]> git.proxmox.com Git - rustc.git/blob - src/llvm/lib/Transforms/Utils/SimplifyIndVar.cpp
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / lib / Transforms / Utils / SimplifyIndVar.cpp
1 //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements induction variable simplification. It does
11 // not define any actual pass or policy, but provides a single function to
12 // simplify a loop's induction variables based on ScalarEvolution.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/IVUsers.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/LoopPass.h"
23 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/raw_ostream.h"
32
33 using namespace llvm;
34
35 #define DEBUG_TYPE "indvars"
36
37 STATISTIC(NumElimIdentity, "Number of IV identities eliminated");
38 STATISTIC(NumElimOperand, "Number of IV operands folded into a use");
39 STATISTIC(NumElimRem , "Number of IV remainder operations eliminated");
40 STATISTIC(NumElimCmp , "Number of IV comparisons eliminated");
41
42 namespace {
43 /// This is a utility for simplifying induction variables
44 /// based on ScalarEvolution. It is the primary instrument of the
45 /// IndvarSimplify pass, but it may also be directly invoked to cleanup after
46 /// other loop passes that preserve SCEV.
47 class SimplifyIndvar {
48 Loop *L;
49 LoopInfo *LI;
50 ScalarEvolution *SE;
51 const DataLayout *DL; // May be NULL
52
53 SmallVectorImpl<WeakVH> &DeadInsts;
54
55 bool Changed;
56
57 public:
58 SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, LPPassManager *LPM,
59 SmallVectorImpl<WeakVH> &Dead, IVUsers *IVU = nullptr) :
60 L(Loop),
61 LI(LPM->getAnalysisIfAvailable<LoopInfo>()),
62 SE(SE),
63 DeadInsts(Dead),
64 Changed(false) {
65 DataLayoutPass *DLP = LPM->getAnalysisIfAvailable<DataLayoutPass>();
66 DL = DLP ? &DLP->getDataLayout() : nullptr;
67 assert(LI && "IV simplification requires LoopInfo");
68 }
69
70 bool hasChanged() const { return Changed; }
71
72 /// Iteratively perform simplification on a worklist of users of the
73 /// specified induction variable. This is the top-level driver that applies
74 /// all simplicitions to users of an IV.
75 void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr);
76
77 Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand);
78
79 bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand);
80 void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand);
81 void eliminateIVRemainder(BinaryOperator *Rem, Value *IVOperand,
82 bool IsSigned);
83 bool strengthenOverflowingOperation(BinaryOperator *OBO, Value *IVOperand);
84
85 Instruction *splitOverflowIntrinsic(Instruction *IVUser,
86 const DominatorTree *DT);
87 };
88 }
89
90 /// Fold an IV operand into its use. This removes increments of an
91 /// aligned IV when used by a instruction that ignores the low bits.
92 ///
93 /// IVOperand is guaranteed SCEVable, but UseInst may not be.
94 ///
95 /// Return the operand of IVOperand for this induction variable if IVOperand can
96 /// be folded (in case more folding opportunities have been exposed).
97 /// Otherwise return null.
98 Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) {
99 Value *IVSrc = nullptr;
100 unsigned OperIdx = 0;
101 const SCEV *FoldedExpr = nullptr;
102 switch (UseInst->getOpcode()) {
103 default:
104 return nullptr;
105 case Instruction::UDiv:
106 case Instruction::LShr:
107 // We're only interested in the case where we know something about
108 // the numerator and have a constant denominator.
109 if (IVOperand != UseInst->getOperand(OperIdx) ||
110 !isa<ConstantInt>(UseInst->getOperand(1)))
111 return nullptr;
112
113 // Attempt to fold a binary operator with constant operand.
114 // e.g. ((I + 1) >> 2) => I >> 2
115 if (!isa<BinaryOperator>(IVOperand)
116 || !isa<ConstantInt>(IVOperand->getOperand(1)))
117 return nullptr;
118
119 IVSrc = IVOperand->getOperand(0);
120 // IVSrc must be the (SCEVable) IV, since the other operand is const.
121 assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand");
122
123 ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1));
124 if (UseInst->getOpcode() == Instruction::LShr) {
125 // Get a constant for the divisor. See createSCEV.
126 uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth();
127 if (D->getValue().uge(BitWidth))
128 return nullptr;
129
130 D = ConstantInt::get(UseInst->getContext(),
131 APInt::getOneBitSet(BitWidth, D->getZExtValue()));
132 }
133 FoldedExpr = SE->getUDivExpr(SE->getSCEV(IVSrc), SE->getSCEV(D));
134 }
135 // We have something that might fold it's operand. Compare SCEVs.
