shifted");
4251 Value *LoBit = Builder.CreateTrunc(Shifted,
4252 Type::getInt1Ty(Mod.getContext()),
4253 "switch.lobit");
4254 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
4255
4256 Builder.SetInsertPoint(LookupBB);
4257 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
4258 }
4259
4260 bool ReturnedEarly = false;
4261 for (size_t I = 0, E = PHIs.size(); I != E; ++I) {
4262 PHINode *PHI = PHIs[I];
4263 const ResultListTy &ResultList = ResultLists[PHI];
4264
4265 // If using a bitmask, use any value to fill the lookup table holes.
4266 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
4267 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL);
4268
4269 Value *Result = Table.BuildLookup(TableIndex, Builder);
4270
4271 // If the result is used to return immediately from the function, we want to
4272 // do that right here.
4273 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
4274 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
4275 Builder.CreateRet(Result);
4276 ReturnedEarly = true;
4277 break;
4278 }
4279
4280 // Do a small peephole optimization: re-use the switch table compare if
4281 // possible.
4282 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
4283 BasicBlock *PhiBlock = PHI->getParent();
4284 // Search for compare instructions which use the phi.
4285 for (auto *User : PHI->users()) {
4286 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
4287 }
4288 }
4289
4290 PHI->addIncoming(Result, LookupBB);
4291 }
4292
4293 if (!ReturnedEarly)
4294 Builder.CreateBr(CommonDest);
4295
4296 // Remove the switch.
4297 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
4298 BasicBlock *Succ = SI->getSuccessor(i);
4299
4300 if (Succ == SI->getDefaultDest())
4301 continue;
4302 Succ->removePredecessor(SI->getParent());
4303 }
4304 SI->eraseFromParent();
4305
4306 ++NumLookupTables;
4307 if (NeedMask)
4308 ++NumLookupTablesHoles;
4309 return true;
4310 }
4311
4312 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
4313 BasicBlock *BB = SI->getParent();
4314
4315 if (isValueEqualityComparison(SI)) {
4316 // If we only have one predecessor, and if it is a branch on this value,
4317 // see if that predecessor totally determines the outcome of this switch.
4318 if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
4319 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
4320 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
4321
4322 Value *Cond = SI->getCondition();
4323 if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
4324 if (SimplifySwitchOnSelect(SI, Select))
4325 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
4326
4327 // If the block only contains the switch, see if we can fold the block
4328 // away into any preds.
4329 BasicBlock::iterator BBI = BB->begin();
4330 // Ignore dbg intrinsics.
4331 while (isa<DbgInfoIntrinsic>(BBI))
4332 ++BBI;
4333 if (SI == &*BBI)
4334 if (FoldValueComparisonIntoPredecessors(SI, Builder))
4335 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
4336 }
4337
4338 // Try to transform the switch into an icmp and a branch.
4339 if (TurnSwitchRangeIntoICmp(SI, Builder))
4340 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
4341
4342 // Remove unreachable cases.
4343 if (EliminateDeadSwitchCases(SI, DL, AC))
4344 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
4345
4346 if (SwitchToSelect(SI, Builder, DL, AC))
4347 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
4348
4349 if (ForwardSwitchConditionToPHI(SI))
4350 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
4351
4352 if (SwitchToLookupTable(SI, Builder, TTI, DL))
4353 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
4354
4355 return false;
4356 }
4357
4358 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
4359 BasicBlock *BB = IBI->getParent();
4360 bool Changed = false;
4361
4362 // Eliminate redundant destinations.
4363 SmallPtrSet<Value *, 8> Succs;
4364 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
4365 BasicBlock *Dest = IBI->getDestination(i);
4366 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
4367 Dest->removePredecessor(BB);
4368 IBI->removeDestination(i);
4369 --i; --e;
4370 Changed = true;
4371 }
4372 }
4373
4374 if (IBI->getNumDestinations() == 0) {
4375 // If the indirectbr has no successors, change it to unreachable.
4376 new UnreachableInst(IBI->getContext(), IBI);
4377 EraseTerminatorInstAndDCECond(IBI);
4378 return true;
4379 }
4380
4381 if (IBI->getNumDestinations() == 1) {
4382 // If the indirectbr has one successor, change it to a direct branch.
4383 BranchInst::Create(IBI->getDestination(0), IBI);
4384 EraseTerminatorInstAndDCECond(IBI);
4385 return true;
4386 }
4387
4388 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
4389 if (SimplifyIndirectBrOnSelect(IBI, SI))
4390 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
4391 }
4392 return Changed;
4393 }
4394
4395 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
4396 BasicBlock *BB = BI->getParent();
4397
4398 if (SinkCommon && SinkThenElseCodeToEnd(BI))
4399 return true;
4400
4401 // If the Terminator is the only non-phi instruction, simplify the block.
4402 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg();
4403 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
4404 TryToSimplifyUncondBranchFromEmptyBlock(BB))
4405 return true;
4406
4407 // If the only instruction in the block is a seteq/setne comparison
4408 // against a constant, try to simplify the block.
4409 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
4410 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
4411 for (++I; isa<DbgInfoIntrinsic>(I); ++I)
4412 ;
4413 if (I->isTerminator() &&
4414 TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, TTI,
4415 BonusInstThreshold, DL, AC))
4416 return true;
4417 }
4418
4419 // If this basic block is ONLY a compare and a branch, and if a predecessor
4420 // branches to us and our successor, fold the comparison into the
4421 // predecessor and use logical operations to update the incoming value
4422 // for PHI nodes in common successor.
4423 if (FoldBranchToCommonDest(BI, DL, BonusInstThreshold))
4424 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
4425 return false;
4426 }
4427
4428
4429 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
4430 BasicBlock *BB = BI->getParent();
4431
4432 // Conditional branch
4433 if (isValueEqualityComparison(BI)) {
4434 // If we only have one predecessor, and if it is a branch on this value,
4435 // see if that predecessor totally determines the outcome of this
4436 // switch.
4437 if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
4438 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
4439 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
4440
4441 // This block must be empty, except for the setcond inst, if it exists.
4442 // Ignore dbg intrinsics.
4443 BasicBlock::iterator I = BB->begin();
4444 // Ignore dbg intrinsics.
4445 while (isa<DbgInfoIntrinsic>(I))
4446 ++I;
4447 if (&*I == BI) {
4448 if (FoldValueComparisonIntoPredecessors(BI, Builder))
4449 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
4450 } else if (&*I == cast<Instruction>(BI->getCondition())){
4451 ++I;
4452 // Ignore dbg intrinsics.
4453 while (isa<DbgInfoIntrinsic>(I))
4454 ++I;
4455 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
4456 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
4457 }
4458 }
4459
4460 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
4461 if (SimplifyBranchOnICmpChain(BI, DL, Builder))
4462 return true;
4463
4464 // If this basic block is ONLY a compare and a branch, and if a predecessor
4465 // branches to us and one of our successors, fold the comparison into the
4466 // predecessor and use logical operations to pick the right destination.
4467 if (FoldBranchToCommonDest(BI, DL, BonusInstThreshold))
4468 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
4469
4470 // We have a conditional branch to two blocks that are only reachable
4471 // from BI. We know that the condbr dominates the two blocks, so see if
4472 // there is any identical code in the "then" and "else" blocks. If so, we
4473 // can hoist it up to the branching block.
4474 if (BI->getSuccessor(0)->getSinglePredecessor()) {
4475 if (BI->getSuccessor(1)->getSinglePredecessor()) {
4476 if (HoistThenElseCodeToIf(BI, DL))
4477 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
4478 } else {
4479 // If Successor #1 has multiple preds, we may be able to conditionally
4480 // execute Successor #0 if it branches to Successor #1.
4481 TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
4482 if (Succ0TI->getNumSuccessors() == 1 &&
4483 Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
4484 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), DL))
4485 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
4486 }
4487 } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
4488 // If Successor #0 has multiple preds, we may be able to conditionally
4489 // execute Successor #1 if it branches to Successor #0.
4490 TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
4491 if (Succ1TI->getNumSuccessors() == 1 &&
4492 Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
4493 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), DL))
4494 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
4495 }
4496
4497 // If this is a branch on a phi node in the current block, thread control
4498 // through this block if any PHI node entries are constants.
4499 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
4500 if (PN->getParent() == BI->getParent())
4501 if (FoldCondBranchOnPHI(BI, DL))
4502 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
4503
4504 // Scan predecessor blocks for conditional branches.
4505 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
4506 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
4507 if (PBI != BI && PBI->isConditional())
4508 if (SimplifyCondBranchToCondBranch(PBI, BI))
4509 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
4510
4511 return false;
4512 }
4513
4514 /// Check if passing a value to an instruction will cause undefined behavior.
4515 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
4516 Constant *C = dyn_cast<Constant>(V);
4517 if (!C)
4518 return false;
4519
4520 if (I->use_empty())
4521 return false;
4522
4523 if (C->isNullValue()) {
4524 // Only look at the first use, avoid hurting compile time with long uselists
4525 User *Use = *I->user_begin();
4526
4527 // Now make sure that there are no instructions in between that can alter
4528 // control flow (eg. calls)
4529 for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i)
4530 if (i == I->getParent()->end() || i->mayHaveSideEffects())
4531 return false;
4532
4533 // Look through GEPs. A load from a GEP derived from NULL is still undefined
4534 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
4535 if (GEP->getPointerOperand() == I)
4536 return passingValueIsAlwaysUndefined(V, GEP);
4537
4538 // Look through bitcasts.