136 if (!SE->isSCEVable(UseInst->getType()))
137 return nullptr;
138
139 // Bypass the operand if SCEV can prove it has no effect.
140 if (SE->getSCEV(UseInst) != FoldedExpr)
141 return nullptr;
142
143 DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand
144 << " -> " << *UseInst << '\n');
145
146 UseInst->setOperand(OperIdx, IVSrc);
147 assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper");
148
149 ++NumElimOperand;
150 Changed = true;
151 if (IVOperand->use_empty())
152 DeadInsts.push_back(IVOperand);
153 return IVSrc;
154 }
155
156 /// SimplifyIVUsers helper for eliminating useless
157 /// comparisons against an induction variable.
158 void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) {
159 unsigned IVOperIdx = 0;
160 ICmpInst::Predicate Pred = ICmp->getPredicate();
161 if (IVOperand != ICmp->getOperand(0)) {
162 // Swapped
163 assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
164 IVOperIdx = 1;
165 Pred = ICmpInst::getSwappedPredicate(Pred);
166 }
167
168 // Get the SCEVs for the ICmp operands.
169 const SCEV *S = SE->getSCEV(ICmp->getOperand(IVOperIdx));
170 const SCEV *X = SE->getSCEV(ICmp->getOperand(1 - IVOperIdx));
171
172 // Simplify unnecessary loops away.
173 const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
174 S = SE->getSCEVAtScope(S, ICmpLoop);
175 X = SE->getSCEVAtScope(X, ICmpLoop);
176
177 // If the condition is always true or always false, replace it with
178 // a constant value.
179 if (SE->isKnownPredicate(Pred, S, X))
180 ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext()));
181 else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X))
182 ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext()));
183 else
184 return;
185
186 DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
187 ++NumElimCmp;
188 Changed = true;
189 DeadInsts.push_back(ICmp);
190 }
191
192 /// SimplifyIVUsers helper for eliminating useless
193 /// remainder operations operating on an induction variable.
194 void SimplifyIndvar::eliminateIVRemainder(BinaryOperator *Rem,
195 Value *IVOperand,
196 bool IsSigned) {
197 // We're only interested in the case where we know something about
198 // the numerator.
199 if (IVOperand != Rem->getOperand(0))
200 return;
201
202 // Get the SCEVs for the ICmp operands.
203 const SCEV *S = SE->getSCEV(Rem->getOperand(0));
204 const SCEV *X = SE->getSCEV(Rem->getOperand(1));
205
206 // Simplify unnecessary loops away.
207 const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent());
208 S = SE->getSCEVAtScope(S, ICmpLoop);
209 X = SE->getSCEVAtScope(X, ICmpLoop);
210
211 // i % n --> i if i is in [0,n).
212 if ((!IsSigned || SE->isKnownNonNegative(S)) &&
213 SE->isKnownPredicate(IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
214 S, X))
215 Rem->replaceAllUsesWith(Rem->getOperand(0));
216 else {
217 // (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n).
218 const SCEV *LessOne =
219 SE->getMinusSCEV(S, SE->getConstant(S->getType(), 1));
220 if (IsSigned && !SE->isKnownNonNegative(LessOne))
221 return;
222
223 if (!SE->isKnownPredicate(IsSigned ?
224 ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
225 LessOne, X))
226 return;
227
228 ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ,
229 Rem->getOperand(0), Rem->getOperand(1));
230 SelectInst *Sel =
231 SelectInst::Create(ICmp,
232 ConstantInt::get(Rem->getType(), 0),
233 Rem->getOperand(0), "tmp", Rem);
234 Rem->replaceAllUsesWith(Sel);
235 }
236
237 DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
238 ++NumElimRem;
239 Changed = true;
240 DeadInsts.push_back(Rem);
241 }
242
243 /// Eliminate an operation that consumes a simple IV and has
244 /// no observable side-effect given the range of IV values.
245 /// IVOperand is guaranteed SCEVable, but UseInst may not be.
246 bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst,
247 Instruction *IVOperand) {
248 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
249 eliminateIVComparison(ICmp, IVOperand);
250 return true;
251 }
252 if (BinaryOperator *Rem = dyn_cast<BinaryOperator>(UseInst)) {
253 bool IsSigned = Rem->getOpcode() == Instruction::SRem;
254 if (IsSigned || Rem->getOpcode() == Instruction::URem) {
255 eliminateIVRemainder(Rem, IVOperand, IsSigned);
256 return true;
257 }
258 }
259
260 // Eliminate any operation that SCEV can prove is an identity function.