4539 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
4540 return passingValueIsAlwaysUndefined(V, BC);
4541
4542 // Load from null is undefined.
4543 if (LoadInst *LI = dyn_cast<LoadInst>(Use))
4544 if (!LI->isVolatile())
4545 return LI->getPointerAddressSpace() == 0;
4546
4547 // Store to null is undefined.
4548 if (StoreInst *SI = dyn_cast<StoreInst>(Use))
4549 if (!SI->isVolatile())
4550 return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I;
4551 }
4552 return false;
4553 }
4554
4555 /// If BB has an incoming value that will always trigger undefined behavior
4556 /// (eg. null pointer dereference), remove the branch leading here.
4557 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
4558 for (BasicBlock::iterator i = BB->begin();
4559 PHINode *PHI = dyn_cast<PHINode>(i); ++i)
4560 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
4561 if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) {
4562 TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator();
4563 IRBuilder<> Builder(T);
4564 if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
4565 BB->removePredecessor(PHI->getIncomingBlock(i));
4566 // Turn uncoditional branches into unreachables and remove the dead
4567 // destination from conditional branches.
4568 if (BI->isUnconditional())
4569 Builder.CreateUnreachable();
4570 else
4571 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) :
4572 BI->getSuccessor(0));
4573 BI->eraseFromParent();
4574 return true;
4575 }
4576 // TODO: SwitchInst.
4577 }
4578
4579 return false;
4580 }
4581
4582 bool SimplifyCFGOpt::run(BasicBlock *BB) {
4583 bool Changed = false;
4584
4585 assert(BB && BB->getParent() && "Block not embedded in function!");
4586 assert(BB->getTerminator() && "Degenerate basic block encountered!");
4587
4588 // Remove basic blocks that have no predecessors (except the entry block)...
4589 // or that just have themself as a predecessor. These are unreachable.
4590 if ((pred_empty(BB) &&
4591 BB != &BB->getParent()->getEntryBlock()) ||
4592 BB->getSinglePredecessor() == BB) {
4593 DEBUG(dbgs() << "Removing BB: \n" << *BB);
4594 DeleteDeadBlock(BB);
4595 return true;
4596 }
4597
4598 // Check to see if we can constant propagate this terminator instruction
4599 // away...
4600 Changed |= ConstantFoldTerminator(BB, true);
4601
4602 // Check for and eliminate duplicate PHI nodes in this block.
4603 Changed |= EliminateDuplicatePHINodes(BB);
4604
4605 // Check for and remove branches that will always cause undefined behavior.
4606 Changed |= removeUndefIntroducingPredecessor(BB);
4607
4608 // Merge basic blocks into their predecessor if there is only one distinct
4609 // pred, and if there is only one distinct successor of the predecessor, and
4610 // if there are no PHI nodes.
4611 //
4612 if (MergeBlockIntoPredecessor(BB))
4613 return true;
4614
4615 IRBuilder<> Builder(BB);
4616
4617 // If there is a trivial two-entry PHI node in this basic block, and we can
4618 // eliminate it, do so now.
4619 if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
4620 if (PN->getNumIncomingValues() == 2)
4621 Changed |= FoldTwoEntryPHINode(PN, DL);
4622
4623 Builder.SetInsertPoint(BB->getTerminator());
4624 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
4625 if (BI->isUnconditional()) {
4626 if (SimplifyUncondBranch(BI, Builder)) return true;
4627 } else {
4628 if (SimplifyCondBranch(BI, Builder)) return true;
4629 }
4630 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
4631 if (SimplifyReturn(RI, Builder)) return true;
4632 } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
4633 if (SimplifyResume(RI, Builder)) return true;
4634 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
4635 if (SimplifySwitch(SI, Builder)) return true;
4636 } else if (UnreachableInst *UI =
4637 dyn_cast<UnreachableInst>(BB->getTerminator())) {
4638 if (SimplifyUnreachable(UI)) return true;
4639 } else if (IndirectBrInst *IBI =
4640 dyn_cast<IndirectBrInst>(BB->getTerminator())) {
4641 if (SimplifyIndirectBr(IBI)) return true;
4642 }
4643
4644 return Changed;
4645 }
4646
4647 /// SimplifyCFG - This function is used to do simplification of a CFG. For
4648 /// example, it adjusts branches to branches to eliminate the extra hop, it
4649 /// eliminates unreachable basic blocks, and does other "peephole" optimization
4650 /// of the CFG. It returns true if a modification was made.
4651 ///
4652 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
4653 unsigned BonusInstThreshold, const DataLayout *DL,
4654 AssumptionCache *AC) {
4655 return SimplifyCFGOpt(TTI, BonusInstThreshold, DL, AC).run(BB);
4656 }