261 if (!SE->isSCEVable(UseInst->getType()) ||
262 (UseInst->getType() != IVOperand->getType()) ||
263 (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand)))
264 return false;
265
266 DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n');
267
268 UseInst->replaceAllUsesWith(IVOperand);
269 ++NumElimIdentity;
270 Changed = true;
271 DeadInsts.push_back(UseInst);
272 return true;
273 }
274
275 /// Annotate BO with nsw / nuw if it provably does not signed-overflow /
276 /// unsigned-overflow. Returns true if anything changed, false otherwise.
277 bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO,
278 Value *IVOperand) {
279
280 // Currently we only handle instructions of the form "add <indvar> <value>"
281 unsigned Op = BO->getOpcode();
282 if (Op != Instruction::Add)
283 return false;
284
285 // If BO is already both nuw and nsw then there is nothing left to do
286 if (BO->hasNoUnsignedWrap() && BO->hasNoSignedWrap())
287 return false;
288
289 IntegerType *IT = cast<IntegerType>(IVOperand->getType());
290 Value *OtherOperand = nullptr;
291 int OtherOperandIdx = -1;
292 if (BO->getOperand(0) == IVOperand) {
293 OtherOperand = BO->getOperand(1);
294 OtherOperandIdx = 1;
295 } else {
296 assert(BO->getOperand(1) == IVOperand && "only other use!");
297 OtherOperand = BO->getOperand(0);
298 OtherOperandIdx = 0;
299 }
300
301 bool Changed = false;
302 const SCEV *OtherOpSCEV = SE->getSCEV(OtherOperand);
303 if (OtherOpSCEV == SE->getCouldNotCompute())
304 return false;
305
306 const SCEV *IVOpSCEV = SE->getSCEV(IVOperand);
307 const SCEV *ZeroSCEV = SE->getConstant(IVOpSCEV->getType(), 0);
308
309 if (!BO->hasNoSignedWrap()) {
310 // Upgrade the add to an "add nsw" if we can prove that it will never
311 // sign-overflow or sign-underflow.
312
313 const SCEV *SignedMax =
314 SE->getConstant(APInt::getSignedMaxValue(IT->getBitWidth()));
315 const SCEV *SignedMin =
316 SE->getConstant(APInt::getSignedMinValue(IT->getBitWidth()));
317
318 // The addition "IVOperand + OtherOp" does not sign-overflow if the result
319 // is sign-representable in 2's complement in the given bit-width.
320 //
321 // If OtherOp is SLT 0, then for an IVOperand in [SignedMin - OtherOp,
322 // SignedMax], "IVOperand + OtherOp" is in [SignedMin, SignedMax + OtherOp].
323 // Everything in [SignedMin, SignedMax + OtherOp] is representable since
324 // SignedMax + OtherOp is at least -1.
325 //
326 // If OtherOp is SGE 0, then for an IVOperand in [SignedMin, SignedMax -
327 // OtherOp], "IVOperand + OtherOp" is in [SignedMin + OtherOp, SignedMax].
328 // Everything in [SignedMin + OtherOp, SignedMax] is representable since
329 // SignedMin + OtherOp is at most -1.
330 //
331 // It follows that for all values of IVOperand in [SignedMin - smin(0,
332 // OtherOp), SignedMax - smax(0, OtherOp)] the result of the add is
333 // representable (i.e. there is no sign-overflow).
334
335 const SCEV *UpperDelta = SE->getSMaxExpr(ZeroSCEV, OtherOpSCEV);
336 const SCEV *UpperLimit = SE->getMinusSCEV(SignedMax, UpperDelta);
337
338 bool NeverSignedOverflows =
339 SE->isKnownPredicate(ICmpInst::ICMP_SLE, IVOpSCEV, UpperLimit);
340
341 if (NeverSignedOverflows) {
342 const SCEV *LowerDelta = SE->getSMinExpr(ZeroSCEV, OtherOpSCEV);
343 const SCEV *LowerLimit = SE->getMinusSCEV(SignedMin, LowerDelta);
344
345 bool NeverSignedUnderflows =
346 SE->isKnownPredicate(ICmpInst::ICMP_SGE, IVOpSCEV, LowerLimit);
347 if (NeverSignedUnderflows) {
348 BO->setHasNoSignedWrap(true);
349 Changed = true;
350 }
351 }
352 }
353
354 if (!BO->hasNoUnsignedWrap()) {
355 // Upgrade the add computing "IVOperand + OtherOp" to an "add nuw" if we can
356 // prove that it will never unsigned-overflow (i.e. the result will always
357 // be representable in the given bit-width).
358 //
359 // "IVOperand + OtherOp" is unsigned-representable in 2's complement iff it
360 // does not produce a carry. "IVOperand + OtherOp" produces no carry iff
361 // IVOperand ULE (UnsignedMax - OtherOp).
362
363 const SCEV *UnsignedMax =
364 SE->getConstant(APInt::getMaxValue(IT->getBitWidth()));
365 const SCEV *UpperLimit = SE->getMinusSCEV(UnsignedMax, OtherOpSCEV);
366
367 bool NeverUnsignedOverflows =
368 SE->isKnownPredicate(ICmpInst::ICMP_ULE, IVOpSCEV, UpperLimit);
369
370 if (NeverUnsignedOverflows) {
371 BO->setHasNoUnsignedWrap(true);
372 Changed = true;
373 }
374 }
375
376 return Changed;
377 }
378
379 /// \brief Split sadd.with.overflow into add + sadd.with.overflow to allow
380 /// analysis and optimization.
381 ///
382 /// \return A new value representing the non-overflowing add if possible,
383 /// otherwise return the original value.
384 Instruction *SimplifyIndvar::splitOverflowIntrinsic(Instruction *IVUser,
385 const DominatorTree *DT) {
386 IntrinsicInst *II = dyn_cast<IntrinsicInst>(IVUser);
387 if (!II || II->getIntrinsicID() != Intrinsic::sadd_with_overflow)
388 return IVUser;
389
390 // Find a branch guarded by the overflow check.
391 BranchInst *Branch = nullptr;
392 Instruction *AddVal = nullptr;
393 for (User *U : II->users()) {
394 if (ExtractValueInst *ExtractInst = dyn_cast<ExtractValueInst>(U)) {
395 if (ExtractInst->getNumIndices() != 1)
396 continue;
397 if (ExtractInst->getIndices()[0] == 0)
398 AddVal = ExtractInst;
399 else if (ExtractInst->getIndices()[0] == 1 && ExtractInst->hasOneUse())
400 Branch = dyn_cast<BranchInst>(ExtractInst->user_back());
401 }
402 }
403 if (!AddVal || !Branch)
404 return IVUser;
405
406 BasicBlock *ContinueBB = Branch->getSuccessor(1);
407 if (std::next(pred_begin(ContinueBB)) != pred_end(ContinueBB))
408 return IVUser;
409
410 // Check if all users of the add are provably NSW.
411 bool AllNSW = true;
412 for (Use &U : AddVal->uses()) {
413 if (Instruction *UseInst = dyn_cast<Instruction>(U.getUser())) {
414 BasicBlock *UseBB = UseInst->getParent();
415 if (PHINode *PHI = dyn_cast<PHINode>(UseInst))
416 UseBB = PHI->getIncomingBlock(U);
417 if (!DT->dominates(ContinueBB, UseBB)) {
418 AllNSW = false;
419 break;
420 }
421 }
422 }
423 if (!AllNSW)
424 return IVUser;
425
426 // Go for it...
427 IRBuilder<> Builder(IVUser);
428 Instruction *AddInst = dyn_cast<Instruction>(
429 Builder.CreateNSWAdd(II->getOperand(0), II->getOperand(1)));
430
431 // The caller expects the new add to have the same form as the intrinsic. The
432 // IV operand position must be the same.
433 assert((AddInst->getOpcode() == Instruction::Add &&
434 AddInst->getOperand(0) == II->getOperand(0)) &&
435 "Bad add instruction created from overflow intrinsic.");
436
437 AddVal->replaceAllUsesWith(AddInst);
438 DeadInsts.push_back(AddVal);
439 return AddInst;
440 }
441
442 /// Add all uses of Def to the current IV's worklist.
443 static void pushIVUsers(
444 Instruction *Def,
445 SmallPtrSet<Instruction*,16> &Simplified,
446 SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) {
447
448 for (User *U : Def->users()) {
449 Instruction *UI = cast<Instruction>(U);
450
451 // Avoid infinite or exponential worklist processing.
452 // Also ensure unique worklist users.
453 // If Def is a LoopPhi, it may not be in the Simplified set, so check for
454 // self edges first.
455 if (UI != Def && Simplified.insert(UI).second)
456 SimpleIVUsers.push_back(std::make_pair(UI, Def));
457 }
458 }
459
460 /// Return true if this instruction generates a simple SCEV
461 /// expression in terms of that IV.
462 ///
463 /// This is similar to IVUsers' isInteresting() but processes each instruction
464 /// non-recursively when the operand is already known to be a simpleIVUser.
465 ///
466 static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) {
467 if (!SE->isSCEVable(I->getType()))
468 return false;
469
470 // Get the symbolic expression for this instruction.
471 const SCEV *S = SE->getSCEV(I);
472
473 // Only consider affine recurrences.
474 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
475 if (AR && AR->getLoop() == L)
476 return true;
477
478 return false;
479 }
480
481 /// Iteratively perform simplification on a worklist of users
482 /// of the specified induction variable. Each successive simplification may push
483 /// more users which may themselves be candidates for simplification.
484 ///
485 /// This algorithm does not require IVUsers analysis. Instead, it simplifies
486 /// instructions in-place during analysis. Rather than rewriting induction
487 /// variables bottom-up from their users, it transforms a chain of IVUsers
488 /// top-down, updating the IR only when it encouters a clear optimization
489 /// opportunitiy.
490 ///
491 /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers.
492 ///
493 void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) {
494 if (!SE->isSCEVable(CurrIV->getType()))
495 return;
496
497 // Instructions processed by SimplifyIndvar for CurrIV.
498 SmallPtrSet<Instruction*,16> Simplified;
499
500 // Use-def pairs if IV users waiting to be processed for CurrIV.
501 SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers;
502
503 // Push users of the current LoopPhi. In rare cases, pushIVUsers may be
504 // called multiple times for the same LoopPhi. This is the proper thing to
505 // do for loop header phis that use each other.
506 pushIVUsers(CurrIV, Simplified, SimpleIVUsers);
507
508 while (!SimpleIVUsers.empty()) {
509 std::pair<Instruction*, Instruction*> UseOper =
510 SimpleIVUsers.pop_back_val();
511 Instruction *UseInst = UseOper.first;
512
513 // Bypass back edges to avoid extra work.
514 if (UseInst == CurrIV) continue;
515
516 if (V && V->shouldSplitOverflowInstrinsics()) {
517 UseInst = splitOverflowIntrinsic(UseInst, V->getDomTree());
518 if (!UseInst)
519 continue;
520 }
521
522 Instruction *IVOperand = UseOper.second;
523 for (unsigned N = 0; IVOperand; ++N) {
524 assert(N <= Simplified.size() && "runaway iteration");
525
526 Value *NewOper = foldIVUser(UseOper.first, IVOperand);
527 if (!NewOper)
528 break; // done folding
529 IVOperand = dyn_cast<Instruction>(NewOper);
530 }
531 if (!IVOperand)
532 continue;
533
534 if (eliminateIVUser(UseOper.first, IVOperand)) {
535 pushIVUsers(IVOperand, Simplified, SimpleIVUsers);
536 continue;
537 }
538
539 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseOper.first)) {
540 if (isa<OverflowingBinaryOperator>(BO) &&
541 strengthenOverflowingOperation(BO, IVOperand)) {
542 // re-queue uses of the now modified binary operator and fall
543 // through to the checks that remain.
544 pushIVUsers(IVOperand, Simplified, SimpleIVUsers);
545 }
546 }
547
548 CastInst *Cast = dyn_cast<CastInst>(UseOper.first);
549 if (V && Cast) {
550 V->visitCast(Cast);
551 continue;
552 }
553 if (isSimpleIVUser(UseOper.first, L, SE)) {
554 pushIVUsers(UseOper.first, Simplified, SimpleIVUsers);
555 }
556 }
557 }
558
559 namespace llvm {
560
561 void IVVisitor::anchor() { }
562
563 /// Simplify instructions that use this induction variable
564 /// by using ScalarEvolution to analyze the IV's recurrence.
565 bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, LPPassManager *LPM,
566 SmallVectorImpl<WeakVH> &Dead, IVVisitor *V)
567 {
568 LoopInfo *LI = &LPM->getAnalysis<LoopInfo>();
569 SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, LPM, Dead);
570 SIV.simplifyUsers(CurrIV, V);
571 return SIV.hasChanged();
572 }
573
574 /// Simplify users of induction variables within this
575 /// loop. This does not actually change or add IVs.
576 bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, LPPassManager *LPM,
577 SmallVectorImpl<WeakVH> &Dead) {
578 bool Changed = false;
579 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
580 Changed |= simplifyUsersOfIV(cast<PHINode>(I), SE, LPM, Dead);
581 }
582 return Changed;
583 }
584
585 } // namespace llvm